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Abstract. We model the new quantitative aspects of market risk management for banks 

that Basel established in 2016 and came into effect in January 2019. Market risk is 

measured by Conditional Value at Risk (CVaR) or Expected Shortfall at a confidence level 

of 97.5%. The regulatory backtest remains largely based on 99% VaR. As additional 

statistical procedures, in line with the Basel recommendations, supplementary VaR and 

CVaR backtests must be performed at different confidence levels. We apply these tests to 

various parametric distributions and use non-parametric measures of CVaR, including 

CVaR- and CVaR+ to supplement the modelling validation. Our data relate to a period of 

extreme market turbulence. After testing eight parametric distributions with these data, we 

find that the information obtained on their empirical performance is closely tied to the 

backtesting conclusions regarding the competing models.   
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Introduction 

In 2016, the Basel Committee decided that the market risk capital of banks should be 

calculated with CVaR or Expected Shortfall1 at the 97.5% confidence level, while maintaining the 

backtesting of the models, as before, at 99% VaR (BCBS, 2016, 2019). This shift toward CVaR 

would be motivated by issues of consistency and the inadequacy of the risk coverage by the VaR, 

which has been noted over time. Market risk is now jointly managed by CVaR and VaR, at two 

different probabilities: p 2.5 %=  and p 1%=  respectively.2 

Further, Basel suggests adding statistical procedures to ensure the ex-post suitability of 

models (BCBS, 2016, page 82; BCBS, 2019, paragraph 32.13). We therefore perform four 

backtests in addition to the 1% VaR backtest, including two on VaR at p 2.5 %= and p 5 %=  

and two others on CVaR at p 2.5 %= and p 5 %= . We use non-parametric measures, including 

CVaR- and CVaR+, to supplement the validation of the distributions used. The aim of this paper 

is to orchestrate all these aspects in a validation process compatible with the regulations in force. 

We are working with data obtained from three risky stocks—IBM, General Electric and 

Walmart—, whose price fluctuations refute the usual assumptions of normality of returns during 

the period examined. The study period encompasses the extreme price fluctuations during the last 

economic recession in the United States (NBER,3 December 2007 to June 2009) and the financial 

crisis of 2007-2009. We evaluate the behavior of VaR and CVaR using several parametric 

distributions to model returns: the normal distribution, Student's t, the EGB2 (Exponential GB2), 

SN2 (Skewed Normal Type 2), and SEP3 (Skewed Exponential Power Type 3).4 We also construct 

homogeneous and heterogeneous mixtures of parametric densities. Eight models are analyzed in 

order to identify the distributions that best represent the data to manage the market risk contained 

therein. 

1 CVaR is also called Expected Shortfall in the literature. Both measures are equivalent with continuous distributions 
without jumps (Rockafellar and Uryasev, 2002). See also Dionne (2019). 
2 In this paper, we use the letter p to refer to the probability that the VaR is exceeded and 1-p for the corresponding 
confidence level. The p-value notation is for statistical tests. 
3 https://www.nber.org/cycles.html 
4 For a description of SN2 and SEP3, see Fernandez et al. (1995) and Rigby et al. (2014). 
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The analysis comprises three steps. First, the estimation of the models’ parameters is 

validated by standard measures such as the AIC, BIC and Kolmogorov-Smirnov goodness-of-fit 

test. The second validation consists in comparing the kurtosis and asymmetry obtained from the 

parametric models with the same moments determined by a non-parametric approach of the data. 

The most important point in this step is to evaluate each model by comparing the value of its 

parametric CVaR against the non-parametric interval [CVaR-np, CVaR+np] which is computed 

from our sample of returns following Rockafellar and Uryasev (2002). Given that the three non-

parametric measures of the sample obey the fundamental inequalities CVaR-np ≤ CVaRnp ≤ 

CVaR+np, we consider that a good model should also produce a CVaR that obeys the same framing: 

CVaR-np ≤ CVaRModel ≤ CVaR+np. The third validation is the backtesting of the risk measures, 

which we carry out in compliance with the Basel regulations in force for market risk. We find that 

the results of the last two steps are strongly linked; failing to validate that a distribution properly 

fits the data would significantly affect the backtesting results. 

Given that the calculations of parametric CVaR are much more complex than those of VaR, 

we define in detail each of the distributions or mixtures of distributions that we use in the eight 

models, together with the mathematical derivations of the corresponding CVaR. The mathematical 

developments are presented in the appendices. Appendix A1 describes the symbols of the different 

models. Appendix A2 shows the general expression of CVaR, and Appendix A3 outlines the 

general expression of CVaR from a mixture of distributions. Details of the statistical models and 

the backtesting procedure are also provided in the appendices. 

The following section presents the data used. Section 2 provides a preliminary analysis of 

the data. Section 3 is devoted to estimating the parameters of the eight competing models and 

empirically verifying their respective performances. Section 4 conducts backtesting of the models 

and the final section concludes the paper. 
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1. Data

First, we describe the data. The three risky stocks chosen are IBM, General Electric (GE)

and Walmart (WM). The period consists of 1,200 days, from June 18, 2007 to March 20, 2012.5 

Returns are calculated by taking dividend payments into account. Figure 1 shows the distribution 

of returns for the securities over this period, which are far from normal. Fitting a Student's t-

distribution to the returns, the estimated degrees of freedom (ν) are 3.2, 2.4 and 3.2 respectively, 

indicating the presence of a very fat-tail. 

5 The actual daily price extraction period is from June 15, 2007 to March 20, 2012, representing 1,201 days, which 
provides 1,200 daily returns from June 18, 2007 to March 20, 2012. 
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Figure 1: Histograms and densities of IBM, GE and WM stocks 

The New International Regulation of Market Risk: Roles of VaR and CVaR in Model Validation

4 CIRRELT-2021-04



Table 1 presents descriptive statistics including correlation matrix, variance-covariance 

matrix, and the first four nonparametric moments. The positive correlations are very strong during 

this period of financial crisis, at about 50%. 

Table 1 Matrices of correlations, variance-covariances and nonparametric moments 

IBM General Electric Walmart 

IBM 
General Electric 
Walmart 

1 
0.567592 
0.491463 

1 
0.430835 1 

IBM 
General Electric 
Walmart 

0.02688% 
0.02443% 
0.01138% 

0.02443% 
0.06894% 
0.01598% 

0.01138% 
0.01598% 
0.01995% 

Mean 
Variance 
Skewness 
Kurtosis 

0.07580% 
0.02688% 
0.27190 
7.43415 

-0.00286%
0.06894%
0.35375
9.95718

0.03472% 
0.01995% 
0.35429 

10.68244 

The average daily returns are practically nil. The skewness coefficients are positive, 

showing that all three distributions are pulled toward positive returns. This is surprising because 

one might have expected to see a shift toward the left tail of losses during this time period. The 

most important point is that the kurtosis coefficients are very large, about three times larger than 

the kurtosis of a normal distribution. This confirms the very large tail thickness reported in the 

previous paragraphs. 

2. Preliminary data analysis

We begin by calculating the optimal weights of a portfolio that minimizes the relative VaR

at the 95% confidence level (p = 5%) under the constraint that the weights sum to 1. We assume 

the returns to be normally distributed for the moment so minimizing the relative VaR is equivalent 

to minimizing the CVaR plus the mean of the portfolio returns. Moreover the optimal weights are 

independent of the chosen p, as we will see later. We also assume that these weights will remain 

optimal for all distributions studied in the next sections to obtain comparable backtesting results 

between the different models. In other words, we suppose there is separation between portfolio 

optimization decision and model backtesting as it is often observed in many financial institutions. 
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Under the normal assumption, relative VaR of the portfolio is written as: 

1 T
r portfolio 0 0VaR (p) q 0−×Φ= −σ = − β Σβ × >  (1) 

where 1
0 ( )−Φ ⋅ is the inverse of the cumulative function of ( )N 0,1 evaluated at p,β is the vector of 

security weights, Tβ is the transpose of β , Σ is the variance-covariance matrix of security returns 

and 0 q  is the quantile of ( )N 0,1  relative to p. The VaR expression is positive since 0q 0<  in 

left tail. On the other hand, since 0 q  depends only on p, equation (1) is minimised on the term 

Tβ Σβ  alone. Thus, the optimal weights are independent of the chosen p. The Excel file6 gives 

the results of Table 2 in percentages for p = 5%. The table shows that the VaR of the optimal 

portfolio are lower than those of the weighted assets, which is consistent with the diversification 

principle. 

Table 2  
Optimal portfolio: Relative VaR1 minimization (normal model) 

IBM 
General 
Electric Walmart Total 

Weight 0.3889444 -0.0465131 0.6575686 1.00000 
Portfolio  p = 5%   0q 1.64485= −  

Mean 
Variance 
Standard deviation 
Skewness 
Kurtosis 

0.05244% 
0.01680% 
1.29631% 
0.3588781 
9.8157828 

0.07580% 

1.63961% 

-0.00286%

2.62559% 

0.03472% 

1.41254% 

Portfolio Weighted sum Difference 
VaRa 
VaRr 

2.07980% 
2.13224% 

2.62112% 
2.69692% 

4.32157% 
4.31871% 

2.28871% 
2.32343% 

2.72546% 
2.77764% 

-0.64566%
-0.64540%

1 VaRa and VaRr refer to absolute VaR and relative VaR respectively. 

We now compute the CVaR of the optimal portfolio. With the normal assumption, CVaR 

is written according to equation (2) (based on equation A6 in the appendix): 

6 The Excel file is available on the Canada Research Chair website at https://chairegestiondesrisques.hec.ca/en/ 
seminars-and-publications/book-wiley/ 
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( )

( )

0 0
portfolio portfolio

T 0 0
portfolio

q
CVaR

p

q
p

φ
= −µ +σ

φ
= −µ + β Σβ ×

 (2) 

where ( )0φ ⋅ is the density function of ( )N 0,1 . Table 3 shows the results for the optimal 

portfolio. From equation (2), we can see that portfolioCVaR +µ  is minimized on Tβ Σβ  alone, 

since ( )0 0q pφ  is constant. Thus, the optimal weights are the same as minimizing relative VaR. 

The portfolio's CVaR is also naturally lower than that of the weighted assets, which means that the 

basic principle of diversification is followed. In the next section we continue to work with p = 5%. 

At the end of the section we will discuss the effect of this choice with respect to p = 2.5% and p = 

1%. 

We want to calculate the VaR, CVaR, CVaR- and CVaR+ measures for the sample data at 

p = 5% following Rockafellar and Uryasev (2002). With our notation, we can write: 

 { } { }t t t tCVaR E X X VaR and CVaR E X X VaR+ −= < − = ≤ −  (3) 

where the vector { }t 1200
t t 1

X =

=
 denotes the portfolio returns. Note the minus sign in front of VaR  

since VaR 0>  and tX 0<  in the left tail of the distribution. The data { }tX  can be seen as a 

discrete finite sample drawn from an unknown distribution. Therefore, a non-parametric estimate 

of equations in (3) can be obtained from the historical simulation method by writing: 

 ( ) ( )
T T

np t t np np t t np
t 1 t 1T T

1 1CVaR X X VaR and CVaR X X VaR
N N

+ −
+ −

= =

= × < − = × ≤ −∑ ∑  (4) 

where ( ) ( )T T
T t 1 t np T t 1 t npN 1 X VaR and N 1 X VaR .+ −

= == ∑ × < − = ∑ × ≤ −  

The results are presented in Table 4. CVaRnp is not shown in the table because CVaRnp is 

equal to CVaR+np. This last fact is also verified at p = 2.5% and p = 1%.7 The relative difference 

7 The reason is that 1,200 × 5 = 60, 1,200 × 2.5% = 30 and 1,200 × 1% = 12 are all integers. Therefore, there are no 
split atoms over VaR. 
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between CVaR-np and CVaR+np ( )  2.97795% 2.96269% 2.96269% 0.51%− =  is extremely 

small. This adds a significant selective requirement in identifying a distribution or mixture of 

continuous parametric distributions whose CVaR must be framed by CVaR- and CVaR+.8  

Table 3  
Optimal portfolio : CVaR (normal model) 

 
IBM 

General 
Electric Walmart 

 
Total 

 

Weight  0.3889444 -0.0465131 0.6575686 1.00000  
 
  

Portfolio 
   Weighted 

sum Difference 
CVaR  2.62147% 2.62112% 4.32157% 2.28871% 2.72546% -0.10399% 
μportfolio+CVaR 2.67392% 2.69692% 4.31871% 2.32343% 2.77764% -0.10372% 

Figure 2 clearly shows that a normal density would not be appropriate to represent the 

optimal portfolio data. On the other hand, Student's t would not be sharp enough and does not keep 

enough mass around the mode, as would be required by the kernel density plot of the data. These 

remarks would rather suggest a Laplace distribution. 

Table 4  
Non-parametric1 measurements of VaR, CVaR- and CVaR+ 

 
IBM 

General 
Electric Walmart 

  

Weight B 0.3889444 -0.0465131 0.6575686 1.00000  

p = 5%      0q 1.64485= −  

  
Portfolio 

  
Order: 61 

 Weighted 
sum Difference 

VaRnp
 

CVaR-np 
CVaR+np 

2.04736% 
2.96269% 
2.97795% 

2.69619% 
3.80857% 
3.82711% 

4.12926% 
6.39598% 
6.43375% 

2.02620% 
3.19753% 
3.21706% 

2.57310% 
3.88142% 
3.90322% 

-0.52573% 
-0.91873% 
-0.92528% 

1 np: non-parametric. 

8 Assuming that there is some discontinuity in the distribution of returns around VaRnp. 
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Figure 2: Histogram and densities of optimal portfolio  

3. Estimation of the parametric distributions 

From now on, we are using the weights of optimal portfolio in Section 2 as the reference 

portfolio. The VaR calculated from the parametric models will be the absolute VaR relative to 0, 

like the CVaR. The models are denoted as M1 to M8. Complete estimations of model coefficients 

are presented in the following tables and in tables A2 and A3 in the appendix.  

For comparison, we start with the M1 model, assuming that the data follow a normal 

distribution (see definitions and expressions in Appendix A4). Model M1 is denoted 1:NO, in that 

it consists of a single normal distribution. The results are presented in Table 5. VaR of this model 

is higher than VaRnp (non-parametric VaR), whereas CVaR is much lower than the two non-

parametric CVaR. Unsurprisingly, the Kolmogorov-Smirnov (KS) test rejects this model (p-value 

= 0.0015 < 10%). The reported asymmetry and kurtosis values, 0.3589 and 9.8158, correspond to 
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the empirical moments of portfolio returns (Table 2). They are very different compared to those of 

the normal distribution. 

Table 5 
Model M1 = 1:NO  

M1 parameters Normal distribution (1:NO) p = 5% Order1: 61 
µ  0.0005244  Quantiles, coefficients and probabilities 

σ  0.0129631  0q  µ  [ ]0
0qΦ  −σ  [ ]0

0qφ  

   -1.644854 0.000524 0.050000 -0.012963 0.10313564 
        

      q [ ]ModelF q  

VaR 2.07980% VaRnp: 2.04736%  -2.07980% 0.050000 
CVaR 2.62147% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
0.0000 
3.0000 

Data 
0.3589 
9.8158 

 
AIC  -7,021.1012 
BIC  -7,010.9210 

 
KS stat. 0.0775 
KS p-value 0.0015 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 

We now turn to the Student's t-distribution (M2 = 1:T; see definitions and expressions in 

Appendix A5). The estimated degree of freedom parameter is 3,28871.ν = The kurtosis is thus 

undefined ( )since 4 .ν <  This time, the VaR < VaRnp and the CVaR > np npCVaR ,  CVaR− +   , 

which is the opposite situation compared to 1:NO. Further, the p-value = 0.1285 > 10% means that 

the KS test does not reject this model. The AIC and BIC criteria improve compared to the normal 

M1 model. Moreover, these AIC and BIC values are the smallest of all the models. Still, the fact 

that the CVaR > np npCVaR ,  CVaR− +    is problematic. The reason for this is probably related 

to the fact that Student's t allows to account for tail thickness, but its kurtosis is undefined. In 

addition, Student's t does not capture the asymmetry of the data. 
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Table 6 
Model M2 = 1:T 

M2 parameters Student’s t distribution (1:T) p = 5% Order1: 61 
µ  0.0006974  Quantiles, coefficients and probabilities 

σ  0.0085310  0q  µ  [ ]0
T, 0F qν  −σ  [ ]0

T, 0Tail qν  

ν  3.2887197  -2.271479 0.000697 0.050000 -0.008531 0.180675 
        

      q [ ]ModelF q  

VaR 1.86806% VaRnp: 2.04736%  -1.86806% 0.050000 
CVaR 3.01294% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
0.0000 

Indefinite 

Data 
0.3589 
9.8158 

 
AIC  -7,249.1447 
BIC  -7,233.8745 

 
KS stat. 0.0483 
KS p-value 0.1285 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 

We now move on to the M3 model, using the EGB2 distribution (CVaR calculations are 

made by numerical integrals because the analytical expression is not available; see definitions and 

expressions in Appendix A6). This model provides one more parameter. Indeed, the parameters ν  

and τ  characterize both the tail thickness and the asymmetry of the distribution. The distribution 

is skewed negatively or positively, or is symmetric when ,ν < τ ν > τ , or ν = τ  respectively. As 

for the thickness of the tail, the smaller the ν , the thicker the left tail (all other parameters kept 

equal). Estimation of the M3 model gives 0.1652.τ = and 0.1587ν = . Given that ν  is very close 

to ,τ we have a slight negative skewness = ‒0.081 (Table 7), which is not compatible with the 

nonparametric skewness coefficient of the data = 0.359. 
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Table 7 
Model M3 = 1:EGB2 

M3 parameters Exponential GB2 distribution (1:EGB2) p = 5% Order1:61 
µ  0.0008884   
σ  0.0014108       

ν  0.1587161     q [ ]ModelF q  

τ  0.1652522     -2.00674% 0.050000 
        

VaR 2.00674% VaRnp: 2.04736%    
CVaR 2.89562% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
-0.0813 
5.8076 

Data 
0.3589 
9.8158 

 
AIC  -7,243.1659 
BIC  -7,222.8056 

 
KS stat. 0.0375 
KS p-value 0.3490 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 

VaR of M3 is the closest to VaRnp so far. However, 

np np .CVaR 2.89562 % CVaR ,  CVaR= < +  −  The kurtosis of 5.8 is still insufficient compared 

with 9.8. Despite the great flexibility mentioned in the literature regarding the four-parameter 

EGB2, these results seem to indicate that a single parametric distribution would not be sufficient 

to properly identify the risks inherent in our data, despite the fact that the KS test does not reject 

this model (p-value = 0.3490). 

A last word concerning the values 0.1587ν =  and 0.1652.τ =  Given that the parameters 

ν  and τ  are very small and near zero, we know the lemma 2 of Caivano and Harvey (2014), 

which says that the EGB2 tends toward a Laplace density when 0.ν ≈ τ ≈ This directly 

corroborates the observation of the sharp mode of the kernel density plotted in Figure 2. We will 

observe this convergence toward a Laplace distribution below. We now move on to mixed 

distributions. 

We estimate VaR and CVaR of the M4 model constructed with a mixture of two normal 

distributions (2:NO) using the expressions given in appendices A2, A3 and A4. The quantile mq

at the degree of confidence ( )1 p−  of a mixture of densities is obtained by a numerical method. 

VaR is equal to mq .−  CVaR is calculated using the value of mq . The results of the 2:NO model, 
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presented in Table 8, show that we may be on the right track with a mixture of densities. 

VaR 1.95397 %= and CVaR=3.11363 % clearly approach the non-parametric measurements 

compared with those obtained for the 1:NO distribution. Kurtosis = 6.7 also improves. The KS test 

gives a p-value = 0.2181, which is comfortably above 10%. However, the CVaR of the 2:NO model 

is still far from the range np npCVaR ,  CVaR− +   .  

Table 8 
Model M4 = 2:NO 

M4 Parameters Mixture of 2 normal distributions (2:NO) p = 5% Order1: 61 

Distribution 1 1µ  -0.0004845   

 1σ  0.0226636  Quantiles, coefficients and probabilities 

Distribution 2 2µ  0.0008151 Density 0q  µ  [ ]0
0qΦ  −σ  [ ]0

0qφ  

 2σ  0.0082545 1 -0.840784 -0.000484 0.200234 -0.022664 0.280159 

 c1 0.2231962 2 -2.465888 0.000815 0.006834 -0.008255 0.019078 

       mq  [ ]Model mF q  

       -1.95397% 0.050000 
VaR2 1.95397% VaRnp: 2.04736%    
CVaR 3.11363% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
-0.1386 
6.6789 

Data 
0.3589 
9.8158 

 
AIC  -7,228.0889 
BIC  -7,202.6385 

 
KS stat. 0.0433 
KS p-value 0.2180 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 
2 Obtained numerically from the Excel solver by minimizing ( )( )2

m mF q p .−  

The estimation of the mixture of two Student's t distributions (2:T, see definitions and 

expressions in appendices A2, A3 and A5) presented in Table 9 demonstrates a very large 

parameter for the degree of freedom of the first Student’s t 1 23,642.3ν =  > 30, clearly indicating 

that the first Student's t is practically a normal distribution. The second distribution with a degree 

of freedom 2 6.4162 4ν = >  allows the mixture to now have a well-defined kurtosis of 8.4, close 

to the kurtosis of data of 9.8. We have a p-value equal to 0.1100, which is at the limit of rejection 

at 10%. The BIC = -7,207.65 is worse than that of 1:T and 1:EGB2. VaR of 2.02945% is very close 

to the non-parametric distribution, but CVaR 3.04198 %= > np np .CVaR ,  CVaR−  +  Note also 
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that the asymmetry coefficient of 2:T = -0.15 is negative while the non-parametric = 0.36 > 0. This 

suggests that the asymmetry in the data should be better integrated into the modeling. This 2:T 

mixture appears to be an improvement, but remains insufficient because it does not seem to allow 

the asymmetry to be modeled directly. 

Table 9 
 Model M5 = 2:T  

M5 parameters Mixture of 2 Student's t distributions (2:T) p = 5% Order1: 61 

Distribution 1 1µ  -0.0012920   

 1σ  0.0066854  Quantiles, coefficients and probabilities 

 1ν  23642.31 Density 0q  µ  [ ]0
T, 0F qν  −σ  [ ]0

T, 0Tail qν  

Distribution 2 2µ  -0.0004740 1 -3.228904 0.001292 0.000622 -0.006685 -0.002176 

 2σ  0.0140598 2 -1.409730 -0.000474 0.102601 -0.014060 0.218922 

 2ν  6.4162601       

 c1 0.5158049     mq  [ ]Model mF q  

       -2.02945% 0.050000 
VaR2 2.02945% VaRnp: 2.04736%    
CVaR 3.04198% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
-0.1544 
8.3993 

Data 
0.3589 
9.8158 

 
AIC  -7,243.2842 
BIC  -7,207.6537 

 
KS stat. 0.0500 
KS p-value 0.1100 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 
2 Obtained numerically from the Excel solver by minimizing ( )( )2

m mF q p .−  

Before exploring the addition of a parameter capturing asymmetry, we want to examine 

what happens for a mixture of three normal densities. Model M6 is constructed with a 3:NO 

mixture. In Table 10, the p-value of the KS test is 0.2280 > 10%. Moreover, M6 is the first model 

whose kurtosis of 9.4 is almost identical to the non-parametric distribution. This time, the 

asymmetry coefficient is positive, as is the non-parametric distribution. 

VaR (3:NO) = 2.03847% is almost identical to the non-parametric distribution. As for the 

CVaR (3:NO) = 3.00452%, it is the closest to the interval np npCVaR ,  CVaR− +   thus far. This 
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model appears to be better suited to the data. We will come back to this finding when we perform 

the backtests of the models.  

Table 10 
Model M6 = 3:NO 

M6 parameters Mixture of 3 normal distributions (3:NO) p = 5% Order1: 61 

Distribution 1  1µ  -0.0004753   

 1σ  0.0150441  Quantiles, coefficients and probabilities 

Distribution 2 2µ  0.0043390 Density 0q  µ  [ ]0
0qΦ  −σ  [ ]0

0qφ  

 2σ  0.0376531 1 -1.323399 -0.000475 0.092851 -0.015044 0.166189 

Distribution 3 3µ  0.0011752 2 -0.656617 0.004339 0.255714 -0.037653 0.321579 

 3σ  0.0065771 3 -3.278018 0.001175 0.000523 -0.006577 0.001852 

 c1 0.4433715       

 c2 0.0334707     mq  [ ]Model mF q  

       -2.03847% 0.050000 
VaR2 2.03847% VaRnp: 2.04736%    
CVaR 3.00452% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
0.1224 
9.43212 

Data 
0.3589 
9.8158 

 
AIC  -7,244.1307 
BIC  -7,203.4101 

 
K-S stat. 0.0425 
K-S p-value 0.2280 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 
2 Obtained numerically from the Excel solver by minimizing ( )( )2

m mF q p .−   

To advance in the modeling, we now explore the effect of adding an asymmetry parameter 

as an enhancement to the previous 3:NO model. The SN2 density (Skewed Normal type 2, 

Fernandez et al., 1995, appendix A7) allows this. We inject an asymmetry parameter in two normal 

densities and keep the third one as is. The mixture of this model M7 becomes 2:SN2 + 1:NO. 

The 2:SN2+1:NO model includes 10 parameters. The effect of capturing asymmetry is clear 

in all the results presented in Table 11. The asymmetry coefficient is closest to the non-parametric 

one, and the kurtosis of M7 is even slightly higher than that of the non-parametric distribution. The 

p-value of the KS test is 0.1980 > 10%. The VaR = 2.05018% ≈ the VaRnp. The CVaR = 

2.98338% is almost stuck to the upper bound of the CVaR interval. We probably have a serious 

candidate to represent the risks of the data, even if the CVaR is not quite framed by the 
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np npCVaR ,  CVaR− +   . Finally, the parameter 1 0.8831 1ν = < confirms the capture of some 

degree of asymmetry for the first SN2 density. The second density, which has 2 0.9939 1ν = ≈

degenerates to a simple normal distribution. A mixture of 1:SN2 + 2:NO would probably have been 

sufficient, while saving a parameter for the estimation. 

Table 11  
Model M7 = 2:SN2 + 1:NO 

M7 Parameters Mixture of 2 SN2 + 1 normal (2:SN2+1:NO) p = 5% Order1: 61 

Distribution 1  1µ  0.00259297   

 1σ  0.01467882   

 1ν  0.88306710  Quantiles, coefficients and probabilities 

Distribution 2 2µ  0.00092266 Density 0q  µ  [ ]0
i 0F q  −σ  [ ]

i

0
f 0Tail q  

 2σ  0.00638969 1 -1.573342 0.002593 0.092550 -0.014679 0.193377 

 2ν  0.99395520 2 -3.352978 0.000923 0.000433 -0.006390 0.001564 

Distribution 3 3µ  0.00918332 3 -0.763277 0.009183 0.222649 -0.038892 0.298127 

 3σ  0.03889170       
 c1 0.47293330       

 c2 0.50005730     mq  [ ]Model mF q  

       -2.05018% 0.050000 
VaR2 2.05018% VaRnp: 2.04736%    
CVaR 2.98338% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
0.2433 
9.8409 

Data 
0.3589 
9.8158 

 
AIC  -7,241.4466 
BIC  -7,190.5458 

 
KS stat. 0.0442 
KS p-value 0.1980 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 
2 Obtained numerically from the Excel solver by minimizing ( )( )2

m mF q p .−  

In addition to the direct parameterization of the asymmetry, we also want to capture the tail 

thickness. Fernandez et al. (1995) propose the SEP3 density (Skewed Exponential Power type 3; 

see also Rigby et al., 2014). We wish to reduce the number of parameters at the same time. The 

M8 model is constructed with the 2:SEP3 mixture (mixture of two SEP3 distributions, see 

definitions and calculations in appendices A3, A8 and A9).  
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First, the p-value of the KS test in Table 12 is the largest. The asymmetry coefficient is very 

small and positive. The kurtosis is large, but smaller than in the previous model. Given the values 

of AIC and BIC, the model fits the data better than the previous model. The VaR(2:SEP3) = 

1.99295% is a little far from the non-parametric distribution, but most importantly, the VaR = 

2.97397% falls within the range np npCVaR ,  CVaR− +   for this 2:SEP3 model despite the narrow 

interval. 

Note the asymmetry parameters 1 1.0315 1ν = ≈  and 2 0.6137 1.ν = <  We find ourselves in 

the same configuration as the previous model, with a density that captures the asymmetry. Tail 

thickness parameters are equal to 1 0.9599 1τ = ≈  and 2 2.1084 2.τ = ≈  We therefore have a first 

SEP3 distribution that is practically a Laplace distribution ( 1ν = , 1τ = ). The second SEP3 

degenerates into an asymmetric ( 1)ν ≠  normal ( 2τ = ), which is finally an SN2. In this case, a 

Laplace mixture added to an SN2 would probably have suited the data. This result directly 

corroborates similar findings in the recent market risk literature highlighting the mixture qualities 

of a Laplace and a Gaussian distribution (see Haas et al., 2006; Haas, 2009; Broda and Paolella, 

2011; Miao et al., 2016; Taylor, 2019). 
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Table 12  
Model M8 = 2:SEP3 

M8 Parameters Mixture of 2 SEP3 distributions (2:SEP3) p = 5% Order1: 61 

Distribution 1  1µ  -0.0007520   

 1σ  0.0004529   

 1ν  1.0315089   

 1τ  0.9598700  Quantiles, coefficients and probabilities 

Distribution 2 2µ  0.0075456 Density 0q  µ  [ ]0
i 0F q  −σ  [ ]

i

0
f 0Tail q  

 2σ  0.0065018 1 -4.234276 -0.000752 0.066185 -0.004529 0.425876 

 2ν  0.6137048 2 -4.225762 0.007546 0.004189 -0.006502 0.019551 

 2τ  2.1083901       

 c1 0.7389303     mq  [ ]Model mF q  

       -1.99295% 0.050000 
VaR2 1.99295% VaRnp: 2.04736%    
CVaR 2.97397% CVaR-/+np: [2.96269%, 2.97795%]   

 
Skewness 
Kurtosis 

Model 
0.0051 
7.1752 

Data 
0.3589 
9.8158 

 
AIC  -7,245.9268 
BIC  -7,200.1161 

 
KS stat. 0.0392 
KS p-value 0.3040 

1 Non-parametric VaR is equal to the 61st smallest value in the sample. 
2 Obtained numerically from the Excel solver by minimizing ( )( )2

m mF q p .−  

Before moving on to the VaR and CVaR backtesting step, note that all eight models maintain 

the same behaviors at probabilities p = 2.5% and 1%. However, at p = 1%, CVaR of models M7 

and M8 are close to the upper bound of np npCVaR ,  CVaR− +   rather than being in that interval 

(see Table A4 in Appendix A11). This percentile is actually too far down the tail of losses for 

CVaR to be accurate. This should not pose a problem under current regulatory requirements, given 

that Basel requires backtest on VaR rather than CVaR at this 1% percentile and CVaR at 2.5 % is 

the measure of market risk.  

To conclude this section, Figure 3 graphically summarizes the VaR and CVaR behavior of 

models 2:SEP3 and 2:SN2 + 1:NO, as well as 1:NO and 1:T in the left tail of portfolio returns.  
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Figure 3: VaR and CVaR plots of selected models in the left tail of returns 
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4. Backtesting of VaR and CVaR in compliance with the Basel regulations 

in force  

4.1 Validation methodology for VaR and CVaR models  

The VaRs of the different models will be validated by three backtests. The uc backtest 

validates the frequency of hits unconditionally (Kupiec 1995). Second, Christoffersen's (1998) cc 

backtest is conditional on inter-hit independence. The last test is the DQ backtest of Engle and 

Manganelli (2004). DQ is used in parallel with cc to detect both consecutive exceptions and those 

spaced with a lag of up to about a week with daily data. Christofferson's cc test detects successive 

exceedances with a lag of only one day. If there are clusters of more or less closely spaced 

exceedances with lags greater than one day, cc does not detect them but DQ does. 

As for model CVaR, we apply the ESZ  backtest of Acerbi and Szekely (2017), and the 

backtest of Righi and Ceretta (2015), which will now be called RC. We also show the results of 

the backtests 1Z  and 2Z  for information purposes only.9 

Here we deploy five backtests to validate the VaR and CVaR of competing models in order 

to: (i) satisfy the regulatory requirement to perform the 1% VaR backtest (BCBS, 2016, page 77; 

BCBS, 2019, paragraph 32.5); (ii) as a complement, validate the 2.5% CVaR and the 2.5% VaR; 

(iii) as another complement, validate the 5% CVaR and the 5% VaR. 

Currently, none of the four backtests in points (ii) and (iii) is explicitly required to validate 

the banks' overall market risk coverage. However, we propose them as part of the Basel 

recommendation to foresee additional statistical tests with varying degrees of confidence to support 

model accuracy (BCBS, 2016, page 82; BCBS, 2019, paragraph 32.13). 

It is thus natural to consider adding validation of the risk measures of (ii) at 2.5% given that 

2.5% CVaR determines the coverage. The 5% backtests of (iii) would be of less importance, but 

should help confirm the robustness of the models. Note that the five backtests are carried out as 

out-of-sample tests, the approach of which is set out in Appendix A10. 

9Although they are currently quite popular in the literature, these backtests have some problems as reported in the literature that 
prevent us from drawing conclusions based on their results. 
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4.2 Backtest results of the VaR and CVaR models 

Backtest results for the eight models are presented in Table 13. Unsurprisingly, the normal 

model 1:NO is rejected because of its 1% VaR, 2.5% VaR and 2.5% CVaR. However, we did not 

expect that the Student 1:T model would be rejected for similar reasons. The p-values are larger, 

but remain <10%, which is the critical rejection threshold.  

The backtests of 1% VaR of EGB2 have higher p-values, but still below 10%. One might be 

tempted not to reject 1% VaR, especially because 2.5% VaR behaves rather well, with p-values of 

the uc, cc and DQ backtests all >10% (0.1552, 0.2875 and 0.1131 respectively). In contrast, 2.5% 

CVaR is rejected by ESZ  p-value = 0.00 < 10%) and by RC (p-value = 0.0124 < 10%). This model 

is a concrete example where 2.5% CVaR does not pass the backtest, while VaR performs relatively 

well for the 1% regulatory backtest. It also does so at 2.5%, which is an additional validation. 

The next case illustrates the opposite situation. With the 2:NO model, 2.5% VaR is rejected 

by the uc and DQ backtests (0.0783 < 10% and 0.0898 < 10%). In contrast, 2.5% CVaR is well 

validated by ESZ  and RC (p-value = 0.3516 > 10% and p-value = 0.3396 > 10%). Model 2:T 

replicates almost the same behavior. This model is certainly an improvement over the 2:NO model, 

but remains insufficient for the data (as is the case with 1:T versus 1:NO).  

The 3:NO mixture, despite its eight parameters, is inferior to the previous models, including 

model 2:NO, which has only five parameters. Yet 3:NO seemed to perform well in the discussion 

of Table 10 in the previous section (see Section 3). This confirms the merits of injecting additional 

parameters to capture the asymmetry in the data.  

More specifically, model 2:SN2+1:NO, which includes two parameters for asymmetry, 

seems to fit better for 1% VaR. The p-values of uc, cc and DQ are 0.2695, 0.4378 and 0.3496 

respectively. VaR at 2.5% also seems to perform well for uc (p-value = 0.2819) and cc (p-value = 

0.4004), except for the independence of hits, DQ test p-value is 0.0685. CVaR at 2.5% is not 

rejected according to ESZ  (p-value = 0.1516 > 10%), but is rejected for RC (p-value = 0.0516 < 

10%). 
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A word about criterion (iii). The uc backtest validates VaR at 5% (p-value = 0.4338) and the 

backtest ESZ  validates 5% CVaR (p-value = 0.4020), but RC rejects it (p-value = 0.0596). To 

summarize, the 2:SN2+1:NO mixture shows a clear improvement over previous mixtures, with the 

injection of the two asymmetry parameters. However, the improvement is not yet sufficient to 

model the risks of the data effectively. 

Now we come to the backtests for 2:SEP3. Clearly, 1% VaR is validated given the respective 

p-values of uc, cc and DQ (0.2695 > 10%, 0.4378 > 10% and 0.0994 ≈ 10%). VaR at 2.5% is also 

validated according to uc (p-value = 0.2819), cc (p-value = 0.4004) and DQ (p-value = 0.1200). 

The 2.5% CVaR is comfortably validated by both ESZ  (p-value = 0.5000 > 10%) and RC (p-value 

= 0.3168 > 10%). As for criterion (iii), the uc backtest can be considered to validate VaR at 5% (p-

value = 0.0954 ≈ 10%). The backtests ESZ  and RC validate 5% CVaR with comfortable p-values 

(p-value = 0.8412 and 0.3776 respectively). In conclusion, the 2:SEP3 mixture, which captures 

both asymmetry and tail thickness, appears to have superior abilities to model the risks incorporated 

in our data. These results directly confirm the conclusions of recent work on the superiority of a 

mixture of a normal distribution and a Laplace distribution, as seen previously. 

Conclusion 

This paper presented a framework for validating market risk models. The approach jointly 

deploys CVaR and VaR backtests, in compliance with international regulations in force (coverage 

with 2.5% CVaR and required backtest on 1% VaR). Further, given the use of actual data that cover 

a period of extreme market turbulence, the assumption of normality of returns is definitively 

outdated. Identifying a parametric model entails comparing the magnitudes resulting from the 

calculations using the model parameters with the equivalent magnitudes estimated in a non-

parametric distribution. The keystone of this article is the specification of the framework of CVaR 

of the model to be evaluated by the interval [CVaR-np, CVaR+np], which appears to be an important 

criterion for evaluating models and is very closely linked to the conclusions of the backtests of the 

models. As seen in the different estimates, nonparametric kurtosis and asymmetry also help guide 

the research approach to determine the direction in which to move forward. 
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Further, this research is an exercise in the actual implementation of VaR and CVaR 

backtesting when choosing a parametric model that can manage the market risk embedded in the 

data. The identification of the 2:SEP3 mixture, which seems to work well with our data, is not a 

coincidence. In fact, the mixing of a normal distribution with a Laplace distribution directly 

corroborates the conclusions of the recent literature, which positions this mixture as the natural 

replacement for normal distribution for market risk (see Haas et al., 2006; Haas, 2009; Broda and 

Paolella, 2011; Miao et al., 2016; Taylor, 2019). 
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Table 13 
Out-of-sample backtests of VaR and CVaR 

p #Hits Model — uc — cc DQ — ZES — — RC — — Z1 — — Z2 — 

   Stat p-value p-value p-value Stat  p-value Stat p-value Stat  p-value Stat  p-value 
0.050 71 1:NO 2.010 0.1563 0.0326 0.0012 -0.257 0.0000 -0.915 0.0000 -0.184 0.0000 -0.401 0.0024 
0.025 47 1:NO 8.450 0.0037 0.0105 0.0035 -0.379 0.0000 -0.611 0.0000 -0.182 0.0000 -0.852 0.0000 
0.010 26 1:NO 12.372 0.0004 0.0012 0.0000 -0.649 0.0000 -0.535 0.0000 -0.229 0.0000 -1.663 0.0000 
0.050 78 1:T 5.215 0.0224 0.0033 0.0001 -0.152 0.0388 -0.193 0.3012 -0.051 0.2876 -0.366 0.0160 
0.025 45 1:T 6.685 0.0097 0.0343 0.0163 -0.168 0.0724 0.010 0.9056 -0.028 0.5724 -0.542 0.0148 
0.010 20 1:T 4.487 0.0342 0.0756 0.0303 -0.229 0.0860 -0.058 0.4304 -0.062 0.4144 -0.771 0.0236 
0.050 70 1:EGB2 1.669 0.1964 0.0037 0.0000 -0.144 0.0008 -0.464 0.0056 -0.087 0.0220 -0.268 0.0028 
0.025 38 1:EGB2 2.020 0.1552 0.2875 0.1131 -0.185 0.0000 -0.294 0.0124 -0.102 0.0340 -0.396 0.0040 
0.010 19 1:EGB2 3.504 0.0612 0.1277 0.0791 -0.292 0.0008 -0.206 0.0072 -0.122 0.0724 -0.777 0.0024 
0.050 74 2:NO 3.211 0.0731 0.0004 0.0000 -0.143 0.4956 -0.213 0.4496 -0.058 0.1892 -0.305 0.5700 
0.025 40 2:NO 3.100 0.0783 0.1817 0.0898 -0.193 0.3516 -0.139 0.3396 -0.076 0.0492 -0.435 0.5140 
0.010 17 2:NO 1.864 0.1722 0.3084 0.0880 -0.306 0.1024 -0.293 0.0064 -0.170 0.0173 -0.657 0.4044 
0.050 74 2:T 3.211 0.0731 0.0004 0.0000 -0.147 0.2604 -0.212 0.2796 -0.063 0.2544 -0.311 0.2528 
0.025 40 2:T 3.100 0.0783 0.1817 0.0670 -0.204 0.2508 -0.146 0.2540 -0.081 0.1184 -0.441 0.2500 
0.010 18 2:T 2.627 0.1051 0.2044 0.0532 -0.312 0.2108 -0.174 0.0836 -0.140 0.0984 -0.709 0.2436 
0.050 73 3:NO 2.782 0.0954 0.0013 0.0000 -0.135 0.1836 -0.384 0.1432 -0.060 0.1356 -0.254 0.2996 
0.025 42 3:NO 4.387 0.0362 0.1017 0.0267 -0.175 0.1204 -0.220 0.1428 -0.089 0.0336 -0.343 0.2676 
0.010 19 3:NO 3.504 0.0612 0.1023 0.0126 -0.283 0.0544 -0.306 0.0052 -0.152 0.0096 -0.633 0.1688 
0.050 66 2:SN2 + 1:NO 0.613 0.4338 0.0086 0.0000 -0.105 0.4020 -0.410 0.0596 -0.068 0.1316 -0.175 0.6520 
0.025 36 2:SN2 + 1:NO 1.158 0.2819 0.4004 0.0685 -0.137 0.1516 -0.277 0.0516 -0.079 0.1140 -0.295 0.4116 
0.010 16 2:SN2 + 1:NO 1.219 0.2695 0.4378 0.3496 -0.219 0.0296 -0.236 0.0144 -0.129 0.0441 -0.505 0.2004 
0.050 73 2:SEP3 2.782 0.0954 0.0301 0.0006 -0.111 0.8412 -0.153 0.3776 -0.037 0.3308 -0.262 0.8640 
0.025 36 2:SEP3 1.158 0.2819 0.4004 0.1200 -0.127 0.5000 -0.131 0.3168 -0.064 0.1699 -0.277 0.9912 
0.010 16 2:SEP3 1.219 0.2695 0.4378 0.0994 -0.198 0.1516 -0.206 0.0388 -0.101 0.1097 -0.468 0.6016 
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Appendices 

A1. Estimated models 

The appendices present the mathematical developments of the equations retained and the 

tables of results of parameter estimation for different statistical distributions of returns. Given that 

these developments are algebraic, the signs of the final expressions of VaR and CVaR should be 

reversed to obtain positive measures. Table A1 presents the symbols of the estimated models. 

Table A.1 
Model Symbol Definitions 

Model  Symbol Description of the model 
M1 1:NO Normal distribution 
M2 1:T Student's t distribution 
M3 1:EGB2 Exponential GB2 distribution 
M4 2:NO Mixture of 2 normal distributions 
M5 2:T Mixture of 2 Student's t distributions 
M6 3:NO Mixture of 3 normal distributions 
M7 2:SN2+1:NO Mixture of 2 SN2 + 1 normal 

distributions 
M8 2:SEP3 Mixture of 2 SEP3 distributions 

 

Let’s start by deriving the general formulas of CVaR for a statistical distribution (Appendix 

A2) and for a mixture of distributions (Appendix A3). 

A2. Expression of CVaR 

Expression of the density and cumulative function of a reduced distribution 

We are interested in the family of location-scale parametric distributions F  having a 

location parameter µ and a scale parameter .σ  If F F∈  and y F , then the reduced variable 

( )z y= −µ σ  follows the distribution 0F defined with equality:  

0F(y) F (z)= . 
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0F is said to be a reduced cumulative function of F . The reduced density 0f (·) is related to 

the density f (·) by writing:  

 
0f (z)f (y) =
σ

 (A0) 

All densities in this document belong to F , including the normal distribution and Student's 

t. The location and scale parameters coincide with the mean and standard deviation of the normal 

distribution. This is not always the case for the other distributions F∈ . 

General expression of CVaR 

We note q 0< the quantile of VaR corresponding to the degree of confidence (1 – p). As in 

the study by Broda and Paolella (2011), the tail quantity of a density ( )f ⋅ at point x is defined by: 

( ) ( )
def x

ftail x t f t dt.
−∞

= ∫ We develop the expression of CVaR using its definition:  

                  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

q

f

0q

q q
0 0

0
f

1CVaR E y y q y f y dy (A1)
F q

f z1 z d z (A2)
p

1 f z dz z f z d z (A3)
p

1 q qF Tail (A4)
p

−∞

−µ
σ

−∞

−µ −µ
σ σ

−∞ −∞

=  ≤  = 

 
= µ +σ σ σ 

 
= µ +σ 

 
 −µ −µ    = µ +σ    σ σ    

∫

∫

∫ ∫
 

Equation (A2) is obtained by using (A0) after a change of variable ( )z y ,= −µ σ or

y z,= µ +σ where dy dz.= σ  Equations (A3) and (A4) come from algebraic calculations on the 

previous line (A2). Note that there are two parts in formula (A4): the first one is pµ times the 

centered reduced cumulative ( )0F ⋅ evaluated at the centered reduced quantity ( )q .−µ σ  The 

second one is pσ times the tail of 0f ,  also evaluated at ( )q .−µ σ  
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A last remark is that we have of course ( )( )0F q p−µ σ = , which would simplify the 

expression (A4). Even so, we will leave the expression as it is so that it will be of the same form 

as for mixtures of distributions where there will indeed be several cumulatives ( )0
iF ⋅ , for which 

( )( )0
iF q p.−µ σ ≠  

A3. CVaR of a mixture of distributions 

Let ( )m ⋅ be a mixture of n densities ( )if , i 1,...,n.⋅ =  Each density if F∈  has a parameter 

of location iµ  and scale i.σ The mixture density ( )mf ⋅ and its distribution ( )mF ⋅ are written as: 

( ) ( ) ( ) ( )
n n

m i i m i i
1 1

f y c f y , F y c F y= =∑ ∑  

where ic  is a probability, to be estimated, regarding the weight of density ( )if ⋅ . The sum of the ic

is equal to 1.  

Let mq be the quantile corresponding to VaR of the mixture at the confidence level ( )1 p .− We 

denote ( )0
if ⋅ and ( )0

iF ⋅ as the reduced density and the reduced cumulative of the ith density. The 

expression of the CVaRm is developed by taking the sum ( )Σ  out of the integral: 

( )

( ) ( )

( ) ( ) ( )

m

m

m i

i

0
i

q

m m m

n q

i i
1

0qn
i i

i i i i i i
1 i

n
0 m i m i

i i i i f
1 i i

1CVaR E y y q yf y dy
p

1 c y f y d y
p

f z1 c z d z
p

1 q qc F Tail
p

−∞

−∞

−µ
σ

−∞

=  ≤  = 

=

= µ +σ σ
σ

    −µ −µ = µ +σ    σ σ     

∫

∑ ∫

∑ ∫

∑
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or, in vector form, convenient for calculations: 

1

n

0 0m 1 m 1
T 1 f

1 11 1 1

m

n n n0 0m n m n
n f

n n

q qF Tail
c1CVaR .

p c q qF Tail

       −µ −µ
       σ σµ σ            

     = × × + ×         µ σ       −µ −µ     
       σ σ        

      

In the general case, mq is found numerically as a solution to the equation ( )m mF q p 0.− =  

The Excel file allows this. Note that for a distribution i, ( )( )0
i m i iF q p.−µ σ ≠  The only case where 

there is equality is when the distribution 0
iF is unique (no mixture). 

A4. Expression of CVaR of a normal distribution 

The density ( ),µ σφ ⋅  of a normal distribution ( )N ,µ σ  is: 

( )
2

,
1 1 yy exp .

22µ σ

 −µ φ = −   σσ π   
 

We denote both ( )0φ ⋅  and ( )0Φ ⋅  as the density and the cumulative of the standard normal 

distribution ( )N 0,1 . It is easy to show that: 

 ( ) ( )0 0x x x .
x
∂
φ = − φ

∂
 (A5a) 

For ( )y N , ,µ σ the quantile q of VaR at the confidence level ( )1 p− is found by 

( )P y z q p,= µ +σ ≤ =  hence p, ,VaR µ σ  is: 

( )1
0q p−= µ + σΦ . 

Further, with the definition of tail and with the help of equation (A5a) , we find: 

 ( ) ( ) ( )
0

x

0 0Tail x z z dz xφ −∞
= φ = −φ∫ .  (A5) 
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We apply (A4) and (A5) to obtain: 

 , , 0 0
1 q qCVaR
pφ µ σ

 −µ −µ    = µΦ −σφ    σ σ    
. (A6) 

A5. Expression of the CVaR of the Student's t distribution 

The density ( )T, , ,f µ σ ν ⋅  of the Student's t of parameters µ (location), σ (scale) and ν  

(degrees of freedom) is written as: 

( )
b2

T, , ,
A y 1f y 1

−

µ σ ν

 −µ = +   σ σ ν  
 

where ( )
1

A B 1 2, 2
−

 = ν × ν  and ( )b 1 2.= ν +  ( )B ⋅ is the beta function. 10  The reduced 

functions are noted ( )0
T,f ν ⋅ and ( )0

T,F ν ⋅ . We determine q from the VaR of ( )y t , ,µ σ ν  to the 

degree of confidence ( )1 p− : 

( ) ( )

( )

0
T,

0 1
T,

qP y q P z q F p

q F p

ν

−
ν

−µ ≤ = µ +σ ≤ ⇒ = σ 

= µ +σ

 

where ( )0 1
T,F −
ν ⋅  is the quantile (or inverse) function of ( )0

T,F ν ⋅ . The tail at point x is by definition: 

 ( ) ( ) ( )0
T ,

x x b0 2
T,f

Tail x z f z dz A z 1 z dz.
ν

−

ν−∞ −∞
= = + ν∫ ∫  (A7) 

We change the variable 2u z= ν , hence zdz vdu 2= . The integral of equation (A7) 

becomes: 

10 There is another way to write the constant A with the gamma function ( )Γ ⋅ instead of the beta function. 
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( ) ( )

( ) ( )

( )

2

0
T ,

2

x
b

f

bx 2 2
b 1

2
0
T,

Tail x A 1 u du
2

A x x1 u 1 A 1 (A8)
2 b 1 2 1 b

x f x . (A9)
1

ν

−ν
−∞

−
− + ν

−∞

ν

ν
= +

   ν ν = + = + × +    − + − ν ν   

ν +
= − ×

ν −

∫

 

In equation (A8), we replace 𝑏𝑏 with its value ( )1 2.ν + The final expression of the tail is 

simplified in (A9). In order to be valid we need to have 1ν > . We now apply (A9) in (A4) to find: 

T, , ,

2

0 0
f T, T,

q
1 q qCVaR F f .
p 1µ σ ν ν ν

 −µ ν +  −µ −µ   σ   = µ −σ    σ ν − σ    
  

 

Important: In Excel, the functions related to Student's t distribution consider the degree of freedom 

ν to be an integer. Therefore, calculations cannot be made in standard form, and an additional 

module is required. The XRealStats.xlam module is used. It must be downloaded from their 

website11, placed in the C:/TP5 directory and activated to use the functions that allow calculations 

with ν∈R. The cumulative and density functions are called by T_DIST. The inverse of the 

cumulative function is T_INV. 

A6. The EGB2 distribution: Exponential GB2 

The EGB2 (Exponential Generalized Beta type 2) density has four parameters and is written, 

according to Kerman and McDonald (2015), for y R∈ : 

( )
( )( )

z

z

ef y , , ,
B , 1 e

ν

ν+τµ σ ν τ =
σ × ν τ +

 

where ( )z y , , R, , 0.= −µ σ µ σ∈ ν τ > ( )B ⋅ is the standard beta function. The density of the GB2 

was originally proposed by McDonald (1984). 

11 http://www.real-statistics.com/free-download/ 
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The parameters ν and τ  characterize both tail thickness and the asymmetry of the 

distribution. The distribution has a negative or positive asymmetry, or is symmetrical whenν < τ , 

ν > τ  or ν = τ respectively. As for the tail thickness, the smaller the ν , the thicker the left tail (all 

other parameters being equal). 

The EGB2 includes many parametric distributions as special cases. Specifically, when 

,ν ≈ τ→ +∞ the distribution converges to the normal. In practice, this convergence can be 

considered to have been reached when 15.ν ≈ τ >  When 1,ν = τ = EGB2 becomes a logistic 

distribution. Further, lemma 2 of Caivano and Harvey (2014) shows that EGB2 tends toward a 

Laplace density when 0.ν ≈ τ ≈ Other interesting special cases of EGB2 and GB2 are presented 

by Kerman and McDonald (2015), McDonald (2008) and McDonald and Xu (1995).  

Cummins, Dionne, McDonald, and Pritchett (1990) applies the GB2 to compute reinsurance 

premiums and quantiles for the distribution of total insurance losses. EGB2 is increasingly used in 

finance, as the studies by Caivano and Harvey (2014), McDonald and Michelfelder (2016), and 

Theodossiou (2018) exemplify and in operational risk management (Dionne and Saissi Hassani, 

2017). 

A7. The Skewed Normal Type 2 distribution: SN2 

The definition of the density of Skewed Normal Type 2 (SN2) by Fernandez et al. (1995) 

for y R∈  can be written as:  

 ( ) ( ) ( ) ( )

2 2
2

SN2, , , y y22

2 1 y 1 y 1f y exp I exp I
2 22 1µ σ ν <µ ≥µ

    ν −µ −µ    = − ν + −          σ σ νσ π + ν         
 (A10) 

where Rµ∈ , 0,σ > 0.ν > If 1,ν <  asymmetry is to the left (negative returns); if 1,ν >  

asymmetry is positive. When 1,ν = we return to a normal (symmetrical) distribution. This density 

is also useful to compute capital in operational risk management, as in the study by Dionne and 

Saissi Hassani (2017). A random variable ( ) 0
SN2, , , SN2,y F z y F .µ σ ν ν⇒ = −µ σ  For z 0,< only 

the left side of the equation (A10 ) is non-zero. The reduced density is then written as: 

( ) ( )0
SN2, 02

2f z z .
1ν

ν
= φ ×ν

+ ν
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The cumulative at point z 0< is written as: 

( ) ( ) ( )
z0 0

SN2, SN2, 02

2F z f t dt z .
1ν ν−∞

= = Φ ×ν
+ ν∫  

The functions ( )0φ ⋅ and ( )0Φ ⋅ designate the cumulative and the reduced centered normal 

density ( )N 0,1 . The previous equation allows us to find the expression of the VaR at the 

confidence level ( )1 p− : 

 ( ) 0
SN2,

q qP y q P z F pν

−µ −µ   ≤ = ≤ ⇒ =   σ σ   
 

02

2 q p
1

−µ Φ ×ν = + ν σ 
 

 
2

1
0

1 1q p
2

−  + ν
= µ +σ Φ  ν  

.  (A11) 

The expression (A11) is valid only if ( )2p 1 2 1,+ ν ≤  otherwise ( )1−Φ ⋅ would not be 

defined. This requires that 2 p 1.ν ≤ −  

The expression of the tail is developed as follows: 

 ( ) ( ) ( )
x x0

SN2, 02

2Tail x z f z dz z dz
1ν −∞ −∞

ν
= = φ ×ν

+ ν∫ ∫  

                 ( ) ( ) ( )
x x

0 02 2

2 u du 2u u
1 1

×ν ×ν

−∞−∞

ν
= φ = −φ  + ν ν ν ν + ν∫  

  ( ) ( )02

2 x .
1

= − φ ×ν
ν + ν

 (A12) 

Equation (A12) is obtained by changing the variable u z= ×ν and using equation (A5a). 

Equations (A11) and (A12 ) in (A4) give the expression of CVaR: 

SN2, , , 0 02

1 2 q 1 qCVaR
p 1µ σ ν

  −µ −µ    = µΦ ν −σ φ ν     + ν σ ν σ     
. 

Again, when 1ν = we find the CVaR of ( )N , .µ σ  
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A8. The Skewed Exponential Power type 3 Distribution: SEP3 

Fernandez et al. (1995) defined and named this distribution.  SEP3 refers to the 

classification proposed by Rigby et al. (2014). The density of SEP3 is written as: 

( ) ( ) ( )SEP3, , , , y y
c 1 y 1 y 1f y exp I exp I

2 2

τ τ

µ σ ν τ <µ ≥µ

    −µ −µ = − ν + −       σ σ σ ν     
 

where ( ) ( )
12 1c 1 2 1
−

τ = ν×τ× + ν Γ τ  and where R, 0, R, 0.µ∈ σ > ν∈ τ >  They are respectively 

the parameters of location, scale, asymmetry, and tail thickness. SEP3 has as special cases the SN2 

when 2τ =  and a Laplace distribution (asymmetric version) when 1τ = . Note that other names 

exist in the literature to designate distributions comparable to SEP3, such as AP (Asymmetric 

Power) and AEP (Asymmetric Exponential Power). 

SEP3 can be leptokurtic when 2τ < or platykurtic when 2τ >  (see Figure A1). VaR and 

CVaR calculations use gamma functions and the gamma distribution, as shown in the next section.  

 
1ν =  
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1.5ν =  

 
2ν =  

Figure A1: Plots of SEP3 with different values of τ  and ν  
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A9. Expression of VaR and CVaR with SEP3 

As we did for SN2, we develop the expression of reduced cumulative of SEP3 for z 0<  

(left tail) by writing: 

 ( ) ( ) ( )
z0

SEP3, , 2 1

1F z exp w dw
21 2 1

τ
ν τ τ−∞

τν  = × − ν + ν Γ τ  ∫  

         ( ) ( ) ( )

1
1 1 u

2 1 z 2

2 u e du
1 2 1 τ

τ +∞ τ− −
τ ν

τν
=
ντ + ν Γ τ ∫  (A13) 

  ( ) ( ) ( )
1 1 u

2 z 2

1 u e du.
1 1 τ

+∞ τ− −

ν
=

+ ν Γ τ ∫  (A14) 

Equation (A13) is immediate after the change of variable ( )u w 2τ= − ν  and by positing 

s z 0.= − > Note that the inside of the integral 1 1 uu e duτ− − is reminiscent of the gamma function. 

We need the complete gamma function ( )Γ ⋅ and its incomplete version ( ),γ ⋅ ⋅ , which are defined 

by: 

( )
r a 1 t

0
a, r t e dt a 0, r 0− −γ = > >∫  

( ) a 1 t

0
a t e dt a 0

+∞ − −Γ = >∫ . 

Parameter a is for the shape of these functions. It is easy to see that ( ) ( )a a, .Γ = γ +∞ We 

also have a distribution that bears the same name, i.e. gamma,12 whose cumulative parameter shape 

= a (and scale= 1  because it is standardized) evaluated at the point x 0> . It is written as 

( ) ( ) ( )1
aG x a a,x .

−
= Γ γ   The calculation of ( )0

SEP3, ,F zν τ can be obtained from equality (A14): 

12 Under the same “gamma” designation, three entities can be distinguished: the function 𝛤𝛤(. ) (complete from 0 to 
+∞) and the incomplete function (its integral stops at a point 𝑟𝑟 < +∞). The third entity is the gamma distribution 
with two parameters: shape and scale. 
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( ) ( ) ( ) ( )

( ) ( )
( )

( )
( ) ( )( )

( )
z 2

0 1 1 u
SEP3, , 2 z 2

0 02 2

12

1F z u e du
1 1

1 1 , z 21 1 (A15)
11 1 1

z1 1 G (A16)
1 2

τ

τ+∞ ν

+∞ τ− −
ν τ ν

τ

τ

τ

=
+ ν Γ τ

Γ τ − γ τ ν = − =  Γ τ+ ν Γ τ + ν 

  ν
 = −    + ν   

∫ ∫

∫

 

Equality (A15) is a cut-off of the integral's bounds that allows to find the gamma functions. 

To save space, we have not inserted the complete mathematical expressions of the two integrals in 

(A15), which are the same as in the previous equation. The expression is simplified by using the 

cumulative ( )1G shape 1 and scale 1 .τ = τ = By inverting (A16 ), the quantile of VaR at the degree 

of confidence ( )1 p− is immediate: 

( )( )

0
SEP3, ,

1
1 2

1

qF p

2 G 1 p 1
q

ν τ

τ
−
τ

−µ  = σ 

 × − + ν = µ +σ×
ν

 

The calculation of the tail of SEP3 is similar to that done for the cumulative, but with a shape

2 τ parameter for x 0< : 

               

( ) ( )

( ) ( ) ( )

( ) ( )
( )

x x0
SEP3, ,

1
2 1 u

2 x 2

1

22

1Tail x z f z dz c z exp z dz
2

2 u e du
1 1

x2 2 1 G . (A17)
21 1

τ

τ
ν τ −∞ −∞

τ +∞ τ− −

− ν

ττ

τ

 = = × × − ν 
 

−
=
ν + ν Γ τ

  ν−  = Γ τ −    ν + ν Γ τ   

∫ ∫

∫  
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Finally, by putting (A16) and (A17) in (A4) we find: 

( )
( )

1

SEP3, , , , 1 22

q q
21 1 2CVaR 1 G 1 G .

p 1 2 1 2

τ τ

τ

µ σ ν τ τ τ

        −µ −µ  ν ν      Γ τ σ σ       = µ× − −σ× −        + ν ν Γ τ                     

 

Remember that ( )nG xτ is the cumulative gamma distribution of shape = n τ  and scale = 1 

evaluated at point x. When 2,τ = we return to SN2. If 2,τ = and 1,ν = we get a normal 

distribution. The gamma distribution and the complete gamma function exist in standard Excel. 

A10. CVaR backtest notations and expressions 

The backtests performed in this paper are out of sample. The series of 1,200 daily returns is 

named { }t 1200
t t 1

X =

=
. We have eight models iM , i 1...8.= For model M and day t, we take the 250 

returns preceding this day to estimate the vector of parameters of model M which we note as tθ . 

Based on this vector tθ , we calculate the measures VaRp,t and CVaRp,t relative to the degree of 

confidence ( )1 p .− We recall here that VaRp,t > 0 and CVaRp,t > 0 for all t by convention. For each 

model, we will have built two series of size 1,200 each: { }t 1200

p,t t 1
VaR

=

=
 and { }t 1200

p,t t 1
CVaR .

=

=
 

The first backtest is ESZ , introduced by Acerbi and Szekely (2017). The expression of its 

statistic is: 

 ( ) ( ) ( )( )T
p,t p,t t p,t t p,t

ES t
t 1 p,t

p CVaR VaR X VaR X VaR 01Z X .
T p CVaR=

× − + + + <
=

×∑  (A18) 

The null hypothesis 0H of the test ESZ  is that CVaR is appropriate and, in this case, the 

statistic ( )ES tZ X must be statistically zero. The alternative hypothesis 1H is under- or 

overestimated: ( ) ( )0 ES t 1 ES tH : Z X 0; H : Z X 0.= ≠ Here is the procedure for calculating the 

distribution of the null hypothesis. For each day t, we draw N random values using the M model 

with the parameters t .θ  Taking N = 5,000, for example, the draws generate a matrix { }n
tY  of  
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1,200 columns and 5,000 rows. Applying equation (A18) and replacing tX  with n
tY we calculate 

the series of 5,000 0H  values, ( ){ }n
ES t

n 5000Z Y .n 1
=
=  The p-value of the test ESZ  is then equal to 

( ) ( )( ) ( ) ( )( )ES ES ES ESmin Pr Z Y Z X ,Pr Z Y Z X . < >   

The second backtest is denoted RC and is proposed by Righi and Ceretta (2015). Its statistic 

is defined by the expression: 

 ( ) ( ) ( )T
t p,t t p,t

t
t 1 p,t

X CVaR X VaR 01RC X
T SD=

+ × + <
= ∑  (A19) 

where ( )( )p,t t t p,tSD var iance X X VaR 0= × + < is the standard deviation of tX  those that 

exceed the VaR. In the standard version of Righi and Ceretta (2015), the p-value is obtained by 

bootstrapping according to Efron and Tibshirani (1994). Here, we will obtain it instead by 

following exactly the same construction as for ESZ . 

Finally, and for information purposes only, the Z1 and Z2 statistics are defined by: 

( )
( )

( )

T t
t 1 t p,t

p,t
1 T

t 1 t p,t

T
t t p,t

2
t 1 p,t

X X VaR 0
CVaR

Z 1
1 X VaR 0

X X VaR 01Z 1.
T p CVaR

=

=

=

Σ × + <
= +

Σ × + <

× + <
= +

× ∑
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A11. Model estimation and parametric and non-parametric VaR and CVaR 
calculations 

The estimated parameters of the distributions are given in the following tables. 

Table A.2 
Model estimation - Panel A 

 1:NO 1:T 1:EGB2 2:NO 2:T 
µ1 0.0005244 0.0006974∗∗ 0.0008884∗ −0.0004845 0.0012920∗∗ 

 (0.0003741) (0.0002977) (0.0004982) (0.0015691) (0.0005553) 
σ1 0.0129631∗∗∗ 0.0085310∗∗∗ 0.0014108∗∗ 0.0226636∗∗∗ 0.0066854∗∗∗ 

 (0.0002645) (0.0003410) (0.0006812) (0.0018632) (0.0009171) 
ν1  3.2887197∗∗∗ 0.1587161∗∗  23,642.31∗∗∗ 

  (0.3809600) (0.0796200)  (0.0000001) 
τ1   0.1652522∗   

   (0.0851634)   
µ2    0.0008151∗∗ −0.0004740 

    (0.0003448) (0.0008931) 
σ2    0.0082545∗∗∗ 0.0140598∗∗∗ 

    (0.0005136) (0.0025828) 
ν2     6.4162601∗∗ 

     (2.5707612) 
τ2      
      
c1    0.2231962∗∗∗ 0.5158049∗∗∗ 

    (0.0497856) (0.1538992) 
No of params 2 3 4 5 7 
LogLik 3,512.5506 3,627.5723 3,625.5829 3,619.0444 3,628.6421 
AIC −7,021.1012 −7,249.1446 −7,243.1659 −7,228.0889 −7,243.2842 
BIC −7,010.9210 −7,233.8744 −7,222.8056 −7,202.6385 −7,207.6536 
KS (p-value) 0.0015 0.1285 0.3490 0.2180 0.1100 
No of obs.  1,200 1,200 1,200 1,200 1,200 

∗∗∗p < 0.01  ∗∗p < 0.05  ∗p < 0.1 
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Table A.3 
Model Estimation - Panel B 

 3:NO 2:SN2 + 1:NO 2:SEP3  
µ1 −0.0004753 0.0025930 −0.0007520∗∗∗  

 (0.0009649) (0.0065819) (0.0001560)  
σ1 0.0150441∗∗∗ 0.0146788∗∗∗ 0.0045291∗∗∗  

 (0.0022041) (0.0020169) (0.0014071)  
ν1  0.8830671∗∗∗ 1.0315089∗∗∗  

  (0.2038416) (0.0376383)  
τ1   0.9598700∗∗∗  

   (0.1180946)  
µ2 0.0043390 0.0009227 0.0075456∗∗  

 (0.0098212) (0.0013866) (0.0032033)  
σ2 0.0376531∗∗∗ 0.0063897∗∗∗ 0.0065018∗∗  

 (0.0101797) (0.0012556) (0.0025539)  
ν2  0.9939552∗∗∗ 0.6137048∗∗∗  

  (0.2581567) (0.2182171)  
τ2   2.1083901∗  

 
0.0011752∗∗∗ 0.0091833 

(1.1436395)  
µ3   

 (0.0004491) (0.0149751)   
σ3 0.0065771∗∗∗ 0.0388917∗∗∗   

 (0.0008483) (0.0081479)   

c1 0.4433715∗∗∗ 0.4729333∗∗∗ 0.7389303∗∗∗  
 (0.1089861) (0.1594929) (0.1181466)  
c2 0.0334707 0.5000573∗∗∗   

 (0.0303812) (0.1734363)   
No. of params 8 10 9  
LogLik 3,630.0653 3,630.7232 3,631.9633  
AIC −7,244.1307 −7,241.4465 −7,245.9267  
BIC −7,203.4101 −7,190.5457 −7,200.1160  
KS (p-value) 0.2280 0.1980 0.3040  
No of Obs.  1,200 1,200 1,200  

∗∗∗p < 0.01  ∗∗p < 0.05  ∗p < 0.1 
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Table A.4 
Calculation and comparison of CVaRs 

p      Densities VaR CVaR-/CVaR+ Mean Variance Skewness Kurtosis 
      Mixtures (in %) CVaR (in%) (in%) (in%)   

0.050 nparam 2.04736 2.96269/2.97795 0.0524 0.0168 0.3589 9.8158 
0.050 1:NO 2.07980 2.62147 0.0524 0.0168 0.0000 3.0000 
0.050 1:T 1.86805 3.01294 0.0697 0.0186 0.0000  
0.050 1:EGB2 2.00674 2.89562 0.0525 0.0157 -0.0813 5.8076 
0.050 2:NO 1.95397 3.11363 0.0525 0.0168 -0.1386 6.6789 
0.050 2:T 2.02945 3.04197 0.0437 0.0163 -0.1544 8.3993 
0.050 3:NO 2.03846 3.00451 0.0549 0.0172 0.1224 9.4321 
0.050 2:SN2 + 1:NO 2.05018 2.98338 0.0524 0.0168 0.2433 9.8409 
0.050 2:SEP3 1.99293 2.97395 0.0544 0.0163 0.0051 7.1752 

        

0.025 nparam 2.54290 3.63040/3.66665     
0.025 1:NO 2.48828 2.97808     
0.025 1:T 2.51522 3.87890     
0.025 1:EGB2 2.62287 3.51175     
0.025 2:NO 2.81354 3.90424     
0.025 2:T 2.71654 3.74976     
0.025 3:NO 2.66598 3.68928     
0.025 2:SN2 + 1:NO 2.68920 3.62898     
0.025 2:SEP3 2.66110 3.66159     

        

0.010 nparam 3.59575 4.44800/4.51902     
0.010 1:NO 2.96323 3.40250     
0.010 1:T 3.54473 5.29712     
0.010 1:EGB2 3.43734 4.32622     
0.010 2:NO 3.89559 4.82632     
0.010 2:T 3.62577 4.72258     
0.010 3:NO 3.47885 4.71115     
0.010 2:SN2 + 1:NO 3.47913 4.53241     
0.010 2:SEP3 3.57259 4.58396     
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