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Abstract. This paper proposes a mixed integer programming model for a flexible two-
echelon capacitated, multi-commodity, and multi-period network design problem. The 
model integrates several decisions of a supply chain and simultaneously plans production, 
inventory, location, and distribution.  We consider a set of plants supplying intermediate 
facilities through which products are shipped directly to final customers. The model also 
includes real-world features of flexible delivery due dates and flexible location of the 
intermediate facilities. An iterative decomposition algorithm is proposed to solve this rich 
integrated problem. Three versions of the model are solved iteratively:   two relaxation-
based models and one restricted model. Solving the restricted model acts as a 
neighborhood search around the current best solution. Solutions obtained by the relaxation-
based models guide the neighborhood search by identifying the binary variables to fix and 
at the same time promote diversity in the search. The results obtained by our computational 
experiments highlight the efficiency of the proposed method. Furthermore, managerial 
insights are presented on the utilization of flexibility in the obtained network design solutions, 
and how it relates to economies of scale. 
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1 Introduction

Supply chain network design (SCND) is an important component for efficient operations of
supply chains. The topic is also among the most discussed ones in academia and practice.
In order to design an efficient network, one needs to decide on the location, capacity of
facilities, and flow of products to satisfy all customer demands at minimum cost [5, 10].
In many industrial applications of SCND, a multi-echelon supply network is considered,
where products are first moved from central locations to a set of intermediate facilities
and then, from these facilities, shipments to the final customers take place [16, 23].

SCND encompasses a broad spectrum of decisions, i.e., strategic, tactical, and op-
erational, from all decision-making levels. Traditionally, facility location planning and
network design problems have been treated as long term strategic decisions. However, in
the modern business environment, owing to emerging technologies, boundaries between
strategic and tactical decisions are fading [3]. This is mainly due to the vital role that
agility and flexibility play in today’s volatile and competitive business environment [28].
Especially for SCND, establishing a new facility, shutting down an existing one, or any
capacity changes require capital investment on the one hand, while demand and distri-
bution costs constantly change on the other hand. Therefore, flexibility to adjust to the
changes in the environment, mainly the agility to satisfy short-term demand, has become
an important aspect of modern SCND [18]. Flexibility in SCND is possible today thanks
to technological advances and the use of shared warehouses, which have revolutionized
supply chain network design and management [8]. Flexible or not, SCND deals with
several decisions with mutual impacts. Therefore, it is advantageous to optimize them
jointly. For example, synchronizing production and distribution has provided significant
cost benefits for companies [22, 25, 30]. These advantages have accounted for the pop-
ularity of integrated supply chain optimization approaches. Several integrated supply
chain optimization problems are already studied in the literature, where different mod-
els and solution algorithms are proposed. However, despite the proven efficiency in cost
reduction of flexible and integrated supply chain planning, two concerns remain: (i) the
challenges of incorporating real-world complexities [20], and (ii) the difficulty to solve
large-size instances of these integrated multi-echelon problems [8].

This paper considers several important decisions faced by manufacturing companies:
location, production, inventory allocation, and distribution. A company needs to decide
when and how much to produce in each plant, how much inventory to keep and for how
long, which ones and for how long use the potential intermediate facilities, and finally
how much and when to deliver to each customer. We incorporate two specific real-world
features into the problem setting. The first one is the customers’ delivery due date [1],
and the second one is the flexible network design [29].

We propose a decomposition method that solves this rich problem iteratively in three
phases. Aiming to guide the search for good solutions, in the first phase, a relaxed version
of the problem is solved. A set of guiding distribution centre (DC) selections is identified to
be fixed. Another relaxed version is solved to get guiding customer assignments. Finally,
using this information, a restricted model is solved. In order to obtain different and
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improved solutions, the relaxed version is iteratively changed through the insertion of
cuts to provide new guidance for variable fixing in the original model.

The main contributions of this paper are as follows. First, we incorporate several
realistic features into our SCND model. We introduce a rich integrated problem with
multiple products and multiple periods. Besides planning production, inventory, and
distribution, we also optimize the timing for deliveries to final customers and leasing of
the intermediate facilities. Second, we develop an efficient solution algorithm capable of
solving large instances of the problem. Finally, we derive several important managerial
insights for SCND based on the obtained results.

This paper is organized as follows. In Section 2, we provide an overview on the
relevant literature. Section 3 presents the problem description and its mathematical
formulation. We describe the proposed decomposition method in Section 4. The results
of our computational experiments are presented in Section 5, followed by conclusions in
Section 6.

2 Literature review

SCND and facility location have been broadly studied in the literature. More specifically,
deterministic SCND problems have been the subject of interest since the multi-commodity
network design problem introduced by Geoffrion and Graves [13]. During the previous
decade, more realistic features have been considered in problem settings. Hence, the
importance of including real-world issues into SCND and facility location problems are also
emphasized in the literature [4]. Moreover, the dynamic facility location problem has been
identified as an area of scarce research [28, 19]. The time dimension is what differentiates
the static and dynamic versions of the problem. In the static version, the facility decisions
are made at the beginning of the planning horizon and remain unchanged. In dynamic
problems, on the contrary, in response to the changes in the decision environment (demand
pattern, for example), one can revise the facility location decisions periodically [15, 27].

However, the idea of dynamic facility location planning is not new. To the best of our
knowledge, Ballou [2] was the first to indicate that as the demand pattern changes over
time, warehouse locations should be considered as a dynamic decision. A thorough review
of dynamic facility location literature can be found in Owen and Daskin [24] and Farahani
et al. [12]. The literature on dynamic facility location problems is scarce mainly because
even the basic models of facility location are NP-hard. As discussed in Klose and Drexl
[17], dynamic models are significantly more difficult than the static ones. Therefore, the
literature usually treats location decisions as static and long-term or strategic in nature
[6]. The problem we study in this paper lies in the category of deterministic dynamic
facility location planning and therefore in what follows, we highlight some of the most
recent and relevant contributions in this field.

Jena et al. [15] consider a multi-period and multi-product dynamic facility location
problem. The problem is dynamic because it allows relocation of the facilities and tem-
porary partial facility opening/closing. They propose a hybrid heuristic that solves a
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Lagrangian relaxation followed by a restricted mixed-integer programming model. Their
experiments show the importance of using a heuristic for large size instances. Silva et al.
[27] apply three linear relaxation-based heuristics and an evolutionary heuristic and im-
prove these solutions. An extension to cover a multi-commodity setting is studied in
Jena et al. [14]. In order to solve this multi-commodity dynamic facility location prob-
lem, they propose Lagrangian heuristics based on the classical subgradient method and
an aggregated bundle method. Zhi and Keskin [31] aim to find an efficient design for a
production-distribution network with multiple products and stages. Their model consid-
ers direct shipment and the possibility of transshipment. They propose two metaheuristic
approaches to solve the NP-hard production/distribution system design problem. All
these studies share the underlying assumption that the facility location (reallocation) is
a strategic level decision. This is mainly due to the considerable capital investment re-
quired for relocation [32], or closing a facility and opening a new one. However, as the
decision environment changes, one would expect a more flexible approach to the facility
location and supply network design problems. In what follows, we review some studies
that consider a more flexible supply chain design.

Fahimnia et al. [11] introduce the facility location mobility concept in the context
of blood supply chain disasters. They compare a static network design with a dynamic
facility location. The authors show the reduced transportation cost as the main advan-
tage of using a more flexible design. The idea of relocating intermediate facilities is also
considered in Darvish and Coelho [7] and Darvish et al. [8]. They change the nature of
location decisions to a tactical or even an operational level decision. Being inspired by
the success of several on-demand warehouse providers, these authors introduce a flexible
network design. Finally, Raghavan et al. [26] introduce the capacitated mobile facility
location problem as an extension of its uncapacitated version proposed initially in De-
maine et al. [9]. In this problem, the goal is to minimize facility movement costs and
customer transportation costs. A set of existing facilities is defined, and the customers
are dynamically assigned to these facilities.

3 Problem description and mathematical formulation

We now formally describe our supply chain network design problem in which we integrate
decisions of production, dynamic facility location, inventory management, and distribu-
tion with due dates.

We consider a set of plants available over a finite time horizon (typically in days)
producing multiple products. Most plants are assumed to be multi-functional but some
products cannot be produced in certain plants. All plants have restrictions with respect to
both production and storage capacities. Moreover, for each plant, fixed production setup
and variable production costs are considered per product. Each plant owns a warehouse
where the products are stored, and an inventory holding cost for each unit stored per
period is incurred. All products are sent to DCs, where they are stored and shipped to
final customers. A set of potential DCs is available for rent and the fixed rental fee is
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paid per renting period (typically in months). DCs also charge an inventory holding cost
per unit stored per period. Customers are offered a delivery due date that cannot be
exceeded, but the producer can choose to deliver on any day between the demand release
day and its due date. A direct delivery occurs, and the transportation cost is proportional
to the distance traveled. Therefore, the producer can aggregate orders received from the
same customer, in order to make fewer deliveries.

Formally, the problem is defined on a graph G = (N ,A) where N = {1, . . . , n} is the
node set and A = {(i, j) : i, j ∈ N , i 6= j} is the arc set. The node set N is partitioned
into a plant set Np, a DC set Nd, and a customer set Nc, such that N = Np ∪ Nd ∪ Nc.
Let P be the set of P products, and T be the set of periods of the planning horizon of
length H.

The inventory holding cost of product p at node j ∈ Np ∪ Nd is denoted by hpj, the
unit shipping cost of product p from plant i to DC d by cpid, and the unit shipping cost
of product p from DC d to customer k by c′pdk. Let also fd be the fixed renting cost for
DC d. Once rented, the DC remains open for the next g periods. We consider spi as the
fixed setup cost per period for product p at plant i, vpi the variable production cost of
product p at plant i, and dtpk the demand of customer k for product p in period t. The
demand occurring in period t can be fulfilled up to period t + r, as t + r represents the
delivery due date. For ease of representation, let D be a big number equal to the total
demand for all products from all customers in all periods.

The objective is to minimize the total cost, including production, location, inventory,
and distribution costs, considering that all orders have to be fulfilled until the promised
delivery due date. Therefore, one needs to determine: the product(s) and quantities to
be produced at each plant in each period; the DCs to be selected in each period, the
inventory level of products at both plants and DCs; products sent from plants to DCs in
each period; the period in which demand of each customer is satisfied, and products sent
from DCs to customers in each period. Figure 1 shows a schematic of the problem.

We formulate the problem with the following binary variables: ztpi is equal to one if
product p is produced at plant i in period t, and zero otherwise; ytd is equal to one if DC
d is chosen to be rented in period t for the next g consecutive periods; wt

d is equal to one
to indicate whether DC d in period t is in its leasing period; xtid and x̂tdk indicate if there
is any shipment from plant i to DC d in period t and from DC d to customer k in period
t, respectively.

Quantities produced and shipped are defined as follows: q̂tt
′

pdk is the quantity of product
p delivered from DC d to customer k in period t′ to satisfy the demand of period t, with
t′ ≥ t. atpi is the quantity of product p produced at plant i in period t and qtpid is the

quantity of product p delivered from plant i to DC d in period t. I tpd and Î tpi indicate
the quantity of product p held in inventory at the end of period t, at DC d and plant i,
respectively. We assume that no inventory is available at the facilities at the beginning
of the planing horizon.

In order to simplify the notation used in the formulation of the model, we introduce
the following sets. First, let R+

t denote the set of periods in which demand of period t
can be satisfied, i.e., R+

t = {t′ ∈ T | t ≤ t′ ≤ t + r}, and let R−t denote the set of periods
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Figure 1: An example of the two-echelon supply chain network.

whose demand can be still be satisfied in period t, i.e., R−t = {t′ ∈ T | t − r ≤ t′ ≤ t}.
Next, let G+t denote the set of periods covered by a lease started in period t, i.e., G+t =
{t′ ∈ T | t ≤ t′ ≤ t + g − 1}, and let G−t denote the set of periods in which a lease can
start and then cover period t, i.e., G−t = {t′ ∈ T | t− g + 1 ≤ t′ ≤ t}.

Table 1 summarizes the notation used in the problem.

The problem is then formulated as follows:

(M) min
∑
p∈P

∑
i∈Np

∑
t∈T

vpia
t
pi +

∑
p∈P

∑
i∈Np

∑
t∈T

spiz
t
pi +

∑
p∈P

∑
d∈Nd

∑
t∈T

hpdI
t
pd+∑

p∈P

∑
i∈Np

∑
t∈T

hpiÎ
t
pi +

∑
d∈Nd

∑
t∈T

fdy
t
d +

∑
i∈Np

∑
d∈Nd

∑
t∈T

cidx
t
id +

∑
d∈Nd

∑
k∈Nc

∑
t∈T

c′dkx̂
t
dk

(1)

subject to:

∑
p∈P

atpi ≤ Ci i ∈ Np, t ∈ T (2)

atpi ≤ ztpiCi i ∈ Np, t ∈ T , p ∈ P (3)

Îtpi +
∑
d∈Nd

qtpid = Ît−1pi + atpi p ∈ P, i ∈ Np, t ∈ T (4)

∑
p∈P

Îtpi ≤ Qi i ∈ Np, t ∈ T \ {H} (5)
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Itpd +
∑
k∈Nc

∑
t′∈R−t

q̂t
′t
pdk = It−1pd +

∑
i∈Np

qtpid p ∈ P, d ∈ Nd, t ∈ T (6)

∑
p∈P

Itpd ≤ wtdQd d ∈ Nd, t ∈ T (7)

∑
p∈P

Itpd ≤ wt+1
d Qd d ∈ Nd, t ∈ T \ {H} (8)

∑
t′∈G−t

yt
′
d ≥ wtd d ∈ Nd, t ∈ T (9)

∑
t′∈G+t

wt
′
d ≥ min(g,H − t)ytd d ∈ Nd, t ∈ T (10)

∑
d∈Nd

∑
t′∈R+

t

q̂tt
′

pdk = dtpk p ∈ P, k ∈ Nc, t ∈ T (11)

∑
p∈P

∑
k∈Nc

∑
t′∈R−t

q̂t
′t
pdk ≤ Qdwtd d ∈ Nd, t ∈ T (12)

∑
d∈Nd

∑
t′∈R+

t

q̂tt
′

pdk ≤
∑
d∈Nd

∑
t′∈R+

t

dtpkw
t′
d p ∈ P, k ∈ Nc, t ∈ T (13)

∑
d∈Nd

∑
t∈T

Qdw
t
d ≥

∑
p∈P

∑
k∈Nc

∑
t∈T

dtpk (14)

∑
i∈Np

∑
t∈T

Ciz
t
pi ≥

∑
k∈Nc

∑
t∈T

dtpk p ∈ P (15)

∑
p∈P

∑
t′∈R−t

q̂t
′t
pdk ≤ dt

′
pkx̂

t
dk d ∈ Nd, k ∈ Nc, p ∈ P, t ∈ T , t′ ∈ R−t (16)

∑
p∈P

qtpid ≤ Dxtid i ∈ Np, d ∈ Nd, t ∈ T (17)

ztpi, w
t
d, y

t
d, x

t
id, x̂

t
dk ∈ {0, 1} p ∈ P, i ∈ Np, d ∈ Nd, k ∈ Nc, t ∈ T (18)

Îtpi, a
t
pi, I

t
pd, q

t
pid, q̂

tt′
pdk ≥ 0 p ∈ P, i ∈ Np, d ∈ Nd, k ∈ Nc, t, t′ ∈ T . (19)

The objective function (1) minimizes the total costs of production (variable and setup), in-
ventory costs (at the DCs and at the plants), rental costs of the DCs, and distribution costs
(both from plants to DCs and from DCs customers). Constraints (2) guarantee that the pro-
duction capacity at the plants is respected. Constraints (3) are production setup constraints.
Constraints (4) balance the inventory flow at the plants. Constraints (5) guarantee that the
inventory level at each plant does not exceed its storage capacity. Constraints (6) are the in-
ventory flow balance at the DCs. Constraints (7) and (8) ensure that the inventory kept at the
selected DCs does not exceed the capacities. Constraints (9) and (10) link leasing periods with
the paying period of the lease: the fixed rental fee is paid once and then the DC remains open
for g consecutive periods. Constraints (11) make sure that every demand is satisfied within
r days. Constraints (12) and (13) condition the delivery from a DC to customers, to the DC
being selected. With constraints (14) and (15), we make sure that enough DC inventory and
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Table 1: Notation used in the model

Parameters
hpj inventory holding cost of product p at node j ∈ Np ∪Nd
cid travel cost for each pair (i, d) where i ∈ Np and d ∈ Nd
c′dk travel cost for each pair (d, k) where d ∈ Nd and k ∈ Nc
fd fixed renting cost for DC d
spi fixed setup cost for product p in plant i
vpi variable production cost of product p in plant i
dtpk demand of customer k for product p in period t
Ci production capacity at plant i
Qi inventory capacity at node i
Sets
Nc customers R+

t periods in which demand of period t can be filled
Np plants R−t periods whose demand can be filled in period t
Nd DCs G+t periods covered by a lease starting in period t
T periods G−t periods in which a lease can start and cover period t
P products
Variables
ztpi equals to one if product p is produced at plant i in period t
ytd equals to one if DC d is chosen in period t to be used for g consecutive periods
wt
d equals to one to indicate whether DC d is in lease in period t

q̂tt
′

pdk quantity of product p delivered from DC d to customer k in
period t′ to satisfy the demand of period t, where t ≤ t′ ≤ max(t + r, T )

atpi quantity of product p produced at plant i in period t
qtpid quantity of product p delivered from plant i to DC d in period t
I tpd quantity of product p held in inventory at DC d at the end of period t

Î tpj quantity of product p held in inventory at plant j at the end of period t
xtid if there is any shipment from plant i to DC d in period t
x̂tdk if there is any shipment from DC d to customer k in period t
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production capacities are considered to satisfy the total demand occurring in the whole planning
horizon. Constraints (16) and (17) link the delivery quantities from plant/DC to DC/customers,
to the direct shipment binary variables. Finally, constraints (18)–(19) define the domain and
nature of the variables.

We now explain how specific features of our mathematical model make the problem inherently
difficult to solve to optimality. Generally, the problem is complex as it is a combination of several
NP-hard problems, including capacitated lot sizing and capacitated facility location problems.
The proposed dynamic facility location model for a two-echelon supply chain network integrates
several decisions, including production, inventory, location, and distribution. Simultaneously
considering all these decisions in a single model makes the problem difficult to solve.

For each order placed in period t′ − r, we have up to period t′ to fulfill it. This will add to
the size and consequently, the complexity of the problem we are solving. In order to reduce the
size of the problem, note that we only define variables q̂tt

′
pdj for feasible combinations of t and

t′. The problem still remains more difficult than its same-day delivery counterpart, as will be
discussed in Section 5.5.

4 Solution algorithm

In this section, we introduce our proposed decomposition algorithm. The model presented in
Section 3, hereafter referred to as model M , can be solved by state-of-the-art general purpose
MIP solvers only for small instances. However, to solve large instances, a more powerful solution
approach is required.

Most of the required numerical effort is related to the number of binary variables in the
model. In our algorithm, we focus on the variables wtd and x̂tdk. Variables wtd specify which DCs
are open in which periods, and therefore constitute the main network design variables. These
can be seen as important variables, since they define the structure of the network. The variables
x̂tdk assign customers to DCs and are the most numerous, as they contain the index k that runs
over all customers, which tend to be a large set in these kinds of models. Taking control of these
variables thus allows us to effectively manage the complexity inherent in the model.

Our algorithm consists of three components, namely two relaxation-based models and one
restricted model. In the restricted model, we fix (most) DC locations and customer assignments
(i.e., variables wtd and x̂tdk) based on the current best (i.e., incumbent) solution, and solve the
restricted model to optimality. This can, therefore, be seen as a neighborhood search around the
current best solution, and it returns a solution at least as good, and in most cases better than the
incumbent. In order to decide which DCs and customer assignments to fix, two relaxation-based
models are solved. In the first one, the only binary variables are the DC locations (wtd), and
in the second one, the only binary variables are the customer assignments (x̂tdk). To the first,
a cut is added to force the solution in a direction away from the current best, which promotes
diversity. In the second relaxation-based model, the DC locations from the first one are fixed.
The DC locations and customer assignments obtained by these two models are then designated
as a “guiding solution,” and the restricted model continues to search “in between” the current
best solution and the guiding solution. In what follows the models and their interactions are
more formally outlined.

We define a solution as a mapping X such that X (wtd),X (x̂tdk) ∈ {0, 1} specify value assign-
ments to the binary variables wtd and x̂tdk, respectively. Moreover, let |X | =

∑
d∈Nd,t∈T X (wtd)
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denote the number of wtd variables assigned to 1 in X .
We first discuss the restricted model, M̄ , which takes as input two solutions X and Y, of

which only X is required to be feasible in M . As we discuss below, at each iteration of the
algorithm, X represents the current incumbent solution and Y represents a “guiding” solution.
The restricted model is then given by (1)–(19) together with the constraints below, and the
solution produced by the model is denoted by M̄(X ,Y).

wtd = X (wtd) d ∈ Nd, t ∈ T ,X (wtd) = Y(wtd) (20)

x̂tdk = X (x̂tdk) d ∈ Nd, k ∈ Nc, t ∈ T ,X (x̂tdk) = Y(x̂tdk). (21)

In other words, the restricted model fixes the variables wtd and x̂tdk that are assigned to the same
value in both X and Y. Solving M̄ to find M̄(X ,Y) can therefore be seen as a neighborhood
search around the incumbent solution X , in the direction of Y. More formally, the search
actually occurs on the “line segment” between X and Y in the Hamming space, which is also
true for most crossover operators in evolutionary algorithms; see Moraglio et al. [21] for details.
Note that since X is in the neighborhood and by definition constitutes a feasible solution to M ,
M̄(X ,Y) is a feasible solution at least as good as X .

The second model is denoted by Mw, and takes as input a solution X and a real number
0 ≤ γ ≤ 1. This model is given by (1)–(17) together with the constraints below, and the solution
produced by the model is denoted by Mw(X , γ).∑

d∈Nd,t∈T :X (wt
d)=1

wtd ≤ bγ|X |c − 1 (22)

∑
d∈Nd,t∈T :Y(wt

d)=1

wtd ≤ bγ|Y|c − 1 (23)

wtd ∈ {0, 1} d ∈ Nd, t ∈ T (24)

ztpi, y
t
d, x

t
id, x̂

t
dk, Î

t
pi, a

t
pi, I

t
pd, q

t
pid, q̂

tt′
pdk ≥ 0 p ∈ P, i ∈ Np, d ∈ Nd, k ∈ Nc, t, t′ ∈ T .

(25)

In other words, Mw relaxes all binary variables except for wtd, and among all variables that are
assigned a value of 1 in the solution X , (22) ensures that fewer than γ × 100% are assigned a
value of 1 by the model. The same is imposed for the previous guiding solution Y by (23). Note
that the RHS is subtracted by 1 so that γ = 1 implies a cut ensuring that the same solution is
not produced a second time. This model can therefore be seen as a constraint-directed search,
where (22) directs the search away from a given solution (a diversification approach).

The third model is denoted by M x̂, which takes as input a solution X given by (1)–(17)
together with the constraints below. The solution produced by the model is denoted by M x̂(X ).

wtd = X (wtd) d ∈ Nd, t ∈ T (26)

x̂tdk ∈ {0, 1} d ∈ Nd, k ∈ Nc, t ∈ T (27)

ztpi, w
t
d, y

t
d, x

t
id, Î

t
pi, a

t
pi, I

t
pd, q

t
pid, q̂

tt′
pdk ≥ 0 p ∈ P, i ∈ Np, d ∈ Nd, k ∈ Nc, t, t′ ∈ T . (28)

In other words, this model relaxes all binary variables except for x̂tdk and fixes the variables
wtd according to the solution X .

Models Mw and M x̂ are used in succession to produce a guiding solution Y. Given the
incumbent solution X , this is done by first solving Mw in order to obtain a solution Y ′ =
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initial
incumbent
solution

updated
incumbent
solution

guiding DC
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Figure 2: Graphical illustration of the proposed algorithm.

Mw(X , γ) with different DC openings. Thereafter M x̂ is solved to obtain the guiding solution
Y = M x̂(Y ′) with customer assignments for the selected DCs. In other words, Mw changes the
current solution and determines the DC locations to be fixed in each period, and given these
fixed locations, M x̂ assigns customers to DCs. The DCs and customer assignments that occur
in both the incumbent X and the guiding solution Y are then fixed in the model M̄ , and by
solving M̄ a new incumbent is obtained in the direction of Y that is at least as good as X . This
process is illustrated in Figure 2.

If M̄(X ,Y) = X in any iteration (i.e., the incumbent did not improve), then the algorithm
would be stuck in a local optimum. In this case, the parameter γ is decreased by 0.1 to force
Mw to find a different guiding solution further away from X . The parameter is reset after the
incumbent is improved.

In order to generate an initial feasible solution, we first solve Mw with input X0, which is
a solution that assigns only zeros to variables. Constraint (22) thus falls away from Mw. Let
Y ′ = Mw(X0, γ) and then let Y = M x̂(Y ′). To attempt to find a feasible solution, M̄ is solved to
obtain M̄(Y,Y), which is equivalent to fixing the partial solution Y in M . There is a risk that
the resulting model is infeasible. In such a case, one option is to add a cut to Mw in order to
obtain a different solution Y to fix. However, we did not explore this further as it never occurred
using our instances.

5 Computational experiments

The formulation in Section 3 and the proposed algorithm in Section 4 are coded in C++ and
solved using CPLEX 12.10 with default parameter settings apart from the time limit and number
of threads. The computational experiments are conducted on the Central DTU HPC Cluster1,
using four threads per execution to match the performance of a standard desktop computer.

1https://www.hpc.dtu.dk/?page_id=2520
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The performance of the proposed algorithm is demonstrated on a set of randomly generated
instances. In order to compare methods, a time limit of one hour was imposed. Time limits
were also imposed on the subproblems in each iteration of the proposed algorithm in order to
be able to have some control over the number of iterations. We do this by first specifying a
desired number of iterations NI. Note that this number will not necessarily correspond to the
actual number of iterations, as discussed further below. The time limit imposed to each of
the three subproblems in each iteration is then 3600/(3 × NI) seconds. In particular, we will
consider NI = 5 and NI = 10 resulting in subproblem time limits of 240 and 120 seconds,
respectively. If each subproblem uses exactly its allocated time in each iteration, NI iterations
will be performed. However, this might not always be the case. First of all, if a subproblem is
solved to optimality before its time limit, then it will of course use less time. Such events might
lead to more than NI iterations being performed. On the other hand, note that the proposed
algorithm requires that each subproblem returns a feasible solution in each iteration, so if a
subproblem does not find any feasible solution before its time limit is reached, it is allowed to
continue and is stopped as soon as it finds the first feasible solution. In such cases, more time
will be used, which might lead to fewer than NI iterations being performed. In any case, the
proposed algorithm runs until the time limit of one hour is reached. Moreover, for none of our
instances was CPLEX able to solve the full MIP to optimality within one hour. We thus do not
directly report any runtimes.

In some cases it occurred that either Mw or M x̂ became infeasible. This happened in 37%
of our instances, and in most cases it only happened later on during the search (on average after
2607 seconds). In such cases, we use the incumbent solution to warm start the full MIP and let
it run for the remaining time.

In the remainder of this section, the details of instance generation are provided first and then
the results obtained by the proposed algorithm are compared with the ones from the standard
MIP solver (CPLEX 12.10). Finally, we present an analysis of the use of flexibility in the
solutions found, and provide a number of managerial insights drawn from this analysis.

5.1 Generation of the instances

We perform our experiments on several randomly generated instances. A total of 243 instances
are created as shown in Table 2. Our planning time unit is in days and we consider 30, 60, or
90 days in each planning horizon. The location of plants, DCs, and customers are generated
using random coordinates. The coordinates of customers and DCs are randomly selected from
[300, 500], while the plants are distributed within [0, 100]. The idea is to locate plants farther
away from DCs and customers, mainly to imitate the recent initiatives to keep production
facilities far from city centers, where customers are located. In all our instances, we consider
the leasing period (active period) for DCs (g) to be one month, meaning that from the day
a DC is selected, it is available for 30 days. The delivery lead time or the maximum allowed
time between the release and due dates (r) is set to five days. This means that within five days
from the ordering day, products must be delivered to the customer. Finally, to mimic currently
specialized production systems, plants are multi-functional but not able to produce all products.
Therefore, for each product, we forbid its production in one randomly selected plant.

In the following sections, we denote an instance by I = (P, T,Nc, Nd, Np). Note that three
values are considered for each of these five parameters, and one instance per parameter setting
leads to the 35 = 243 combinations. As a benchmark for evaluating the performance of our
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Table 2: Input parameter values

Name Parameter Values Name Parameter Values
Products P {5, 10, 15} Demand dtpk [5,15]
Periods T {30, 60, 90} Plant setup cost spi [30,90]
Plants Np {3, 4, 5} Plant variable cost vpi [5,15]
Plant coordinates Xi, Yi [0,100] Customer and DC coordinates Xj, Yj [300,500]
DCs Nd {1, 2, 3} DC active period g 30 days
Customers Nc {50, 80, 100} Delivery lead time r 5
Shipping cost coefficient (plants-DC) cpid (0, 1) Shipping cost (DC-customers) c′pdk [2,10]
Inventory holding cost plant hpi [1,5] Inventory holding cost DC hpd [4, 10]
Production capacity plant Ci 0.5×Dmax Inventory capacity Qj 1.2×Dmax

Fixed DC renting cost fd [2000, 5000]

where Dmax equals to the total demand of the peak day (maxt

∑
i∈C

dtpk)

proposed approach in the following sections, we solve the full MIP presented in Section 3. In
particular, this provides a lower bound for each instance, denoted by LBI . This is used in the
subsequent sections to calculate an optimality gap, denoted by

ΓI(UB) =
UB − LBI

UB
× 100%

for a given upper bound UB for instance I. Solving the full MIP also provides a benchmark
upper bound, denoted by UBI , and a benchmark optimality gap, given by ΓI (UBI).

5.2 Parameter tuning

Two parameters are needed as input to the proposed algorithm, namely γ (representing the
percentage limit of guiding DC selections that also occur in the incumbent) and NI, the desired
number of iterations. For the parameter γ, the trade off is that a large value leads to guiding
solutions close to incumbents, while a small value leads to guiding solutions further away. This
parameter thus controls the size of the neighborhoods to be searched. Intuitively then, larger
values should be preferred, as smaller values bring one closer to simply solving the full MIP.
For the parameter NI, the trade off is that smaller values allow more time for subproblems to
explore their respective solution spaces, while larger values allow for a more diverse exploration
of the overall search space.

In order to explore the effects of these parameters, a subset of 32 of the largest instances
were chosen and the parameter values NI ∈ {5, 10} and γ ∈ {0.5, 0.75, 1.0} were tested. For
each instance I and parameter setting (NI, γ), an upper bound (best feasible solution) UBNI,γ

I
is produced, plus an optimality gap ΓI

(
UBNI,γ
I

)
. These gaps are shown in Table 3, and the

smallest gap for each instance is shown in boldface. The final row of the table shows the
number of instances for which each parameter setting produced the best feasible solution. Note
that these numbers do not necessarily add up to 32 (the number of instances used), since for
some instances the best solution was produced by more than one parameter setting.

As shown in the table, the parameter setting (5, 1.0) is dominant, especially on larger in-
stances. As the parameter NI is increased, poorer performance is observed, and also as the
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Table 3: Optimality gaps for the different parameter settings of the proposed algorithm.

Instance Parameter values (NI, γ)
(P ,T ,Nc,Nd,Np) (5,1.0) (5,0.75) (5,0.5) (10,1.0) (10,0.75) (10,0.5)

(10,60,80,2,4) 4.20 4.43 4.51 4.32 4.60 4.60
(10,60,80,2,5) 4.06 4.52 4.55 4.54 4.70 4.82
(10,60,80,3,4) 4.44 4.87 4.46 4.41 4.87 4.87
(10,60,80,3,5) 6.18 6.31 6.31 6.18 6.31 6.31
(10,60,100,2,4) 2.64 3.09 3.06 2.94 3.09 3.02
(10,60,100,2,5) 3.81 4.23 3.93 3.58 4.23 4.23
(10,60,100,3,4) 4.33 4.67 4.67 4.34 6.36 4.67
(10,60,100,3,5) 4.77 4.99 4.91 4.65 5.09 5.09
(10,90,80,2,4) 4.08 4.18 4.19 4.06 4.24 4.31
(10,90,80,2,5) 4.56 4.71 4.69 4.77 4.78 4.64
(10,90,80,3,4) 4.21 4.31 4.38 4.24 4.31 4.43
(10,90,80,3,5) 5.69 5.90 5.89 7.93 5.89 5.89
(10,90,100,2,4) 3.23 3.40 3.40 5.11 3.40 3.40
(10,90,100,2,5) 3.09 3.23 3.19 3.12 3.23 3.23
(10,90,100,3,4) 5.36 5.26 5.47 5.33 5.26 41.26
(10,90,100,3,5) 6.08 6.49 6.41 6.12 6.49 6.49
(15,60,80,2,4) 3.04 3.29 3.29 2.87 3.29 3.26
(15,60,80,2,5) 3.92 3.94 4.12 4.08 4.12 4.12
(15,60,80,3,4) 4.40 4.67 4.70 4.40 4.67 4.67
(15,60,80,3,5) 4.67 4.75 4.75 4.67 5.22 4.75
(15,60,100,2,4) 2.36 2.63 2.59 2.41 2.59 2.59
(15,60,100,2,5) 3.48 3.51 3.48 3.32 41.97 3.55
(15,60,100,3,4) 3.36 3.33 3.53 35.25 3.54 3.56
(15,60,100,3,5) 2.81 3.21 3.21 2.88 3.23 3.23
(15,90,80,2,4) 6.90 5.59 5.39 25.68 27.01 20.66
(15,90,80,2,5) 4.47 4.67 4.60 4.67 4.67 4.67
(15,90,80,3,4) 2.90 3.02 3.02 32.95 4.22 32.95
(15,90,80,3,5) 3.88 3.97 3.97 3.86 3.95 4.02
(15,90,100,2,4) 3.08 3.24 3.14 3.39 3.40 3.40
(15,90,100,2,5) 3.43 3.71 3.51 3.46 3.71 3.51
(15,90,100,3,4) 2.56 2.74 2.78 3.76 3.76 3.76
(15,90,100,3,5) 4.22 5.76 5.76 4.28 4.38 4.38

Best count 21 2 1 9 1 0

parameter γ is decreased. Since the parameter setting (5, 1.0) performs the best overall, this
setting is used in the next section to compare the proposed algorithm against solving the full
MIP using CPLEX.

5.3 The proposed algorithm vs the MIP/CPLEX benchmark

We use the following metrics to evaluate the performance of the proposed algorithm using the
parameter setting (5, 1.0), henceforth referred to as P (5, 1). First of all, recall that UBI and
LBI denote the best upper and lower bound for instance I found by CPLEX when solving the
full MIP formulation presented in Section 3. We will here further denote by UB∗I the best upper
bound found by P (5, 1). Then we define the percentage improvement with respect to CPLEX
as

improveI =
UBI − UB∗I

UBI
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and the reduction in the optimality gap with respect to CPLEX as

reduceI = ΓI (UBI)− ΓI (UB∗I) .

Tables 4 and 5 show the results of using P (5, 1) and CPLEX to solve the 243 instances, which
are grouped according to the number of DCs, plants and customers (Nd, Np, Nc, respectively),
and the numbers shown are thus all averages over the 9 instances in each class. In particular,
Table 4 shows the absolute upper and lower bounds, while Table 5 shows the optimality gaps.

Table 4: Average upper and lower bounds produced by CPLEX and average upper bounds
produced by the proposed algorithm, where the best average upper bound for each class of
instances is given in boldface.

Nd = 1 Nd = 2 Nd = 3
CPLEX P (5, 1) CPLEX P (5, 1) CPLEX P (5, 1)

Np Nc UB LB UB UB LB UB UB LB UB
50 2,996,692 2,875,647 2,981,243 3,201,730 2,837,690 2,952,498 3,329,700 2,750,181 2,883,954

3 80 4,734,640 4,454,237 4,588,245 4,919,571 4,389,591 4,519,384 5,316,741 4,413,939 4,601,962
100 5,762,877 5,582,200 5,742,055 6,440,747 5,515,500 5,680,130 7,149,562 5,880,964 6,088,986
50 2,837,807 2,703,307 2,820,168 2,987,228 2,526,305 2,654,020 3,219,412 2,604,002 2,774,303

4 80 4,414,253 4,187,685 4,335,482 5,052,711 4,118,645 4,292,452 5,180,275 4,133,123 4,309,795
100 5,160,501 4,816,083 4,944,812 5,967,239 5,113,505 5,281,916 6,484,691 5,013,242 5,227,570
50 2,625,138 2,487,907 2,603,366 2,926,164 2,443,341 2,599,180 3,036,666 2,445,753 2,623,518

5 80 4,220,030 3,948,452 4,105,180 4,497,164 3,703,494 3,875,849 5,125,534 3,836,083 4,033,236
100 5,418,343 5,019,538 5,152,513 5,997,941 4,915,772 5,100,697 6,382,540 4,713,871 4,953,109

Average 4,241,142 4,008,340 4,141,451 4,665,610 3,951,538 4,106,236 5,025,013 3,976,795 4,166,270

The results from Table 4 show that our algorithm consistently provided better average
solutions, as indicated by the boldface on all its solutions. Its solutions are then compared
to the LB from CPLEX. From Table 5 it can be seen that the proposed algorithm P (5, 1)
consistently shows gaps of around 4% (the mean is 4.05% and the standard deviation is 1.67%),
while for CPLEX the gaps increase as the instances become larger (the mean is 12.4% and the
standard deviation is 9.1%). Moreover, the proposed algorithm P (5, 1) provides better solutions
than CPLEX in 235 out of 243 (97%) instances. In the cases where the proposed algorithm
performs better, it is able to reduce the gap by 8.66% on average, the reduction being the
largest for the largest class of instances, where the gap was reduced on average by 22.96%.

CPLEX outperforms P (5, 1) in only 8 instances. However, these 8 instances are only among
the small ones, and most of them among instances with one DC only, where the instances are
perhaps not yet too difficult for CPLEX to solve. At best, CPLEX reduces the gap by only
1.93% compared to P (5, 1), and by 0.79% on average. Compared to CPLEX, the proposed
algorithm is thus competitive on smaller instances, while being capable of finding significantly
better solutions on larger instances within the same time limit.

5.4 Iteration-level analysis of the proposed algorithm

In this section, the proposed algorithm is analyzed in more detail by showing results during
the development of the iterations. First of all, Table 6 shows the amount of time spent by the
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Table 5: Comparison of the results obtained by the proposed algorithm and CPLEX

average gap % % instances better if better if worse
Nd Np Nc proposed CPLEX than CPLEX improveI reduceI −improveI −reduceI

50 3.17 3.81 100 0.65 0.63
3 80 2.76 4.42 89 1.99 1.93 0.55 0.53

100 2.66 2.99 67 1.04 1.02 1.11 1.06
50 4.00 4.72 89 0.94 0.90 0.73 0.70

1 4 80 3.05 4.43 89 1.76 1.71 1.21 1.16
100 2.64 5.08 100 2.50 2.43
50 4.27 5.42 89 1.42 1.35 0.38 0.36

5 80 3.35 4.99 89 1.97 1.90 0.43 0.40
100 2.73 5.99 100 3.37 3.27
50 4.03 10.37 100 6.59 6.34

3 80 3.06 9.17 100 6.31 6.12
100 3.09 12.25 100 9.43 9.16
50 4.74 12.93 100 8.60 8.19

2 4 80 3.93 16.07 100 12.69 12.14
100 3.39 12.71 100 9.65 9.33
50 5.87 13.29 100 7.92 7.42

5 80 4.48 14.52 100 10.54 10.05
100 3.58 14.14 100 10.94 10.55
50 4.81 14.98 100 10.75 10.17

3 80 4.17 16.69 100 13.10 12.52
100 3.74 16.83 100 13.63 13.09
50 6.09 17.73 100 12.37 11.64

3 4 80 4.44 18.25 100 14.43 13.81
100 4.54 21.76 100 18.13 17.22
50 6.69 17.53 100 11.69 10.85

5 80 4.92 25.66 100 21.87 20.75
100 5.18 28.13 100 24.30 22.96

Average 4.05 12.40 97 9.09 8.66 0.83 0.79

proposed algorithm in each of its components, namely Mw, M x̂, M̄ , and the warm-started full
MIP if either Mw or M x̂ became infeasible, denoted here by M∗.

Table 6: Time spent by the different components of the proposed algorithm.

Nd = 1 Nd = 2 Nd = 3
Np Nc Mw M x̂ M̄ M∗ Mw M x̂ M̄ M∗ Mw M x̂ M̄ M∗

50 467 1591 1072 471 1105 1422 918 154 1246 1331 418 604
3 80 700 1532 996 373 1340 1647 614 0 1490 1541 450 120

100 932 1430 712 527 1166 1347 506 582 1394 1335 300 572
50 419 1384 1509 288 1122 1435 905 138 1444 1373 502 281

4 80 811 1312 1138 339 1220 1528 823 29 1348 1441 522 289
100 900 1412 911 376 1401 1375 511 313 1219 1344 451 587
50 381 1416 1300 503 880 1284 839 597 1144 1359 879 218

5 80 802 1313 749 736 1136 1383 871 210 1241 1249 660 447
100 778 1548 657 617 1410 1500 576 115 1273 1301 584 443

Average 688 1438 1005 470 1198 1436 729 237 1311 1364 529 396

As can be seen from the table, most of the time is usually spent on M x̂, likely because
x̂tdk constitutes the largest class of binary variables (due to a large number of customers). The
division of time between Mw and M̄ depends on the number of DCs in the instance, where for
fewer DCs, M̄ uses more time, and for Mw is the other way around (i.e., more time for instances
with more DCs). This also makes sense, as the difficulty of Mw is driven by the number of wtd
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variables, which depends on the number of DCs. Finally, on average, very little time is used by
M∗. As already discussed, this component is only sometimes used by the algorithm.

Table 7 shows further results on iterations, namely the number of iterations used, the per-
centage of iterations where the incumbent solution was improved, the optimality gap of the
initial solution and the optimality of the final solution (which corresponds to the same column
in Table 5). The table shows that on average slightly more than the desired number of 5 itera-
tions were performed, indicating that cases where subproblems were solved to optimality within
the time limit of 240 seconds occurred more frequently than cases where a subproblem had
difficulties in finding a feasible solution. The table also shows that, on average, the incumbent
is improved in 89% of the iterations, indicating that the algorithm was seldomly stuck in local
optima. Finally, the table shows that the first iteration was already able to improve the gap
compared to CPLEX, but that further iterations were useful in reducing the gap even further,
especially on the largest class of instances where the gap was reduced on average from 11.38%
to 5.18% (while CPLEX showed an average gap of 28.13%).

Table 7: Detailed results on iterations performed.

Iterations % iterations Gap (%)
Nd Np Nc performed w. improvement Initial solution Final solution

50 6.44 92 4.08 3.17
3 80 6.22 93 4.06 2.76

100 5.89 95 4.22 2.66
50 5.67 98 4.89 4.00

1 4 80 5.44 81 4.22 3.05
100 5.78 92 4.09 2.64
50 5.78 91 5.68 4.27

5 80 5.33 83 4.21 3.35
100 6.33 85 3.60 2.73
50 5.78 87 4.61 4.03

3 80 6.67 92 3.74 3.06
100 5.44 81 3.81 3.09
50 5.89 93 5.52 4.74

2 4 80 6.11 90 4.43 3.93
100 5.67 92 4.77 3.39
50 5.11 81 6.64 5.87

5 80 5.44 84 5.06 4.48
100 6.00 95 4.51 3.58
50 5.44 83 5.41 4.81

3 80 6.11 98 4.78 4.17
100 5.33 86 4.14 3.74
50 5.56 84 6.62 6.09

3 4 80 5.67 87 5.36 4.44
100 5.44 90 5.05 4.54
50 5.11 93 7.42 6.69

5 80 5.11 84 5.59 4.92
100 5.33 82 11.38 5.18

Average 5.71 89 5.11 4.05

5.5 Analysis of flexibility

In this section, we analyze the extent to which flexibility is utilized in the solutions found. Recall
that there are essentially two types of flexibility in the model. Firstly, there is flexibility in the
timing of the delivery of customer orders (customer flexibility), reflected by the parameter r,
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which states that the demand of a customer for a certain product occurring in period t may
be fulfilled up to r periods later. Secondly, there is flexibility in the structure of the network
(network flexibility), since DCs need not be opened for the entire planning horizon. This is
reflected in the parameter g, which states that a DC rented in period t will remain open until
the end of period t+g, where g is typically less than the total number of periods in the planning
horizon. In our instances, we assumed that r = 5 and g = 30, while the time horizon in the
instances is either 30, 60 or 90 periods.

Table 8 shows the results on the utilization of the two types of flexibility in the solutions
found by the proposed algorithm P (5, 1), including a comparison to solutions found for the case
where r = 0, i.e., where there is no customer flexibility. For r = 0, the full MIP was solved using
CPLEX with a time limit of one hour. As we shall discuss, setting r = 0 results in a problem
that is much easier to solve, and therefore we simply solve the full MIP here in order to obtain
optimal solutions (to most instances).

Table 8: Results on the utilization of flexibility in the model solutions.

Delayed delivery (r = 5) No delay allowed
Periods of delay (%) # of % of periods in which # of % of periods in which

Nd Np Nc 0 1 2 3 4 5 DCs used a used DC is active DCs used a used DC is active
50 18 18 17 17 16 14 1.00 96 1.00 100

3 80 18 18 17 17 16 14 1.00 95 1.00 100
100 19 17 17 17 16 15 1.00 96 1.00 100
50 18 18 17 17 16 13 1.00 96 1.00 100

1 4 80 18 18 18 17 16 14 1.00 96 1.00 100
100 17 18 18 17 16 14 1.00 94 1.00 100
50 17 18 18 17 16 14 1.00 97 1.00 100

5 80 17 17 18 17 16 14 1.00 96 1.00 100
100 16 17 18 18 17 14 1.00 95 1.00 100

50 17 18 18 18 16 13 1.56 97 1.67 97
3 80 16 18 18 18 17 14 1.89 93 1.89 100

100 16 17 18 18 17 14 2.00 98 1.89 100
50 16 18 18 18 17 13 1.56 96 1.67 100

2 4 80 17 18 18 17 16 14 1.67 96 1.89 100
100 16 17 18 18 17 14 2.00 99 1.89 100
50 17 18 18 18 16 13 1.56 97 1.44 100

5 80 17 18 18 18 16 13 1.78 97 1.67 100
100 16 17 18 18 17 14 2.00 97 2.00 100

50 16 18 18 18 17 14 2.67 98 2.56 100
3 80 16 18 18 18 16 14 2.89 99 2.89 100

100 15 17 18 18 17 14 3.00 100 2.67 100
50 16 17 18 18 17 14 3.00 99 2.22 100

3 4 80 16 17 18 18 17 14 2.89 98 2.56 100
100 15 17 18 18 17 14 3.00 99 2.78 100
50 17 18 18 18 16 14 2.22 96 2.89 99

5 80 16 18 18 18 16 14 2.67 96 2.78 100
100 16 18 18 18 17 14 2.78 95 2.67 98

Average 17 18 18 18 16 14 1.86 97 1.81 99.8

Firstly, the table shows for each feasible amount of delay in {0, . . . , r = 5} the average
percentage of demand delayed by this number of periods. From this, we can see that customer
flexibility is used to a large extent, in that each possible number of periods of delay is used
roughly the same fraction of time. Secondly, the table shows the average number of DCs rented,
and the average percentage of time the DCs are rented for. From this, we can see that network
flexibility is used to a far lesser extent than customer flexibility, since any rented DC is usually
used most of the time. This raises the question of how removing the possibility of customer
flexibility will affect the usage of network flexibility. For this reason, the last two columns of
the table show the same results where no delay is allowed (i.e., r = 0). Interestingly, when no
customer flexibility is allowed, network flexibility is almost never used — in almost all instances
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when a DC is rented, it is rented for the entire planning horizon if no customer flexibility is
allowed. What this shows is that network flexibility is exploited only if customer flexibility
is also allowed. A more diverse demand pattern would likely lead to different DC usage and
increased exploitation of its flexibility.

Further comparison with the case of r = 0 is also shown in Table 9. Here, we compare the
total network design cost between the cases of r = 0 and r = 5, together with the utilization of
the DC capacities.

Table 9: Comparison of the cases r = 0 (no delay allowed) and r = 5 (delay allowed).

Cost (millions) % cost DC utilization No delay allowed
Nd Np Nc No delay allowed Delay allowed reduction No delay allowed Delay allowed Time (s) Gap (%)

50 3.50 2.98 17 58 65 0.44 0
3 80 5.35 4.59 16 61 68 0.67 0

100 6.59 5.74 15 61 68 0.56 0
50 3.28 2.82 16 64 71 0.56 0

1 4 80 5.15 4.34 19 58 63 2.33 0
100 5.88 4.94 18 55 61 1.11 0
50 3.20 2.60 21 54 63 1.11 0

5 80 4.86 4.11 18 56 62 1.22 0
100 6.15 5.15 19 51 55 1.22 0

50 3.32 2.95 13 41 49 139.00 0
3 80 5.14 4.52 14 32 36 140.78 0

100 6.47 5.68 14 32 32 33.22 0
50 3.08 2.65 16 36 49 130.56 0

2 4 80 4.91 4.29 14 34 46 264.78 0
100 6.02 5.28 14 32 32 183.33 0
50 2.98 2.60 15 47 49 361.56 0

5 80 4.48 3.88 15 37 38 140.67 0
100 5.88 5.10 15 27 33 224.44 0

50 3.20 2.88 11 26 29 1905.33 0.25
3 80 5.10 4.60 11 22 25 1969.78 0.45

100 6.68 6.09 10 22 21 1860.44 0.23
50 3.12 2.77 13 30 27 2594.22 0.51

3 4 80 4.82 4.31 12 23 22 3259.78 0.37
100 5.83 5.23 12 21 21 2831.89 0.48
50 2.94 2.62 13 22 42 3029.33 1.17

5 80 4.57 4.03 14 20 26 2924.44 0.75
100 5.61 4.95 13 23 29 3533.11 0.54

Average 4.74 4.14 15 39 44 945.77 0.18

Note that increasing r relaxes the problem, so the solutions found obviously have lower costs.
However, it is interesting to see the amount of savings possible by allowing customer flexibility.
A cost-savings of around 15% on average can be seen, which can be significant if costs are high.
Note that this cost savings is obtained even though for r = 5 the proposed algorithm does not
solve the problem to optimality, and not all demands are delayed by five periods. The table
also shows that the runtime needed to solve the problem to optimality for r = 0 is very often
below one hour, and it can thus be concluded that the cost savings obtained through including
customer flexibility comes at the cost of a problem that is much harder to solve. In addition to
cost savings, the table also shows that utilization of the DC capacities goes up with an increase
in customer flexibility. The benefits of customer flexibility therefore do not only lie in cost
savings, but also in increased capacity utilization, which is often a key performance indicator
used to evaluate the supply chain performance.

Finally, we analyze the extent to which economies of scale in transportation affect the uti-
lization of flexibility. For this reason we consider an adapted version of the full MIP presented
in Section 3, where the last two terms of the objective function are removed and replaced by∑

p∈P

∑
i∈Np

∑
d∈Nd

∑
t∈T

cidq
t
pid +

∑
p∈P

∑
d∈Nd

∑
k∈Nc

∑
t∈T

∑
t′∈R−t

c′dkq̂
t′t
pdk,
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and where constraints (16)–(17) are removed. The binary variables xtid and x̂tdk are thus com-
pletely removed from the model, and transportation costs are no longer incurred for each ship-
ment independent of quantity, but it is incurred per unit shipped. This version of the full
problem formulation is then solved using CPLEX with one hour time limit. Table 10 shows the
extent to which customer flexibility is utilized (as in Table 8), together with the computation
times and the fraction of instances for which optimal solutions where obtained within the time
limit.

Table 10: Results for the case where there are no fixed transportation costs.

Periods of delay (%)
Nd Np Nc 0 1 2 3 4 5 Time (s) Gap (%)

50 33 20 15 12 11 10 1152 0
3 80 46 16 12 10 9 8 892 0

100 61 13 8 6 5 6 1271 0
50 39 18 13 11 10 9 878 0

1 4 80 43 17 12 10 9 8 776 0
100 42 17 13 10 9 9 1485 0
50 47 16 11 9 9 8 934 0

5 80 45 17 12 10 8 7 947 0
100 46 17 11 9 8 8 782 0
50 43 18 12 10 9 8 2300 0.03

3 80 55 14 9 7 7 7 2295 11.05
100 54 15 10 8 7 6 2359 0.01
50 42 18 13 11 9 8 2408 0.02

2 4 80 53 16 10 8 7 6 2301 0.01
100 55 17 10 7 6 5 2118 11.05
50 49 19 11 8 7 6 1975 0.03

5 80 56 16 9 7 6 6 2193 11.05
100 54 16 10 8 7 6 2518 11.05
50 55 16 10 8 6 5 2694 0.04

3 80 62 13 8 6 6 5 2600 11.13
100 50 16 12 8 7 7 2831 22.24
50 61 15 7 6 5 5 2670 0.04

3 4 80 53 14 10 9 8 7 2839 11.14
100 58 15 9 7 6 5 2760 22.24
50 43 19 12 10 9 7 2755 0.05

5 80 59 14 9 7 6 5 2558 11.13
100 62 13 8 6 5 5 2711 22.24

Average: 51 16 11 8 7 7 2000 5.35

As can be observed from Table 10, the extent to which customer flexibility was utilized in
this case is considerably less than the case with fixed transportation costs (as shown in Table
8). Whereas in the latter case the number of periods of delay is almost equally spread between
0 and r = 5, in this case around half (51%) of the demand is delivered in the period it arises,
as no economies of scale are present to justify delayed deliveries. This means that, when there
are fixed transportation costs, customer flexibility is to a large extent used in order to exploit
economies of scale in transportation. The table also shows that fixed transportation costs is
another aspect of the model that contributes to its difficulty, since in many cases the optimal
solution was found within one hour. However, the reduction in computation time is not as
large as in the case where customer flexibility is removed (i.e., r = 0), indicating that customer
flexibility contributes more to the difficulty of the problem.
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5.6 Managerial insights

The results from the previous section show that customer flexibility is essential for exploiting
both network flexibility and economies of scale in transportation. This makes also intuitive
sense, since customer flexibility can be used to lump demand together in specific periods, leaving
other periods free of demand. This, first of all, means that in certain periods DCs might not
be needed, and costs savings and increased capacity utilization are possible through network
flexibility where DCs are only rented when needed. Secondly, lumping together demand in the
same periods allows for shipping larger quantities in the same period, leading to cost savings
coming from economies of scale.

Network flexibility was exploited to a lesser extent compared to customer flexibility. This is
likely due to the fact that demands can only be shifted in time by 5 periods, while DCs have to
be rented for at least 30 periods. Thus it is not possible to “clear” an entire 30 period window
of all demands so that no DC would be needed then. One could therefore expect that increasing
the amount by which demands can be delayed while decreasing the lease period will lead to
network flexibility being utilized to a larger extent.

The most important conclusion to take away from the above discussions is therefore that the
two types of flexibility both depend on and reinforce each other. It is then important for flexible
network design to work towards exploiting both simultaneously, and ensure that the windows
of flexibility, which in this case was r = 5 and g = 30, to match more closely.

Finally, we have shown that customer flexibility in our model comes at the cost of an increase
in the difficulty of solving the problem. With no customer flexibility, most of the instances we
consider can be solved to optimality using an off-the-shelf solver in under an hour. On the
other hand, including customer flexibility leads to the solver showing large gaps even after an
hour. As we have shown, using off-the-shelf solvers in a more smart way by iterating through
carefully constructed subproblems can lead to relatively low optimality gaps within the same
time limit. This therefore allows to overcome the computational drawback that comes with
customer flexibility in order to fully exploit its ability to create more efficient supply chain
networks, both in terms of cost and capacity utilization.

6 Conclusions

In this paper, we have introduced a variant of two echelon production-distribution problems, in
which the location of intermediate facilities can change during the planning horizon. The two
features of this problem are flexibility with respect to delivery dates and regarding the location
of intermediate facilities. Although these features make the problem more difficult to solve,
they better portray the reality of the business environment. Furthermore, we have provided
a formal mathematical formulation for this problem. Generally, the integrated optimization
problems are very difficult to be solved, specially when real-world features are incorporated. In
this paper, we have proposed a decomposition approach capable of solving large size instances
of the problem. The results obtained by this method are compared with the ones from a general
purpose MIP solver. We observe that for majority of the instances, specially the very large
ones, our approach outperforms the MIP solver. Important insights with respect to the building
blocks of our algorithms are derived, and managerial insights are presented on the interaction
between the two types of flexibility, namely customer flexibility and network flexibility, and the
economies of scale they allow.
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