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Abstract. Car-sharing systems (CSSs) have gained popularity during the last decade as a 
flexible, efficient and ecological alternative mode of transportation. But for the operator, 
managing such systems is far to be simple. Due to heterogeneity of demand and also 
randomness, the user may face a lack of resources: no car or no parking space available. 
And the operator has to design the system in order to improve it. The total number of cars 
impact the performance of the system. We address the dimensioning issue. For that, 
mathematical models are needed. In many cities, two systems coexist: station-based and 
free-floating. The latter gives more flexibility to the user both to take or return the car. But he 
can reserve only the car for a short period, and not the parking space, as the car is parked 
on public space with no specific parking spaces. The car reservation is here to help the user. 
The aim of the paper is to study its influence on the system behavior. This study focuses on 
Communauto's Montreal free-floating car-sharing system (FFCSS). Data analysis 
investigates the main features of the system based on user preferences. It allows proposing 
a mathematical modelling. Then we present two analytical approaches. First the mean-field 
method could be used for different variants, and w gives first insights on the optimal fleet 
size in a homogeneous framework. Second the general inhomogeneous model is described 
as a closed Jackson network with blocking-rerouting policy. We prove that its state at 
stationarity is given by a product-form distribution. It allows in future work to obtain an explicit 
large-scale representation of the system which can be used both theoretically or numerically 
for optimization purposes. 
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1 Introduction

The goal of this work is to study the free-floating car-sharing system of Montreal with the perspective to
optimize such a system. Here, optimizing the system means minimizing the number of unhappy users. This
will be detailed in the following.

As in some main cities, the car-sharing system of Montreal consists of two parts. The first one is a station-
based system. In this system, stations are spread throughout the city, where only cars from the car-sharing
system can park. There are only round trips thus each car in the system is assigned to a station. When a
user takes a car, he has to park it back in the same station. This guarantees users an available parking space
at the end of the trip. In such a system, the only possible cause of unhappiness for a user is if he does not
find an available car at its departure station.

The station-based system may coexist with a free-floating system. The paper focuses on this type of
system. In a free-floating system, there are no stations, and cars can be taken or left anywhere in a prede-
termined area, called the service area. As far as we know, this paper is the first stochastic analysis of such a
system. The dynamics of this system are quite different from those of the station-based system, as a car does
not need to be parked in the vicinity of station where it has been picked up, but it can be parked anywhere
in the service area. Therefore, the user cannot know in advance whether there will be parking space available
at its destination, so there are two sources of unhappiness for the user: if he cannot find either a car in the
area where he wants to start his trip and or a free parking space close enough to his destination.

The first part of the paper consists in analyzing data related to the free-floating car-sharing system of
Montreal, in order to determine its main characteristics. The data is provided by Communauto, the car-
sharing operator in Montreal. This data concerns transactions, for example the time the user enters the
system, the booking duration, the travelled distance or the trip duration.

The second part of the paper deals with modelling the free-floating car-sharing system of Montreal based
on the characteristics previously observed. The analysis of the mathematical model aimed at determining
the behavior of the system and deriving the optimal fleet size, which is the total number of cars to introduce
in the system to minimize the number of unhappy users. The results are validated by simulations. For that
a Python simulator is written and implemented with values of parameters from data analysis. Moreover it
gives insight on some features which cannot be taken into account in the mathematical model. In particular
simulations with a more realistic trip distribution than the exponential distribution are presented.

The outline of the paper is the following. After the introduction in Section 1, related works are presented
in Section 2. Section 3 is devoted to data analysis which the stochastic models are introduced and studied
in Section 4. Validations by simulation and a model discussion are presented in Section 5. Section 6 deals
with the conclusion and perspectives for future work.

2 Methodology and related work

2.1 General context

Several models related to queuing theory have been proposed for car-sharing systems. The most often
studies about car-sharing systems in the literature are devoted to station-based systems. However, as it is
already present in the literature (see [8]), a free-floating system can be reduced to a station-based system by
dividing the service area in smaller zones, which can be considered as stations. What we investigate is an
optimal size of the system, which means determining the number of cars that needs to be made available per
zone in order to minimize the number of unhappy users.

Here is a state of the art of the models which have already been studied in the field of vehicle-sharing.
It is interesting to note the differences between the characteristics of our model, which describes the free-
floating car-sharing in Montreal, and those of the models previously described in the literature. The relevant
differences are those regarding the capacities (finite or infinite) of the stations or zones, and the possibilities
of booking before a trip: booking the car before the trip starts, booking the parking space at the destination,
no booking. Moreover in real-world systems as the free-floating car-sharing system of Montreal, a user can
book a car before his trip but he does not necessarily need to book it, he can take any available car in the
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service area and start a trip with it. Moreover, if he books a car, he can cancel the booking before starting
the trip. Therefore, in our model, we introduce a probability of booking a car, and a probability of cancelling
the trip if the car is booked. Moreover, we consider models with zones having both infinite and finite capacity
(the finite capacity being, of course, the realistic framework).

2.2 Modelling with queuing networks

The few stochastic models in the literature for car-sharing systems are related to queuing networks. So
are the models we propose in this paper for the free-floating car-sharing system in Montreal. Because the
number of cars, which are the customers of the networks, is fixed, the networks are Gordon-Newell networks,
also called (closed) Jackson networks in [6]. Such networks, in particular their dynamics and their invariant
measure known from [1], are presented in [11].

In [5] (see [3] for details and proofs), models are proposed for studying the former car-sharing system
in Paris, called Autolib’ (20011-2018). The system is an electric station-based one. A first model does not
take into account the booking of the cars prior to the trips, but all the users book a parking space at their
destination station when they pick-up their car. The analysis proves that, when the number of stations and
cars become large together, the system reaches an equilibrium where the state of a station is determined, more
precisely the number of reserved parking slots and available cars. Indeed its distribution is that of a tandem
of queues with finite total capacity which has a product-form invariant measure. In that case, the measure
depends on two parameters given by a fixed point equation in dimension two. The derivation, even the fact
that it exists and is unique, is not simple and implicit functions are involved. The product-form expression
is then used to determine the optimal fleet size of the system, by minimizing the proportion of problematic
stations. By definition, a problematic station is either an empty station, where no car is available, or a full
station, where no parking spaces are available. s The optimal fleet size and the corresponding proportion of
problematic stations are computed when the system is large in different scenarios (light traffic, which means
low demand and heavy traffic, which means high demand). An extension of this model is proposed in [3] as
a second model, with a double booking: booking of both the car and the parking space at the destination
station before the trip. All the users book both of them. A main difficulty in the model analysis of this
paper is exploiting the large-scale invariant measure for explicit further derivations, as its expression relies
on parameters given by an implicit function in dimension two.

In [6], a closed queuing network is used to model a bike-sharing system. It is proved that, for a fixed
number of vehicles, the invariant measure of the model interpreted as a closed queuing network with blocking-
rerouting procedure, is product-form. The approach is quite different from the one in [3] as the system is
modeled by a queuing network, whereas in [3], for large-scale behavior, each station is identified to a queuing
system when using a mean-field approach. Besides, the product-form measure in [6] concerns the whole
system for a fixed number of zones, whereas the product-form measure in [3] holds for one station when the
number of stations tends to infinity.

In this paper we use both approaches to analyse two different models. With arguments similar to [3],
we also obtain the large-scale behavior of one zone (i.e. station) when the numbers of zones and cars tend
to infinity together, but our product-form invariant measure is more explicit, depending on a fixed point
equation in dimension one and not in dimension two. Using the expression of the invariant measure, the
derivation of the optimal fleet size is difficult as the simplification that the optimum corresponds to some
parameter equal to 1 in [3] does not hold here. Thus the computation of the optimal fleet size is just provided
for a small mean booking duration. An inhomogeneous model as the one in [6] gives a more accurate invariant
measure, as this measure is obtained for any fixed number of stations and cars and a general inhomogeneous
framework (arrival rates, mean booking and trip durations, routing matrix), but it cannot be used as it is
and one also has to proceed to further asymptotics. However, even if the tools are similar to those in [3] and
[6], the system described in this paper is quite different. In the free-floating car-sharing system of Montreal,
the parking space in the destination zone cannot be booked, just the car before the trip. In [3] the authors
consider either only booking the destination parking space, either booking both the car and the destination
parking space, and never only booking the car before the trip. As to [6], no booking system is considered.
This paper is the first to give a stochastic analysis of such a system. And [3] and [6] are used as a strong
basis for our analysis even if arguments have to be adapted.
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Note that the first analysis devoted to vehicle-sharing systems is in [7]. It is a pioneer paper, with no
booking prior to the trip, stations with infinite capacity and asymptotics when the number of cars gets large
and the number of stations is fixed, which is not the natural scaling for real-world systems. This model with
infinite capacity is also analyzed in [6] with the scaling where both numbers of stations and cars tend to
infinity. And both papers [7] and [6] aim at computing the minimum number of vehicles to achieve a certain
level of service, which is slightly different from what is studied in our paper. Indeed, the level of service is the
proportion of users who find an available vehicle in a given zone. So the system is only optimized according
to the proportion of users who find an available vehicle, without considering that users have also to find an
available parking space close to their destination. Therefore, this optimization may be useless for real-world
systems, as an optimal system should not only have vehicles available but should also enable users to find a
parking space close enough to their destination. Some studies use the same framework. See [2] for example.

Other studies relying on operation research or machine-learning to optimize the system based on location
or redistribution can be cited in the large literature about car-sharing. See [12] and references therein.

2.3 Focus on the capacity

One of the difficulties brought by free-floating systems is that the maximum number of parking spaces
in a zone, hereafter the capacity of the zone, can be variable. Indeed, the cars of the free-floating system
are parked in the public space, sharing it with private cars. On the contrary, in a station-based system, the
maximum number of parking spaces at a station, hereafter the capacity of the station, is a fixed number.
As some papers in the literature consider a model with stations having finite capacity, as far as we know,
no paper investigates a model with stations of a variable capacity. In the whole paper we consider that the
zones have a fixed capacity, as a first attempt to investigate the system.

2.4 Analyzing data

From data analysis, most papers study the user behavior, also called user preferences in the literature. For
more details about the data from Communauto, see [13], and also [9]. Note that no stochastic analysis has
been done yet for a model defined from this data analysis. However a multi-agent model has been proposed
and investigated by simulations in [10]. Some approximations have been made, as the fact that the trip length
is proportional to the origin-destination distance. In fact, our data analysis shows a significant proportion of
loop-trips. And even worse, the probability to return the car close to the departure point, which corresponds
to a small origin-destination distance increases with the trip length (see Figure 5). It seems to prove that this
is not quite accurate. We seek here to propose a model which takes into account the presence of loop-trips.

3 Data analysis

3.1 Data structure and data cleaning

3.1.1 Parameters

The data from Communauto is related to transactions over four years, from 2014 to 2018. A transaction
is any operation related to the rental of a car in the car-sharing system. It can be for instance a booking,
if the car is booked then the user decides to cancel the trip, a booking followed by a trip, or only a trip, if
the user does not book his car before starting the trip. An important distinction needs to be made between
bookings and trips. The definitions of the terms used throughout the report are the following.

• A booking corresponds to the period during which the car is booked and parked at a station, waiting
for the user to come and start the trip, or cancel the trip.

• A trip corresponds to the period during which a car is driven. During a trip, the car is not parked in
a zone.

In the data table, a line represents a transaction and every column a parameter related to the transaction.
Some particularly interesting parameters are:
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• CarID: a number which identifies the car involved in the transaction.

• UserID: a number which identifies the user involved in the transaction.

• TripDate: the time when the transaction begins. The transaction starts when a user books a car, or
when the user takes a car without previously booking it.

• BookDuration: the booking duration.

• Duration: the whole transaction duration, which consists in the booking duration and the trip duration
itself if the trip has not been cancelled.

• FirstDrive: the time between the moment the transaction starts and the moment the car leaves its
parking space. If the car is taken directly without booking, FirstDrive should be equal to zero.

• Distance: the distance driven during the trip. A distance equal to zero means that the trip is cancelled,
so the transaction is reduced to a booking.

• StartOdo and EndOdo: the odometer of the car respectively at the beginning and at the end of the
trip.

• StartLongitude, StartLatitude and EndLongitude, EndLongitude: the GPS position of the car at the
beginning and at the end of the transaction.

As the dataset is very large, the software R is used to analyze it.
The goal of the data analysis is to establish how the Montreal car-sharing system is used. In particular, as

it works with a possibility of booking the car before using it, it is interesting to study how this possibility of
booking is used in practice. In particular if the booking duration is significant compared to the trip duration,
it means that it is interesting to propose a mathematical model with a probability to book a car. Likewise,
if it is common that users cancel their trip, it is interesting to consider a probability to cancel the trip in the
model.

3.1.2 The data cleaning process

As it is often the case in the field of data analysis, the first step consists in data cleaning.
It first takes the form of standard data manipulation, like removing duplicates, incoherent values (negative

durations or distances) or handling missing values. For instance, the fields EndLongitude and EndLatitude
are often missing, but they can be deduced from the starting point of the same car for the next transaction
of that car. The incoherent values removed corresponds to less than 1% of the data.

Moreover, in order to compare the booking durations and the trip durations, another data manipulation
performed is the conversion of the dates of the beginning of the trip in times and dates using the chron
package of R. The chron package is very convenient as it allows mathematical operations with data having
a date/time format (”mm/dd/yyyy h : m : s”). By converting every duration in fractions of days, trip
completion times are available in a date-time format.

The more specific data-cleaning processes are detailed hereafter.

Handling overlaps
The first difficulty is to handle the duration fields BookDuration, Duration and FirstDrive in order to

obtain a coherent dataset. For instance, the lines for which BookDuration, FirstDrive or Duration for a
given car (identified by its ID) are removed if they overlap with the next transaction of the same car. Such
overlaps may not occur in reality but could appear in the data because of a default of synchronisation of
the chronometers in the cars. This requires a function to remove transactions which overlapped with other
transactions.

It leads to remove 0.04% of the data.

Correcting zero distances
Another incoherence in the dataset is the presence of some distances which are equal to zero while they

correspond to quite long trips (in duration). Looking closer, we realize that those distances correspond to
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cases in which the odometer of the car is blocked, for some reason. Indeed, when taking the transactions for a
given car chronologically, we can see that, in some cases where StartOdo and EndOdo are equal, the starting
position of the same car for its next transaction is different. Therefore, the car is supposed to have left the
place where it was parked between the measurements of StartOdo and EndOdo. In that case, the Manhattan
distance between the starting point of the transaction and the ending point of the transaction is used to
approximate the distance traveled by the car. The Manhattan distance is more adapted to the geography
of Montreal than the Euclidian distance. Given that the precision of a GPS can be affected by the presence
of high buildings like those of Montreal, and that it is quite unlikely that someone would take a car for less
than 500 meters, we consider that the distance traveled by the car is to be approximated with the Manhattan
distance between the starting point and the ending point of the transaction considered as positive only if
this distance is superior to 500 meters. Of course, this way of computing distances is very approximate, as
the distance traveled between two points is often higher than the Manhattan distance betweeen those points,
but a choice needed to be made in order to avoid missing values.

This process enabled to reduce by 2% the number of distances equal to zero.

Defining a coherent booking duration
Finally, a quite important data cleaning to take care of (after having applied the previously described

cleaning processes), is to define the booking durations and the trip durations from the data. In particular, the
fields BookDuration and FirstDrive are not always coherent. Indeed, in most cases, we had BookDuration
≤ FirstDrive ≤ Duration but not all the time. We need a clear value for the booking duration for each
transaction. Let us take the following conventions to define it.

• If a trip occurs at the end of the booking duration (which means Distance > 0), and FirstDrive> 0,
the booking duration is the minimum of FirstDrive and BookDuration. This is to avoid a booking
duration which would be higher that the duration of the transaction. Indeed, we check empirically that
min(BookDuration, FirstDrive)≤ Duration is always true.

• If a trip occurs but FirstDrive=0, the booking duration is BookDuration. In that case, FirstDrive=0
makes no sense because it would mean that the car never leaves its zone, although the trip occurs.

• If a trip is cancelled, as all three durations are supposed to represent the time during which the car
is booked in the zone and is not available, the worst case, which is the one when the car is booked
the longest time, is considered. In that case, the booking duration is defined as max(BookDuration,
FirstDrive, Duration). There are no overlaps problems, as the durations causing overlaps have already
been removed, for all three durations.

This definition of the booking duration gives the trip duration as the difference between the total duration of
the transaction (Duration) and the booking duration (for which a new variable TrueBookDuration is created).

3.2 Merging of the bookings

3.2.1 Why bookings needed to be merged

One of the first things that is standing out regarding the data is the number of cancelled trips. There are
33% of transactions with a zero distance (after cleaning and correcting the distances which are equal to zero
because of a problem of the odometer). Some of them correspond to chained bookings. A chained booking
is defined as a succession of bookings of the same car by the same user where:

• All bookings of the chain except the last one lead to a cancelled trip

• The bookings are made successively, with a small amount of time between them (less than 10 minutes).

Indeed, in a chained booking, the same user books the same car and cancels the trip, to re-book the same
car after he cancelled. As the booking time is limited to 30 minutes per booking, this can be a way to cheat
and extend the booking time.

A function is written to merge the different bookings. The chained booking stops with the first booking
of the user that leads to an actual trip (positive distance). After merging the bookings, each chain of booking
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is merged into a single booking. The total booking duration of a merged booking corresponds to the sum
of the booking durations of the different bookings in the chain, to which are added the time lapses between
every two bookings (which are the same, in this case, as transactions) of the chain.

3.2.2 The distribution of the booking duration after merging

The real distribution of the booking duration after merging is shown in Figure 1. We can see that some
users do cheat, by extending their booking time using chained bookings.

Figure 1: Distribution of the booking duration after merging

Nevertheless, only 50% of the chained bookings are used to substantially increase the booking time above
35 minutes. And even if the chained booking phenomenon exists, it remains quite limited, as only 15% of
the bookings correspond to chained bookings. Moreover, merging the bookings does not change significantly
the parameters of the booking duration distribution. Indeed, both mean and median of the booking duration
only increase by 2 minutes.

3.3 Study of booking and trip durations

The study is done with the data obtained after merging the bookings (see Section 3.2).

3.3.1 Bookings

The distribution of the booking durations can be seen in Figure 1. The mean duration of a booking is
17 minutes. Another interesting feature is the probability of booking, which is 84.5%, and represents the
proportion of transactions for which the booking duration is strictly positive.

3.3.2 Trips

Figure 2 shows the distribution of the trip duration. As there are many long trips, corresponding to users
who rent a car for several days, the distribution seems heavy-tailed. A more detailed study of the distribution
of the trip duration is done in Section 5.
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Figure 2: Distribution of the trip duration

The mean duration of a trip is 1h22min, which does not correspond to the maximum of the distribution
(around 13 min). This is due to the presence of long trips over several days, which considerably increase the
mean trip duration. The median of the trip duration, which is 22min, is more representative of the usual
behavior of the users. The third quartile is 32 min, so 75% of the trips are less than 32min, of the same order
of length as the booking durations. This shows that the booking is significant and is worth studying.

Another interesting feature is the probability of cancelling a trip, i.e. the proportion of the transactions
for which the traveled distance is zero, which is 24%.

3.4 Results about user behavior

3.4.1 How the system is used throughout a day

Figure 3 shows how the Montreal car-sharing system is used in a typical weekday. We observe two peaks
of booking, around 7.45 am and 5.00 pm, which are a bit earlier than the usual hours at which people go to
daycare. For that, people book a car to be sure that they have a car. Each booking peak is followed by a
trip peak.

The number of trips is relatively stable. There is a plateau between 8.30 am and 6.30 pm, with a peak at
6.30 pm. But after the morning peak hour, the high number of trips corresponds to a quite low number of
bookings. From this, we can infer that those who use the Montreal car-sharing system during the day may
make less bookings and plan their trips less than those who use the car-sharing system during the morning
peak hour.
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Figure 3: Evolution of the number of trips and of bookings in progress per hour on Wednesday June 7th

Figure 4: Typical evolution of the number of trips and of bookings in progress per hour during the weekend

Figure 4 shows the same plot during the weekend. We can see that, during the weekend, there are no peaks
of bookings and trips, but a plateau. There are much more trips than bookings per hour, which may mean
that most trips during the weekend have not been booked in advance.
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3.4.2 Loops

The last interesting feature revealed by the data analysis is related to loop trips. A loop trip is defined
as a trip which ends less than 1km from its starting point. Figure 5 shows the evolution of the proportion of
loops among the total number of trips as a function of the trip length (distance in km).

Figure 5: Proportion of users doing a loop trip depending on the trip length (distance)

On the one hand, we see that the longer the trip is, the higher the proportion of users who make loop trips
is. This is quite easy to understand as users who go far away may probably be going on a holiday or visiting
someone, before coming back home, especially if their trip brings them outside the service area. Therefore,
they are likely to leave the car where they had taken it. Therefore, for long trips, the free-floating system is
mainly used as the station-based car-sharing system.

On the other hand, we observe that the probability for short trips to end within a radius of 1km from the
departure point is quite low. This shows that short trips are often one way trips. However, around 80% of
the very short trips tend to come back within a radius of 1km from where the trip starts.

The trips which come back within a radius of 1km are in bijection with trips which come back to the
zone of departure, called loop trips in the modelling section. A zone is a square of side 1km. More precisely,
assume that the trip destination is uniform around the trip departure as the two points are close. Then this
bijection is due to the following elementary property. It justifies the previous choice of radius 1km.

Proposition 3.1. The mean Manhattan-distance between two points within a zone is equal to the mean
bird’s-eye distance between one point O and the disc with center O and radius 1, which is 2/3.

The proof, based on basic calculations, is postponed in Annex 7.2.
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4 Mathematical models

4.1 A simplified homogeneous model for large-scale systems: a mean-field ap-
proach

4.1.1 Model with compulsory booking and no trip cancellation

Model description
The first model we consider is similar to the one of [3], but with significant differences. In our model, the
service area is divided in smaller zones, which can be assimilated to stations. The context is a system with
a total number of zones tending to infinity. The first simple model we took is an homogeneous model, which
means that all the zones have the same properties. In particular, the behavior of users is the same regardless
of the zone from which they start their trip and to which they end. The dynamics in the model are the
following:

• Users arrive according to a Poisson process in a zone. It means that the inter-arrival times in a zone
are independent and have an exponential distribution.

• When a user arrives in a zone, he immediately books a car, if there is an available car. The booking
time has an exponential distribution. Otherwise he leaves the system.

• When the booking time ends, the user takes the car to start his trip towards a destination zone, which
is chosen uniformly among all the zones of the service area (including the zone from which he comes).
The trip time has an exponential distribution.

• At the end of his trip, the user returns the car in the destination zone previously chosen, if there is a
parking space available for him in that zone. Otherwise, he chooses another zone at random, makes a
trip and parks the car in the zone if a parking space is available, and repeats this procedure until he
can park the car.

Note that all the inter-arrival, booking and trip times are independent with exponential distribution. It
allows to obtain discrete-space Markov processes, which are easy to handle in the analysis. This model is
still far from the real car-sharing system of Montreal, as the user always books his car before a trip, there is
no probability of cancellation a trip after the booking. Moreover, the number of zones is large. But it is the
first step before introducing a more complex model based on the real booking scheme. As far as we know it
has never been studied in the literature.

Notations:

• N is the number of zones in the service area. In this particular model, N → ∞, which approximate
the case that the number of zones is large, which is the case in practice.

• M is the number of cars in the system.

• K is the capacity (maximum number of parking spaces available) of the zones.

• λ is the arrival rate of the users in a zone. In other words, the inter-arrival times of users in a zone
have an exponential distribution of parameter λ.

• ν is the parameter for the exponential distribution of the booking duration. The mean booking duration
of a booking is thus 1/ν.

• µ is the parameter for the exponential distribution of the trip times. The mean trip time is 1/µ.

• V Ni (t) is the number of available cars in zone i in a system with N zones at time t.

• RNi (t) is the number of booked cars in zone i in a system with N zones at time t.

• Y Nk,l(t) is the proportion of zones with k available cars and l booked cars in a system with N zones at
time t.
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Similarly to the notations introduced in [3], we define

χ = {(k, l) ∈ N2, k + l ≤ K}
RN (t) = (RN1 (t), ..., RNN (t))

V N (t) = (V N1 (t), ..., V NN (t))

and

Y N (t) = (Y Nk,l(t), (k, l) ∈ χ).

Therefore, we have

Y Nk,l(t) =
1

N

N∑
i=1

1(V N
i (t),RN

i (t))=(k,l)

(Y N (t)) is a Markov process, because all the duration distributions are exponential. The state space for
the Markov process Y N is

Y =

{
y = (yk,l)(k,l)∈χ, yk,l ∈

N
N
,
∑

(k,l)∈χ yk,l =
M

N

}
⊂ P(χ)

where P(χ) is the set of probability measures on χ.

Remark. Inferring the model parameters from data The numerical values of the parameters M , λ, µ, η
can be obtained from data.

In the system the total number of cars is increasing from 2014 to 2017. M is the number of cars in the
system per year. As most of the studies here are made using the data in 2017, M is here the number of cars
in 2017.

Given the distribution of the booking duration (see Figure 1), we can approximate it with an exponential
distribution of parameter η, even if this does not take into account the peak at 30 min, it should be a good
approximation, as the peak is not that high, just 4% of the total data. Therefore 1/η is the mean booking
duration and we obtained 1/η =17min in Section 3 so we can calculate η.

The distribution of µ is quite different from an exponential distribution, especially because it seems heavy-
tailed, and its mean and median are very different (see Section 5). We can approximate it with an exponential
distribution of same mean, but this may not reflect the real behavior of the system. This will be discussed
in Section 5 dealing with the simulation results.

λ represents the rate of arrival of the users, which is the number of users arriving per zone per unit of
time. Figure 6 shows the evolution of the number of users arriving in the system per hour. It has been
calculated with a one-hour sliding window.
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Figure 6: Evolution of the global λ throughout a day

However, from the data we only infer the global rate of arrival in the system, and not the rate of arrival
per zone. Moreover we need to estimate the number of zones. For that, the service area is estimated, using
the app of Communauto to visualize it. By identifying the boroughs of Montreal which are parts of the
service area, and using their own area, the total service area is approximately 100 km2. Then, considering
zones of 1 km2, the approximate number of zones is 100. Using Figure 6 we obtain

0.03 ≤ λ ≤ 3.08.

In particular, the mean of the service rate is 1.24 user per hour per zone.

4.1.2 Asymptotic behavior of the simple model and limiting invariant measure

Proposition 4.1 (Mean-field limit). As the system gets large, process (Y N (t))[0,T ] tends to a deterministic
process (y(t))[0,T ] solution of the ODE

ẏ(t) =
∑

(k,l)∈χ

yk,l(t)[(ek−1,l+1 − ek,l)λ1k>0

+ (ek,l−1 − ek,l)ηl

+ (ek+1,l − ek,l)µ(s−
∑

(i,j)∈χ

(i+ j)yi,j(t))1i+j<K)].

The number of available and reserved cars behave respectively as the number of customers in the tandem of
two queues, the first one a M/M/1 queue and the second one a M/M/∞ as in Figure 7.

Proof. Denoting by (ek,l)(k,l)∈χ the vectors of the canonical basis of R|χ|, the transitions for the Markov
process Y N are the following.

When a user arrives in a zone with k available cars and l booked cars,
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M/M/1

V λ

M/M/∞

R ηµ(s−
∑

k+l≤c
(k + l)yk,l(t))

K

Figure 7: Mean-field limit of the simple model: the state of a zone as a tandem of queues of capacity K.

y → y + 1
N (ek−1,l+1 − ek,l) at rate λNyk,l1{k>0}.

Indeed, in that case, the number of available cars decreases by one (a car is booked by the user who arrives
in the zone) and the number of reserved cars increases by one. This causes yk,l to decrease by 1/N and
yk−1,l+1 to increase by 1/N . The rate at which this transition occurs corresponds to the number of zones
with k available cars and l booked cars where a user can arrive (Nyk,l because the probability that a zone
has k available cars and l booked cars is yk,l) multiplied by the arrival rate of the users at a zone.
Of course, the transition occurs only if there are cars available, i.e. if k > 0. If there is no car available in
the zone, no transition occurs (the user leaves the system).

When a user picks up the car he has previously booked in a zone with k available cars and l booked cars,

y → y + 1
N (ek,l−1 − ek,l) at rate ηlNyk,l.

The argument is similar to the previous case. Here, the rate at which the transition occurs corresponds to
the number of cars which can be picked up in a zone with k available cars and l booked cars (i.e. lNyk,l)
multiplied by the rate at which bookings finish (i.e. η)

When a user returns his car after a trip in a zone with k available cars and l booked cars,

y → y + 1
N (ek+1,l − ek,l) at rate µ(M −

∑
(k,l)∈χ(i+ j)yi,j)yk,lN1k+l<K .

Here, the rate at which the transition occurs corresponds to the rate at which trips finish (i.e. µ) multiplied
by the number of cars which can be parked in a zone with k available cars and l booked cars. The number of
such cars is the number of cars in circulation, which corresponds to the number of cars which are not parked
(
∑

(i,j)∈χ(i+ j)yi,jN is the number of cars which are parked) multiplied by the probability of a zone to have
k available cars and l booked cars, which is yk,l.
Of course, the transition occurs only if the destination zone has not reached its capacity of occupied parking
spaces, i.e. if k + l < K. If there is no parking space available at the destination zone, no transition occurs,
because the user cannot put back his car: he continues driving.

With the same arguments as in [3], we obtain that for T > 0, (Y N (t))t∈[0,T ] converges to (y(t))t∈[0,T ]

unique solution with y(0) fixed of the differential equation

ẏ(t) =
∑

(k,l)∈χ

yk,l(t)[(ek−1,l+1 − ek,l)λ1k>0

+ (ek,l−1 − ek,l)ηl

+ (ek+1,l − ek,l)µ(s−
∑

(i,j)∈χ

(i+ j)yi,j(t))1i+j<K)].

Here, we recognize the form ẏ(t) = y(t)Ly(t). From this, we can conclude, with the same arguments as
[3], that the empirical distribution of the stations converges to an invariant measure whose generator is Ly(t).
Thus, we can identify the large-scale behavior of our system with the behavior of the system generated by
Ly(t), which is the tandem of two queues shown in Figure 7. It is analogous to the mean-field limit obtained
in [3].
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Limiting invariant measure of the system.
The result obtained here is very similar to the one in [3]. The difference is that in the tandem of two

queues obtained here, there is first an M/M/1 queue and then an M/M/∞ queue, whereas it is the opposite
for [3]. However, the invariant measure is the same.

Proposition 4.2 (Invariant measure). The equilibrium point of the mean-field limit in Proposition 4.1, i.e.
the invariant measure of the system in Figure 7, is

πk,l =
1

Z(ρR, ρV )
ρkV

ρlR
l!

(1)

where Z(ρR, ρV ) =
∑

(k,l)∈χ ρ
k
V ρ

l
R/l! is the normalization constant, ρR = ρV λ/η and ρV is uniquely deter-

mined by

ρV =
µ

λ

s− ∑
(k,l)∈χ

(k + l)πk,l

 . (2)

Proof. This result is generalized in the following. The proof is a special case of the proof of Proposition 4.4
with α = 1 and β = 0.

4.1.3 Model with possibility of booking and possibility of cancelling the trip

The previous model is too simple to handle the real free-floating car-sharing system in Montreal, because
it does not consider the possibility of cancelling a trip after the booking or starting a trip without a previous
booking.

Let us introduce the following notations.

• α is the probability of booking a car when arriving at a zone

• β is the probability of cancelling a trip when the booking expires.

Let us assume in the following that α > 0 and β < 1. We keep the same notations as before. In this section,
the Markov process (Y N (t))[0,T ] describes the evolution of this new model for the Montreal car-sharing
system, where it is possible to start a trip without booking the car, and to cancel a trip at the end of the
booking. Let us state the following results.

Proposition 4.3 (Mean-field limit). The Markov process (Y N (t))[0,T ] tends to a deterministic process
(y(t))[0,T ] as the system gets large solution of the ODE

ẏ(t) =
∑

(k,l)∈χ

yk,l(t)[(ek−1,l+1 − ek,l)αλ1{k>0}]

+ (ek−1,l − ek,l)(1− α)λ1{k>0}

+ (ek,l−1 − ek,l)(1− β)ηl

+ (ek+1,l−1 − ek,l)βηl

+ (ek+1,l − ek,l)µ(s−
∑

(i,j)∈χ

(i+ j)yi,j(t))1k+l<K ]

The numbers of available and reserved cars at a given station behave respectively as the numbers of customers
in the tandem of two queues, the first one a M/M/1 queue and the second one a M/M/∞ as in Figure 8.

Proof. The arguments are similar to those of Proposition 4.2. See Annex 7.3 for more details.

Proposition 4.4 (Invariant measure). The invariant measure of this tandem of queues is a product measure
of the form

πk,l =
1

Z(ρR, ρV )
ρkV

ρlR
l!

(3)
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M/M/1

V λ

M/M/∞

R η

µ(s−
∑

k+l≤c
(k + l)yk,l(t))

β

1− α 1− β

α

K

Figure 8: Mean-field approach of the model with possibility of booking and cancelling the trip: A typical
zone as an open Jackson network of two queues with overall capacity K.

where Z(ρR, ρV ) =
∑

(k,l)∈χ ρ
k
V ρ

l
R/l! is the normalization constant, ρR = ρV αλ/η and ρV is uniquely deter-

mined by

ρV =
αµ

λ(1− αβ)

s− ∑
(k,l)∈χ

(k + l)πk,l

 . (4)

Recall that α > 0 and β < 1, and thus αβ < 1. For the proof, see Annex 7.4.
Equivalence with the previous model.

Note that the model with possibility to book and to cancel the booking is equivalent to the previous model
(simple model with a compulsory booking of a car for each user who arrives in a zone with available cars and
no trip cancellation) if we change µ to µ̃ and η to η̃ well defined, as α > 0 and β < 1, by

µ̃ =
µ

1− αβ
,

η̃ =
η

α
.

This shows that the model with possibility of booking and of cancellation has the same stationary behavior,
when N →∞, as the simple model of 4.1.1 with modified parameters. More precisely, the invariant measure
of the model with possibility of booking and of cancellation is the same as the invariant measure of a simple
model with compulsory booking and no cancellation. Therefore we can keep a simple model but its parameters
need to be modified so that it fits with the reality. Being able to remain within the framework of the simple
model is convenient, as it makes the analysis easier. Moreover in the second model with possibility of
taking the car without booking and of cancelling the trip, reservation and trip times do not have exponential
distribution. The equivalence means that the large-scale stationary invariant measure is the same as if they
have exponential distribution with the same mean.

4.1.4 Performance study

Thanks to the equivalence between the two models, that the model with possibility of booking and of
cancelling is equivalent to a simple model with no probability of cancelling and where everyone books his car
before his trip starts, we can use the simple model to investigate the optimal size of the system. By noting
that E(V +R) =

∑
(k,l)∈χ(k + l)πk,l, where πk,l is given by equation (1) from Proposition 4.2, equation (2)

is rewritten

s =
λ

µ
ρ+ E(V +R) (5)

which is a fixed point equation in ρV = ρ because Proposition 4.2 gives also a linear dependence between ρR
and ρV . Therefore, the invariant measure of the system can be expressed only in terms of ρ solution of (5).
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The optimal size of the system is the one which minimizes the proportion of problematic zones defined by

Pb = π0,. + πS − π0,S (6)

where π0,. is the proportion of zones with no cars available, πS is the proportion of zones which are saturated
(no parking spaces available) and π0,S is the proportion of zones which have no cars available and are
saturated.
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(a) Capacity of stations: K = 10
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(b) Capacity of stations K = 20

λ/µ = 0.1 λ/µ = 1 λ/µ = 10

Montreal : reservation

Velib : no reservation

Figure 9: Parametric curve ρV 7→ (s, Pb) for K = 10 (a) and K = 20 (b) for the car-sharing model with car
reservation (Flex Montreal) and without reservation (bike-sharing). In both cases η/µ = 4.

Proposition 4.5 (Optimal fleet size). The optimal size of the system in the case of a small reservation time
(1/η << 1) is

s∗ =
K

2
+
λ

µ
+

λ

2η

K2 − 3K/2− 1

K2 − 1
+O

(
1

η2

)
and at this optimum s∗,

P ∗b =
2

K + 1
+

2

K2 +K + 1

1

η
+O

(
1

η2

)
.
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Proof. See Annex 7.5.

Figure 9 is a plot of (s, Pb) which clearly shows a minimum. We also plot on this figure the plot of s 7→ Pb
for the bike-sharing system Velib of Paris, based on the results of [4], as in [3] and [5]. Recall that, for
the bike-sharing system, s∗ = K/2 + λ/µ and the corresponding value P ∗b = 2/(K + 1). We can see that
the optimal size of the system is larger for the Montreal car-sharing system than for the Paris bike-sharing
system. Moreover, as in the Paris bike-sharing system (Velib’), the optimal size of the system gets higher
with the load of the system. A significant difference from the bike-sharing system of Paris (which has no
booking system) appears at a high load. At a high load, we can see that the booking has a negative impact
on the system, as the proportion of problematic stations for the optimal size of the system in the Montreal
car-sharing system is larger (with an additional term 2/((K2 + K + 1)ν) for small mean reservation time)
than the one in the Paris Velib system (which is 2/(K+1)). This difference is decreasing with K as observed
on Figure 9, comparing K = 10 and 20.

4.1.5 Strengths and weaknesses of the simple homogeneous model

The simple homogeneous model is quite convenient for an analysis like the one performed in Section 4.1.4
to find the optimal fleet size of the system. However, this model is only valid for an infinite number of zones,
which may not be realistic as the service area is not infinite. Moreover, it is a homogeneous model, which
means that all the zones must be similar (same rate of arrival of users, etc.). This is also unrealistic as some
zones may be more popular than other and then have a higher rate of arrival of users for instance. That is
why we further propose a inhomogeneous model with fixed size.

4.2 The inhomogeneous model with fixed size as a Jackson network

4.2.1 Additional notations and model with infinite capacity

In this part, we study a model similar to the one described in [6] for bike-sharing systems (without book-
ing). The car-sharing system of Montreal is represented as a closed queuing network where customers (cars)
move from one queue to the other. This model is an inhomogeneous model. Notations are similar to the
previous ones, except that the parameters now depend on the zones they refer to. We use mainly notations
defined in [6].

Figure 10: Montreal free-floating car-sharing system as a closed Jackson network.

We keep on terms as cars and zones instead of classical customers and nodes in queuing theory.
Types of queues. There are three types of queues in the closed Jackson network.

• Customers in ./M/1 queue i are the available cars in zone i. Those queues are ./M/1 because, when
arriving in a zone, users are served (i.e. they manage to book or take a car) successively, by order of
arrival. There are N such queues, numbered from 1 to N , queue i with an exponential rate of service
λi, which is the arrival rate of users in zone i.

• Customers in ./M/∞ queue i are the reserved cars in zone i. A user is served in such a queue when the
booking is finished. Being served means either taking the car to start a trip or cancelling the booking.
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The service time has an exponential distribution with mean 1/ηi, corresponding to the mean booking
duration in zone i. There are N such queues, queue i of service rate ηi. These queues are ./M/∞
because all bookings evolve independently one from the other, so there is a server for every car which
enters the queue.

• Customers of the ./M/∞ queue indexed by [ij] are the cars which are going from zone i to zone j.
There are N2 such queues. The service times in these queues are the trip times in the system. The
service time for queue [ij] has an exponential distribution of parameter µij , where 1/µij is the mean
trip time from zone i to zone j. Those queues are ./M/∞ because all trips evolve independently one
from the other as if there is a server for each car in the queue. As a first step, we assume that the zones
have infinite capacity. This means that a car is always parked at a trip completion time, because there
is always an available parking space available at the destination. This makes the analysis easier. In the
next section, the results obtained here will be extended for finite capacity.

Notations for indexes.

• We index the queues with available cars in a zone with i1, where 1 ≤ i ≤ N corresponds to the number
of the zone.

• We index the queues with booked cars in a zone with i2, where 1 ≤ i ≤ N corresponds to the number
of the zone.

• We index the queues with cars driving from zone i to zone j with [ij], where 1 ≤ i, j ≤ N , the pair
origine-destination.

State of the system: We describe a state of the system with

• ni1 ∈ N the number of available cars in zone i,

• ni2 ∈ N the number of booked cars in zone i,

• n[i,j] ∈ N the number of cars driving from zone i to zone j.

A state of the system is therefore n = (ni1 , ni2 , 1 ≤ i ≤ N,n[i,j], 1 ≤ ij ≤ N).

Additional notations and definitions. We also define the following probabilities.

• αi is the probability to book a car when arriving in zone i,

• βi is the probability to cancel a trip after having booked it in zone i,

• qij is the probability to start a trip from zone i to zone j

Here, the probabilities to go from one queue to another are the following, for all i1, i2 and [ij]:

• pi1,i2 = αi is the probability to book a car when arriving at zone i,

• pi1,[ij] = (1− αi)qij is the probability to directly start a trip to zone j when arriving at zone i,

• pi2,[ij] = (1− βi)qij is the probability to start a trip to zone j after the booking at zone i

• pi2, i1 = βi is the probability to cancel the trip after the booking at zone i

• p[ij],j1 = 1 is the probability to park the car in zone j at the end of the trip (which is 1 as the capacity
of the zones is supposed infinite in this model).

Let us assume that routing matrix (qij)1≤i,j≤N has a unique invariant measure (νi)1≤i≤N . By definition,

νj =
N∑
i=1

νiqij . (7)
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4.2.2 Product form invariant measure

Proposition 4.6 (Product-form invariant measure). The invariant measure π of the inhomogeneous model,
as a closed Jackson network described in Section 4.2.1, has the following product form

π(ni1 , ni2 , 1 ≤ i ≤ N,n[ij], 1 ≤ i, j ≤ N) = C
∏

1≤i,j≤N

ρ
ni1
i1

ρ
ni2
i2

ni2 !

ρ
n[ij]

[ij]

n[ij]!
(8)

where C is the normalization constant and

ρi1 =
θi1
λi
, θi1 =

δνi
1− αiβi

,

ρi2 =
θi2
ηi
, θi2 =

δαiνi
1− αiβi

,

ρ[ij] =
θ[ij]

µ[ij]
, θ[ij] = δνiqij

(9)

where δ depending on (αi), (βi) and (νi) is

δ =

1 +
N∑
j=1

(1 + αi)νi
1− αiβi

−1 . (10)

In particular, in the homogeneous case where all the stations are similar, i.e. if for all i, αi = α, βi = β,

δ =
1− αβ

2 + α(1− β)
. (11)

Proof. Applying the well-known result on closed networks of [1], as in [7], we know that the invariant measure
π of the network is a product measure given by

π(ni1 , ni2 , 1 ≤ i ≤ N,n[ij], 1 ≤ i, j ≤ N) = C
∏

1≤i,j≤N

ρ
ni1
i1

ρ
ni2
i2

ni2 !

ρ
n[i,j]

[ij]

n[ij]!

where

ρi1 =
θi1
λi
, ρi2 =

θi2
ηi
, and ρ[ij] =

θ[ij]

µ[ij]
.

We know until [1] (see for example the general theory of closed queuing networks in [11]), that θ is the
invariant measure of P = (pkl). This means that θi1 , θi2 and θ[ij] are solutions of

θi1 =
∑
k

θkpk,i1

θi2 =
∑
k

θkpk,i2

θ[ij] =
∑
k

θkpk,[ij].

Here, this can be rewritten 
θi1 = θi2pi2,i1 +

N∑
k=1

θ[ki]

θi2 = θi1pi1,i2
θ[ij] = θi1pi1,[ij] + θi2pi2,[ij].

(12)
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The second equation of (12) gives

θi2 = αiθi1 (13)

Plugging (13) in the third equation of (12), we further obtain

θ[ij] = (1− αiβi)qijθi1 . (14)

Using this expression of θ[ij] for all i, j, the first equation of (12) finally gives

(1− αiβi)θi1 =
N∑
k=1

(1− αkβk)qkiθk1 . (15)

Similarly to the study by [6], remembering equation (7), we note that equation (12) is equivalent to, for any
constant δ,

θi1 =
δνi

1− αiβi

θi2 =
δαiνi

1− αiβi
θ[ij] = δνiqij .

But, by definition, (θk) is a probability measure. It yields that

N∑
i=1

θi1 +
N∑
i=1

θi2 +
N∑

i,j=1

θ[ij] = 1

which gives

N∑
i=1

νi
1− αiβi

+
N∑
i=1

αiνi
1− αiβi

+
N∑

i,j=1

νiqij =
1

δ
.

Using the fact that νi is a probability measure and the invariant measure of qij ,

δ =
1

1 +
∑N
i=1

(1+αi)νi
1−αiβi

.

Then, if for all i, αi = α and βi = β, straightforwardly,

δ =
1− αβ

2 + α(1− β)
.

4.2.3 Equivalence with a simpler model

As in Section 4.1, we can show that the model with probabilities αi of booking a car and probabilities
βi of cancelling a trip at zone i, 1 ≤ i ≤ N is equivalent to a simpler model with modified booking and trip
rates of the zones. By equivalent, we mean that the invariant measures of both models are equal.

Proposition 4.7. The model with probability of booking a car αi and probability of cancelling a trip βi is
equivalent to the simple model where the trip and the booking durations have exponential distribution with
the same mean as in the original model. It amounts to modifying the booking and trip rates of the zones as
follows. For all i and j,

η̃i = αiηi,

µ̃[ij] =
µij

1− αiβi
.
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Proof. We apply the same argument as in Proposition 4.6 to find the invariant measure of this system. See
Annex 7.6 for details.

The equivalent model is represented in Figure 11.

Figure 11: Equivalent model for the inhomogeneous model.

4.2.4 Extension to a model with finite capacity

We now extend the previous results to a finite capacity system in which each zone i has a capacity ci.
This means, at state n, ni1 + ni2 ≤ ci <∞.

The dynamics are the same as previously, except in the case where a car is parked. If a car is in the
queue corresponding to the cars going from zone i to zone j there are two possibilities at the end of the trip:
if there is a parking space available in zone j, the car is parked, otherwise, it starts another trip towards a
zone k chosen among all the zones with probability (qjk). This model does not take into account the locality
of the dynamics. It would be more realistic if, when a user does not find an available parking space in his
targeted zone, he goes towards a zone close to the initial destination zone. This is not taken account in this
model.

Proposition 4.8. For a fixed number N of zones, when considering probabilities αi of booking and βi of
cancelling a trip at zone i, the invariant measure of the system is a product measure given by equation (8)
with equation (9).

Proof. We show that, given a state n, the above measure satisfies the balance equation∑
n′ 6=n

π(n′)

π(n)
Q(n′, n) =

∑
n′ 6=n

Q(n, n′)

where Q(n′, n) is the jump rate from state n to n′.

To compute Q(n, n′) and Q(n′, n), we need all the transitions and the rates at which they occur. We
denote a state by n = (ni1 , ni2 , 1 ≤ i ≤ N,n[ij], 1 ≤ i, j ≤ N). We note (ei1 , ei2 , 1 ≤ i ≤ N, e[ij], 1 ≤ i, j ≤ N)
the canonical basis of the state space. We give the transition rates as matrix jump Q components, with
obvious notation for n′.

The transitions from a given state n are the following.

n→ n− ei1 + ei2 Q(n, n′) = αiλi1ni1
>0

n→ n− ei1 + e[ij] Q(n, n′) = (1− αi)λiqij1ni1
>0

n→ n− ei2 + e[ij] Q(n, n′) = (1− βi)ηini2qij
n→ n− ei2 + ei1 Q(n, n′) = βiηini2
n→ n− e[ij] + ej1 Q(n, n′) = µ[ij]n[ij]1nj1+nj2<cj

n→ n− e[ki] + e[ij] Q(n, n′) = µ[ki]n[ki]qij1ni1
+ni2

=ci
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The transitions to a given state n are the following.

n− ei2 + ei1 → n Q(n′, n) = αiλi

n− e[ij] + ei1 → n Q(n′, n) = (1− αi)λiqij1ni1
+ni2

<ci,n[ij]>0

n− e[ij] + ei2 → n Q(n′, n) = (1− βi)ηi(ni2 + 1)qij1ni1
+ni2

<ci,n[ij]>0

n− ei1 + ei2 → n Q(n′, n) = βiηi(ni2 + 1)1ni1>0

n− ej1 + e[ij] → n Q(n′, n) = µ[ij](n[ij] + 1)1nj1
>0

n+ e[ki] − e[ij] → n Q(n′, n) = µ[ki](n[ki] + 1)qij1ni1
+ni2

=ci

We now need to check that the balance equation is satisfied.

For each queue k, let us denote by gk(nk) the function on the set of possible states for each queue.
Similarly to what is done in [6], let us define gk for each type of queue.

gi1(ni1) = λi1ni1
>0,

gi2(ni2) = ηini2 ,

g[ij](n[ij] = µ[ij]n[ij].

Let us also define gk!(nk) by

gk!(0) = 1, gk!(nk) = gk(nk)gk!(nk − 1) for nk ∈ N \ {0}.

Equation (8) we want to check can be rewritten

π(ni1 , ni2 , 1 ≤ i ≤ N,n[ij], 1 ≤ i, j ≤ N) = C
∏

i1,i2,[ij]

θ
ni1
i1

gi1(ni1)!

θ
ni2
i2

gni2
!(ni2)!

θ
n[i,j]

[ij]

gn[ij]
(n[ij])!

.

In particular, as in [6], straightforwardly,

π(n− ek + e′k)

π(n)
=

θk′gk(nk)

θkgk′(nk′ + 1)
.

Thus, the left-hand side of the balance equation can be rewritten, with algebra,

∑
n′ 6=n

π(n′)

π(n)
Q(n′, n) =

N∑
i=1

θi1
θi2

αiηini2

+
N∑
i=1

N∑
j=1

θi1
θ[ij]

µ[ij]n[ij](1− αi)qij1ni1
+ni2

<ci

+
N∑
i=1

N∑
j=1

θi2
θ[ij]

µ[ij]n[ij](1− βi)qij1ni1
+ni2

<ci

+
N∑
i=1

θi2
θi1

λi1ni1
>0βi

+
N∑
i=1

N∑
j=1

θ[ij]

θj1
λj1nj1

>0

+
N∑
i=1

N∑
j=1

N∑
k=1

θ[ki]

θ[ij]
µ[ij]n[ij]qij1ni1+ni2=ci
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Moreover from the proof of Proposition, by equations (13), (14) and (15), θi1 , θi2 , θ[ij] satisfy
θi1 =

N∑
k=1

(1− αkβk)qkiθk1 ,

θi2 = αiθi1 ,

θ[ij] = (1− αiβi)qijθi1 .

Using those equations and simple algebra, the left-hand side of the balance equation can be rewritten

∑
n′ 6=n

π(n′)

π(n)
Q(n′, n) =

N∑
i=1

ηini2

+
N∑
i=1

N∑
j=1

θi1
θ[ij]

µ[ij]n[ij](1− αi)qij1ni1+ni2<ci

+
N∑
i=1

N∑
j=1

αiθi1
θ[ij]

µ[ij]n[ij](1− βi)qij1ni1+ni2<ci

+
N∑
i=1

αiλiβi1ni1>0

+
N∑
j=1

λj(1− αjβj)1nj1>0

+
N∑
i=1

N∑
j=1

1

θ[ij]
(1− αiβi)θi1µ[ij]n[ij]qij1ni1+ni2=ci

.

The sum of the second, third and sixth term is

N∑
j=1

1

θ[ij]
µ[ij]n[ij]

N∑
i=1

(1− αiβi)θi1qij =

N∑
i,j=1

µ[ij]n[ij]

using also equation (14) on θ[ij]. The sum of the fourth and fifth term is
∑N
i=1 λi1ni1

>0.
Therefore, the left-hand side of the balance equation can be rewritten

∑
n′ 6=n

π(n′)

π(n)
Q(n′, n) =

N∑
i=1

λi1ni1>0 +
N∑
i=1

ηini2 +
N∑
i=1

N∑
j=1

µ[ij]n[ij] (16)
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The right-hand side of the balance equation is

∑
n′ 6=n

Q(n, n′) =
N∑
i=1

αiλi1ni1>0

+
N∑
i=1

βiηini2

+
N∑
i=1

(1− αi)λi1ni1
>0

N∑
j=1

qij

+
N∑
i=1

(1− βi)ηini2
N∑
j=1

qij

+
N∑
j=1

µ[ij]n[ij]1nj1
+nj2

<cj

+
N∑
i=1

N∑
k=1

µ[ki]n[ki]1ni1
+ni2

=ci

N∑
j=1

qij

By using the fact that
∑N
j=1 qij = 1 i.e. that (qij) is a stochastic matrix, re-indexing the last term by

changing i to j and k to i and regrouping the terms with the indicator function,

∑
n′ 6=n

Q(n, n′) =
N∑
i=1

λi1ni1
>0 +

N∑
i=1

ηini2 +
N∑
i=1

N∑
j=1

µ[ij]n[ij]

which by equation (16) is equal to the left-hand side of the balance equation. It ends the proof.

4.2.5 Large-scale approximation

When N → ∞, the same result as [6, Corollary 5.2] holds, using similar arguments. Indeed, with
appropriate assumptions (see [6, Corollary 5.2]), the invariant measure on a finite set of zones i and routes
[ij] tends, when N →∞, to∏

i

1

Zi
(γNρi1)ni1

(γNρi2)ni2

ni2 !

∏
[ij]

(γNρ[ij])
n[i,j]

n[ij]!
e−γNρ[ij]

where

Zi =
∑

ni1
,ni2

,ni1
+ni2

≤ci

(γNρi1)ni1
(γNρi2)ni2

ni2 !

and γN solves the equation

MN =
N∑
i=1

∑
k+l≤ci

(k + l)
(γNρi2 )

l

l! (γNρi1)k∑
k+l≤ci

(γNρi2 )
l

l! (γNρi1)k
+

∑
1≤i,j≤N

γNρ[ij].

4.2.6 Loops

In the data analysis, the probability p for a user to make a loop trip is quite significant (around 25%).
However, in the homogeneous model which is easy to handle, the probability to go to each zone is uniform.
The aim will be to prove an equivalence between the model with loops and the homogeneous model. It is
given in a special case by the following result.
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Proposition 4.9 (Invariant measure in a homogeneous model with loops). The invariant measure νi of the
routing matrix in a model with loops (qij) defined by

qii = p, 1 ≤ i ≤ N

qij =
1− p
N − 1

, 1 ≤ i 6= j ≤ N

is the uniform probability measure as in the homogeneous model.

Proof. In the homogeneous model, for all i, j, qij = 1/N , νi = 1/N is obtained as the solution of

N∑
i=1

νiqij = νj

using the fact that
∑N
i=1 νi = 1 Similarly, for the model with loops, the equation satisfied by the invariant

measure can be rewritten

pνj +
1− p
N − 1

(1− νj) = νj

which gives also νj = 1/N .

5 Experiments

5.1 Python simulator

Different Python functions are written to simulate the system dynamics. The variables updated by the
Python functions represent the state of the zones (number of available cars and of booked cars at each zone),
the sets of cars which are available and booked at each station, and the number of circulating cars.

The output of the simulator consists in graphs which can show either the time evolution of the system
(evolution of the number of available cars per zone, of booked cars per zone, and of the total number of cars
in circulation divided by the number of zones) or the time evolution of the proportion problematic zones.
Problematic zones are zones which have no available cars (because the cars in the zone are all booked or
because the zone has no car) or which have no parking spaces available (they are saturated).

The input of the simulator consists in the parameters of the system: λ, η, µ, the number of zones N and
the fleet size parameter s of the system (which is equal to the total number of cars in the system divided
by the number of zones). Another input parameter is the maximum number of iterations of the simulator.
Indeed, the simulator is a loop function, every loop corresponding to an event (jump of the Markov state
process), which can be a user arrival, a booking completion time or a trip completion time. The number of
iterations determines the number of successive events simulated.

First, two simulators are built, one to represent the model with a probability of booking and a probability
of cancellation, and the other one to represent the simple model where the users always book their car before
traveling and where they cannot cancel their trips. This enables to check the equivalence between the two
models, with the modified parameters for the simple model determined by the analysis (see Proposition 4.7).

5.2 Input parameters

Simulations are performed for the model with η and λ determined from the data (see Section 4.1.2).

One wonder how to choose parameter µ, as the mean trip time is too large compared to the median trip
time for assuming exponential distribution of the trip times because the distribution of the trip times seems
heavy-tailed from the data analysis. The first attempt to fix this problem is to remove the largest trip times.
Indeed, the largest trip times are of several days, not necessarily with a huge distance traveled. Some other
trips are longer than the majority of trips (for instance, longer than 2 hours) and correspond to a very short
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distance. The users making such trips may rent the car for some amount of time and then use it for several
trips, parking at each trip completion time. Even if there are several trips, there is only one transaction (and
therefore one trip duration) for the operator. Such a use of the car can be spotted by looking at the ratio
between the traveled distance and the trip duration. Those trips are not taken into account in our model,
because we assume that, when a car starts a trip, it drives during the whole trip duration, without parking
at intermediate points before its destination zone. Therefore, we remove those long trips. The condition we
propose for removing is that, if the trip is longer than 2 hours, the average speed of the car (defined by the
ratio between the traveled distance and the trip duration) should be larger than 5 km/h, otherwise the trip
is removed. The underlying idea is that it is quite unlikely that a user constantly driving has a speed lower
than 5 km/h during 2 hours, even in traffic jams in the city.

This leads to the elimination of some trips, and the mean moves from 1 h 22 min to 38 min and the
median from 22 min to 16 min. However, the mean is still larger than the mean of a variable which has
an exponential distribution of median 16 min. Indeed, we know that for a variable X with exponential
distribution, E(X) = m(X)/ln(2). Nevertheless the simulations are carried out with this value 38 min for
1/µ.

5.3 First results

Figures 12 and 13 show respectively the time evolution of the system and the time evolution of the
proportion of problematic zones.

Figure 12: Evolution of the state of the system for capacity K = 10, λ = 1.24, s = 5.
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Figure 13: Evolution of the proportions of problematic zones for capacity K = 10, λ = 1.24, s = 5.

We can see that those functions of time oscillate quite a lot, which is due to the fact that they are obtained
from one trajectory of a random process. However, they reach a stationary state, which is coherent with the
model analysis, where the target quantities are invariant measures. Despite the oscillations, we can obtain
quite precise values to describe the stationary state of the system, by calculating means on a large number of
iterations after equilibrium has been reached. It allows us to compare the model with possibility of booking
and of cancelling with the model where everyone books and no one cancels his trip: the number of available
cars per zone, booked cars per zone and circulating cars per zone were derived for both models. The results
obtained are close up to 2 significant digits.

5.4 Alternative simulation with the real distribution of the trips

5.4.1 Real trip time distribution

As previously noticed, the distribution of the trips seems heavy-tailed. As we know its mean and its
median, we can wonder what is the real trip time distribution, based on the relation between mean and
median for different heavy-tailed distributions.

A rough method for that to use Maple to plot different heavy-tailed distributions with the same mean
and median as the Montreal trip duration distribution. The only plot which had a plot shape close to the
one of the trip distribution as shown by R is a log-normal distribution. R is then used to confirm that this is
a log-normal distribution. Figure 12 shows the distribution of the logarithm of the trip duration, which fits
a normal distribution.
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Figure 14: Distribution of the logarithm of the trip duration

A further check is the Q-Q plot of this distribution. It is quite close to a straight line, so we can consider
that the logarithm of the trip duration has a normal distribution, which shows that the trip duration has a
log-normal distribution.
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Figure 15: Q-Q plot of the logarithm of the trip duration

5.4.2 Results

Figure 16: Evolution of the system with log-normal distribution with same parameter values as in Figure 12.

The results obtained with log-normal distribution in Figure 16 are quite similar to those with exponential
distribution in Figure 12. The evolution of the states of the system has a shape similar to the one of the
evolution of the system with exponential distributions and the same limiting values. As s = 5 = K/2, s
is close to the optimal size of the system which is calculated in Section 4.1.5. The simulator allows us to
investigate the behavior with different traffic loads. See Figure 17.

6 Conclusion and future work

The first part of the paper highlights some interesting features of the Montreal free-floating car-sharing
system: the usage throughout a day, the booking time and trip time distributions, and the probability for a
user to do a loop-trip depending on his trip length.

This data analysis allows us to propose an original mathematical model for it. Thanks to a mean-field
approach, it is possible to compute (or to plot and read on a graph) the optimal size of the system in different
scenarios, corresponding to different regimes of the system. The mean-field approach is convenient for the
mathematical analysis but best suited to homogeneous systems. We further study an heterogeneous model.
The main result is that this model at fixed size is a closed Jackson network and reaches an equilibrium for
which the invariant measure has a product measure, but on a constrained state space. Furthermore the
invariant measure could be used to prove that, in large-scale systems, the state of a finite set of zones and
routes are independent with closed form distributions. It allows to investigate the optimal fleet size of the
system and address the dimensioning problem.
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Figure 17: Evolution of the system with log-normal distribution with different parameter values

A Python simulator of the system validates the mathematical results and provides insights on performance
for non exponential distributions.

The paper points to the problem of the trip time distribution, which is quite different from an exponential
distribution, certainly heavy-tailed. The study of models with general distributions is much more difficult.

Finally, for the Montreal car-sharing system, it would be interesting to have a model which aggregates the
free-floating system and the station-based system (as both are owned by Communauto with the same users).
Indeed, the issue is to understand how the two systems interact, for instance how often the free-floating
system is used as a station-based system and why. The issue for the aggregation of both models would be to
optimize the aggregated system, as usual by addressing the dimensioning problem (the best fleet size) of the
aggregated model, the location problem (where the stations should be located within the service area) and
the relocation problem.
As a conclusion, modelling free-floating car-sharing systems allows stochastic analysis as a tool to understand
the system behavior. It is still very fertile for research, especially the free-floating scheme. This paper is a
first step in their analysis and should provide a basis for further work.
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7 Annex

7.1 Function to merge the bookings

Figure 18: Function to merge the bookings

Figure 19: How the function of Figure 18 works

7.2 Proof of Proposition 3.1

Proof. Let us replace usual notations ‖‖1 and ‖‖2 by M for Manhattan and V for Vol d’oiseau. Let us prove
that the mean M-distance between two points of a square with square side length 1 is equal to the mean
V-distance between O and a point of D(0, 1).
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The first quantity is∫
[0,1]2

dxdy

∫
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∫
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∫
dx′dy′(x− x′ + y − y′)

= 4

∫
[0,1]2

dxdy

∫ x

0

dx′
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∫
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∫
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3

]1
0

[
y2

2

]1
0

=
2

3
.

The second quantity is the ratio of∫∫
D

√
x2 + y2dxdy =

∫ 2π

0

dθ

∫ 1

0

r2dr =
2π

3

and ∫∫
D

dxdy =

∫ 2π

0

dθ

∫ 1

0

rdr = π

which is 2/3. It ends the proof.

7.3 Proof of Proposition 4.3

Proof of the mean-field limit of the model with probability of booking and of cancelling. With the notations of
Section 4.1, the transitions of the process Y N are the following.

When a user arrives in a zone with k available cars and l available parking spaces and books a car:

y → y + 1
N (ek−1,l+1 − ek,l) at rate αλNyk,l1{k>0}.

Here, the α term corresponds to the probability for a user to book a car when he arrives at a station.

When a user arrives in a zone with k available cars and l available parking spaces and takes a car directly
without booking it:

y → y + 1
N (ek−1,l − ek,l) at rate (1− α)λNyk,l1{k>0}.

Here, the 1 − α term corresponds to the probability for a user to directly start a trip with a car, without
booking it.

When a user picks up a car which he has previously booked, in a zone with k available cars and l available
parking spaces:

y → y + 1
N (ek,l−1 − ek,l) at rate (1− β)ηlNyk,l.

Here, the 1−β term corresponds to the probability for a user not to cancel his trip (the said user is therefore
able to pick up his car when the booking finishes).

When a user cancels his trip after having booked a car, in a zone with k available cars and l available
parking spaces:
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y → y + 1
N (ek+1,l−1 − ek,l) at rate βηlNyk,l.

Here, the β term corresponds to the probability for a user to cancel his trip when the booking finishes.

When a user returns his car after a trip in a zone with k available cars and l booked cars:

y → y + 1
N (ek+1,l − ek,l) at rate µ(M −

∑
(i,j)∈χ(i+ j)yi,j)yk,lN1k+l<K

With the same arguments as before, we obtain the differential equation:

ẏ(t) =
∑

(k,l)∈χ

yk,l[(ek−1,l+1 − ek,l)αλ1{k>0}]

+ (ek−1,l − ek,l)(1− α)λ1{k>0}

+ (ek,l−1 − ek,l)(1− β)ηl

+ (ek+1,l−1 − ek,l)βηl

+ (ek+1,l − ek,l)µ(
M

N
−
∑

(i,j)∈χ

(i+ j)yi,j)1k+l<K ]

From this, we can conclude that the systems has the asymptotic behavior of the queuing network presented
before.

7.4 Proof of Proposition 4.4

Proof. The idea of the proof is that, if external arrival rate µ(s−
∑
k+l≤K(k+ l)πk,l) is replaced by a fixed Λ,

we have to check that the invariant measure, which is the invariant measure of the closed Jackson network,
restricted to the state space, the set (k, l), k + l ≤ K, holds for the system. It amounts to checking that the
measure satisfies the balance equation∑

n′ 6=n

π(n′)

π(n)
Q(n′, n) =

∑
n′ 6=n

Q(n, n′). (17)

Then we have to prove that, if Λ = µ(s−
∑

k+l≤K
(k + l)πk,l) then such a measure exists and is unique.

For the first step, to compute the balance equation, we need the transitions from states n′ to a given state
n = (k, l). For transition n′ → n, jump rate Q(n′, n) and π(n′)/π(n) are the following.

If a user books a car,

(k + 1, l − 1)→ (k, l)

Q(n′, n) = αλ1l>0

π(n′)

π(n)
=
ρV l

ρR
=

ηl

αλ
.

If a user starts a trip without booking the car,

(k + 1, l)→ (k, l)

Q(n′, n) = (1− α)λ1k+l<K

π(n′)

π(n)
= ρV =

Λλ

1− αβ
.

If a user starts a trip after having booked the car,

(k, l + 1)→ (k, l)

Q(n′, n) = (1− β)η(l + 1)1k+l<K

π(n′)

π(n)
=

ρR
(l + 1)

=
αΛ

η(1− αβ)(l + 1)
.
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If a user cancels a trip at the end of the booking,

(k − 1, l)→ (k, l)

Q(n′, n) = βη(l + 1)

π(n′)

π(n)
=

ρR
ρV (l + 1)

=
αλ

η(l + 1)
.

If a user parks his car (he only manages to do so if there are available parking spaces at the destination zone),

(k + 1, l − 1)→ (k, l)

Q(n′, n) = Λ1k>0

π(n′)

π(n)
=

1

ρV
=
λ(1− αβ)

Λ
.

From this, checking balance equation (17) is straightforward.
For the second step, checking that π exists and is unique amounts to checking that equation in ρV

ρV =
µ

λ

s− ∑
k+l≤K

(k + l)πk,l


where π is given as a function of ρV by equation (3) and ρR = ρV αλ/η has a unique solution. First the
previous equation is rewritten

s =
λ

µ
ρV +

∑
k+l≤K

(k + l)πk,l.

Then the right-hand side of this equation is straightforwardly a non-decreasing and continuous function of
ρV , from 0 to +∞ when ρV goes from 0 to +∞. By intermediate value theorem, ρV > 0 solution of this
fixed point equation is unique. It ends the proof.

7.5 Proof of Proposition 4.5

Proof. Recall that, by definition,

Pb = π0,. + πS − π0,S . (18)

By denoting ρV as ρ, we have that ρ is solution of

s =
λ

µ
ρ+ E(V +R). (19)

The aim is to find ρ such that Pb is minimal. It can be checked that this ρ differs from 1.
We assume in the following that 1/η tends to 0. By definition of Pb and of π, Pb = N/Z where

N =
(ρλ/η)K

K!
+
K−1∑
l=0

(λ/η)l

l!
(ρl + ρK) and Z =

K∑
n=0

ρn
n∑
l=0

(λ/η)l

l!
.

Let K and λ be fixed and let us define x = λ/η. Thus Pb is a function of x and ρ. To find the minimum of
Pb, let us introduce function ϕ

(x, ρ) 7→ Z(x, ρ)
∂N

∂ρ
(x, ρ)−N(x, ρ)

∂Z

∂ρ
(x, ρ)

which is Z2∂Pb/∂ρ. As previously recalled, without reservation i.e. x = 0, there is a unique minimum for
Pb at ρ = 1 which yields ϕ(0, 1) = 0. For x enough small, existence and uniqueness of an extremum for Pb is
given by implicit function theorem for ϕ. Indeed, simple derivations give

∂ϕ

∂ρ
(0, 1) =

K(K2 − 1)

3
6= 0,
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there exists a unique ψ defined and C1 for x small enough such that ϕ(x, ψ(x)) = 0. Moreover,

ψ(x) = 1 + ψ′(0)x+O(x2) with ψ′(0) = −
∂ϕ
∂x (0, 1)
∂ϕ
∂ρ (0, 1)

= − 3

K(K2 − 1)

as ∂ϕ/∂x at (0, 1) is 1. Furthermore, as N and Z are C∞, ρ 7→ ϕ(x, ρ) is C1 and non-decreasing for
x = 0 (see [4, Theorem 1] for details). It remains true for x small enough by continuity of ∂ϕ/∂ρ. Thus
the extremum of Pb is a minimum. In conclusion, Pb has a unique minimum for 1/η small enough, which
corresponds to

ρ∗ = 1− 3λ

K(K2 − 1)η
+O((λ/η)2).

Plugging this in equations (18) and (19) give the expansion at order 1 of P ∗b and s∗ in λ/η at 0

s∗ =
K

2
+
λ

µ
+
K2 − 3K/2− 1

2(K2 − 1)

λ

η
+O

(
1

η2

)
which, for large K, can be written

s∗ ' K

2
+
λ

µ
+

λ

2η
+O

(
1

η2

)
.

7.6 Proof of Proposition 4.7

Proof. The invariant measure of the simple model is a product measure π̃ with

ρ̃i1 =
θ̃i1

λ̃i
, ρ̃i2 =

θ̃i2
η̃i

and ρ̃[ij] =
θ̃[ij]

µ̃[ij]
.

This system is the same as the previous one, with α̃i = 1 and β̃i = 0 for all i. We obtain δ̃ = 3 and then

ρ̃i1 =
νi

3λ̃i
, ρ̃i2 =

νi
3η̃i

and ρ̃[ij] =
νiqij
3µ̃[ij]

.

Assume that this model is equivalent to the previous one. Thus

ρ̃i1 = ρi1 , ρ̃i2 = ρi2 and ρ̃[ij] = ρ[ij]

which gives

λ̃i =
(1− αiβi)

3δ
λi,

η̃i =
(1− αiβi)
3δ(αi, βi)

αiηi
δ
,

µ̃[ij] =
µij
3δ

=
(1− αiβi)

3δ

µij
1− αiβi

.

Let us denote δ′ = (1− αiβi)/(3δ(αi, βi)). It holds that

λ̃i = δ′λi,

η̃i = δ′αiηi,

µ̃[ij] = δ′
µij

1− αiβi
.

This shows that by taking the following parameters, the invariant measures will be the same

λ̃i = λi, η̃i = αiηi and µ̃[ij] =
µij

1− αiβi
.

Indeed, the fact that δ′ 6= δ will compensate when computing the normalization constant.
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