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Abstract. This paper addresses the locomotive routing problem, a large-scale railway 
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by each locomotive in a given fleet, while considering locomotive maintenance over a 
weekly planning horizon. By using commodity aggregation and flow decomposition 
techniques, we design a tractable integer linear program for the problem. The formulation 
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maintenance status of specific locomotives over the planning horizon and to manage 
locomotive assignments to trains based on their current maintenance status. It also 
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1 Introduction

Railroad transportation plays an important role in the economy, providing efficient and cost-

effective freight services for the transportation of products and goods. It also offers numerous

opportunities for employing optimization techniques to solve large, interrelated and complex prob-

lems at the different decision-making levels, such as, expanding the rail network, increasing line

capacity, building or closing yards, scheduling locomotives, planning maintenance, dispatching

trains, and managing crew (Ahuja et al., 2005a).

Among these problems, the locomotive scheduling problem stands out due to its crucial role

for effective railroad transportation. The high cost of each locomotive and the large number of

them make the locomotive fleet one of their most valuable assets, representing an investment in the

order of billions of dollars for large railways. Consequently, developing and implementing effective

optimization tools to support locomotive scheduling decisions is highly desirable.

In brief, the locomotive scheduling problem aims to assign a consist (i.e., a set of locomotives) to

each train in a given schedule, providing sufficient power to pull it from its origin to its destination,

while satisfying a variety of operational and business constraints at minimum cost (Ahuja et al.,

2005b; Vaidyanathan et al., 2008a). Depending on the specific decisions to be made and on the

length of the planning horizon, this problem can be considered at two main decision levels, namely,

tactical and operational. Here, we will focus on the operational planning level, where locomotives

must be assigned to trains while taking into account locomotive maintenance over the planning

horizon, usually a week.

At the tactical level, where the problem is referred to as the locomotive assignment problem

(LAP), locomotives are classified into types based on their main characteristics, such as horsepower,

pulling capabilities, weight, number of axles, and cost, among others. The problem is to determine

the number of locomotives of each type to assign to each train while taking into account, e.g., con-

straints on the fleet size for each locomotive type, power requirements for each train, compatibility

between trains and locomotives types, and a balanced flow of locomotives through the network.

Given that a typical train schedule is a weekly plan to be repeated over a three or four-month

period, the ultimate goal of the LAP is to provide a guideline on how to assign locomotive types to

trains and how to reposition them in the network so that the assignment is repeated every week.

Research on the LAP includes different modeling and algorithmic strategies. Cordeau et al.

(2000, 2001) propose multicommodity flow-based models for simultaneous locomotive and pas-

senger railcar assignment at Via Rail Canada, and solve them by applying Benders decomposition

(Benders, 1962). For the problem faced by CSX Transportation, a major U.S. railroad, Ahuja et al.

(2005b) propose an integer multicommodity flow-based formulation, where commodities correspond

to locomotive types, and a heuristic methodology to find high-quality solutions. Vaidyanathan et al.

(2008a) present an alternative formulation, where commodities represent locomotive consists in-

stead of locomotive types. Piu et al. (2015) propose an optimization model to determine the set of

consist types to include in consist-based formulations for the LAP. More recently, Ortiz-Astorquiza

et al. (2019) propose a novel hybrid formulation that combines features from both locomotive-

based and consist-based representations of the problem to solve the LAP at the Canadian National

Railways (CN). Scheffler et al. (2020) propose a formulation that generalizes the locomotive- and
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consist-based models proposed by Ahuja et al. (2005b) and Vaidyanathan et al. (2008a), respec-

tively, while satisfying practical requirements commonly found in European freight railroads. We

refer to Piu and Speranza (2014) for a survey on the LAP.

In practice, the output of the LAP cannot be directly implemented as it does not consider

locomotive maintenance, which might reduce the locomotive availability over the planning horizon.

Moreover, in real environments, planners are concerned with assigning locomotive units (i.e., in-

dividual and uniquely identified locomotives) to trains, rather than locomotive types. Therefore,

one needs to go one step further and solve the so-called Locomotive Routing Problem (LRP) that

arises at the operational level. In this problem, one needs to decide the sequence of trains each

specific locomotive should operate, while respecting the consist type assigned to each train, loco-

motive maintenance, and a balanced flow of locomotives through the network so as to operate a

weekly train schedule at minimum cost. The LRP does not change the consist type assigned to each

train, which is an output from the LAP. Rather, it determines which specific locomotives make up

the consist. Furthermore, it reoptimizes the locomotive flows through the network by taking into

account changes in fleet size and locomotive availability caused by scheduled maintenance activities.

Despite the importance of solving the LRP to obtain implementable locomotive schedules in

practice, the literature on this subject is rather scarce. Ziarati et al. (1997) study the problem

arising at CN. They propose a multicommodity flow-based model, and reformulate it using Dantzig-

Wolfe decomposition (Dantzig and Wolfe, 1960). This reformulation is solved heuristically by a

branch-and-bound procedure, where the linear programming relaxation at each node is solved by

column generation. In a subsequent work, Ziarati et al. (1999) present a cutting plane methodology

for the same problem, which yields lower integrality gaps and shorter computing times. Rouillon

et al. (2006) also build upon the work of Ziarati et al. (1997), and propose alternative branching

and search strategies to enhance their heuristic branch-and-bound. Computational experiments

highlight the savings, in terms of number of locomotives, obtained by the enhanced algorithm.

Vaidyanathan et al. (2008b) study the LRP at CSX Corporation, and propose a methodology

to determine locomotive paths, taking into account fueling and maintenance constraints. The

procedure is based on the a priori generation of locomotive paths that are guaranteed to satisfy

those constraints. The enumerated paths are then used as input for an integer linear program that

decomposes the LAP assignment into flows on paths.

More recently, Powell et al. (2014) and Bouzaiene-Ayari et al. (2016) propose an approach based

on Approximate Dynamic Programming (ADP) to solve the LRP at Norfolk Southern. Besides

locomotive maintenance and foreign power, their methodology also handles uncertainty on transit

times, train and yard delays, and locomotive failures. A drawback of this strategy, as pointed out

by the authors, is that ADP, despite being suitable to handle high levels of details, does not globally

optimize the locomotive flows on the network over time.

In this research, we propose a modeling framework for the deterministic LRP. It is a compact

integer multicommodity flow-based model that optimizes locomotive flows over the entire network,

while considering scheduled locomotive maintenance. Unlike other approaches proposed in the

literature, our methodology does not resort to algorithmic strategies that generate maintenance-

feasible paths in advance (Vaidyanathan et al., 2008b) or implementing tailor-made solution meth-
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ods (Powell et al., 2014). Rather, it is a simple yet effective tool that planners can use to support

decision-making and analyze different operational scenarios within a few minutes. It makes use

of commodity aggregation and flow decomposition techniques in order to devise a tractable inte-

ger programming formulation, which provides optimal solutions to real-size problems within short

computing times when solved by state-of-the-art commercial solvers. This paper focuses on the

LRP faced by CN, a major North American railroad, and makes the following contributions:

• We develop a modeling framework that allows us to represent the LRP as an integer multi-

commodity network flow problem with side constraints in a suitably defined graph. This graph

corresponds to a two-layer time-space network that keeps track of the maintenance status of

specific locomotives over the planning horizon, as well as managing the assignment of locomo-

tives to trains based on their current maintenance status. We allow locomotives to miss their

maintenance deadlines, for example due to insufficient shop capacity, while forbidding them to

pull trains or to light travel until they have been serviced in a shop. This differs from the most

restrictive assumption in the literature, where locomotives must be serviced punctually after a

fixed number of operating days or after traveling a given number of miles.

• We propose a tractable integer linear programming (ILP) formulation for the LRP, which can

be solved optimally by current state-of-the-art mixed integer programming (MIP) solvers within

reasonable computing time. The size of the formulation depends on its underlying graph, which

we keep within a manageable size by using commodity aggregation and flow decomposition tech-

niques, and by considering only suitable subsets of repositioning and maintenance opportunities.

For a typical one-week instance, our model has over 2.3 million constraints and 3.8 million integer

variables, and can be optimally solved in less than 10 minutes, on average. Unlike previous solu-

tions methodologies, we do not need to devise specialized algorithmic strategies to find optimal

solutions in short computing times.

• We perform extensive computational experiments to assess the performance of the model and

evaluate how variations on key parameters, such as shop capacity, connecting times and repo-

sitioning costs, affect the structure of optimal solutions. Our findings indicate that locomotive

repositioning is sensitive to variations in repositioning costs, as one would expect, and that

the weekly fleet size is largely impacted by variations in both connecting times and repositioning

costs. Interestingly, reductions in shop capacity have a minor impact on the system performance,

which suggests that it is well protected against major shop disruptions. Our methodology can

be used to run multiple scenario analyses and support decision-making.

• We compare solutions obtained by our model with those implemented in practice by the company,

and show that our formulation provides solutions that require both fewer locomotives and less

repositioning. Our methodology, coupled with the models and algorithms developed by Ortiz-

Astorquiza et al. (2019), can help the company manage its locomotive fleet in a more cost-effective

way, while respecting relevant operational and business constraints. Note that although we focus

on CN’s case study, the maintenance rules and regulations we consider are applicable to the whole

North American market. Hence, our methodology is applicable to other railway companies by

adjusting the necessary side constraints.
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The rest of the paper is organized as follows. Section 2 provides the problem description, while

Section 3 describes in detail our time-space network representation. The mathematical formulation

and computational experiments are reported in Sections 4 and 5, respectively. Conclusions and

future research directions are discussed in Section 6.

2 Problem Description

This paper is based on the LRP currently faced by the CN, a class I North American railroad. In

this problem we aim to determine the route followed by each locomotive over a one-week planning

horizon such that the total operational cost is minimized while satisfying the power requirements

of a given train schedule, balancing the locomotive flows, and respecting train connections and

locomotive maintenance.

2.1 Problem Data

We now describe the input data required for the LRP studied in this paper. We assume that all

the data is deterministic and known in advance. Table 1 summarizes the notation of sets and

parameters used in this section.

Train Schedule. It contains the set of trains that operate during the planning horizon. For

each train l it defines a unique ID, a tonnage tl, a horsepower per tonnage (HPT) factor βl, and

route information that specifies origin, destination, power changing stations, and their correspond-

ing times of departure and arrival. In combination, tonl and βl allow us to calculate how much

horsepower (HP) is needed to pull the train. Power changing stations are intermediate stations

along the train route where it can add or drop locomotives. It is worth mentioning that some

trains might be split into multiple legs in a pre-processing stage, depending on whether they need

Sets
K locomotive types Q train-to-train connections
V all locomotives S all stations
VC critical locomotives SSH shop stations
VCk critical locomotives of type k M maintenance types

Parameters
tonl tonnage of train l δv maintenance deadline of critical

locomotive vβl horsepower per tonnage factor of train l
rij railroad distance between stations i and j

ρkl number of locomotives of type k required
by train l mks number of locomotives of type k needed

at station s by the end of the planning
horizon

kv type of locomotive v
hv horsepower of locomotive v
wv weight of locomotive v Cs capacity of shop s
λv number of axles of locomotive v dm duration of maintenance of type m
mv type of maintenance required by critical

locomotive v

Tab. 1: Notation of data sets and parameters for the LRP.
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to change their consist at predefined power changing stations. The schedule provides all relevant

information for each of the train legs.

Assignment Plan. Let K be the set of locomotive types. This plan specifies the number ρkl

of locomotives of type k ∈ K that must be assigned to each train l in the schedule. For those trains

that are split into multiple legs, the plan gives the corresponding assignment for each of them.

Furthermore, it also specifies pairs of trains that must be assigned the same consist (i.e., a list Q

of train-to-train connections).

Locomotive Data. Let V be the set of locomotives. For each locomotive v ∈ V we know

its different attributes, such as ID, type (kv), horsepower (hv), weight (wv), number of axles (λv),

status and location. The locomotive status indicates whether it is initially in maintenance, in

transit in a train, or idling in a yard. The locomotive location is the station (i.e., yard or shop)

where it is located at the beginning of the horizon. We also know the subset VC ⊆ V of locomotives

with scheduled maintenance during the current horizon, referred to as critical locomotives. For

each locomotive v ∈ VC , we know the specific type of maintenance that it requires, mv, and its

associated maintenance deadline, δv. Furthermore, let VCk ⊆ VC be the set of critical locomotives

of type k ∈ K.

Network Data. It specifies information on the railroad network, such as the set of railroad

stations S, railroad distance rij between stations i, j ∈ S, and shop stations. For each station

s ∈ S, there is a unique ID and a minimum number mks of locomotives of type k ∈ K that must

be made available at s by the end of the horizon. It corresponds to an estimate of the number

of locomotives needed to meet the power demand at the beginning of the next planning horizon.

The set of shop stations is denoted by SSH ⊆ S. The capacity of shop s ∈ SSH , denoted by Cs,

specifies the maximum number of locomotives in service at any time. The set of maintenance types

is denoted by M, and the duration of a maintenance of type m ∈M is dm.

Cost Data. It specifies different cost parameters such as track maintenance, fuel consumption,

crew, maintenance and ownership costs. The track maintenance cost is associated to the usage of

the railroad. The fuel consumption cost depends on the locomotive type, fuel consumption rate

and distance. The crew cost is associated to the cost of operating a locomotive, and depends

both on the time and distance traveled by the crew. The maintenance cost relates to the time

required to service a locomotive, and depends on the locomotive and maintenance types. Finally,

the ownership cost corresponds to the weekly value of owning a locomotive, and depends on factors

such as locomotive type, acquisition value, lifetime, overhauls and residual value.

2.2 Problem Constraints

In this section, we present the operational and business constraints we must consider in order to

solve the LRP.

Locomotive Flow Balance. An important aspect of locomotive route planning is to ensure

that there are enough locomotives of the required types at the right stations to meet the train

schedule. Thus, we must determine how to reposition locomotives to meet power requirements

at the different stations. To accomplish this, we can make use of deadheading and light traveling.

Deadheading locomotives do not pull a train. Instead, they are pulled like railcars by a set of active
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locomotives from one place to another. Light traveling locomotives reposition themselves between

different stations, without pulling railcars. A set of locomotives in light travel forms a group, and

one locomotive in the group pulls the other ones from an origin station to a destination station

(Ahuja et al., 2005b; Vaidyanathan et al., 2008a). Notice that light traveling is not scheduled. Thus,

it is more flexible than deadheading. However, it is also more expensive as it requires an additional

crew to operate the pulling locomotive, and consumes track capacity that could otherwise be used

by trains moving freight.

Locomotive Maintenance. Honoring locomotive maintenance represents a major challenge

in locomotive route planning. Each unit is forced to pass through maintenance periodically (e.g.,

every 92 days in North America) for routine maintenance. Additionally, from time to time, they

need to pass by a shop for other major revisions and mechanical repairs. If a locomotive misses a

shop appointment it has to be turned off and deadheaded to a shop for maintenance (Bouzaiene-

Ayari et al., 2016).

Train-to-train Connections. Whenever a train arrives at its destination, its consist can be

either assigned in its entirety to a train departing later from the same station (referred to as a

train-to-train connection), or dismantled (referred to as busted) so that each individual locomotive

goes to a pool of locomotives from which new consists are formed (Ahuja et al., 2005a). Consist

busting is undesirable as it requires additional locomotive and crew time to decouple and move

locomotives individually. It might also result in delays as departing trains get their locomotives

from several arriving trains, one of which might be delayed. Thus, at the tactical level, the LAP

determines which train-to-train connections to make so as to reduce consist busting. When solving

the LRP we must satisfy this predefined list of train-to-train connections.

Power Requirements and Train Capacity. We must assign locomotives of the required

types to each train to satisfy power requirements. The number of locomotives of each type assigned

to a given train depends on the horsepower required to pull it, and is an output of the LAP. The

consist assigned to a train can also include foreign locomotives, which may be necessary to cover

locomotive unavailability due to maintenance. In addition, we must also respect limits on the

number of locomotives attached to a train (both active and deadheading) or light traveling in a

group.

3 Time-Space Network

We formulate the LRP based on a two-layer time-space network, which represents the physical

railroad activities and events of interest over the planning horizon. Using multi-layer time-space

networks as a modeling framework is a common practice in the rail transportation literature (see,

for example, Zhu et al., 2014). Table 2 summarizes the main notation used throughout this section

to describe our time-space network.

Let G = (N ,A) be a graph where N denotes the set of nodes and A represents the set of

arcs. Each node i ∈ N represents an event and is associated with two attributes: time (ti) and

location (pi). Each arc l ∈ A represents an activity, such as pulling a train, deadheading, light

traveling, waiting at a station, going to a shop for maintenance, or a train-to-train connection.

Although undesirable, in practice a locomotive might miss its shop appointment and be serviced
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Nodes
NB

D departure nodes in the service layer NT
F final nodes in the overdue layer

NB
A arrival nodes in the service layer NB

SH nodes that provide a maintenance
opportunity in the service layerNB

O outpost nodes in the service layer
NB

R source nodes in the service layer ND all departure nodes
NB

I initial nodes in the service layer NA all arrival nodes
NB

H sink nodes in the service layer NO all outpost nodes
NB

F final nodes in the service layer NR all source nodes
NB

Q connection nodes in the service layer NI all initial nodes

NT
D departure nodes in the overdue layer NH all sink nodes

NT
A arrival nodes in the overdue layer NF all final nodes

NT
O outpost nodes in the overdue layer NB all nodes in the service layer

NT
R source nodes in the overdue layer N T all nodes in the overdue layer

NT
I initial nodes in the overdue layer N all nodes

NT
H sink nodes in the overdue layer ti, pi time and location of node i

Arcs
AB

T train arcs in the service layer ASH(v) all shop arcs for locomotive v
AB

Q train-to-train arcs in the service layer AT
T− legacy train arcs in the overdue layer

AB
L light traveling arcs in the service layer AT

SH− legacy shop arcs in the overdue layer
AB

DH deadheading arcs in the service layer AB2T B2T inter-layer arcs
AB

G ground arcs in the service layer AB2T (v) B2T inter-layer arcs for locomotive v
AB

SH shop arcs in the service layer AT2B T2B inter-layer arcs
AB

SH(v)
shop arcs for locomotive v in the service layer

AT2B(v) T2B inter-layer arcs for locomotive v
AB all arcs in the service layer

AB
T− legacy train arcs in the service layer AT all arcs the overdue layer

AB
SH− legacy shop arcs in the service layer AG all ground arcs

AT
DH deadheading arcs in the overdue layer ADH all deadheading arcs

AT
G ground arcs in the overdue layer A−

SH all legacy shop arcs
AT

SH shop arcs in the overdue layer A−
T all legacy train arcs

AT
SH(v)

shop arcs for locomotive v in the overdue layer
A all arcs

Tab. 2: Notation of nodes and arcs in the time-space network.

after its deadline due to insufficient shop capacity. Such locomotives are said to be in overdue state.

Our two-layer time-space network allows us to manage and separate the flows of overdue and non-

overdue locomotives. The service layer GB = (NB,AB), where NB and AB denote the set of nodes

and arcs, respectively, contains arcs that represent all different locomotive activities, including

pulling a train and light traveling. Only regular locomotives, those with no shop appointment,

and critical locomotives that have not missed their deadline can flow on this layer. Overdue

locomotives flow in the overdue layer GT = (N T ,AT ), where N T and AT denote the set of nodes

and arcs, respectively. This layer does not contain any arcs that represent pulling a train, light

traveling, or making train-to-train connections. Whenever a critical locomotive misses its deadline,

it is immediately transferred to the overdue layer, where it flows until passing through a shop.

Afterward, the locomotive returns to the service layer, where it can again pull trains, light travel

or make train-to-train connections.

It is worth noting that we could attain the same result without resorting to the utilization of a

multi-layer structure. This would require, however, the inclusion of additional linking constraints

to manage the assignment of a given critical locomotive to a train or light travel based on its current

maintenance status (i.e., overdue or not). By using another layer, we avoid adding such linking

constraints while meeting the operational requirement of not assigning an overdue locomotive to a

train or light travel until it has been serviced in a shop. It also allows us to propose a mathematical
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formulation (see Section 4) whose structure can be exploited by state-of-the-art commercial solvers

to provide optimal solutions within short computing times (see Section 5).

Next, we describe the different elements of our two-layer time-space network.

3.1 Service Layer

Figure 1 depicts an illustrative example of the service layer in a time-space network with three

stations. We partition the set of nodes NB into departure, arrival, outpost, connection, source,

and sink nodes, respectively.

Departure (NB
D ) and Arrival (NB

A ) Nodes. Each i ∈ NB
D represents a train departure from

its origin (white nodes in Figure 1). Its location attribute corresponds to the train origin station.

Its time attribute is given by the train departure time minus the time required to build the consist.

An arrival node i ∈ NB
A represents a train arrival at its destination (black nodes in Figure 1). Its

location attribute corresponds to the train destination station, and its time attribute is given by

the train arrival time plus the time required to bust the consist.

Outpost Nodes (NB
O ). We place these nodes at each station at different points in time, for

example, at the beginning of each day or working shift. We use them to provide maintenance or

light traveling opportunities at different stations (see dark gray nodes in Figure 1). We can think of

them as events at specific points in time where it is necessary to make a decision, such as whether

a locomotive should go to a shop, or light travel between two stations to reposition itself, or stay

idle at its current location.

Connection Nodes (NB
Q ). Let (q1, q2) ∈ Q represent a connection between trains q1 and

q2, respectively. For each (q1, q2) ∈ Q we create two nodes, say i and j. The location and time

attributes of node i correspond to the destination and arrival time of train q1. Conversely, the

location and time attributes of node j correspond to the origin and departure time of train q2.

These two nodes are the end points of a specific type of arc that represents the consist transfer

between trains q1 and q2, respectively. See light gray nodes in Figure 1. For the sake of clarity, we

only depict a pair of connection nodes (i.e., only one train-to-train connection). The tail node, i,

is to the left of the arrival node of train q1, as the consist is not busted upon arrival. Likewise, the

head node, j, is to the right of the departure node of train q2, as the consist does not need to be

built before departure.

Source Nodes (NB
R ). At each station s ∈ S, we represent the beginning of the planning

horizon with a special node i ∈ NB
R with location and time attributes set to s and 0, respectively

(see hatched nodes at time 0 in Figure 1). We call this node the initial node of station s, and

denote the set of all initial nodes in the service layer by NB
I . Each i ∈ NB

I is a source of available

locomotives at station s = pi at the beginning of the planning horizon. Each node i ∈ NB
R \NB

I

represents an event that took place during the previous horizon (see hatched nodes to the left of

time 0 in Figure 1). This event is the beginning of an activity that finishes within the current

planning period. These nodes are sources of locomotives that are unavailable at the beginning of

the horizon, such as those in transit or in maintenance at time 0.

Sink Nodes (NB
H ). Let H denote the end of the current planning horizon. At each station

s ∈ S, we represent the end of the planning horizon with a special node i ∈ NB
H , with location and
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Fig. 1: Example of the service layer in a time-space network with three stations.

time attributes equal to s and H, respectively (see dotted nodes at time H in Figure 1). We call

this node the final node of station s, and denote the set of all final nodes in the service layer by

NB
F . Each i ∈ NB

F is a sink for locomotives available at station s = pi by the end of the planning

horizon. Each node i ∈ NB
H\NB

F represents an event that will take place during the upcoming

planning horizon, as depicted by dotted nodes to the right of time H in Figure 1. These nodes are

sinks for locomotives that are in transit or in maintenance at time H.

From now on, we assume that nodes at each station are sorted in chronological order by their

time attribute, and that no pair of nodes at the same station has the same time attribute. We

also partition the set of arcs AB into different sets, namely, train, train-to-train, deadheading, light

traveling, shop, ground and legacy arcs. We next describe each of these sets of arcs.

Train (AB
T ) and Train-to-Train (AB

Q) Arcs. The set AB
T consists of one arc l for every

train in the schedule (solid black arcs in Figure 1). These arcs connect a departure node with

its corresponding arrival node. If the time attribute of an arrival node is greater then H, then we

change it to a sink node. The set AB
Q contains one arc for each train-to-train connection (q1, q2) ∈ Q

(dashdotted arc, named tr2tr, in the middle top part of Figure 1). Each l ∈ AB
Q links two connection

nodes, i and j, associated to trains q1 and q2, respectively. Let l1 and l2 be the train arcs that

represent trains q1 and q2, respectively. To enforce a train-to-train connection, we set node i as

head of arc l1, and node j as tail of arc l2, respectively. Notice that the former head of l1 is an

arrival node, and the former tail of l2 is a departure node. By changing these nodes we enforce

the connection between the two trains: l1 is the only incoming arc into node i, while l2 is the only

outgoing arc from node j. Since i and j are uniquely connected by a train-to-train arc, the consist

assigned to l1 is transferred to l2.

Deadheading Arcs (AB
DH). For each train in the schedule there is an arc l ∈ AB

DH that

represents a deadheading opportunity from the train origin to its destination (see dashed arcs in

Figure 1). We also include arcs that represent deadheading opportunities (i) from the train origin to

power changing stations in its route, (ii) from power changing stations in the train route to the train
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destination and, (iii) between power changing stations in the train route. For the sake of simplicity,

Figure 1 does not show all deadheading options for each train. Arcs representing deadheading from

the train origin must outbound from the corresponding train departure node. Conversely, arcs

representing deadheading to the train destination must inbound at the corresponding train arrival

node. Also, end points of arcs representing deadheading between power changing stations must

respect arrival and departure times at the stations.

Light Traveling Arcs (AB
L ). They are depicted with solid gray arcs in Figure 1. Including

all possible light traveling options is impractical as it would make the problem computationally

intractable for instances of realistic size. Thus, we only consider a suitable subset of light traveling

arcs, which we generate following the procedure described in Section 3.4.

Shop Arcs (AB
SH). We consider different types of maintenance, each one with different fre-

quency, duration and cost. Similar to light traveling arcs, including all possible options is imprac-

tical. Therefore, we consider only a reduced number of maintenance opportunities, as described in

Section 3.5. For now, let m(l) denote the type of maintenance associated to arc l ∈ AB
SH . Then,

for each locomotive v ∈ VC , we define AB
SH(v) = {l = (i, j) ∈ AB

SH | m(l) = mv, ti ≤ δv} as the

set of shop arcs that can be taken by locomotive v in the service layer. In Figure 1, maintenance

is represented by dotted gray arcs at the station B. For simplicity, we only depict one shop arc at

each maintenance opportunity. In practice, however, we include one shop arc for each maintenance

type.

Ground Arcs (AB
G). Depicted by horizontal dotted black arcs in Figure 1, these arcs represent

locomotives idling at a given station, waiting for upcoming trains, maintenance or light traveling

opportunities. We recall that nodes at each station are assumed to be sorted chronologically by

their time attribute. Thus, starting with the initial node we add a ground arc to connect each node

with the next one in the sequence, until reaching the final node of the station. This allows us to

model the flow of locomotives at a given station over time, from the beginning to the end of the

planning horizon.

Legacy Arcs (AB
LEG). This set represents activities that started during the previous planning

horizon, but will finish within the current one. The set of legacy train arcs (AB
T−) contains one

arc for each train in the schedule of the previous horizon that reaches its destination within the

boundaries of the current one (solid black arcs crossing time 0 in Figure 1). Its tail is a source

node that represents the train departure during the previous horizon. Its head represents the train

arrival at destination and is, therefore, an arrival node. The set of legacy shop arcs (AB
SH−) contains

one arc for each locomotive in maintenance at time 0 (dotted gray arcs crossing time 0 in Figure 1).

Its tail is a source node that represents the beginning of the maintenance in the previous horizon.

Its head denotes the end of the maintenance, and is the first node at the shop station with the

proper time attribute. Flows on legacy train and legacy shop arcs are known in advance, as they

correspond to decisions made in the previous horizon.

3.2 Overdue Layer

To create the overdue layer of our time-space network we initially make a copy of the service layer,

described above. This way, each node in the service layer has exactly one copy in the overdue layer,
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with the same location and time attributes. We then remove from it all train, light traveling, and

train-to-train arcs, which cannot be traversed by overdue locomotives. Let NT
D, NT

A , NT
R , NT

I , NT
H ,

NT
F and NT

O denote the sets of departure, arrival, source, initial, sink, final and outpost nodes in

the overdue layer, respectively. Likewise, let AT
DH , AT

G, AT
SH , AT

T− and AT
SH− denote the sets of

deadheading, ground, shop, legacy train and legacy shop arcs in the overdue layer. We also define

AT
SH(v) = {l = (i, j) ∈ AT

SH | m(l) = mv, ti > δv} as the set of shop arcs that can be taken by

locomotive v ∈ VC in the overdue layer.

Considering both layers, we define ND = NB
D ∪ NT

D, NA = NB
A ∪ NT

A , NO = NB
O ∪ NT

O ,

NR = NB
R ∪ NT

R , NI = NB
I ∪ NT

I , NH = NB
H ∪ NT

H , and NF = NB
F ∪ NT

F . Similarly, we define

AG = AB
G ∪ AT

G, ADH = AB
DH ∪ AT

DH , A−SH = AB
SH− ∪ A

T
SH− , AT− = AB

T− ∪ A
T
T− and, for v ∈ VC ,

ASH(v) = AB
SH(v) ∪AT

SH(v).

3.3 Connection Between Service and Overdue Layers

We connect service and overdue layers, allowing the flow of critical locomotives from one to another.

The set AB2T contains all arcs that allow the flow from the service layer to the overdue layer. There

is one arc for each station s ∈ S and each time period over the planning horizon. Each arc l ∈ AB2T

connects a node representing the last event at a station in a given time period to its copy in the

overdue layer. While in the service layer, each locomotive v ∈ VC should be moved to a shop before

the end of period t̂v = dδv/τe, where τ denotes the duration of one period (e.g., a day). Otherwise,

it must immediately be moved to the overdue layer by taking one arc l ∈ AB2T placed by the end

of period t̂v. We define AB2T (v) = {l = (i, j) ∈ AB2T | dti/τe = t̂v} as the set of B2T arcs that

can be taken by locomotive v ∈ VC .

Conversely, the set AT2B contains all arcs that allow the flow of locomotives from the overdue

layer to the service layer. It has one arc for each shop arc in the overdue layer whose head is not

a sink node. Each arc l ∈ AT2B connects the head j of an arc l′ = (i, j) ∈ AT
SH to its copy in the

service layer. Once in the overdue layer, locomotive v ∈ VC can only return to the service layer

after it has been serviced in a shop. Thus, we define AT2B(v) = {l = (i, j) ∈ AT2B | ti > δv + dmv}
as the set of T2B arcs that can be taken by locomotive v, where dmv denotes the duration of the

maintenance required by locomotive v, mv.

3.4 Generating Light Traveling Arcs

Next, we describe a procedure to generate a suitable subset of light traveling arcs. We based

our choice of considering only a small subset of light traveling arcs on the fact that, in practice,

railroads prefer not using light traveling to reposition locomotives as it is a costly practice. First,

we build a space network, which corresponds to a complete graph where nodes represent train

stations. Then, we solve a minimum cost flow problem to determine the optimal flow of power

through this network. The supply or demand of each node is calculated as the difference between

inbound and outbound horsepower. Sources are, therefore, stations that receive more horsepower

than they need and, conversely, sinks are stations that receive less horsepower than they need. The

objective function value coefficient for each arc (i, j) in the network is set as follows:
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eij =


rij if oij ≤ 2

rij · α if 2 < oij < α

rij · α2 otherwise.

(1)

The cost eij of each arc (i, j) depends on the number oij of trains operated between stations i and

j, an input parameter α, used to discourage the flow between i and j if there is more than a given

number of trains operated between them, and the railroad distance between stations, rij . The

rationale behind it is that, in practice, repositioning locomotives from i to j can be done through

deadheading, instead of light traveling.

We solve this minimum cost flow problem, and create light traveling arcs between a pair of

stations if the optimal flow between them is above a given threshold value, θ. We add γ arcs

emanating from arrival nodes at the origin station, and entering the first available node at the

destination station after the corresponding travel time. If the number of arrival nodes at the origin

station is greater than γ, we split the planning horizon into γ time windows of equal length and add

one light traveling arc for each of them. If a certain time window does not include arrival nodes, we

use the first available arrival node located at a neighbor time window. To guarantee that there exists

at least one light traveling opportunity per day at the origin station, we also add arcs emanating

from outpost nodes. Finally, we add arcs to connect stations with critical locomotives (available

or arriving in legacy trains) to shop stations. These arcs, which also emanate from outpost nodes,

provide opportunities to reposition critical locomotives directly from stations without maintenance

capabilities to shops. In order to keep a reduced set of light traveling arcs, we can consider only a

subset of shops. The choice of shops to consider may be based on distance, capacity or any other

practical criterion.

3.5 Generating Shop Arcs

Next, we propose a procedure to generate a suitable subset of maintenance opportunities over the

planning horizon, while guaranteeing that there exists at least one opportunity per shop per day.

Recall that M denote the set of maintenance types. Each m ∈M has different duration and cost.

We provide one maintenance opportunity for each outpost node i ∈ NB
O located at a shop station.

For each opportunity, we create one shop arc for each maintenance type m ∈M: the arc emanates

from node i and enters at the first node j at the same station that satisfies tj ≥ ti + dm, where

dm denotes the duration of maintenance type m. Observe that the arc tail is always an outpost

node, while its head may be a node of any type. Additionally, for each shop, we consider an extra

maintenance opportunity associated to the last event (i.e., the last node of whatever type) of each

period. This extra opportunity allows us to represent the move to the shop of any locomotive that

has arrived at the station since the last opportunity associated to an outpost node. Following the

same rationale, we create one shop arc for each maintenance type m ∈ M. In this case, both the

tail and head of the arcs may be nodes of any type. We add the tail of each shop arc to the set

NB
SH , which represents the set of nodes in the service layer that provide maintenance opportunities

over the planning horizon.
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4 Mathematical Formulation

In this section we provide a mathematical formulation built upon the two-layer time-space network

representation described in Section 3. The problem is formulated as an integer linear programming

(ILP) model, which corresponds to an integer multicommodity flow problem with side constraints,

where locomotives represent the commodities flowing on the arcs of the graph. A formulation

where each individual locomotive is considered a commodity flowing in the graph is presented

in Appendix A. For instance sizes typically found in the railroad industry, with thousands of

locomotives and trains operated per week, this formulation results in a large-scale optimization

problem, which is difficult to solve optimally within reasonable computing time.

To circumvent this issue, and based on the observation that only critical locomotives need to

be modeled individually so as to keep track of their maintenance status, we aggregate regular

locomotives into types, as in the LAP. Thus, instead of having one commodity per locomotive, we

consider one commodity per critical locomotive plus one commodity per locomotive type. This

reduction from a few thousand commodities to only a few dozens has a dramatic impact on the

computational resources needed to optimally solve the problem. More importantly, given that

regular locomotives of the same type are essentially identical from a cost perspective (i.e., the cost

of traversing an arc depends on the locomotive type, not in the locomotive itself), we also eliminate

symmetric solutions without missing the true optimal solution of the problem.

An issue with this strategy is, however, that we need a post-processing step to decompose

the aggregated flows of regular locomotives into individual locomotive paths. We can efficiently

accomplish this task by means of a polynomial time flow decomposition algorithm (see Ahuja et al.,

1993, for details). For each locomotive type k ∈ K, the algorithm separates the arc flows into paths

(our graph has no cycles), each one connecting a source node to a sink node. The regular locomotive

v that traverses the identified path is one among those of type k that are located at the source of

the path.

Consider the following additional notation:

Sets:

Ik[i]: Set of inbound arcs to node i that can be taken by regular locomotives of type k;

Ok[i]: Set of outbound arcs from node i that can be taken by regular locomotives of type k;

Iv[i]: Set of inbound arcs to node i that can be taken by critical locomotive v;

Ov[i]: Set of outbound arcs from node i that can be taken by critical locomotive v;

EB
il : Set of arcs in the service layer that represent an “ongoing” deadheading in train l when it

departs from the ith station in its route;

ET
il : Set of arcs in the overdue layer that represent an “ongoing” deadheading in train l when it

departs from the ith station in its route.

Parameters:

ckl: Flow cost of a locomotive of type k on arc l;

cvl: Flow cost of critical locomotive v on arc l;

φ: Unit penalty cost for not servicing a critical locomotive;
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λRki: Supply of regular locomotives of type k at source i;

λCvi: Supply of the critical locomotive v at source i;

ηRkl: Flow of regular locomotives of type k on legacy arc l ∈ AT− ∪ASH− ;

ηCvl: Flow of critical locomotive v on legacy arc l ∈ A−T ;

mT : Maximum number of locomotives per train or light traveling group;

mDH
l : Maximum number of deadheading locomotives in train l, mDH

l = mT −
∑
k∈K

ρkl;

nl: Number of intermediate stops of the train l.

Decision Variables:

xkl : Number of regular locomotives of type k that flow on arc l;

yvl : 1 if critical locomotive v flows on arc l, 0 otherwise;

uki : Number of additional locomotives of type k supplied by source i.

The LRP is formulated as follows:

min
∑
k∈K

∑
l∈AB

T ∪ADH∪AB
L∪AG∪AB

Q

ckl

xkl +
∑
v∈VC

k

yvl

 +
∑
v∈VC

∑
l∈ASH(v)

cvlyvl

+
∑
v∈VC

φ

1−
∑

l∈ASH(v)

yvl


(2)

subject to:

xkl = ηRkl, k ∈ K, l ∈ AB
T− ∪A

B
SH− (3)

yvl = ηCvl, v ∈ VC , l ∈ A−T (4)∑
l∈Ok[i]

xkl = λRki + uki, k ∈ K, i ∈ NB
I (5)

∑
l∈Ov [i]

yvl = λCvi, v ∈ VC , i ∈ NI (6)

∑
i∈NB

H

∑
l∈Ik[i]

xkl =
∑
i∈NB

R

∑
l∈Ok[i]

xkl, k ∈ K (7)

∑
i∈NH

∑
l∈Iv [i]

yvl = 1, v ∈ VC (8)

∑
l∈Ik[i]

xkl =
∑

l∈Ok[i]

xkl, k ∈ K, i ∈ {NB
D ∪NB

A ∪NB
O ∪NB

Q } (9)

∑
l∈Iv [i]

yvl =
∑

l∈Ov [i]

yvl, v ∈ VC , i ∈ {ND ∪NA ∪NO ∪NB
Q } (10)

xkl +
∑
v∈VC

k

yvl = ρkl, k ∈ K, l ∈ AB
T (11)
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∑
l∈ASH(v)

yvl ≤ 1, v ∈ VC (12)

∑
l∈AB2T (v)

yvl = 1−
∑

l∈AB
SH(v)

yvl, v ∈ VC (13)

yvl′ =
∑

l=(i,j)∈AT
SH(v)

yvl, v ∈ VC , l′ = (j, h) ∈ AT2B(v) (14)

∑
v∈VC

∑
l=(j,h)∈ASH(v):

pj=s
tj≤ti<th

yvl ≤ Cs −
∑

l=(j,h)∈A−SH :
ph=s

tj≤ti<th

∑
k∈K

ηRkl,

s ∈ SSH ,
i ∈ NB

SH :

pi = s

(15)

∑
k∈K

∑
j∈EB

il

xkj +
∑
v∈VC

k

yvj

 +
∑
v∈VC

∑
j∈ET

il

yvj ≤ mDH
l ,

l ∈ AB
T ,

i = 0, . . . , nl
(16)

∑
k∈K

xkl +
∑
v∈VC

yvl ≤ mT , l ∈ AB
L (17)

∑
i∈NB

F :
pi=s

 ∑
l∈Ik[i]

xkl +
∑
v∈VC

k

∑
l∈Iv [i]

yvl

 ≥ mks, k ∈ K, s ∈ S (18)

xkl ∈ Z+, k ∈ K, l ∈ AB\AB
SH (19)

yvl ∈ {0, 1}, v ∈ VC , l ∈ AB ∪ AT ∪AB2T ∪AT2B (20)

uki ∈ Z+, k ∈ K, i ∈ NB
I . (21)

The objective function (2) aims to minimize the total operational cost. The first term of (2)

includes costs of pulling trains, deadheading, light traveling, idling at stations, and enforcing train-

to-train connections. The second term is the maintenance cost and, finally, the last term is a

penalty cost incurred for each critical locomotive not serviced in a shop by the end of the planning

horizon. The cost of pulling a train is a function of track maintenance, fuel consumption and

ownership costs. The deadheading cost is a function of track maintenance and ownership costs.

Light traveling costs include track maintenance, ownership, fuel consumption and crew costs. We

follow Ortiz-Astorquiza et al. (2019) and include fixed crew and fuel consumption costs within ckl

to penalize and discourage the use of light traveling arcs. Idling costs correspond exclusively to

ownership costs. Similarly, train-to-train connection costs are associated to having the locomotives

inactive while the connection takes place. The maintenance cost is a function of maintenance type

and ownership costs. The cost of operating foreign locomotives is implicitly accounted for via

ownership costs, which are paid on every arc of the graph. Thus, the railroad incurs all the costs

of owning foreign units during the whole planning horizon. We note that we do not consider fixed

leasing cost as long-term agreements between major railroads govern the availability and access to

locomotives when required.

Constraints (3) and (4) set the initial conditions at the beginning of the week: the set of

constraints (3) fixes the known flow of regular locomotives on legacy arcs. Observe that it suffices

to consider only arcs in the service layer, as regular locomotives do not flow on the overdue layer.
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Similarly, constraints (4) set the known flow of critical locomotives on legacy train arcs. These are

units initially in transit that are due for maintenance during the current week.

The set of constraints (5) establishes the number of regular locomotives of type k flowing out of

the initial node i, considering both owned and foreign locomotives of type k. The integer variable

uki states how many additional locomotives of type k are needed at station s = pi at the beginning

of the planning horizon. Similarly, constraints (6) state the flow out of initial nodes for critical

locomotives. In this case, λCvi equals one if the critical locomotive v is available at station s = pi

at the beginning of the horizon, or zero otherwise. Constraints (7) guarantee that the number

of regular locomotives flowing into sink nodes equals the one flowing out of sources. Likewise,

constraints (8) indicate that each critical locomotive must flow into a sink. Flow conservation

on departure, arrival, outpost and connection nodes are imposed by constraints (9), for regular

locomotives, and by (10), for critical locomotives, respectively.

Constraints (11) guarantee that each train is assigned the proper type and number of active

locomotives, considering critical, regular, and foreign locomotives, if needed. Constraints (12)

guarantee that each locomotive v ∈ VC flows, at most, on one shop arc in the set ASH(v), which

contains only the shop arcs that can be traversed by locomotive v. Constraints (13) force critical

locomotives to flow toward the overdue layer if they miss their maintenance deadline. Constraints

(14) establish that overdue locomotives flow back to the service layer as soon as they have been

serviced in a shop. Constraints (15) correspond to shop capacity constraints, which impose a limit

on the number of locomotives in a given shop s during each possible maintenance opportunity. For

each opportunity i ∈ NB
SH at shop s, the left-hand side of (15) calculates the flow on all shop arcs at

s that represent an ongoing maintenance operation at the time ti (i.e., the number of locomotives

in shop s at the time ti). The right-hand side corresponds to the capacity of shop s at time ti,

considering any locomotive initially in shop that is still under inspection at the time ti.

Constraints (16) limit the number of deadheading locomotives attached to a train when it

departs from the ith station in its route. Figure 2 provides an example of a train with two inter-

mediate stops at power changing stations. The train is represented by the solid arc, while dashed

arcs represent the deadheading opportunities along the route. Similarly, constraints (17) impose a

limit on the number of locomotives traversing a light traveling arc.

O

D

I1 I2

I3 I4

Departure

Arrival

(a) Departure from O.

O

D

I1 I2

I3 I4

Departure

Arrival

(b) Departure from I2.

O

D

I1 I2

I3 I4

Departure

Arrival

(c) Departure from I4.

Fig. 2: Example of deadheading arcs for a train with two intermediate power changing stations.
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Constraints (18) enforce a minimum number of locomotives of each type at each station by the

end of the planning horizon. Observe that we only consider locomotives flowing into final nodes,

as those units are available to be used at the beginning of the next week. Locomotives flowing into

other sinks are either in transit or in maintenance, and cannot be used right away to provide power

to any train.

5 Computational Experiments

In this section we perform computational experiments to asses the performance of our methodology

on a set of real instances. We also conduct different scenario analyses and draw insights from them.

We implemented all our algorithms in C++ and run them on a 2.40 GHz Intel Gold 6148 Skylake

processor with 20 GB of memory. We modeled our ILP using the IBM Concert Technology and

solved it using the CPLEX 12.10 solver with a single-thread and a one-hour computing time limit.

In addition, we used the CPLEX Network Optimizer to solve the minimum cost flow problem

described in Section 3.4 to generate light traveling arcs.

5.1 Benchmark Instances

We generated a set of 51 weekly instances based on CN’s historical data, which includes the actual

consist type assigned to each train. The network has over 1,700 stations out of which 480 act as

train origins or destinations, and 19 can provide maintenance services. Shop capacity ranges from

1 locomotive for the smallest shops to 21 locomotives for the largest ones. A typical one-week

train schedule has over 3,800 trains, which depart from or arrive at 373 different stations. The

nominal fleet is composed of 2,205 locomotives, classified into five different types based on their

operational characteristics. Every week, on average, 89% of the fleet (i.e., 1,958 locomotives) is

actually available due to major unscheduled repairs and leasing to other railroads. Moreover, from

the actually available fleet, on average, 91 locomotives are due for maintenance every week. Thus,

our time-space graph has 96 commodities and results in a formulation with 2.3 million constraints

and 3.9 million integer variables, on average. We use this set of real instances for our computational

experimentation in Sections 5.3 and 5.4. In Section 5.2, we consider a set of smaller instances to

showcase the impact of our aggregation strategy.

It is important to highlight that the data correspond to CN’s actual operations, which re-

flect decisions made to handle unforeseen real-time events, such as unscheduled locomotive repairs.

Therefore, there was a significant challenge involved in going from raw operational data to a clean

version that could be used to generate instances for our optimization model. Along this research,

CN’s personnel assisted us to validate both data and solutions. Also, we set model parameters

based on extensive preliminary experiments and CN’s input. In particular, we empirically set

light traveling related parameters (Section 3.4) to closely reproduce historical data. This required

striking a balance between having a suitable set of high-quality light traveling opportunities and a

manageable problem size. It also required to properly approximate light traveling costs, which gen-

erally include subjective decision-maker preferences. All cost parameters were estimated according

to the actual values and guidelines followed by the company in practice.
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Figure 3 reports the distribution of the number of constraints, total and binary variables of

the model across the instances. Note that whiskers extend from the 5th to the 95th percentiles.

As observed, our optimization problem is of large scale, with 95% of the instances having over 1.9

million constraints and 3.2 million variables. Most variables are binary and are associated to a

small set of critical locomotives (91, on average). This provides a good idea of why considering

individually each locomotive in the fleet is computationally intractable.

5.2 The Value of Aggregation

In this section we assess the impact of our aggregation strategy on the computational performance

of our methodology. In particular, we compare the formulation proposed in Section 4, where regular

locomotives are aggregated into types, with the one in Appendix A, where regular locomotives are

modeled individually. Initially, we tried solving real-size instances with both formulations. However,

the dissagregated model could not solve such instances within a computing time limit of 24 hours.

Therefore, in this section, we report experiments on smaller instances obtained by considering only

mainline trains (i.e. heavy, long distance trains). These instances, while significantly smaller than

the original ones, are still of realistic size (over 1500 trains per week, on average).

Table 3 summarizes the computational performance of both formulations in terms of number

of constraints (#Cons.), total variables (#Vars.), binary variables (#Bins.), nodes explored in

the branch-and-bound tree (#Nodes), optimality gap (Gap[%]), and computing time (CPU[min]).

Observe that all results are aggregated by month.

Based on Table 3 we observe that aggregating regular locomotives into types has a significant

impact on the solver’s performance. Solving the aggregated formulation is more efficient due to

the smaller size of the resulting problem and the streamlined space of feasible solutions that results

from the elimination of symmetric solutions. Therefore, being able to solve real instances with the

disaggregated formulation is unlikely due to the considerable amount of memory and time that

it requires. As we show in the following sections, by using an aggregation strategy and applying

#Constraints #Variables #Binary

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1e6

Fig. 3: Distribution of the number of constraints, total and binary variables for our 51 instances.
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Month
Disaggregated Formulation Aggregated Formulation

#Cons.† #Vars.† #Bins.† #Nodes Gap(%) CPU(min) #Cons.† #Vars.† #Bins.† #Nodes Gap(%) CPU(min)

1 12.47 24.38 24.32 0 0.00 136.15 1.13 1.94 1.88 0 0.00 3.47
2 12.58 24.85 24.79 5 0.00 300.37 1.16 2.00 1.94 110 0.00 4.83
3 12.37 23.96 23.90 158 0.00 213.16 1.26 2.13 2.06 158 0.00 5.71
4 12.73 25.17 25.11 143 0.00 281.74 1.13 1.94 1.88 727 0.00 4.74
5 12.58 24.67 24.61 111 0.00 205.97 1.18 2.01 1.95 193 0.00 4.40
6 12.35 24.35 24.29 0 0.00 149.97 1.16 2.00 1.93 0 0.00 4.04
7 12.46 24.02 23.96 49 0.00 178.80 1.30 2.19 2.13 0 0.00 4.57
8 12.70 24.99 24.92 0 0.00 127.19 1.13 1.93 1.87 0 0.00 4.35
9 12.48 24.60 24.54 2 0.00 139.13 1.28 2.19 2.12 90 0.00 3.63
10 12.92 25.29 25.22 0 0.00 161.80 1.30 2.22 2.15 0 0.00 4.08
11 13.06 25.86 25.80 201 0.00 292.29 1.23 2.13 2.06 201 0.00 4.51
12 13.66 26.98 26.91 11 0.00 278.46 1.18 2.04 1.97 0 0.00 3.26

12.68 24.90 24.84 59 0.00 206.03 1.20 2.06 1.99 126 0.00 4.34
†Values in millions.

Tab. 3: Comparison between disaggregated and aggregated formulations.

flow decomposition in a post-processing step, optimal solutions for real instances can be attained

in very short computing times.

5.3 Comparison with CN’s Operations

In this section we solve the set of real instances (Section 5.1) and compare CPLEX optimal solutions

with those implemented by CN to show the potential savings that our optimization approach can

achieve when planning locomotive routes. For confidentiality reasons, we do not show the actual cost

of the solutions obtained by our methodology nor those implemented in practice. Thus, we resort

to alternative statistics to measure solution quality and savings. Table 4 summarizes the relative

difference of the optimal solutions with respect to CN actual operations, aggregated by month.

Each row in the first four columns corresponds to the average over a month, and shows, in order,

the relative difference in number of locomotives deadheading (∆DH), deadheading distance (∆D
DH),

number of locomotives light traveling (∆LT ), and light traveling distance (∆D
LT ), respectively. Then,

for each month, we show the minimum (maximum) relative difference for the number of owned,

foreign, and total locomotives used, denoted by ∆min
O (∆max

O ), ∆min
F (∆max

F ), and ∆min
L (∆max

L ),

respectively. Finally, the last three columns show the average difference in total distance (∆D), the

integrality gap between the initial linear programming relaxation and the optimal integer solution,

Gap0(%), and the computing time, CPU(min). The last row provides the average, minimum or

maximum values over the 51 instances.

In terms of computing effort, despite their large size, all instances are optimally solved within

short computing times (8.5 minutes, on average). In particular, the computing time ranges from 6

to 20 minutes, with 95% of the instances being solved in less than 15 minutes. Interestingly, about

90% of the instances are solved at the root node of the branch-and-bound tree. The average gap

between the initial linear programming relaxation and the optimal integer solution is only 0.09%,

which suggests that the formulation provides strong lower bounds and only few nodes need to be

explored to find optimal solutions. Such strong bounds can be attributed to the structure of the

problem, which is by design close to a multicommodity flow problem.

Besides its strong lower bounds, the good performance of our formulation can also be explained
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Month ∆DH ∆D
DH ∆LT ∆D

LT ∆min
O ∆max

O ∆min
F ∆max

F ∆min
L ∆max

L ∆D Gap0(%) CPU(min)

1 -11.82 36.77 -7.72 -47.00 -6.69 -5.06 -0.44 19.02 -4.68 -3.27 2.90 0.11 8.18
2 -23.23 6.75 20.26 -21.27 -7.29 -6.15 -2.63 17.81 -6.14 -3.80 2.44 0.22 9.30
3 -11.56 30.45 17.88 -19.28 -7.47 -2.55 -1.09 17.75 -4.99 -2.33 3.38 0.05 8.21
4 -14.31 10.66 -14.54 -55.81 -8.28 -4.46 -7.65 15.44 -8.17 -4.13 2.53 0.02 6.86
5 -7.61 26.09 -37.68 -63.64 -8.53 -6.26 -5.24 19.94 -6.65 -3.91 3.45 0.02 7.69
6 -20.63 -9.72 7.82 -38.85 -10.66 -7.25 -25.55 11.11 -10.65 -5.67 0.89 0.01 7.52
7 -18.74 9.73 -13.35 -50.49 -9.51 -6.39 -10.05 -2.72 -8.92 -5.91 2.62 0.10 8.38
8 -24.71 5.20 -18.31 -43.32 -10.11 -8.50 -14.42 -3.07 -10.42 -8.35 1.97 0.30 9.86
9 -28.35 -11.61 19.38 -27.11 -11.05 -7.96 -17.88 -6.80 -10.72 -10.09 0.81 0.03 8.60
10 -13.21 13.12 -13.38 -24.31 -9.51 -7.75 -13.67 1.65 -9.19 -7.19 2.93 0.12 12.80
11 -15.99 1.49 -29.34 -54.03 -10.32 -6.75 -11.08 1.94 -9.06 -4.97 1.48 0.02 8.59
12 -25.37 -3.76 9.93 -20.53 -9.84 -8.24 -13.48 1.89 -10.34 -6.19 0.82 0.01 6.27

-17.81 9.88 -6.10 -39.69 -11.05 -2.55 -25.55 19.94 -10.72 -2.33 2.22 0.09 8.59

Tab. 4: Savings of the optimization approach in comparison to CN’s actual operations.

by the aggregation of individual regular locomotives into types, which eliminates a large number of

symmetric solutions and reduces significantly the space of feasible solutions. Obviously, aggregation

also allows us to have a smaller formulation in terms of both constraints and variables, which

decrease considerably the computing time and memory required to solve the problem.

Overall, our formulation is able to obtain significant savings in terms of both locomotive repo-

sitioning and locomotive utilization, at the expense of traveling slightly longer distances. In terms

of repositioning, our model provides optimal solutions with about 18% and 6% less deadheading

and light traveling than CN, respectively. There is a 10% increase in the total deadheading dis-

tance, which is compensated by a 40% reduction of the total light traveling distance. We claim

that reducing the light traveling distance to such a large extent compensates the increase in the

deadheading distance, as in practice the former is more expensive than the latter. Indeed, light

traveling implies using track capacity and crew time unproductively since no freight is moved and,

consequently, no revenue is generated. Thus, keeping light traveling as low as possible means that

both crew time and track capacity can be used in a more efficient way. Similarly, one can argue

that moving deadheading locomotives for longer distances is less costly as the track and the crew

have in any case to be used to operate the train to which the deadheading locomotive is attached

to.

With respect to locomotive utilization, our formulation provides optimal solutions that require

2–11% fewer locomotives. This represents a significant extra buffer of locomotives that are available

in the yards, which can be used to replace locomotives requiring unscheduled repair over the week.

In terms of foreign locomotives, differences range from -25% to +20%. This is due to the current

cost structure of the problem, which emphasizes the minimization of light traveling locomotives

over the utilization of foreign units. Indeed, long-term agreements between major railroads make

it easier and more cost effective to get extra power from other railroads instead of repositioning

owned locomotives over long distances. Nevertheless, our model provides optimal solutions with

less utilization of foreign locomotives for 30 out of our 51 instances.
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5.4 Scenario Analysis

In this section we study three scenarios to illustrate how our methodology is valuable to analyze

the impact of relevant operational events on the overall system performance. We first consider the

impact of closing a major shop, so that shop capacity is considerably reduced. We then study the

impact of longer connecting times on the locomotive utilization. Finally, we consider the trade-off

between locomotive repositioning and fleet size. In all cases we use the optimal solutions reported

in Section 5.3 as a baseline scenario.

5.4.1 Reduced Shop Capacity

Computational results for the baseline scenario indicate that the average maintenance capacity

utilization is 62%, 80% and 80% for small, medium and large shops, respectively. Thus, a natural

question to ask is whether the system is sensitive to drops in shop capacity, and whether our model

can leverage routing and repositioning decisions in such situation. Therefore, in this section we

consider the alternative scenario where the capacity of the largest shop in the system is set to zero.

Table 5 shows the relative difference of the optimal solutions with respect to our baseline. All

columns have the same meaning as in Table 4.

Overall, the effect on the number of owned, foreign and total locomotives required to satisfy the

schedule is small, with deviations between -0.34–0.74%, -0.45–0.85% and -0.28–0.63%, respectively.

This means that the company can still operate the schedule with a small increase in the number

of required locomotives. The impact of locomotive repositioning is larger, but still reasonable.

There is only a 2.30% increase in the number of deadheadings, while the number of light travels

presents an increase of only 0.31%, on average. This increase in locomotive repositioning can be

explained by the fact that some large shops are also major yards, with a high inbound traffic that

is conveniently used to move critical locomotives to shop. Closing the largest shop then means

that critical locomotives must utilize more deadheading and light traveling to find their way to

alternative shop locations. In addition, reducing shop capacity results in a 3.85% decrease in

Month ∆DH ∆D
DH ∆LT ∆D

LT ∆min
O ∆max

O ∆min
F ∆max

F ∆min
L ∆max

L ∆D

1 2.13 1.83 -1.35 -0.80 0.07 0.65 0.00 0.85 0.17 0.62 0.12
2 3.01 4.32 0.52 1.83 0.13 0.60 -0.45 0.39 0.11 0.51 0.25
3 2.70 2.76 -0.66 -1.97 -0.34 0.33 -0.37 0.00 -0.28 0.22 0.18
4 2.54 2.74 2.85 13.20 -0.20 0.66 -0.34 0.00 -0.17 0.50 0.17
5 1.01 3.28 2.60 1.30 -0.07 0.54 -0.37 0.00 -0.11 0.45 0.22
6 2.69 3.26 -1.92 -2.47 -0.14 0.74 0.00 0.31 -0.06 0.63 0.20
7 1.80 3.18 1.10 -0.10 0.14 0.60 -0.32 0.28 0.06 0.49 0.19
8 1.88 2.34 -1.03 0.62 0.07 0.48 -0.27 0.58 0.00 0.50 0.14
9 3.83 5.06 -1.36 -1.65 -0.07 0.62 0.00 0.54 0.00 0.54 0.29
10 2.57 5.04 -0.81 0.69 -0.07 0.62 -0.25 0.24 -0.11 0.48 0.29
11 1.56 3.02 3.27 1.59 -0.13 0.54 -0.24 0.25 -0.16 0.43 0.18
12 2.24 3.80 -0.76 0.71 0.20 0.54 -0.23 0.82 0.20 0.59 0.21

2.30 3.37 0.31 1.11 -0.34 0.74 -0.45 0.85 -0.28 0.63 0.20

Tab. 5: Relative deviation with respect to the optimal solutions of the baseline for the scenario
with reduced capacity.
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the number of critical locomotives serviced on time, as they have to wait longer or travel longer

distances to find a spot in a shop. This, in turn, means more deadheading in the system as overdue

locomotives cannot pull trains nor light travel between stations.

In terms of capacity, as one would expect, we observe an increase in shop utilization. The

average capacity utilization goes from 62%, 80% and 80% for small, medium and large shops, to

64%, 87% and 84%, respectively. Figures 4a and 4b show the distribution of maintenance types

across shops of different sizes. In the baseline scenario, maintenance is carried out mainly at medium

and large shops, which account for more than 80% of the services in all cases. With the exception

of the standard maintenance, large shops process at least 25% of the workload. This share drops

to about 10% in the scenario where the largest shop is closed, which suggests that the remaining

large shops are unable to absorb all the workload previously allocated to them. Indeed, most of

that workload is redistributed to medium shops, which handle more than 70% of the maintenance

services. On the one hand, this suggests that large shops are working close to their maximum

capacity and cannot handle a significant amount of extra work. On the other hand, these results

also suggest that the system is protected against major shop disruptions due to the spare capacity

available at medium shops. Moreover, redistributing maintenance requests to other shops entails a

very small increase in locomotive repositioning and utilization.

5.4.2 Longer Connecting Times

The time to build and bust consists, and more generally the time to maneuver locomotives upon

arrival at yards, is an important parameter in our time-space graph that directly affects locomotive

availability at stations. In this section we double connecting times at each station and analyze the

effect of longer yard operations on the overall performance of the system. Table 6 shows the results

of our experiments.

As observed, increasing connecting times has a negative effect in locomotive repositioning and,

26.30%

57.78% 15.93%
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28.95%

57.64% 13.40%

Semi-yearly

17.64%
62.52%

19.85%
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29.75%

56.80% 13.44%
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(a) Baseline scenario

9.26%73.70%

17.04%
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9.99%74.20%
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Semi-yearly

9.67%70.10%

20.23%
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11.89%
72.54%

15.57%
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Small

(b) Reduced capacity scenario

Fig. 4: Comparison of shop service distribution per maintenance type.
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Month ∆DH ∆D
DH ∆LT ∆D

LT ∆min
O ∆max

O ∆min
F ∆max

F ∆min
L ∆max

L ∆D

1 2.25 0.33 7.78 3.93 -0.20 0.33 2.66 5.08 0.23 0.79 0.02
2 2.69 3.18 -6.55 -4.24 -0.20 0.80 0.73 8.14 0.73 1.47 0.19
3 1.11 -0.68 -4.73 -3.67 -0.20 0.00 3.66 5.88 0.44 0.85 -0.02
4 0.31 -0.09 1.77 6.17 -0.27 0.60 4.39 5.73 0.51 1.22 -0.01
5 -1.15 -2.02 5.70 2.66 -0.20 0.20 1.88 9.09 0.17 1.46 -0.14
6 2.46 2.06 -4.00 -5.47 -0.07 0.27 2.66 6.67 0.45 1.14 0.13
7 0.64 1.52 4.55 3.12 0.00 0.40 1.96 6.76 0.43 1.58 0.09
8 -0.39 -0.64 0.90 -2.33 -0.33 0.61 4.00 4.90 0.64 1.44 -0.05
9 1.66 2.86 1.31 -0.09 -0.13 0.28 3.36 4.84 0.76 1.13 0.17
10 0.53 0.76 3.53 0.59 -0.14 0.14 2.79 5.35 0.74 1.06 0.04
11 -0.33 1.08 6.69 2.99 0.07 0.66 2.92 6.67 0.91 1.52 0.09
12 0.19 -0.12 0.23 0.09 0.00 0.60 1.06 3.28 0.48 1.12 -0.02

0.79 0.68 1.47 0.27 -0.33 0.80 0.73 9.09 0.17 1.58 0.04

Tab. 6: Relative deviation with respect to the optimal solutions of the baseline for the scenario
with longer connecting times.

more significantly, in locomotive utilization. Longer connecting times mean that locomotives must

spend more time grounded, waiting longer for equipment and crew to maneuver them upon arrival,

or simply waiting longer for consists to be assembled or dismantled. Since trains must be operated

punctually, additional repositioning and extra locomotives are required to meet the schedule.

In particular, we observe an increase of up to 9% in the utilization of foreign locomotives,

while deadheading and light traveling only increase by 0.79% and 1.47%, on average, respectively.

Deadheading is cheaper than light traveling, but it is subject to limitations imposed by the train

schedule, such as departure times, train routes and predefined power changing stations. Light

traveling is more flexible, in the sense that it does not depend on the train schedule and one

can decide where and when to use them, but is much more expensive. Given these operational

constraints and the current cost structure of the problem, using extra foreign locomotives instead

is a more convenient alternative.

5.4.3 Reduced Repositioning Costs

In practice, the light traveling cost is high, in comparison to the deadheading cost, to reflect the

decision-maker preference of using as few light travels as possible. In this section, we gradually

reduce the cost of light traveling and analyze how cheaper repositioning costs affect locomotive

utilization across the network. This scenario represents a situation where the decision-maker is

willing to accept a larger number of light traveling locomotives in the system in the expectation of

achieving a better overall performance. Table 7 summarizes the results of the experiments, where

each row corresponds to aggregated results for a given reduction percentage.

Reducing light traveling costs has a clear effect on the total number of locomotives required to

meet train schedules. Intuitively, since repositioning locomotives is less expensive, light traveling

becomes a convenient way of moving power (i) from stations with a surplus to others with a

shortage, and (ii) from stations with few or no deadheading options to nearby stations with more

deadheading alternatives. This means that more owned locomotives can be conveniently made
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Reduction(%) ∆DH ∆D
DH ∆LT ∆D

LT ∆min
O ∆max

O ∆min
F ∆max

F ∆min
L ∆max

L ∆D

10 5.06 2.79 59.52 15.27 -0.13 0.93 -14.44 -2.15 -1.86 -0.21 0.52
20 7.49 5.19 83.02 17.64 -0.20 1.52 -19.86 -2.41 -2.70 -0.48 0.84
30 9.07 6.24 107.33 22.14 0.00 2.02 -22.38 -3.74 -2.76 -0.59 1.03
40 9.24 6.36 122.32 22.26 0.13 1.82 -23.74 -5.61 -2.87 -0.70 1.05
50 10.29 5.96 193.54 21.09 0.13 2.22 -27.63 -9.89 -3.37 -1.24 1.13

Tab. 7: Results for different percentages of reduction in the light traveling cost.

available at other stations through repositioning, reducing significantly the utilization of foreign

units across the system. This, in turn, translates into a reduction in the total number of locomotives

required to operate the train schedule.

6 Conclusion

In this paper we studied the LRP at the Canadian National Railway Company (CN), and proposed

a large-scale integer linear programming formulation based on a two-layer time-space network repre-

sentation of the problem. This graph lets us keep track of the maintenance status of specific locomo-

tives over time, as well as managing the assignment of locomotives to trains based on their current

maintenance status. Computational experiments performed on a set of real instances showed that

our model is tractable and can be solved to optimality within reasonable computing times. In

comparison to historical data, our methodology provides solutions that require fewer locomotives

and less repositioning across the system. In addition, computational experiments showed that our

model can be used to analyze alternative operational scenarios and support decision-making.

In practice, optimal solutions provided by our methodology represent only a guideline for real-

time operations, which in turn must take into account several additional factors, such as train

delays and locomotive breakdowns, all of which are subject to uncertainty. Providing more robust

locomotive routes at the operational level is then essential to mitigate the impact of uncertain

events on real-time operations. One way of achieving this is to explicitly consider one or several

sources of uncertainty when modeling and solving the LRP. We will address this natural extension

of the problem in subsequent research.
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Appendix A Disaggregated Formulation

Consider the following additional notation.

Sets and parameters:

VR : Set of regular locomotives;

VRk : Set of regular locomotives of type k;

λRvi : Supply of regular locomotive v at source i;

ηRvl : Flow of locomotive v on legacy arc l ∈ AT− ∪ASH− .

Decision Variables:

xvl : 1 if regular locomotive v flows on arc l, 0 otherwise;

yvl : 1 if critical locomotive v flows on arc l, 0 otherwise;

zkl : Number of foreign (leased) locomotives of type k that flow on arc l;

uki : Number of additional locomotives of type k supplied by source i.

The disaggregated formulation for the LRP reads as follows:

min
∑
k∈K

∑
l∈AB

T ∪ADH∪AB
L∪AG∪AB

Q

ckl

zkl +
∑
v∈VR

k

xvl +
∑
v∈VC

k

yvl


+

∑
v∈VC

∑
l∈ASH(v)

cvlyvl +
∑
v∈VC

φ

1−
∑

l∈ASH(v)

yvl


(22)

subject to:

xvl = ηRvl, v ∈ VR, l ∈ AB
T− ∪A

B
SH− (23)

yvl = ηCvl, v ∈ VC , l ∈ A−T (24)∑
l∈Ov [i]

xvl = λRvi, v ∈ VR, i ∈ NB
I (25)

∑
i∈NB

H

∑
l∈Iv [i]

xvl = 1, v ∈ VR (26)

∑
l∈Iv [i]

xvl =
∑

l∈Ov [i]

xvl, v ∈ VR, i ∈ {NB
D ∪NB

A ∪NB
O ∪NB

Q } (27)

∑
l∈Ov [i]

yvl = λCvi, v ∈ VC , i ∈ NI (28)

∑
i∈NH

∑
l∈Iv [i]

yvl = 1, v ∈ VC (29)

∑
l∈Iv [i]

yvl =
∑

l∈Ov [i]

yvl, v ∈ VC , i ∈ {ND ∪NA ∪NO ∪NB
Q } (30)

∑
l∈Ok[i]

zkl = uki, k ∈ K, i ∈ NB
I (31)
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∑
i∈NB

H

∑
l∈Ik[i]

zkl =
∑
i∈NB

I

uki, k ∈ K (32)

∑
l∈Ik[i]

zkl =
∑

l∈Ok[i]

zkl, k ∈ K, i ∈ {NB
D ∪NB

A ∪NB
O ∪NB

Q } (33)

∑
v∈VR

k

xvl +
∑
v∈VC

k

yvl + zkl = ρkl, k ∈ K, l ∈ AB
T (34)

∑
l∈ASH(v)

yvl ≤ 1, v ∈ VC (35)

∑
l∈AB2T (v)

yvl = 1−
∑

l∈AB
SH(v)

yvl, v ∈ VC (36)

yvl′ =
∑

l=(i,j)∈AT
SH(v)

yvl, v ∈ VC , l′ = (j, h) ∈ AT2B(v) (37)

∑
v∈VC

∑
l=(j,h)∈ASH(v):

pj=s
tj≤ti<th

yvl ≤ Cs −
∑

l=(j,h)∈A−SH :
ph=s

tj≤ti<th

∑
v∈VR

ηRvl,

s ∈ SSH ,
i ∈ NB

SH :

pi = s

(38)

∑
k∈K

∑
j∈EB

il

zkj +
∑
v∈VR

k

xvj +
∑
v∈VC

k

yvj

 +
∑
v∈VC

∑
j∈ET

il

yvj ≤ mDH
l ,

l ∈ AB
T ,

i = 0, . . . , nl
(39)

∑
k∈K

zkl +
∑
v∈VR

xvl +
∑
v∈VC

yvl ≤ mT , l ∈ AB
L (40)

∑
i∈NB

F :
pi=s

 ∑
l∈Ik[i]

zkl +
∑
v∈VR

k

∑
l∈Iv [i]

xvl +
∑
v∈VC

k

∑
l∈Iv [i]

yvl

 ≥ mks, k ∈ K, s ∈ S (41)

xvl ∈ {0, 1}, v ∈ VR, l ∈ AB\AB
SH (42)

yvl ∈ {0, 1}, v ∈ VC , l ∈ AB ∪ AT ∪AB2T ∪AT2B (43)

zkl ∈ Z+, k ∈ K, l ∈ AB\AB
SH (44)

uki ∈ Z+, k ∈ K, i ∈ NB
I . (45)

The objective function (22) aims to minimize the total operational cost, which includes costs of

pulling trains, deadheading, light traveling, idling at stations, enforcing train-to-train connections,

locomotive maintenance, as well as penalties for not servicing critical locomotive by the end of the

planning horizon. Constraints (23)–(24) impose initial conditions. Constraints (25)–(27) guarantee

the proper flow of regular locomotives over the network, from sources to sinks. Likewise, Constraints

(28)–(30) and (31)–(33) impose a proper flow of critical and leased locomotives, respectively.

Constraints (34) guarantee that each train is assigned the requested type and number of lo-

comotives, considering regular, critical and foreign locomotives. Constraints (35) establish that

each critical locomotive is moved to a shop at most once. Constraints (36) ensure that critical

locomotives are moved to the overdue layer if they miss their maintenance deadline. Conversely,

constraints (37) guarantee that overdue locomotives flow back to the service layer upon service in
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a shop. Shop capacity constraints are imposed by (38).

Constraints (39) limit the number of locomotives deadheading in a train, while (40) impose a

limit on the number of locomotives on light traveling arcs. Constraints (41) enforce a minimum

number of locomotives of each type at each station by the end of the planning horizon.
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