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1 Introduction

Distribution of goods and services is vital to the prosperity of urban areas but

it also requires efficient planning and management of all activities. Among these

activities, scheduling and routing of vehicles to satisfy the demand of customers still

remains a challenge [37]. The literature has proposed several models and solution al-

gorithms to design minimum-cost vehicle routes [35]. However, many of the problems

studied hold oversimplifying assumptions. For example, the classic Vehicle Routing

Problem (VRP) does not include traffic information, assuming that travel time is

constant throughout the day. Peak-hour congestion or unforeseeable events, such as

accidents, increase the travel time in urban areas.

Different travel speeds on road segments due to congestion result in varying travel

time. By analyzing historical traffic data on a road network, one can estimate the

patterns of traffic flow, congestion timing, and location. However, integrating this

information into the VRP framework to solve VRPs with varying travel times re-

quires very sophisticated solution algorithms. Moreover, not all intricate algorithms

developed for the classic VRP have proved promising solutions for its time-dependent

counterpart, i.e., the time-dependent VRP (TDVRP) [25].

The goal of this paper is to propose an exact solution algorithm for the TDVRP.

We apply our proposed solution algorithm to solve real-world delivery problems from

the literature, based on the road network in Quebec city, Canada. Our instances

are created using the historical traffic data on road networks that consider speed

and travel time on each road segment. The main contribution of this paper is to

provide an exact method to solve large size instances of the TDVRP. To this end,

we first present two formulations for the problem and evaluate their performances.

We then propose a logic-based Benders decomposition algorithm. Our proposed

solution algorithm relies on a branch-and-cut procedure, largely based on Benders

decomposition [3]. While in traditional Benders decomposition, the subproblems

take the form of simple linear programming (LP) problems, in logic-based Benders

decomposition (LBBD) [16, 15], the subproblems can take any general form. The cuts
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implied from them are not automatically given by the solution of the subproblems,

and must rather be developed for the problem at hand.

The paper is organized as follows. In Section 2, we present a review of the

literature. A formal problem description and two mathematical models are presented

in Section 3. Section 4 describes our solution method, based on a logic-based branch

and Benders cut algorithm. Section 5 presents the results of our computational

experiments. Finally, conclusions are drawn in Section 6.

2 Literature review

The TDVRP has become a popular research topic in recent years and has gained

increasing attention. In this section, first we provide a brief overview of the TDVRP

literature (Section 2.1) and then we describe some successful applications of the

LBBD method (Section 2.2).

2.1 Vehicle routing problem with time-dependent travel time

A comprehensive review of the TDVRP can be found in [12]. Ahn and Shin [1]

considered the arrival time to each node to be a monotonic function of the arrival

time, thus respecting the First In, First Out (FIFO) property. They proposed several

feasibility checks for the TDVRP with time windows (TDVRPTW) and present three

heuristics based on modifying the already existing ones, insertion, savings and arc

exchange heuristic. Malandraki and Daskin [23] proposed the first mixed integer

formulation for the TDVRP. They introduced a step-function distribution of the

travel time. However, the authors do not consider the nonpassing or the FIFO

principle.

Ichoua et al. [18] solved the TDVRP with soft time windows by a tabu search

heuristic. To respect the FIFO principle, the step function was used to define the

speed distribution rather than the travel time distribution. Fleischmann et al. [11]

presented a framework to obtain the time-varying traffic information from the city of
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Berlin. This was the first research paper which used real traffic data for the TDVRP.

They also optimized the start time of each tour after solving the TDVRP. Later,

Donati et al. [8] applied the Multi Ants Colony System (MACS) and a local search

method to solve the TDVRP with hard time windows. They tested the heuristic on

generated instances and also on a real road network from Padua, Italy. Van Woensel

et al. [36] determined the travel speed and, consequently, the traffic congestion based

on queuing theory. They also optimized the departure time of the vehicles from the

depot. They showed that ignoring the time dependency of the travel time leads

to unrealistic solutions. This study is similar to that of Ichoua et al. [18], as both

considered multiple road types. Soler et al. [32] transformed the TDVRPTW into an

asymmetric capacitated VRP and then solved small size instances of the problem to

optimality using already existing solution algorithms. Kok et al. [19] investigated the

impact of several congestion avoidance strategies on the performance of vehicle route

plans. These strategies included selecting alternative routes, changing the customer

visit sequences, and changing the vehicle-customer assignments. They developed

a modified Dijkstra algorithm and a restricted dynamic programming heuristic to

solve the problem. Figliozzi [10] proposed an algorithm to solve the TDVRP. The

paper also proposed new test instances based on those of Solomon [33]. In most of

the TDVRP papers, a heuristic approach is developed to solve the problem. The

branch-and-price method proposed by Dabia et al. [5] for the TDVRP with time

windows is the only paper, to the best of our knowledge, that uses an exact method.

Their decomposition method considered a set partitioning problem as the master

problem, solved by a column generation method, and a time-dependent shortest

path with resource constraints as the pricing problem solved by a tailored labeling

algorithm. The objective of the paper was to minimize the duration of all routes

where different departure times from the depot were allowed. The authors modified

the VRPTW instances of Solomon [33] and could solve 63% of the instances with 25

customers, 38% of the instances with 50 customers, and 15% of the instances with

100 customers.
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Mancini [24] challenged several assumptions in previous TDVRP studies, such

as the use of simplified step functions, discretizing the time horizon in small time

intervals, and considering Euclidean distances. The author studied the main road

network of Torino with time varying travel time. Huang et al. [17] investigated the

integration of precomputed path selection, stochastic traffic conditions, and flexible

departure time from the depot. They addressed path flexibility in the TDVRP,

using instances generated from the road network of Beijing. They use a Route-Path

approximation method to generate near-optimal solutions under stochastic traffic

conditions.

2.2 Logic-based Benders decomposition

Benders decomposition [3] is one of the most widely applied and successful de-

composition approaches. Its main idea relies on decomposing and solving smaller

continuous linear problems. However, when linear programming (LP) subproblems

cannot be obtained, then standard linear duality cannot be applied to develop Ben-

ders cuts either [28]. Therefore, to deal with such cases, other types of cuts such as

those derived from the LBBD [16, 15] are required to be used [29].

The LBBD and its variants are successfully applied to a wide range of problems.

Only in the context of distribution optimization, several recent studies have demon-

strated its efficiency, e.g., heterogeneous VRP with time windows [9], heterogeneous

fixed fleet VRP based on fuel and carbon emissions [21], selective dial-a-ride problem

[30], home healthcare delivery [14], the inventory routing problem with perishable

products and environmental costs [2], and distribution network design [27].

3 Problem description and mathematical model

In this section, we provide both the two- and three-index-based formulations of

the TDVRP. Our two-index formulation extends that of Laporte and Nobert [20] for

the VRP, and is slightly different from the one proposed in Malandraki and Daskin
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[23], as they consider time windows and forbid subtours with the Miller-Tucker-

Zemlin (MTZ)-like constraints [26]. Our three-index formulation extends that of

Golden et al. [13]. The TDVRP is defined on a graph G = {V ,A} where V is the set

of all nodes and A = V ×V is the set of arcs. Let 0 be the node of the depot and V ′

be the set of n customer nodes.

Each customer i ∈ V ′ has a service time si and a demand di to be satisfied by K

vehicles of capacity Q from the set K. The usage of a vehicle incurs a fixed cost f per

vehicle, and a variable cost w per unit of time. Routes take place during a day which

is divided into several intervals with a duration of t time units. At each interval

m ∈ M, a known and constant travel time (cost) along arc (i, j) is considered cmij .

The planning horizon is of length T , which indicates the latest time by which all

vehicles must be back to the depot. Moreover, as auxiliary parameters, we define

cmin
ij = minm∈M cmij as the minimum travel time along arc (i, j).

To model the return of each vehicle k to the depot, we add, to set V , dummy

nodes {n + 1, . . . , n + K}, representing the arrival nodes of K vehicles back to the

depot.

The objective of the problem is to minimize the total fixed and variable costs,

while meeting all customer demands and respecting several problem specific con-

straints.

We first model the problem using two sets of variables. Continuous variables zi,

i ∈ V , represent the departure time of a vehicle from node i ∈ V ′ ∪ {0} or its arrival

time at any node i ∈ {n + 1, . . . , n + K}. Routing variables xmij are equal to one if

a vehicle leaves node i at interval m towards node j, and zero otherwise. Table 1

presents the notation used.

3.1 Two-index-based formulation

The problem can be formulated as the following mixed-integer linear program,

which extends the well-known two-index vehicle routing problem model of Laporte

and Nobert [20].

A Benders Decomposition Algorithm for the Time-Dependent Vehicle Routing Problem

CIRRELT-2021-16 5



Table 1: Sets, parameters and variables.

V set of nodes

V ′ set of customers

A set of arcs

M set of intervals

K set of vehicles

K number of vehicles

Q vehicle capacity

di demand of customer i

si service time at customer i

cmij travel time between nodes i and j in interval m

t duration of each interval

f fixed cost associated to vehicles

w variable cost for using a vehicle per unit of time

T length of the planning horizon

zi
departure time of any vehicle from node i ∈ V ′ ∪ {0}
and arrival time of any vehicle to node i ∈ {n+ 1, . . . , n+K}

xmij equal to 1 if a vehicle leaves node i toward node j in time interval m
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minimize
∑
j∈V ′

∑
m∈M

fxm0j +
∑
k∈K

wzn+k (1)

subject to:

∑
m∈M

∑
i∈V ′∪{0}

xmij = 1 j ∈ V ′ (2)

∑
m∈M

∑
j∈V\{0}

xmij = 1 i ∈ V ′ (3)

∑
m∈M

∑
j∈V ′

xm0j ≤ K (4)

∑
(i,j)∈S×S

∑
m∈M

xmij ≤ |S| −
∑
i∈S

di
Q
S ⊆ V (5)

∑
i∈V ′

∑
m∈M

xmij ≤ 1 j ∈ {n+ 1, . . . , n+K} (6)

xm0j = 0 m ∈M, j ∈ V\{V ′} (7)

z0 = 0 (8)

zj ≥ zi + cmij + sj − (1− xmij )(T + cmij + sj) i ∈ V ′ ∪ {0}, j ∈ V\{0},m ∈M (9)

zi − t(m− 1)xmij ≥ 0 i ∈ V ′ ∪ {0}, j ∈ V\{0},m ∈M (10)

zi ≤ t ·m+ (1− xmij )(T − t ·m) i ∈ V ′ ∪ {0}, j ∈ V ,m ∈M (11)

si + min
j∈V,j 6=i

cmin
ij ≤ zi ≤ T − cmin

i0 i ∈ V ′ (12)

xmij ∈ {0, 1} (i, j) ∈ A. (13)

The objective function (1) minimizes the fixed cost of using the available vehicles

and their per time unit usage costs. Constraints (2) and (3) are degree and flow

balance constraints. The number of vehicles is limited by constraint (4). Constraints

(5) ensure the capacity of the vehicles is respected and eliminates subtours. Any

dummy node representing the arrival depot for each vehicle can be visited at most

once, as imposed by constraints (6). Constraints (7) and (8) indicate that the used
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vehicles must leave the depot toward customers at the beginning of the planning

horizon. Departure time consistency at nodes visited successively is guaranteed by

constraints (9). Lower and upper bounds on departure times, linking the actual

departure time with its corresponding interval m in routing variables are defined

in constraints (10) and (11). Constraints (12) and (13) define the domain of the

variables.

This model is sufficient to correctly formulate the problem at hand. It can be

strengthened by the use of the following valid inequalities that reinforce some of its

constraints and impose lower bounds on the use of some of the variables.

We prevent subtours of two and three customers to make the formulation tighter,

using constraints (14) and (15).

∑
m∈M

xmij + xmji ≤ 1 i ∈ V ′, j ∈ V ′ (14)∑
m∈M

xmij + xmji + xmjp + xmpj + xmpi + xmip ≤ 2 i ∈ V ′, j ∈ V ′, p ∈ V ′. (15)

As shown in [31], the minimum number of vehicles used can be computed by

solving a bin packing problem as follows. Let BP (d,Q) be an optimal solution of a

bin packing problem with items of size d = d0, d1, . . . , dn and bins with capacity Q.

Then, we can add constraints (16) to the model. This helps increase the first term

of the objective function (1).

∑
m∈M

∑
j∈V ′

xm0j ≥ BP (d,Q). (16)

Also from [31], one can eliminate some variables, given that the minimum time

to reach a particular node i plus the service time si is incompatible with using arc

(i, j) in time period m ∈M. This translates to constraints (17) and (18).

xmij = 0 i ∈ V ′ : si + min
a∈V ′∪{0},a6=i

cmai > m · t, j ∈ V ′,m ∈M (17)
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xmij = 0 i ∈ V ′ : si + min
a∈V ′

cm0a > m · t, j ∈ V ′,m ∈M. (18)

A minimum spanning tree (MST) considering the set of customers (V ′) may be

used to provide a lower bound on the hourly cost of using vehicles (second term of

the objective function (1)). Let MST (V ′) be the cost of a minimum spanning tree

of nodes V ′, defined over a support graph where all arc traversal costs are set to

the minimum observed in any time interval m, cmin
ij . This constitutes a lower bound

on the cost of visiting all customers. Moreover, we can add the BP (d,Q) arcs for

the cheapest connections between the depot and any customer, for up to the lower

bound obtained by solving the bin packing as described before:
BP (d,Q)

min
j∈V ′

cmin
0j . Thus,

we can use inequality (19) as a lower bound on the time use of the vehicles.

∑
m∈M

∑
i∈V

∑
j∈V

(cmij + si)x
m
ij ≥

BP (d,Q)

min
j∈V ′

cmin
0j +

BP (d,Q)

min
i∈V ′

cmin
i0 +MST (V ′) +

∑
i∈V

si. (19)

Finally, the present model is oblivious to the fact that all vehicles are homoge-

neous and that the subset of customers visited by each vehicle can be interchanged,

creating symmetrical solutions that hinder branch-and-bound-based algorithms. To

this end, we can add symmetry breaking constraints (20) that impose an order on

the vehicles.

zn+1 ≥ zn+2 ≥ . . . ≥ zn+K . (20)

3.2 Three-index-based formulation

An alternative model to the previous TDVRP is based on the three-index of

Golden et al. [13], here presented with the stronger Dantzig-Fulkerson-Johnson sub-

tour elimination constraints [6]. To this end, and with a little abuse of notation,

we define variables xkmij equal to one if and only if arc (i, j) is traversed by vehicle

k in period m. This model decomposes the solution graph per vehicles, unlike the

aggregated graph of the previous model.
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minimize
∑
j∈V ′

∑
k∈K

∑
m∈M

fxkm0j +
∑
k∈K

wzn+k (21)

subject to:

∑
m∈M

∑
k∈K

∑
i∈V ′∪{0}

xkmij = 1 j ∈ V ′ (22)

∑
m∈M

∑
k∈K

∑
j∈V\{0}

xkmij = 1 i ∈ V ′ (23)

∑
m∈M

∑
i∈V ′∪{0}

xkmij =
∑
m∈M

∑
i∈V\{0}

xkmji j ∈ V ′, k ∈ K (24)

∑
(i,j)∈S×S

∑
m∈M

xkmij ≤ |S| −
∑
i∈S

di
Q
S ⊆ V , k ∈ K (25)

xkm0j = 0 m ∈M, j ∈ V\{V ′}
(26)

z0 = 0 (27)∑
j∈V ′

∑
m∈M

xkm0j ≤ 1 k ∈ K (28)

zj ≥ zi + cmij + sj − (1− xkmij )(T + cmij + sj) i ∈ V ′ ∪ {0},j ∈ V\{0}, k ∈ K,m ∈M
(29)

zi − t(m− 1)xkmij ≥ 0 i ∈ V ′ ∪ {0},j ∈ V\{0}, k ∈ K,m ∈M
(30)

zi ≤ t ·m+ (1− xkmij )(T − t ·m) i ∈ V ′ ∪ {0}, j ∈ V ,k ∈ K,m ∈M (31)

si + min
j∈V,j 6=i

cmin
ij ≤ zi ≤ T − cmin

i0 i ∈ V ′ (32)

xmij ∈ {0, 1} (i, j) ∈ A. (33)

For conciseness, we do not describe this model at length as it is very similar to

the previous one. For the same reason, we do not reproduce here the extended forms

of inequalities (14)–(20) that can also be applied to this model. The following valid
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inequalities are also added to this model.

Constraints (34) associate each vehicle with a particular dummy node. Con-

straints (35) define lower bounds for travel costs using the fact that a vehicle must,

at least, visit a customer and return to the depot. Inequalities (36) forbid routes

that exceed the length of the planning horizon.

∑
j∈V ′

∑
m∈M

xkm0j =
∑
i∈V ′

∑
m∈M

xkmi,n+k k ∈ K (34)

∑
i∈V ′∪{0}

∑
j∈V\{0}

∑
m∈M

cmin
ij xkmij ≥ min

j∈V ′:j>k
cmin
0j + min

j∈V ′:i>k
cmin
i,n+k k ∈ {1, . . . , BP (d,Q)}

(35)∑
i∈V ′∪{0}

∑
j∈V\{0}

∑
m∈M

(cmij + si)x
km
ij ≤ T k ∈ K. (36)

Moreover, some symmetry breaking constraints can be added to this formulation,

inspired from Darvish et al. [7]. Considering the set K of vehicles, there is an optimal

solution that uses the first vehicle for the first route, the second vehicle for the second

one, and so on. That is, vehicles have a priority to be used. This yields constraints

(37).

∑
j∈V ′

xk00j ≤
∑
j∈V ′

xk−1,00j k ∈ K\{1}. (37)

Also, if a customer j is visited by vehicle k > 1, then, we can impose that at least

one customer p < j is visited by vehicle k − 1. This translates to constraints (38).

∑
m∈M

∑
i∈V ′∪{0}

xkmij ≤
∑
m∈M

∑
i∈V ′∪{0}

∑
p∈V ′:p<j

xk−1,mip j ∈ V ′, k ∈ K\{1}. (38)

Finally, if vehicle k > 1 visits customer j, then, at least k − 1 vehicles are used

to visit customers 1, 2, . . . , j − 1, which can be expressed by constraints (39).

∑
m∈M

∑
i∈V ′∪{0}

kxkmij ≤
∑
m∈M

∑
i∈V ′∪{0}

∑
q∈V ′:q<j

∑
k∈K:k<k

xkmiq j ∈ V ′, k ∈ K\{0}. (39)
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Note that constraints (39) imply that xkmij = 0, i ∈ V ′∪{0}, j ∈ V ′, k ∈ K, k > j.

4 Solution methods

Both formulations presented in Section 3 can be solved by a branch-and-cut

algorithm when constraints (5) and (25) are added dynamically. In order to apply

the LBBD algorithm, the problem must be decomposed into a master problem and

the subproblem(s). In our case, our master problem determines routes by selecting

which arcs to travel, but ignores the information regarding traffic, i.e., the master

problem is a relaxation of the TDVRP in which arc traversal costs are constant

throughout the day. Our subproblems, one per vehicle, compute the actual arrival

and departure times at each node considering the time-dependent cost matrix.

Specifically, whenever the master problem obtains an integer feasible solution,

i.e., a solution without subtours, subproblems are invoked to compute the actual

timing variables. For each subproblem, two situations may arise: (i) the subproblem

is feasible and optimality cuts are generated to indicate to the master problem the

optimal cost of that sequence of customers, or (ii) the subproblem is infeasible due

to time horizon violation, in this case a feasibility cut is generated to indicate to the

master problem that the subset of customers of that route cannot be visited following

that particular sequence.

Moreover, unlike traditional Benders decomposition in which the master problem

has to be solved from scratch at each iteration, here optimality and feasibility cuts

are added in a branch-and-cut fashion, which is known as branch-and-check or branch

and Benders cut [15, 4, 34]. To this end, the master problem is solved only once,

and during its resolution, Benders cuts are added to the nodes of its branching tree,

similar to a traditional branch-and-cut algorithm.

More formally, we first reformulate our model to make it amendable to this pro-

cedure. To this end, in Section 4.1 we present the master problem obtained for each

formulation, and in Section 4.2 we define the subproblems of our algorithm.
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4.1 Benders master problem

The problem can be reformulated by enumerating all possible routes Rk for ve-

hicle k. A route r is defined as a sequence of nodes < 0, i1, i2, . . . , 0
′ > departing

from the depot node 0, visiting some customer nodes, and ending at the depot, here

indicated as 0′; this node is in fact one of the n+ 1, . . . , n+K nodes associated with

a vehicle, and the route (and its cost) remains the same regardless of which vehicle

performs it. For any route r ∈ R, let zrn+k be the additional time-dependent travel

time of vehicle k performing this route. Let Ar be the set of arcs used in route r ∈ R.

Initially, set R is empty. Moreover, let Rinf be the set of routes that are infeasible

due to time limit constraints, also initially empty. We define variables xij ∈ {0, 1}
to indicate whether arc (i, j) ∈ A is traversed and ηk ≥ 0 as the total cost of using

vehicle k ∈ K. The master problem reformulation (40)–(46) based on the two-index

VRP model is given by:

minimize

∑
j∈V ′

fx0j +
∑

i∈V ′∪{0}

∑
j∈V\{0}

wcmin
ij xij +

∑
k∈K

ηk

 (40)

subject to:

∑
i∈V ′∪{0}

xij = 1 j ∈ V ′ (41)

∑
j∈V\{0}

xij = 1 i ∈ V ′ (42)

∑
j∈V ′

x0j ≤ K (43)

∑
(i,j)∈S×S

xij ≤ |S| −
∑
i∈S

di
Q
S ⊆ V (44)

x0j = 0 j ∈ V\{V ′} (45)

xij ∈ {0, 1} (i, j) ∈ A (46)

ηk ≥ 0 k ∈ K. (47)
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The objective function (40) and constraints (41)–(44) are equivalent to (1)–(5).

Constraints (45) forbid a vehicle to leave the depot directly back to the depot, and

constraints (46) and (47) define the nature of the decision variables. We also reinforce

this model with constraints (14)–(19).

Model (40)–(47) is essentially a model for the VRP defined with arc costs cmin
ij .

To properly account for the additional (time-dependent) cost of traversing each arc,

for each feasible solution of (40)–(47), we generate optimality cuts (48).

ηk ≥ zrn+k − zrn+k

∑
(i,j)∈Ar

(1− xij) k ∈ K, r ∈ R (48)

Also, a feasible solution for (40)–(47), might be infeasible due to time limitation

constraints. In this case, we generate feasibility cuts (49) or (50).

∑
i∈V ′∪{0}

∑
j∈V\{0}

(cmin
ij + si)xij ≤ T (i, j) ∈ Ar, r ∈ R, (49)

∑
(i,j)∈Ar

xij ≤ |Ar| − 1 (i, j) ∈ Ar, r ∈ Rinf . (50)

Note that constraints (49) only has the information regarding minimum travel

time, whilst (48) and (50) require time-dependent information. The construction of

these cuts is explained in Section 4.2.

Model (40)–(47) has an exponential number of constraints due to (44) and (48)–

(50). To handle capacity and subtour elimination constraints, (44) we can use a

branch-and-cut algorithm where these constraints are dynamically generated when-

ever they are found to be violated. This can be done by using well-known methods

such as those described in Lysgaard et al. [22].

A master problem derived from the three-index model is also possible, as pre-

sented next.

minimize
∑
k∈K

∑
j∈V ′

fxk0j +
∑

i∈V ′∪{0}

∑
j∈V ′∪{0}

wcmin
ij xkij + ηk

 (51)

A Benders Decomposition Algorithm for the Time-Dependent Vehicle Routing Problem
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subject to:

∑
k∈K

∑
i∈V ′∪{0}

xkij = 1 j ∈ V ′ (52)

∑
k∈K

∑
j∈V ∪{0}

xkij = 1 i ∈ V ′ (53)

∑
i∈V

xkij =
∑
i∈V

xkji j ∈ V ′ ∪ {0}, k ∈ K (54)∑
j∈V ′

xk0j ≤ 1 k ∈ K (55)

∑
(i,j)∈S×S

xkij ≤ |S| −
∑
i∈S

di
Q
S ⊆ V , k ∈ K (56)

xkij ∈ {0, 1} (i, j) ∈ A, k ∈ K, (57)

ηk ≥ 0 k ∈ K. (58)

The objective function (51) minimizes the number of vehicles used and the hourly

cost of each vehicle. The hourly cost is separated into minimum cost (cmin
ij ) and

additional cost (ηk). The constraints for this model are not described at length for

conciseness. The valid inequalities presented in Section 3 remain valid. Besides, to

make the formulation tighter we included a priori constraints (59) and (60) which

account for subtours of two and three nodes.

xkij + xkji ≤ 1 i ∈ V ′, j ∈ V ′, k ∈ K (59)

xkij + xkji + xkjp + xkpj + xkpi + xkip ≤ 2 i ∈ V ′, j ∈ V ′, p ∈ V ′, k ∈ K. (60)

The number of vehicles used can be computed using a bin packing problem,

similarly to what was done before. Then, we can add constraints (61) to the model.

∑
i∈V ′

x0jk ≥ BP (d,Q). (61)
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We can also add lower bounds for the hourly cost of using a vehicle. In the best

case, each vehicle k goes to an unvisited consumer that is the closest to the depot

with distance min
j∈V ′:j>k

{cmin
0j } plus the trip back mini∈V ′:i>k{cmin

i0 }. Thereby, we have

constraints (62).

∑
i∈V ′

∑
j∈V ′

cmin
ij xkij ≥ min

j∈V ′:j>k
{cmin

0j }+ min
i∈V ′:i>k

{cmin
i0 } k ∈ {1, . . . , BP (d,Q)}. (62)

Finally, a minimum spanning tree considering the set of customers (V ′) may be

used to obtain a lower bound on the hourly cost of using the vehicles. Let MST (V ′)
be the cost of a minimum spanning tree of nodes V ′ and min

BP (d,Q)
j∈V ′ cmin

0j the BP (d,Q)

smallest distances connecting the depot and one customer per vehicle. Then, we have

constraint (63).

∑
k∈K

∑
i∈V

∑
j∈V

(cmin
ij + si)x

k
ij ≥

BP (d,Q)

min
j∈V ′

{cmin
0j }+

BP (d,Q)

min
i∈V ′

{cmin
iK }+MST (V ′) +

∑
i∈V ′

si. (63)

Similar to the two-index master problem, model (51)–(58) is essentially a VRP

defined with arc costs cmin
ij . To properly, account for time-dependent travel time,

for each feasible solution of (51)–(58), we generate either optimality cuts (64) or

feasibility cuts (65).

ηk ≥ zrk − zrk
∑

(i,j)∈Ar

(1− xkij) k ∈ K, r ∈ Rk (64)

∑
(i,j)∈Ar

xkij ≤ |Ar| − 1 (i, j) ∈ Ar, k ∈ K, r ∈ Rinf . (65)

Note that for this model, we can add cuts (36) a priori to the master problem.

4.2 Benders subproblems

For each feasible solution of the master problem, we have a set of used routes Rk,

one route for vehicle k. For each route r ∈ Rk, let Vk
r be the set of nodes it visits.

A Benders Decomposition Algorithm for the Time-Dependent Vehicle Routing Problem
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The objective function is to minimize the return time of vehicle k to the depot. For

each arc (i, j) used in the master problem, i.e., xij = 1, we ensure the same arc

is used in the subproblem via constraints (67). The timing relation between two

consecutive visits is given by (68), and the link between x and z variables is done

by constraints (69) and (70). The vehicle leaves the depot at time 0 as indicated by

constraints (71). The nature and domain of the variables are enforced by constraints

(72) and (73).

(SUBk
r ) minimize wzn+k (66)

subject to:

∑
m∈M

xkmij = 1 (i, j) ∈ Ak
r (67)

zj ≥ zi + cmij + sj − (1− xkmij )(T + cmij + sj) (i, j) ∈ Ak
r ,m ∈M (68)

zi ≤ t ·m+ (1− xkmij )(T − t ·m) (i, j) ∈ Ak
r ,m ∈M (69)

zi − t(m− 1)xkmij ≥ 0 (i, j) ∈ Ak
r ,m ∈M (70)

z0 = 0 (71)

zi ≥ 0 i ∈ Vr (72)

xkmij ∈ {0, 1} (i, j) ∈ Ak
r ,m ∈M. (73)

The optimal value of zn+k defines the arrival time of the vehicle after visiting all

nodes in Vr following the arcs in Ak
r . The value of zk used in constraints (48) and

(64) is obtained as zk = zn+k −
∑

(i,j)∈Ak
r
cmin
ij .

Figure 1 provides a graphic summary of the decomposition algorithm. It begins

by solving the master problem, which generates capacity cuts (e.g., constraints (5))

in a lazy constraint fashion. Once we have a feasible solution, the subproblems are

defined, one for each route. If a subproblem is feasible, we generate an optimality

cut (e.g., constraints (48)), otherwise we generate a feasibility cut (constraints (50)).

A Benders Decomposition Algorithm for the Time-Dependent Vehicle Routing Problem
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Furthermore, one may add a lifting procedure (not shown in Figure 1) to the

generation of feasibility cuts the form (50) or (65). This consists of removing the

node which leads to most savings (in time) to the route: if the solution remains

infeasible, we have a stronger cut and can repeat the process. When a feasible

solution is found, we also generate the corresponding optimality cut.

M
a
st
e
r

S
u
b
p
ro

b
le
m

Solver

(re)start

Capacity issue

or subtours?

Add capacity

cut to master

Call solver

for subproblem

Subproblem

feasible?

Feasibility cut

generation

Optimality cut

generation

Feasible

solution

Yes

No

No

Yes

Figure 1: Schematic representation of the decomposition algorithm.

5 Computational experiments

The main goal of the computational experiments is to compare the performances

of different proposed solution approaches: (i) two-index model with a branch-and–

cut solver (Model-2), (ii) three-index model with a branch-and-cut solver (Model-3),

(iii) the decomposition algorithm for the two-index model (Benders-2), (iv) the de-
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composition algorithm for the three-index model (Benders-3) and (v) Benders-3 with

the refined feasibility cuts mentioned in Section 4.2 (Benders-3*).

For the branch-and-cut solver, we used Gurobi 9.0.2, with a time limit of 3600

seconds and eight threads. Other parameters were set to default value, including the

MIP optimality gap (0.0001). For iteractively adding violated capacity constraints

and the optimality and feasibility cuts of the decomposition algorithms we used the

lazy callback feature. The algorithms were implemented in C++ and compiled with

g++ 7.5.0. Regarding hardware settings, we used an Intel Core i9-9900K with a

frequency of 3.6 GHz with 16 processors and 128GB of RAM.

For our computational experiments, we use the the instances from [31] which are

based on geographical information from real road traffic of Québec City (Canada).

We used subsets with 10, 20 and 50 customers. In each subset, there are 30 instances

grouped by the number of time intervals: (i) with five time intervals (small), (ii) with

ten time intervals (medium), and (iii) with 15 time intervals (large). Customer

demands were randomly generated from [50, 750] units and service times (in seconds)

from [1000, 10800]. Instances with 10 and 20 customers have a vehicle capacity of

4000 units and instances with 50 customers have a vehicle capacity of 4500 units.

The fixed cost of using a vehicle is 1000 monetary units. The instances from [31] do

not define a variable cost of vehicle usage, we define it as w = 0.12.

5.1 Comparison between solution approaches

Overall, Model-2 outperformed Model-3 as shown by a summary of the results in

Table 2. Even though the time limit was reached for every instance when using any

of the models, lower, upper and root bounds were consistently better (or the same)

when using Model-2 for instances with 10 and 20 customer. This was observed in all

of the instances for the lower and root bounds and in 28 (out of 30) for the upper

bound. Also, the solver could find feasible solutions for all the instances with 10

customers for Model-2 and Model-3. However, Model-2 was more effective in finding

feasible solutions for instances with 20 customers, finding them for 17 instances,
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against 7 when using Model-3. For instances with 50 customers, not a single feasible

solution was found within the time limit with either Model-2 or Model-3.

Table 2: Summary of the results for Model-2 and Model-3. The table shows upper

bound (UB), lower bound (LB), root bound (RB), gap (100(UB − LB)/UB), time

to solve (in seconds), number of optimal solutions (#Opt) and number of feasible

solutions (# Feas).

Customers UB LB RB Gap Time # Opt # Feas

Model-2

10
Average 9860.63 5871.05 2215.92 41.12 TL

0 30
Median 9796.64 5745.57 2568.85 38.68 TL

20
Average 20616.18 3666.30 3091.30 82.10 TL

0 17
Median 20419.70 3932.40 2809.96 84.42 TL

50
Average

Time limit reached without any feasible solution found for all of the instances
Median

Model-3

10
Average 9965.73 3063.77 1659.09 69.49 TL

0 30
Median 10010.40 2906.70 2000.00 71.19 TL

20
Average 21073.46 2574.50 2428.57 87.83 TL

0 7
Median 20134.70 2000.00 2000.00 89.72 TL

50
Average

Time limit reached without any feasible solution found for all of the instances
Median

Using the decomposition algorithm based on Model-2 (Benders-2) is competitive

with Model-2 for instances with 20 customers (Table 3). For instances with 10 cus-

tomers, the upper bounds of the two approaches do not deviate more than 1% of one

another on average (and median). However, the lower bounds provided by Model-2

were higher for all instances, which lead to smaller optimality gaps, consistently. For

instances with 20 customers, the decomposition (Benders-2) leads to better upper,

lower and root bounds, resulting in smaller gaps on average (and median). Another

advantage of the decomposition against Model-2 is the number of feasible solutions

found for the case with 20 customers: 30 against 17 of Model-2. The number of

feasibility cuts (49) was at least 30 times higher than the number of optimality cuts

(50). The details on number of cuts added are shown later.

Benders-3 and Benders-3* decomposition algorithms consistently outperformed

Model-2, Model-3 and Benders-2. Table 4 compares the average and median results
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Table 3: Summary of the results for Model-2 and Benders-2. The table shows upper

bound (UB), lower bound (LB), root bound (RB), gap (100(UB − LB)/UB), time

to solve (in seconds), number of optimal solutions (# Opt) and number of feasible

solutions (# Feas).

Customers UB LB RB Gap Time # Opt # Feas

Model-2

10
Average 9860.63 5871.05 2215.92 41.12 TL

0 30
Median 9796.64 5745.57 2568.85 38.68 TL

20
Average 20616.18 3666.30 3091.30 82.10 TL

0 17
Median 20419.70 3932.40 2809.96 84.42 TL

50
Average

Time limit reached without any feasible solution found for all of the instances
Median

Benders-2

10
Average 9836.52 2548.87 2420.95 73.77 TL

0 30
Median 9787.40 2857.16 2734.76 72.73 TL

20
Average 18680.40 3869.31 3822.23 79.20 TL

0 30
Median 18805.56 3808.99 3780.34 79.66 TL

50
Average

Time limit reached without any feasible solution found for all of the instances
Median

of Benders-2 and Benders-3. Regarding the upper bounds, the difference between the

two approaches is smaller than 1% on average (and median). However, a significant

difference in performance was observed in lower and root bounds. The improvement

on these bounds allowed proof of optimality for all instances with 10 customers when

using Benders-3 within 65 seconds on average (the maximum solution time was lower

than 500 seconds). For instances with 20 customers, Benders-3 also reached the time

limit for all instances, but the improvement on final gaps was more than ten times on

average (and median). Furthermore, Benders-3 was the only approach that could find

feasible solutions for instances with 50 customers. Similar analysis can be conducted

focusing on Benders-3*. Even though Benders-3* was slightly slower on average (and

median) than Benders-3, it showed a similar performance related to obtained bounds,

feasible and optimal solutions. The experiments did not reveal a clear dominance of

Benders-3 over Benders-3* or vice-versa.

The number of cuts generated by the Benders-2 and Benders-3 (or Benders-3*)

is considerably different (Table 5). The number of cuts (49) can help explain the
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Table 4: Summary of the results for Benders-2, Benders-3 and Benders-3*. The table

shows upper bound (UB), lower bound (LB), root bound (RB), gap (100(UB −
LB)/UB), time to solve (in seconds), number of optimal solutions (# Opt) and

number of feasible solutions (# Feas).

Customers UB LB RB Gap Time # Opt # Feas

Benders-2

10
Average 9836.52 2548.87 2420.95 73.77 TL

0 30
Median 9787.40 2857.16 2734.76 72.73 TL

20
Average 18680.40 3869.31 3822.23 79.20 TL

0 30
Median 18805.56 3808.99 3780.34 79.66 TL

50
Average

Time limit reached without any feasible solution found for all of the instances
Median

Benders-3

10
Average 9831.63 9831.52 9280.65 0.00 64.62

30 30
Median 9783.98 9783.98 9134.43 0.00 40.60

20
Average 18600.87 17725.00 17627.44 4.76 TL

0 30
Median 18742.31 17902.15 17758.73 4.71 TL

50
Average 48137.89 43659.13 43614.85 9.27 TL

0 14
Median 47830.90 43656.62 43586.03 9.07 TL

Benders-3*

10
Average 9831.63 9831.50 9280.61 0.00 82.87

30 30
Median 9783.98 9783.98 9134.43 0.00 46.50

20
Average 18604.72 17722.95 17627.50 4.79 TL

0 30
Median 18754.37 17900.16 17758.73 4.75 TL

50
Average 48048.95 43565.18 43523.64 9.29 TL

0 14
Median 47760.16 43631.59 43586.03 8.97 TL
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good performance of Benders-3, since they are integrated directly into the model in

the form of (36) as mentioned in the end of Section 4.1. The number of feasibility

cuts generated by Benders-3 and Benders-3* is considerably lower, which is to some

extent expected by the addition of similar cuts a priori to Benders-3 (and Benders-

3*) master problem. The difference in the number of optimality cuts however is

hard to explain, but it can be related to the underlying structure of the resulting

master problem or the effectiveness of the solver heuristic in providing good feasible

solutions early in the solving process.

Table 5: Number of cuts added during the solution procedure for Benders-2, Benders-

3 and Benders-3*. The table shows the number of optimality cuts, feasibility cuts

and length cuts (only for Benders-2*).

Customers # (48) or (64) # (50) or (65) # (49)

Benders-2

10
Average 137615.00 1893.93 57019.50

Median 160086.00 1433.50 59077.50

20
Average 56367.87 655.53 32112.80

Median 61086.00 613.50 19879.00

Benders-3

10
Average 5796.03 298.87

Median 2421.00 8.00

20
Average 13676.57 988.07

Median 11914.50 748.50

50
Average 2530.36 96.14

Median 2411.50 94.00

Benders-3*

10
Average 6287.03 309.40

Median 2908.00 15.00

20
Average 14522.57 1007.63

Median 12487.50 885.00

50
Average 2749.07 103.21

Median 2499.00 89.00

To further characterize the decomposition algorithms, we analyze the evolution of

the bounds and the calls to the cut generation routines (optimality and feasibility).
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Figure 2 shows the typical behavior using two instances as examples for Benders-2

and Benders-3. In the beginning of the solution process, we usually have a high fre-

quency of calls then this frequency drops (as shown in Figures 2a–2d). For instances

in which the solver was able to prove optimality (e.g., Figure 2b), the frequency

increases again near the end of the solution process. Typically, an improvement in

the lower bound is associated with a large number of feasibility cuts (as evidenced by

the first seconds of each execution and also clearly demonstrated when optimality is

proven in Figure 2b. This corroborates the earlier suggestion that the incorporation

of feasibility cuts (49) (in the form of (36)) into the Benders-3 master problem plays

a crucial role in making its lower bound be so much tighter than any alternative.

The number of time intervals in an instance set (small, medium or large) was not

a reliable predictor of performance (Figures (3) and (4)). For Model-2, we observed a

higher median gap for small instances when compared to medium and large instances,

but there are some overlaps between the distribution of values among other cases as

shown in Figure 3. It also shows that for Model-3 and Benders-2, the number of time

intervals considered in the instances does not reflect a difference in performance.

A similar effect was observed for Benders-3 approach (Figure 3). For instances

with 20 customers, the distribution of values is similar when comparing small, medium

and large instances. The same effect happened for instances with 50 customers, even

though, in this case, the gaps spread over a wider interval as the size of instances

grow. Similar plots could be obtained with the results of Benders-3*.

6 Conclusions

In this paper we have studied the TDVRP which is a very practical transporta-

tion problem. Due to the NP-hard nature of this problem, over the last decade, ap-

proximate solution procedures have been applied. This paper is the first to present

an exact method using logic based Benders decomposition (LBBD) for this class

of problems. Two formulations of the problem, based on the well-known two- and

A Benders Decomposition Algorithm for the Time-Dependent Vehicle Routing Problem

24 CIRRELT-2021-16



(a) Example 1 with Benders-2 (10 cus-

tomers).

(b) Example 1 with Benders-3 (10 cus-

tomers).

(c) Example 2 with Benders-2 (20 cus-

tomers).

(d) Example 2 with Benders-3 (20 cus-

tomers).

Figure 2: Profile of the evolution of bounds and cut generation routine calls during

the solution process. For these figures, we aggregated length cuts into feasibility

cuts.
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Figure 3: Box plot of gap for small, medium and large instances (with 10 customers)

for Model-2 (Small-2, Medium-2 and Large-2), Model-3 (Small-3, Medium-3 and

Large-3) and Benders-2 (Small-2B, Medium-2B and Large-2B) solution approaches,

respectively.
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Figure 4: Box plot of gap for for small, medium and large instances for Benders-3

for instances with 20 and 50 customers, respectively.
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three-index formulations for the VRP, have been proposed. The performance of the

proposed Benders decomposition based method is compared against the results ob-

tained by the branch-and-cut algorithm. Computational experiments on instances

from the literature confirm that the proposed LBBD algorithm finds better solutions.

However, the performance of the algorithm depends on the formulation used for the

problem. The decomposition applied to the three-index formulation for the TDVRP

has yielded significantly better solutions in less time due to the quality of the gener-

ated cuts. A comprehensive analysis of the results sheds light on the reasons for the

superior performance of this method.
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