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Abstract. We study a dynamic vehicle routing problem where stochastic customers request
urgent deliveries characterized by restricted time windows. The aim is to use a fleet of
vehicles to maximize the number of served requests and minimize the traveled distance.
This problem is known in the literature as the same-day delivery problem. It is of high
importance because it models a number of real-world applications, including the delivery of
online purchases. We solve the same-day delivery problem by proposing efficient solution
algorithms, ranging from a simple reoptimization heuristic to a sophisticated branch-and-
regret heuristic in which sampled scenarios are used to anticipate future events. All
algorithms adopt a tailored adaptive large neighborhood search to optimize the routing
plans. We also present two new consensus functions to select routing plans for
implementation, and propose strategies for determining the number and size of the sampled
scenarios. The algorithms are also adapted to solve the problem variant where vehicles are
allowed to perform preemptive returns to the depot. Extensive computational experiments
on a large variety of instances prove the outstanding performance of the proposed
algorithms, also in comparison with recent literature, in terms of served requests, traveled
distance, and computing time.
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Dynamic Optimization Algorithms for Same-Day Delivery Problems

1 Introduction

In recent years, online purchases have become more and more a common
practice to request services or goods at home, changing the habit in which
many traditional markets operate. A huge number of e-commerce sellers
appeared on the web, and many companies changed their focus to direct-to-
consumer deliveries to expand their business. Dayarian et al. (2020) men-
tioned that online shopping followed by home delivery has annually increased
by around 8.5% in mature markets (e.g., the United States) and close to
300% in developing markets (e.g., India). This trend has increased by the
Covid-19 pandemic, which made people reluctant to leave their homes.

As a consequence, the delivery of online purchases has become a cru-
cial logistic activity. From an Operations Research perspective, managing
efficiently and effectively this activity is not an easy task. Requests arrive
dynamically during the day and must be served within predetermined time
windows. Although previous information could be collected, it might be
hard to respond timely to peaks of requests at certain hours of the day.
Optimization plays thus an important role in achieving affordable logistic
costs.

Historically, this type of problem has been addressed in the field of
stochastic dynamic vehicle routing problems (SDVRPs), for which a broad
and wide literature is known (e.g., Pillac et al. 2013 and Ritzinger et al.
2016). In recent years, the interest in such problems has risen even more,
and a particular effort has been put on applications where requests have
very strict time windows, of typically one hour or less. Such applications
appear in dedicated online services for purchase and delivery of parcels (e.g.,
Amazon Prime Now) or meals (e.g., Uber Eats). Innovative optimization
techniques have been consequently developed to tackle these challenging
problems (e.g., Ulmer 2020).

In this context, Voccia et al. (2019) introduced a particular SDVRP, the
same-day delivery problem (SDDP), in which requests from a limited geo-
graphical area arrive dynamically during the day and each must be served
within a strict time window. All goods are based at a central depot where
a fleet of identical vehicles is available to perform the deliveries. Requests
that the fleet cannot handle are passed to a third-party logistic operator
(3PL). The aim is to minimize the number of unserved requests, suppos-
ing that previous stochastic information on the arrival process is available
and can be used to help decision at the very moment in which a request is
issued. Formally speaking, the SDDP of Voccia et al. (2019) corresponds
to a dynamic vehicle routing problem with stochastic customers and mul-
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tiple delivery routes per vehicle. Clearly, the problem models a variety of
applications, including the distribution of online purchases.

The SDDP shares with other SDVRPs a number of difficult questions
that a decision-maker should consider when planning the distribution ser-
vice, for instance: How many vehicles do we need to perform the requests
efficiently? How can we efficiently route the vehicles? Should we wait for
new requests, or should we start delivering as soon as possible? Can we make
use of information from the past to devise better routing plans? Should we
dynamically reroute the vehicles when new requests arrive, asking for antic-
ipated returns to the depot? How can we effectively estimate the cost of a
routing plan, given the limited information we have?

In this paper, we propose solution approaches that can help a decision-
maker to obtain proper answers to the above questions in the context of the
SDDP. We investigate the problem of minimizing the number of rejected
requests and, as a secondary objective, the total routing cost. Assuming
hard time window constraints, requests impossible to deliver on time are
assigned to the 3PL. We do not allow transshipments among vehicles, but
allow vehicles to wait at the depot to anticipate future requests.

In detail, our contributions consist of:

e a new way to represent the SDDP as a pickup-and-delivery problem
with time windows and release dates, which brings advantages when
considering preemptive vehicle returns to the depot and when plan-
ning efficient routes containing real and fictive requests from sampled
scenarios;

e different solution algorithms, namely:

— a simple but efficient reoptimization heuristic that locks past de-
cisions, adds newly revealed requests, and then optimizes the
routing plan with a function that combines a regret heuristic, lo-
cal searches, and an adaptive large neighborhood search (ALNS);

— a scenario-based planning approach (SBPA) that considers fictive
requests sampled by a probability distribution. In each scenario,
a routing plan is optimized with the ALNS, and a consensus func-
tion chooses which plan to adopt after considering all scenarios.
We also propose new consensus functions and show that one of
them has a better performance than a previous function in the
literature;

— a branch-and-regret (B&R) heuristic that extends the scenario-
based planning heuristic by evaluating different possible alter-
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natives for each request. We consider as alternatives a vehicle
departing now, a vehicle departing in the future, and the assign-
ment of a request to the 3PL. We create different routing plans
by branching on these alternatives. The plan to implement is
chosen with the help of a consensus function;

e the evaluation of the important problem variant in which the preemp-
tive depot return (PDR) of the vehicles to the depot is allowed. In the
PDR variant, vehicles are allowed to return to the depot after serving
a request even if they still have items on board demanded by suc-
cessive requests. This possibly allows to collect further requests and
optimize the route the vehicle will perform after departing again from
the depot.

All solution approaches have been tested by means of extensive compu-
tational experiments. The simple reoptimization heuristic is efficient when
the number of vehicles is small compared to the number of requests, and
thus the best option is usually to start delivering as soon as possible. In-
stead, the SBPA is more efficient when there is more room for optimization,
so waiting or rerouting can lead to a cost reduction. This is obtained at
the expense of a non-negligible computational effort. The B&R may lead to
further improvements with respect to SBPA, and even to a reduction in the
required computing time.

Further computational experiments have analyzed the number of ALNS
iterations, the number of sampled scenarios, and the length of the time hori-
zon where to sample fictive requests. The gain obtained by allowing PDRs
is discussed in detail, showing how this practice can benefit the problem.
Besides that, our algorithms consistently improve the previous ones from
both Ulmer et al. (2019) and Voccia et al. (2019). Thus, we can conclude
that they represent an important contribution in the crucial field of dynamic
routing of urgent deliveries.

The remainder of the paper is organized as follows. In Section 2, we
discuss the literature on the SDDP and related problems, pointing out the
main previous contributions and the similarities/differences from our work.
Section 3 contains a formal description of the SDDP. In Section 4, we present
the details of our solution approaches and show how they can be adapted to
deal with different problem variants. Section 5 is devoted to the computa-
tional study, with detailed results for diverse sets of parameter configurations
and problem instances. In Section 6, we give some concluding remarks and
point toward future, promising research directions.
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2 Literature Review

This section presents a literature review focused on SDDPs arising in the
context of e-commerce. For a more exhaustive review on SDVRPs, we refer
to Pillac et al. (2013), for a general overview, to Ritzinger et al. (2016), for
a survey and a comparison of the solution quality obtained by a broad range
of methods from the literature, and to Ulmer et al. (2020), who present the
different techniques used to solve SDVRPs.

The SDDP shares characteristics with several well-known problems in
the literature. Typically, vehicles perform several short trips from the depot
to the customers when capacity or time is limited. This feature appears
in the multi-trip vehicle routing problem (MTVRP) and was introduced by
Fleischmann (1990), who propose a savings algorithm to build routes and a
bin packing heuristic to combine the built routes into work shifts. Several
other works, including Battarra et al. (2009), Azi et al. (2014) and Cat-
taruzza et al. (2014), propose more complex heuristics. Exact algorithms
based on column generation are proposed by Azi et al. (2010), Mingozzi
et al. (2013) and Paradiso et al. (2020). A survey on MTVRPs can be found
in Cattaruzza et al. (2018).

Another relevant SDDP characteristic is related to the release date of the
requests. This represents the moment in which the requested merchandise
becomes available for delivery. This implies that a request can only be part
of a route that departs later than the request release date. Vehicles can then
perform new routes by returning to the depot when new requests become
available. This is particularly relevant in problems where requests are not
all known at the beginning of the time horizon. This characteristic is studied
by Arda et al. (2014) in a production and transportation problem. In this
study, requests are produced on a make-to-order basis. Some requests are
known, and their release dates can be obtained by considering the produc-
tion process. Some other requests become known only when the customers
have confirmed them, leading to an uncertain release date. Stochastic infor-
mation on these dates is used within several heuristics to solve a stochastic
optimization model over a rolling horizon. Cattaruzza et al. (2016) con-
sider the case where a warehouse is receiving loads of merchandise by trucks
all day long. Once a load has been prepared for shipping, a route can be
planned to perform the deliveries. The authors propose a genetic algorithm
and solve instances with up to 100 customers.

The earliest studied applications of SDDPs can be found in the domain of
e-groceries. Lin and Mahmassani (2002) provides answers to several matters
that are still studied today: impact of different time window sizes, the effect
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of city configuration, and delivering from either a centralized warehouse or
from several grocery stores. They find out that narrow time windows are
economically viable when the demand is high as this minimizes the idle time
of the vehicles. A low demand should be coupled with larger time windows.
In addition, a bricks-and-clicks strategy offers a less risky alternative to
a single warehouse strategy. Their study diverges from our application as
customers must order before a cut-off time. Once the cut-off time has passed,
vehicles leave the depot to perform their routes, one per vehicle.

For the delivery of short life span products, Azi et al. (2012) consider
the case where customers are not known at the beginning of the day but are
gradually revealed as time goes on. These products cannot stay on board the
vehicles for longer than a specific time. This imposes the vehicles to perform
several short routes, instead of only a single long one, from the depot to the
customers. When a new event is triggered, the current known information
is used to plan new routes that serve the highest revenue requests.

Voccia et al. (2019) study the SDDP in the context of online purchases
where all requests arrive dynamically over the course of the day. A vehicle
fleet is available to pick up the goods from the depot and deliver them to
the customers. Requests are typically associated with short time windows,
and the objective is to maximize the number of served requests regardless
of the distance traveled by the fleet. They model the problem as a Markov
decision process and propose an SBPA to obtain a route plan at each de-
cision epoch. The approach uses sampled scenarios of future requests to
build a set of route plans. A consensus function is used to select the route
plan that shares the most characteristics with the others. Such an approach
was originally proposed by Bent and Van Hentenryck (2004) for the dy-
namic vehicle routing problem with time windows, where the objective was
to maximize the number of served customers. Results indicate that more
customer requests can be delivered using sampled scenarios than using a
simple reoptimization heuristic.

The dispatch wave problem by Klapp et al. (2018) shares several charac-
teristics with the SDDP of Voccia et al. (2019). In this problem, requests do
not have time windows, and a single vehicle is available to perform the de-
liveries. The vehicle can depart from the depot only at specific times, called
waves, and must be back at the depot before a specific deadline. Klapp
et al. (2018) propose two different approaches to obtain a priori solutions.
In an a priori solution, routes are built in a first stage without knowing all
the information. Then, in a second stage, they are updated whenever new
information is revealed by means of a recourse policy. The first approach is
based on the solution of a stochastic model using a heuristic. The second
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approach generates new a priori solutions on a rolling horizon fashion: a
solution is obtained at the beginning of the time horizon, then, each time
the vehicle returns to the depot, a new solution is computed. Results on in-
stances with up to 50 requests indicate that the second approach can reduce
costs by an average of 9% over the first approach.

Archetti et al. (2020) study the dynamic traveling salesman problem
with stochastic release dates, which is very similar to the dispatch wave
problem. It differs from it because the time horizon is not bounded and
the objective is to minimize the total travel time plus the waiting time
at the depot. As noted by the authors, this type of problem might be
encountered in situations where goods need to be shipped to the depot and
the transportation time might be affected by traffic or other unforeseen
events. Their approaches are similar to those by Klapp et al. (2018), and
the best results can be achieved by using a rolling horizon heuristic. Results
indicate that reoptimizing at short intervals while the vehicle is waiting is
beneficial for reducing the objective function.

An important issue in the SDDP is to decide whether a vehicle should be
waiting at the depot for new incoming requests or should depart as soon as
possible to perform deliveries and return to the depot at an earlier time to
accommodate more requests later on. Waiting strategies play a crucial role
in SDVRPs as they can help serve more customers and reduce the traveled
distances. Some strategies only use the information known at the time the
decision is taken, whereas others use stochastic information to try to predict
new incoming requests. Mitrovié-Mini¢ and Laporte (2004) provide four
waiting strategies that do not use any knowledge about future events. The
first two are opposite strategies: the Drive-First is a no-wait strategy where
the vehicle departs as soon as possible, whereas the Wait-First imposes
to wait whenever possible. Routes obtained from a deterministic approach
that does not make use of a waiting strategy are typically those obtained
by applying the Drive-First strategy, like those in Azi et al. (2012). The
other two strategies from Mitrovié-Mini¢ and Laporte (2004) are in-between
the previous two, and attempt to assign an amount of waiting time to some
key moments of the routes. Results indicate that waiting typically produces
shorter routes but increases the number of used vehicles, whereas the no-wait
strategy results in the use of fewer vehicles but at an increase in traveled
distances.

Waiting strategies are also found in Voccia et al. (2019). In their Wait-
First strategy, the amount of waiting time is calculated as the maximum
delay that can be added to the routes that are about to start while respecting
the time window constraints. A second strategy is somehow hidden in the
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details of the SBPA. Indeed, as noted by Bent and Van Hentenryck (2007),
the SBPA has an implicit waiting strategy when real requests are assigned to
a route that also contains fictive requests. In the context of the SDDP, the
fictive requests indicate that new requests might arrive in the near future
and the vehicle should be waiting for some time before delivering the real
ones. This means that some vehicles might be waiting at the depot for new
requests, while others apply a Drive-First strategy and depart as soon as
possible to perform deliveries. Results in Voccia et al. (2019) indicate that
the SBPA with the Wait-First strategy requires 2.8 times more computation
time than the SBPA without it, and it cannot serve more requests.

In Bent and Van Hentenryck (2007), an SBPA is used to analyze the
solutions of the sampled scenarios and decide whether or not a vehicle should
wait at its current location for possible new requests. This is achieved by
counting the number of times a vehicle has as next visit either a real or a
fictive request in the solutions of the sampled scenarios. The vehicle waits
if the resulting number is higher for the fictive requests. Results show that
such a strategy was helpful at maximizing the number of served customers.

In our approach, at a certain epoch, we firstly optimize scenarios using
a heuristic, and secondly optimize again with the same heuristic but forcing
a waiting time for all the vehicles that are at the depot. If the cost of the
second attempted option is smaller or equivalent to that of the first option,
then we simply wait for the next event. This has the advantage of producing
a much quicker computation. Otherwise, we proceed in a B&R fashion:
we consider each request in the pool, evaluate if it has to be served now,
served later, or rejected. For each alternative, the evaluation is obtained by
building a solution with a heuristic. This is performed for all scenarios and
all alternatives, and then the alternative giving the lowest average cost over
all scenarios is chosen and implemented. This scheme has the advantage of
being adaptable to different problems.

Another feature of SDDPs concerns allowing or not vehicles to perform
PDRs. A PDR implies that a vehicle interrupts its current route and returns
to the depot to pick up new requests. This might allow serving more requests
and reducing traveled distances. The PDRs are not allowed in Azi et al.
(2012), nor in Voccia et al. (2019). The idea was introduced by Ulmer et al.
(2019), who exploit it inside an algorithm based on approximate dynamic
programming for the solution of single-vehicle instances. Results show that
PDRs can effectively allow more requests to be served. This contrasts Klapp
et al. (2018), who obtain small marginal benefits by using PDRs in their
computational experience.

In some applications, it might be required to decide immediately if a new
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request is accepted and delivered or if it is rejected. This requirement can
be useful when an amount of work has to be performed on the request before
it can be available for shipment. Thus, rejecting the request at a later stage
might cause additional unnecessary costs. This is defined request acceptance
policy in Klapp et al. (2020) or customer acceptance problem in Marlin
and Thomas (2020). To our knowledge, this policy was first considered
in Azi et al. (2012). In this work, to decide whether to accept a request
or, the authors first check if the request can be feasibly inserted in the
current routes. If no feasible insertion position is found, then the request is
rejected; otherwise, a lookahead algorithm, similar to an SBPA, is executed
to anticipate future requests. The lookahead algorithm evaluates the cost
of performing the delivery or not on a set of sampled scenarios. The least-
cost alternative is selected. If the request is accepted, a new routing plan
is obtained by reoptimizing the set of accepted known customers. This
request acceptance policy is also studied in detail in Klapp et al. (2020) for
the dispatch wave problem. They use approaches similar to those of Klapp
et al. (2018) and calculate that an immediate request acceptance policy
increases costs by an average of 4.5%. In Marlin and Thomas (2020), they
model the SDDP as a Markov Decision Process and rely on approximate
dynamic programming and several value function approximation methods
for solving the problem.

Our approaches for solving the SDDP rely on sampling scenarios that
incorporate stochastic knowledge of future events. These approaches have
the advantage of being flexible and can solve a broad range of problems
with different characteristics. They also scale relatively well when the num-
ber of customers and vehicles increases compared to approaches that rely
on Markov Decision Processes (which typically solve small instances hav-
ing few requests and one vehicle). They work by sampling the probability
distribution of future events. Sampled scenarios are generated each time
a new event occurs and an optimization phase is executed next to obtain
an implementable routing plan. This consists of finding a plan that can
be implemented in all scenarios, leading to low-cost solutions. Typically,
each scenario is solved separately to alleviate the computational complex-
ity. Unfortunately, each routing plan is specifically tailored for its scenario
and implementing one of the scenario solutions does not ensure achieving a
low-cost solution in the other scenarios. The literature has come up with
different approaches for addressing this problem. They can be seen as par-
tial explorations of a branch-and-bound tree for a stochastic integer program
(see Haneveld and van der Vlerk 1999). Scenarios are solved at each node of
the tree to fix some first-stage decisions. For example, the SBPA proposed
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by Bent and Van Hentenryck (2004) solves each scenario and selects the
plan having the most parts in common with other plans by using a consen-
sus function. This can be interpreted as solving only the root node of the
tree.

Another strategy brought up by Lgkketangen and Woodruff (1996),
called progressive hedging heuristic, and later used by Hvattum et al. (2006)
among others, is to solve all scenarios and then find the alternative a that is
the most common alternative among the alternatives that are not performed
in all the resulting solutions. This alternative is then fixed and plans, not
having it, are optimized. The process iterates until all plans implement
the same set of alternatives. Again, this can be seen as solving a node in
a branch-and-bound tree, selecting a variable, and creating a single child
node.

Hvattum et al. (2007) propose the B&R heuristic as an improvement
of the progressive hedging heuristic that consists of evaluating the cost of
performing or not alternative a. The least-cost alternative, a or not a, is
then fixed, and the algorithm iterates until all plans implement the same
alternatives. The results in Hvattum et al. (2007) indicate that the B&R
heuristic is superior in terms of solution quality to the progressive hedging
heuristic. The branch-and-bound tree, in this case, is partially explored:
a node is solved, a variable is chosen for branching, and child nodes are
generated and solved. The exploration continues by adopting the least-cost
child node until a solution is reached. This is the most complex approach
that we adopt in our solution methods, as outlined below in Section 4.

3 Problem Definition

The SDDP considers a complete directed graph G = (Lo, A), where Lo
comprises a depot, vertex 0, and a set L of customer locations distributed
over a geographical area. The depot is equipped with a fleet of M identical
vehicles and is associated with start (¢ = 0) and end (¢t = T') times between
which vehicles can depart and arrive. The time interval [0, 7] corresponds
to the working hours of the depot. With each arc (i,5) € A are associated
a deterministic travel time ¢;; and a traveling distance ¢;;, which are known
in advance. During the time horizon, requests arrive at a rate \; > 0 from
each location ¢ € L.

Let R be the set of requests that occur during the daily time horizon.
Set R is composed of requests that are known in advance (from before the
starting time of the operations) and others that will be revealed as time
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unfolds. Each request k € R is revealed at a release time 7y and a delivery
time window [eg, [;]. Each request should be picked at the central depot and
delivered by a vehicle. In case a vehicle arrives at a customer location for
delivering request k before the start time ey, it waits until e, to start the
service. The service must begin before li, so we consider hard time window
constraints. Requests found impossible to deliver on time are assigned to a
3PL operator paying an additional cost. We assume that the delivery costs
incurred by the fleet for performing a request are always lower than the cost
of the 3PL operator.

Each vehicle may perform multiple trips during the time horizon, starting
at any time ¢ > 0 and finishing at any time ¢ < T'. The trips performed by
the vehicle may involve the following actions:

(i) wait at the depot for new requests;
(ii) pick up at the depot one or more requests; and
(iii) deliver one or more requests to customers.

Once a vehicle departs from a location, it cannot divert its path until
it has reached its next location. After a delivery, a vehicle can continue its
trip as planned or interrupt the trip and return to the depot. This means
the vehicle is not required to finish serving all its onboard requests before
returning to the depot. In other words, we allow preemptive returns to the
depot. Once a vehicle has picked up a request, it must serve it, so it cannot
unload any request at the depot. In other words, we forbid transshipments
among vehicles. When using the 3PL operator for delivering a request, we
simply assume we pay a high cost and we do not explicitly model the 3PL
operator’s routes. The decision of assigning a request to the 3PL operator
is postponed until we detect that the fleet will not be able to deliver such a
request.

The objective of the SDDP is to determine the trips performed by the
vehicles during the time horizon, aiming first at maximizing the number of
served requests and secondly at minimizing the total traveled distance.

4 Problem Modeling and Solution

We model the SDDP as a dynamic pickup and delivery problem with time
windows and release dates (DPDP). Under this representation, each request
k € R corresponds to a pair of nodes (i, j), where 7 is the pickup node and j
the delivery node. In our case, ¢ is always coincident with the depot, whereas
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j is associated with a customer location in L. The time window [e;,[;] of
the pickup node i is set to [r, [k — tox], whereas that of the delivery node j
is set to [ej, ;] = [e, li], for each k € R.

The use of a DPDP representation of the problem gives some advantages.
First, it is easy to model a preemptive return to the depot, as one simply
needs to insert a pickup in the middle of two deliveries. Second, the con-
straint forbidding the unloading of already picked up requests at the depot is
naturally taken into account by the classical DPDP constraint that imposes
a delivery node to be visited by the same vehicle that visited the correspond-
ing pickup node. Several authors, as Voccia et al. (2019) and Archetti et al.
(2020), modeled each request of the SDDP as a single delivery node located
at a customer location. This has the advantage of being faster to optimize,
but it is less flexible and might remove some sequencing possibilities. For
example, in Voccia et al. (2019) if a fictive delivery (originated when mod-
eling the stochastic component of the problem) is visited by a vehicle right
after a real delivery, then the vehicle is sent back to the depot. This makes
routes containing real and fictive customers difficult to plan efficiently. Such
routes indicate that it is beneficial to wait for incoming requests to regroup
the deliveries. To counter this side effect, Voccia et al. (2019) proceed with
a two-steps approach: first, they optimize the routes, and then they employ
a mechanism that considers waiting at the depot. In some ways, they do
not fully utilize the information contained in the scenarios.

We tackle the dynamic aspect of the SDDP in the classical SDVRP
approach (see, e.g., Gendreau et al. 1999): each time a new event occurs,
all the known information is gathered together, and an optimization step
is executed. This step requires making several decisions (e.g., if a vehicle
departs from the depot or another performs a preemptive return). This
classical approach may change consistently according to the way events and
optimization are taken into account. During the working period, an event
occurs each time new information becomes known, or new decision has to
be taken. In our work, we consider three types of events:

e arrival of a new request when there is at least one vehicle available at
the depot;

e arrival of a vehicle at the depot or completion of the waiting period of
a vehicle (still at the depot); and

e completion of a delivery by a vehicle that is supposed to continue its
route (and not return to the depot).

CIRRELT-2021-16 11
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The first two types of events are the only ones considered in Voccia et al.
(2019). The third type is useful for considering preemptive returns to the
depot.

When an event occurs, all known information is collected (known re-
quests, the position of the vehicles, goods that are on board the vehicles,
etc.), and an optimization algorithm is invoked to take the next routing
decisions. To this aim, in our work we developed three solution algorithms,
described next in Sections 4.1, 4.2 and 4.3. The subsequent sections are
instead devoted to discuss the way the scenarios are generated, the ALNS
algorithm that we developed to optimize the routing aspect and that is in-
voked at each event, and the steps to be performed to adapt the solution
algorithms to deal with the main problem variants.

4.1 Reoptimization Heuristic

The reoptimization heuristic is a dynamic algorithm that ignores the stochas-
tic aspects of the problem. It works as shown in Algorithm 1. First, an
empty routing plan s is created, and all known requests at the beginning of
the time horizon are added to s. A routing plan, or just plan for short in
the following, is a partial solution to the dynamic problem, which might be
later modified/integrated according to new information revealed. Second, s
is optimized, meaning that routes are generated using the ALNS of Section
4.5. Then, each time there is a new event, all actions that were performed
prior to the current time and all those being currently performed are locked
in plan s. The possible newly revealed requests are added to s, and another
call to the optimization algorithm is performed to adjust plan s to cope with
the new information. Once all events have been considered, the algorithm
terminates with a final plan containing all routing actions.

The term reoptimization heuristic that we adopt originates from the re-
cent survey by Ulmer et al. (2020), but the algorithm is also known as greedy
heuristic (see, e.g., Bent and Van Hentenryck 2004) or myopic heuristic (see,
e.g., Hvattum et al. 2006, 2007 and Archetti et al. 2020). As can be guessed
by the names, this algorithm can be quite simple, although this is not the
case for our implementation, as we rely on a tailored metaheuristic at steps
2 and 6.

4.2 Scenario-based Planning Approach

The SBPA was originally proposed by Bent and Van Hentenryck (2004)
for the dynamic vehicle routing problem. At each event, SBPA generates
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Algorithm 1 Reoptimization heuristic
: Create a plan s that contains the requests known at time 0
: Optimize s with ALNS
while there is an event do

Lock all performed actions in plan s

Add the new requests to s

Optimize s with ALNS and implement the new actions
end while

NS R W

scenarios including future requests that might appear later on, also called
fictive requests, by sampling the probability distribution of their appearance.
An optimization algorithm then solves each scenario, and routing plans are
generated starting from the solutions obtained. The method selects the
routing plan to be adopted by using a consensus function. A consensus
function is a function that receives in input the set of routing plans generated
for all scenarios and then returns a score for each of them. The plan with
the highest score is the one adopted for implementation. Bent and Van
Hentenryck (2004), Voccia et al. (2019) and Song et al. (2020) use consensus
functions that score each plan according to the number of features that are
present in other plans. This choice aims to select a plan with the highest
chance to be cheaply implementable in all scenarios. Voccia et al. (2019) use
a function, which we name Route Similarity (RS), that consists of counting
the number of times the routes of a plan appear in other plans.

Algorithm 2 gives an intuitive SBPA pseudo-code. The first five steps
are the same steps adopted in the reoptimization heuristic. Then, at each
event, a set of scenarios containing fictive requests is generated (step 5). A
plan s, is created for each scenario w, containing all known requests, locked
components of solution s, and a set of fictive requests from w. Each plan
Sw is optimized by solving the subproblem, and the routes having at least
one fictive request are removed. This removal can be seen as a way to delay
the departure of the corresponding vehicles to possibly accommodate new
requests that might arrive in the near future. The last step 12 consists of se-
lecting the plan with the highest consensus function score and implementing
it.

To better describe the algorithms, in the remainder of the paper, we will
resume the following example a number of times.

Example 1. We are given three routing plans (i.e., solutions), each hav-
ing three routes that can possibly depart immediately. By defining a plan in
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Algorithm 2 Scenario-based planning heuristic
Input: Consensus function f

1: Create a plan s that contains the requests known at time 0
2: while there is an event or time = 0 do
3:  Lock all performed actions in solution s
Add the new requests to s
Create a scenario set € of fictive requests
for each scenario w in 2 do
Sy =8Uw
Optimize s, with ALNS
Remove routes from s, containing fictive requests
10:  end for
11:  Implement the plan s, having the highest consensus function score
f(sw)
12: s=s, \{w}
13: end while

square brackets, and a route in round brackets, the example is: [(1-3-5-7),
(4)7 (6_2)]7 [(1_3)7 (4'7)7 (6)] and [(Wait)v (4)a (6)]

We noticed that the RS function selects the plan with the fewest num-
ber of actions when the plans are highly heterogeneous. This is a least-
commitment strategy according to Ghiani et al. (2012). In Example 1, the
routes of plans #1 and #2 appear just once, whereas those of plan #3 appear
twice each, and hence plan #3 would be the one chosen and implemented by
the RS function. The drawback of a plan built with the least-commitment
strategy is that it might require a larger number of routes, thus increasing
the distance, without performing the most common actions found among
scenarios. For Example 1, in 2 out of 3 plans, the most common actions are
to depart now and deliver requests 1, 3, 4, 6, and 7.

In the following, we propose two new consensus functions that look at
different actions in the plans. The first, called Assignment Similarity (AS)
function, consists in counting the number of times the pairs (request, route
number) of a plan appear in other plans. Ties are broken by plan number.
In Example 1, plan #1 has an AS score of 6, plan #2 of 6, and plan #3 of
4. The first plan would thus be the one selected by function AS.

The second function, called Edit Distance (ED), sums the number of
changes required in a plan to obtain each of the other plans. The plan
having the smallest number of required changes is selected. Function ED
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builds upon the Levenshtein distance (Levenshtein 1966), which is used to
count the minimum number of changes required to change one word into
another word. For Example 1, to obtain plan #2 from plan #1, we would
need to remove requests 5 and 7 from route 1, add request 7 to route 2, and
remove request 2 (resulting in 4 changes). To obtain plan #3 from plan #1,
we would need instead to remove requests, 1, 2, 3, 5, and 7 (for a total of 5
changes). The ED score of plan #1 is thus 9. Similarly, the ED score of plan
#2 is 7, and that of plan #3 is 8. The second plan would thus be selected
by function ED. A detailed computational assessment of the RS, AS, and
ED consensus functions is provided below in Section 5.

In general, it is not obvious which plan to select. The purpose of the
next section is to propose a method that can produce plans with a high level
of similarity to make decisions.

4.3 Branch-and-regret Heuristic

The B&R heuristic was proposed by Hvattum et al. (2007) for solving SD-
VRPs. Its main components are similar to those adopted in the SBPA, but
the method goes a step forward to find solutions that should be better on
average. In the B&R, at each new event, scenarios are generated and plans
are obtained by optimizing the scenarios. Next, the costs of implementing
different alternatives are evaluated with the aim of finding a plan that can
be implemented in all scenarios. In Hvattum et al. (2007), this is achieved in
two steps: first, assign a narrower time window to each known request, and
second, select which requests are served next by the available vehicles. The
average cost of a narrower time window for a specific request is obtained
by fixing the time window to be in the next time interval in each scenario.
The average cost of regretting this alternative is also calculated by changing
the time window to a farther time in the future. The branching consists
in imposing the time window leading to the least average cost. The second
step, aimed at selecting which requests are served next, is performed once
the time windows of all known requests have been fixed. Once this two-step
decision phase is concluded, the actions to be performed immediately are
implemented, whereas the other actions, like the time window changes, are
canceled (as they can be reevaluated at the next event).

In our study, we differ from Hvattum et al. (2007) by evaluating different
alternatives that are valuable in the context of the SDDP. This is done in
three steps:

1. evaluating if the vehicles at the depot should wait;
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2. ensuring that the same alternative is implemented in each scenario for
each known request;

3. selecting a plan with a consensus function.

In the first step, we evaluate two alternatives: 1) vehicles at the depot
perform their routes as planned, and 2) vehicles at the depot wait for one
unit of time. For both alternatives, we optimize all scenarios and compute
their average cost. If the second alternative is not more expensive than the
first one, then we opt to wait. To this aim, we create a new event whose
delay is set to the maximum delay that can be added to the routes of the
scenarios so that they remain feasible. If, instead, the second alternative is
more expensive than the first one, then we proceed to the next step.

In the second step, we make sure that for all known requests, exactly
one among the three following alternatives is selected in all scenarios:

e a vehicle departs now from the depot to deliver the request (go now);

e a vehicle departs from the depot at a future time to deliver the request
(wait);

e the request is not delivered at all (reject).

If at least one request does not implement the same alternative in all
scenarios, we iterate through these unfized requests to ensure that all plans
implement the same alternative for each request. At each iteration, we select
the unfixed request having the highest count of the go mow alternative.
Next, we evaluate the average cost of performing each of the previous three
alternatives. This is done by calculating the routing cost of imposing each
alternative in each scenario. The alternative having the lowest average cost
is chosen and implemented. This evaluation process is performed until each
known request implements the same alternative in all scenarios.

Finally, the third step is to simply choose a plan using one of the three
previously defined consensus functions (RS, AS, or ED).

A pseudo-code of our B&R heuristic is presented in Algorithm 3. The
first steps are very similar to those of SBPA. At each event, the plan is
locked, the new requests are added to s, and a set of scenarios is generated.
Each scenario w is optimized to obtain a plan s,,. We evaluate the alternative
of having the vehicles wait at the depot. If this is not more expensive than
having the vehicles perform their routes as planned, we wait for the next
event. Next, we calculate from the plans s, the set L of requests that do
not implement the same alternative in all scenarios. Next, we perform the
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following steps until L is empty. First, for each request r € L, we calculate
gonow(r] as the number of times r is in a route that departs now in the plans
Sw. We select the request r having the highest gonow[r] value. We define
®,. as the set of alternatives for request r and for each alternative ¢ € &, we
impose ¢ in each scenario w to obtain the plan sfj. We calculate the average
cost of each alternative, and the alternative ¢ with the lowest cost is chosen
and implemented (s, = sfﬁ) Set L is then updated using the plans s,,, and
the process is iterated for the next request. Once L is empty, we implement
the plan s, with the highest score, that is, we remove the future requests
from s, to obtain s.

Algorithm 3 Branch-and-Regret heuristic

Input: Consensus function f
1: Create a plan s that contains the requests known at time 0
2: while there is an event or time = 0 do
3:  Lock all performed actions in plan s

4:  Add the new requests to s

5:  Generate scenario set {2 of fictive requests

6:  for scenario w in ) do

T: Set s, = s Uw and optimize plan s, with ALNS

8 end for

9:  Evaluate if the vehicles at the depot should wait, if so, wait for the
next event

10:  L: the requests that do not implement the same alternative in all
scenarios

11:  while L is not empty do

12: Calculate gonow[r] from plans s, for each r € L

13: Select the request r = arg max,c g {gonow[r]}

14: for each alternative ¢ in ®, and scenario w in €2 do

15: Set sf = S, and optimize s& imposing ¢ on r

16: end for

17: Implement the least-cost alternative ¢ on r

18: Sw = Sg

19: Update L from the plans s,

20:  end while

21:  Select the plan s, having the highest score on consensus function f
22:  s=5, \ {w}

23: end while
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4.4 Scenario Generation

Both SBPA and B&R use sampled scenarios to guide the decision process.
Many authors (as Hvattum et al. 2006, 2007) generate new scenarios at each
event. Others (as Bent and Van Hentenryck 2004, Voccia et al. 2019, and
Song et al. 2020) generate all sampled scenarios at the beginning of the time
horizon and then, as time progresses, update the scenarios by adding the
new revealed requests and removing those that did not appear. The number
of scenarios has a major impact on solution quality and computation time.
Typically, computation time increases linearly in the number of scenarios.
Different conclusions are taken in the literature on the number of scenarios
that produce the best trade-off between solution quality and computing
effort. Hvattum et al. (2006) tested several sizes ranging from 30 to 600
scenarios and concluded that the best option is to have as many scenarios
as possible. In a different setting, Hvattum et al. (2007) obtained a different
conclusion as, after testing sizes from 1 to 60 scenarios, they obtained their
best solutions with 30 scenarios. In Voccia et al. (2019), the authors made
tests using 10, 25, and 50 scenarios, and noted that the best performance
was obtained using 10 scenarios. Clearly, all these conclusions are problem-
dependent and based on the particular instances addressed in those papers.
In Section 5.1 below, we obtain some more insights on this aspect by means
of extensive tests.

The size of the sampling horizon is also discussed in Voccia et al. (2019).
Basically, the idea they investigated is to maintain in the scenarios the fictive
requests that appear in the successive p instants of time. This reduces the
subproblem size, lowers computation times, and emphasizes the decisions
that have to be taken in the immediate future. The rationale is that fictive
requests in a faraway future might simply act as noise in the decision-making
process. This strategy is also tested in Section 5.1. In addition, we also
propose a new alternative method to the sampling horizon of Voccia et al.
(2019). As it can be noted, using a fixed sampling horizon can perform well
when the length of the horizon is correlated with the data of the instance.
However, lower quality results might be expected when p is too small and
the time windows are large, as this might lead to too early departures.
The alternative method that we developed, called correlated-data sampling
(CDS), incorporates only the fictive requests having a release time lower
than the farthest end time window of any known request plus a constant
value p. The idea, computationally tested below in Section 5, is to consider
only fictive requests that can impact the decision process.
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4.5 Optimizing Subproblems

The three heuristic approaches that we implemented are based on the iter-
ated solution of DPDP subproblems that appear during the search. This
is made by the Optimize function, invoked by Algorithms 1, 2, and 3. The
function receives as input a plan that might contain empty routes and not-
yet assigned requests, routes with completed requests, or routes with a mix
of completed and non completed requests. It aims to obtain a plan that
satisfies all constraints of the DPDP indicated in Section 4 and has the
minimum total cost. In addition, when invoked by the B&R heuristic, Op-
timize returns a high cost for any plan not respecting the decisions taken at
the previous branches. The function that we implemented is based on the
execution of four steps.

First, the unassigned requests are sequentially inserted inside the plan
using the Regret-k heuristic of Potvin and Rousseau (1993). The algorithm
works as follows: for each request, it calculates the minimal insertion cost of
the request inside each route. Then, at each iteration, it selects the request
having the largest sum of differences between the best insertion cost and the
insertion cost into the other k& best routes, in absolute value. The selected
request is inserted in the route with the best insertion cost. The minimal
insertion cost of the remaining requests inside this route is updated. If we
cannot feasibly insert a request, then this request is inserted into a bank
and resumed later in the local search phase.

Second, the local search operators Relocate and Ezchange are executed.
The two algorithms operate similarly: Relocate removes a request from its
current position in a route or from the request bank, and attempts to reinsert
it in another position in the same route or another one, whereas Exchange
takes two requests from different routes and tries to insert them in each other
route. Both methods look for insertion positions that minimize the cost of
the resulting plan. If improving positions are found, they are implemented;
otherwise, the requests are reinserted in their original positions. The two
operators are executed, one after the other, until no further improvement
can be found.

Third, the ALNS of Ropke and Pisinger (2006) is called. At each it-
eration, a removal and an insertion heuristic are selected from a pool of
heuristics. A random number of requests are then removed from the plan
and inserted in the request bank using the removal heuristics. Then, the
insertion heuristic tries to insert them back in the plan with the hope of
finding an improved solution. In addition, the removal and insertion heuris-
tics make sure that completed or fixed requests remain in their position.
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Our implementation is the same as the one described in Ropke and Pisinger
(2006), with the following exceptions: 1) we only use the Random and Shaw
removal heuristics; 2) the cooling rate is set to 0.8; and 3) the number of
iterations is decided according to the tests of Section 5.

Fourth, the two local searches invoked at step two are invoked once more
in a last attempt to improve the plan.

4.6 Dealing with Preemptive Depot Returns

The option of allowing or not PDRs was formally proposed by Ulmer et al.
(2019). For many works in the literature (namely, Azi et al. 2012, Voccia
et al. 2019, Klapp et al. 2018 and Archetti et al. 2020), once a vehicle departs
to perform deliveries, it has to complete its entire route before returning to
the depot. PDRs allow vehicles to return to the depot before the routes are
completed. Enabling this might help at reducing distances or at delivering
more requests. The conclusion on whether this policy is advantageous or
not are mixed. Klapp et al. (2018) claim that the benefits are marginal. On
the other hand, Ulmer et al. (2019) state that the policy leads to relevant
savings.

Our framework can easily deal with the PDR variant because of the way
the SDDP is modeled. As mentioned, we represent the SDDP as a DPDP,
and having pickup and delivery nodes enable subproblems to decide easily
if a pickup is to be inserted between two deliveries belonging to a newly
departed route. The pickup would represent a return to the depot. Each
vehicle maintains a current node that represents the first node after which
a request can be inserted. Route modifications can only occur after that
node. Note that if we want to forbid PDRs, then we simply set the current
node to the last delivery node of the route.

5 Experimental Results

We executed an extensive computational evaluation of our solution ap-
proaches to evaluate their performance under different configurations and
for different instance sizes. We first selected a varied subset of 125 instances
among those proposed by Voccia et al. (2019) and used them to analyze
how the algorithmic performances are affected by changes in the main pa-
rameters. The outcome of this first set of tests is discussed in Section 5.1.
After having determined the best configurations, we evaluated the impact of
PDRs in Section 5.2, where we also compare our results with those by Ulmer
et al. (2019) on the set of instances that they created. Then, in Section 5.3
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we compare our algorithms with those of Voccia et al. (2019) on their entire
set of instances.

Our algorithms have been coded in C+4 and our tests have been ex-
ecuted by using a single core of an Intel 2.667 GHz Westmer EP X5650
processor. For comparison purposes, we have made the instances that we
used publicly available at https://sites.google.com/view/jfcote/.

5.1 Parameter Setting and Sensitivity Analysis

In this section, we analyze the results obtained by our algorithms using dif-
ferent parameter configurations. The instances that we used for this analy-
sis are a subset of 125 instances selected from the benchmark presented by
Voccia et al. (2019). We considered instances with a number of customers
varying from 71 to 110, and divided into three types according to the way
customer locations have been generated: clustered (C); randomly dispersed
(R); and both randomly dispersed and clustered (RC). In addition, the in-
stances are characterized by five types of time windows. The first four types,
namely TW.d1, TW.f, TW.h, and TW.r, have all a one-hour deadline but
differ on the start time of the time windows, which is equal to the release
date for TW.d1, a fixed time in the future for TW.f, the remaining hours
of the day for TW.h, and randomly dispersed times for TW.r. The fifth
type, called TW.d2, is equivalent to TW.d1 but has a two-hour deadline.
We considered instances with an arrival rate equal to 0.002 per minute, for
100 potential customers, which considering a time horizon of 480 minutes,
produce on average 96 customers. The instances are grouped according to
15 different location distributions, namely: C_1 to C_5 (50 instances in total,
10 per location); R_1 to R_5 (50 instances, 10 per location); and RC_1 to
RC_5 (25 instances, 5 per location).

In all the tests of this section, we considered a fleet of 10 vehicles, 60
minutes of time horizon, and 30 scenarios. Moreover, waiting at the depot is
allowed, but PDRs are not. In the tables below, we evaluate each algorithm
in terms of:

e %filled = percentage of requests served;
e dist. = total distance traveled by the vehicles;
e time = computing time in seconds.

In Table 1, we evaluate our approaches by attempting different numbers
of ALNS iterations. We tested the Reoptimization approach, three SBPA
configurations attempting the three consensus functions (namely, RS, AS
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and ED) and three B&R configurations using the same consensus functions.
Each algorithm has been executed with a number of ALNS iterations varying
in the set {50,100, 250,500,1000}. The values shown in the table are the
average of the values obtained on the 125 instances. A final line showing
average values for the entire column is also reported to gain some insight into
the impact of the attempted parameter on all algorithms. The rightmost
column presents, instead, the average results over all tests performed with
the given algorithm.

The results of Table 1 show that the Reoptimization heuristic is very
quick but has a worse performance than the other algorithms that make use
of stochastic information. It cannot reach high %filled values, which is on
average 90.49%, but at the same time, it produces a high average traveled
distance, which is always above 2900. The computing time increases almost
linearly with the number of ALNS iterations performed. Among the three
SBPA configurations, the RS function by Voccia et al. (2019) achieves a
good 91.22% of average %filled, being better than both AS and ED. The
traveled distance is also usually lower for RS, whereas the computing times
are quite similar. The B&R algorithms obtained the best quality solutions,
with an average %filled value above 92% for all configurations. In addition,
their computing time is similar, if not lower, to that required by the SBPA.
Among the consensus functions, both RS and AS perform very well, and ED
has a slightly weaker performance.

The use of 1000 ALNS iterations allows almost all algorithms to produce
their best results, but this is obtained at the expense of high computing
times. The work by Hvattum et al. (2006) affirmed that a better solution
to the subproblem did not necessarily lead, on their instances, to a better
overall solution of the dynamic problem. Our results show that an increase
in the ALNS iterations can lead to higher %filled values, as can be noticed
by the last overall average line in the table. However, we believe that a
good trade-off between quality and time is obtained by using 100 ALNS
iterations, and we kept this value in all the successive computational tests.

Next, we evaluate our algorithms by attempting different time horizon
strategies. The first one, proposed by Voccia et al. (2019) and discussed in
Section 4.4, works on the size of the sampling horizon by maintaining the
requests that appear in the next p instants of time. The newly-introduced
CDS strategy maintains in the scenarios only the fictive requests that have a
release time lower than the farthest end time window of any known request
plus a constant time p.

The results of the first horizon strategy are shown in Table 2, where we
attempted different p values. We tested all algorithms from Table 1, except
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Table 1: Attempting different ALNS iterations

ALNS It.=50 ALNS It.=100 ALNS It.=250 ALNS It.=500 ALNS It.=1000 average

algorithm %filled  dist. time %filled  dist. time %filled dist. time %filled dist. time %filled dist. time %filled

Reoptimization 90.43 3007.5 0.1 90.26 2984.9 0.3 90.54 2977.4 0.6 90.58 2993.6 1.1 90.65 2969.3 2.2 90.49

SBPA-RS 90.88 2709.5 117.0 91.58 2693.6 194.7 90.84 2640.8 427.3 90.97 2628.4 821.2 91.83 2625.8 1640.1 91.22
SBPA-AS 90.53 2869.4 109.6 91.30 2851.2 182.1 90.65 2814.1 398.4 90.86 2814.9 749.5 90.94 2819.2 1484.0 90.86
SBPA-ED 90.15 2775.2 116.1 90.51 2763.9 196.6 90.39 2728.6 435.3 90.64 2714.1 831.6 90.61 2683.1 1627.9 90.46
B&R-RS 91.67 2390.5 105.5 92.16 2405.8 172.1 92.26 2394.5 373.5 92.12 2383.8 713.9 92.50 2400.8 1403.5 92.14
B&R-AS 92.14 2421.5 94.3 92.20 2428.4 150.1 91.92 2421.0 313.9 92.08 2419.5 589.2 92.35 2416.0 1171.8 92.14
B&R-ED 91.71 2417.9 102.1 91.97 2402.8 162.7 92.26 2414.8 351.3 92.20 2411.1 659.5 92.38 2404.6 1327.8 92.10
average 91.07 2655.9 92.1 91.43 2647.2 151.2 91.27 2627.3 328.6 91.35 2623.6 623.7 91.61 2617.0 1236.8 91.35

for the Reoptimization heuristic, which is not affected by the horizon strat-
egy. The columns have the same meanings as those of Table 1. Intuitively, a
smaller time horizon requires shorter computation times and provides good
solutions because the problems are smaller. Larger time horizons should
provide more robustness by requiring more time to compute, but they could
possibly lead to worse solutions because of the increased size of the problems
solved.

The results in Table 2 show that among the SBPA configurations, the
best %filled and dist. average values are achieved with function RS and
p = ¢ (i.e., maintaining all the requests of the day in the sampled scenarios).
The computing times are quite similar for all SBPA configurations, and they
increase with the size of the time horizon, with AS being slightly faster than
RS and ED. The B&R results are better than those obtained with the SBPA
configurations, but the improvement over SBPA decreases when the size of
the time horizon increases. The best results are obtained by configurations
RS and ED for p = co. The computing times are always shorter than those
required by the SBPA. The difference is remarkable for p = oo, where the
B&R algorithm requires on average about two-thirds of the time spent by
the SBPA approaches. The work by Voccia et al. (2019) concluded that a
larger value of the time horizon does not necessarily lead to a better solution,
but our results show that, on the contrary, the largest value (i.e., p = 00)
leads to the greatest performance in terms of solution quality.

In Table 3, we evaluate the same algorithms of Table 2 but using the
CDS strategy. We vary the time horizon by attempting different values of
p, from —30 to +15. Both SBPA and B&R algorithms appear to be very
robust with respect to changes in this parameter. The computing times
just slightly increase when p increases, whereas %filled and dist. remain
quite untouched. Once more, we can notice a better behavior of the B&R
approaches over the SBPA ones.
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Table 2: Attempting different time horizons (Voccia et al. 2019 strategy)

p=15 p=30 p=60 p=120 p=00
algorithm %filled  dist. time %filled dist. time %filled dist. time %filled dist. time %filled dist. time

SBPA-RS 90.82 2781.1 74.9 91.22 2655.2 118.4 91.57 2693.6 202.8 91.28 2729.8 374.5 92.22 2601.9 1146.2
SBPA-AS 90.53 2925.5 68.5 91.15 2818.2 107.7 91.30 2851.2 189.2 90.60 2993.4 351.5 91.59 3071.1 1067.2
SBPA-ED 90.85 2776.6 73.8 90.48 2688.1 120.1 90.51 2763.9 203.9 90.37 2827.6 368.6 89.88 2837.3 1124.0
B&R-RS  91.73 2371.8 58.4 91.33 2374.3 95.0 92.16 2405.8 171.2 92.91 2459.8 336.5 92.93 2578.0 816.1
B&R-AS  91.04 2417.1 50.4 91.29 2389.2 79.4 92.20 2428.4 149.6 92.39 2482.1 297.3 92.82 2607.8 735.8
B&R-ED  91.50 2363.4 56.4 91.64 2378.1 93.3 91.97 2402.8 166.1 92.74 2472.0 321.0 92.94 2609.0 761.5

average  91.08 2605.9 63.7 91.18 2550.5 102.3 91.62 2590.9 180.5 91.71 2660.8 341.6 92.06 2717.5 941.8

The largest average %filled value of 92.14% is achieved for both p = 0
and p = 15, with a slight smaller time for p = 0. The values obtained are
better than those shown in Table 2, where the best average %filled value is
92.06%, and this proves the relevance of the newly-introduced CDS strategy.
In the next tests, we hence use the CDS strategy with p = 0. Notice that
this means that we consider only fictive requests whose release time is within
the known request’s time windows.

Table 3: Attempting different time horizons (correlated-data strategy)
p=—30 p=—15 p=0 p=15
algorithm %filled  dist. time %filled dist. time %filled dist. time %filled  dist. time
SBPA-RS  91.83 2746.2 729.5 92.03 2742.1 746.0 91.46 2749.6 768.2 92.12 2739.0 789.1
SBPA-AS  91.48 3026.8 687.1 91.05 3026.6 710.1 91.55 3051.6 734.9 91.26 3028.6 753.6
SBPA-ED  90.43 2823.1 714.3 89.57 2830.2 731.6 90.80 2852.5 751.2 90.57 2862.0 774.3
B&R-RS  93.35 2526.8 513.7 93.41 2531.6 527.9 92.90 2542.3 535.6 92.93 2547.5 557.5

B&R-AS 9292 2556.2 459.8 93.37 2559.3 479.2 93.21 2570.9 493.6 93.14 2575.7 509.7
B&R-ED 92,61 2522.5 479.6 92.65 2538.5 498.1 92.92 2557.3 517.0 92.84 2554.5 532.7

average 92.11 2700.3 597.3 92.01 2704.7 615.5 92.14 2720.7 633.4 92.14 2717.9 652.8

The last parameter that we evaluate in this section is the number of
sampled scenarios to adopt. In Table 4, we consider the same approaches
used in the previous tables, and test them with a number of sample sce-
nario that varies from 5 to 30. We can notice that the number of scenarios
positively affects the %filled values, which increase slightly but constantly.
Also, the distance increases slightly, but this might be due to the higher
number of requests delivered. As expected, the number of scenarios has a
relevant impact on the computing times. Voccia et al. (2019) indicated that
10 scenarios are sufficient to attain the highest %filled values and the lowest
traveled distances. Based on the results we obtained, we opted to use 30
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scenarios in all next experiments. Accordingly, we decided to adopt the AS
consensus functions, which is the function that gives the best results for 30
scenarios for both SBPA and B&R.

Table 4: Attempting different numbers of sampled scenarios

Scenarios=5 Scenarios=10 Scenarios=20 Scenarios=30
algorithm %filled  dist. time %filled dist. time %filled dist. time %filled  dist. time
SBPA-RS 92.14 2793.5 125.4 91.84 2781.1 252.2 92.32 2760.2 506.0 91.46 2749.6 749.4
SBPA-AS 91.15 3032.2 122.3 91.41 3055.7 240.6 91.25 3036.4 482.8 91.55 3051.6 T714.7
SBPA-ED 90.49 2881.5 123.5 90.18 2846.0 248.5 90.26 2844.7 495.5 90.80 2852.5 732.9
B&R-RS  92.24 2515.3 57.9 92.63 2516.6 140.2 92.80 2535.5 329.9 92.90 2542.3 522.4
B&R-AS  91.80 2535.6 54.2 92.65 2532.0 129.5 92.91 2568.0 307.3 93.21 2570.9 480.3
B&R-ED  92.01 2527.2 57.0 92.73 2530.8 133.8 93.03 2544.8 313.9 92.92 2557.3 503.3
average 91.64 2714.2 90.1 91.90 2710.4 190.8 92.09 2714.9 405.9 92.14 2720.7 617.2

Summarizing, based on the sensitivity analysis that we performed, we
use 100 ALNS iterations, CDS strategy with p=0, AS consensus function,
and the number of scenarios equal to 30. These parameters are used to
obtain the results of all approaches in the next sections.

5.2 Evaluations of Preemptive Depot Returns

In Table 5, we evaluate the problem variant that considers PDRs. We con-
sider the Reoptimization heuristic and the SBPA and B&R algorithms with
the AS consensus function. Each approach is tested by allowing or not
PDRs. We present the average values obtained on the set of 125 instances
already adopted in Section 5.1. To gain some more insight on the impact of
PDRs, we tested the algorithms by varying the number of available vehicles,
ranging from 6 to 12. The last three groups of lines in the table show the
overall average values for, respectively, %filled, dist., and time, by consider-
ing all three algorithms with and without PDR, and the relative deviations
between these values (computed as (zppr — Zno PRD)/%no PDR, Where z is
one of the three measures).

The use of PDRs allows to obtain very interesting results. It consistently
increases the percentage of requests filled with no PDR. This can be noticed
for all algorithms, with SBPA-AS being the one with the greatest benefit.
Considering the overall averages, the increase in the %filled value is particu-
larly evident when the number of vehicles is small, and decreases when it is
higher. This is due to the larger need for optimization when the problem is
more constrained, and the vehicles are a very scarce resource. Another in-
teresting behavior can be noticed for the traveled distance. For small vehicle
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numbers, the PDRs consistently increase the number of requests delivered,
and this automatically leads to larger distance values. When, instead, the
fleet is large, the increase in %filled is not so relevant, but PDRs manage
to decrease the traveled distance, which is another positive result. It is
also worth noticing that when PDRs are not allowed, B&R-AS consistently
achieves the best results in terms of %filled. When, instead, PDRs are al-
lowed, B&R is better for instances with 10 or 12 vehicles, whereas SBPA-AS
is better for 6 and 8 vehicles. In terms of computing times, PDRs require
just a slightly larger computing effort with respect to the case with no PDRs,
ranging from 2.3% to 14.1% and being 6.6% on average. Overall, we can
conclude that the use of PDRs is important and can lead to relevant benefits
in SDDPs.

Table 5: Results when preemptive depot returns are allowed

vehicles=6 vehicles=8 vehicles=10 vehicles=12 average
algorithm no PDR PDR no PDR PDR no PDR PDR no PDR PDR no PDR PDR
reoptimization 76.86 81.96 84.90 88.35 90.26 92.19 93.87 94.57 86.47 89.27
SBPA-AS 77.55 85.02 86.07 91.10 91.55 94.00 94.25 95.85 87.35 91.49
B&R-AS 79.31 83.79 88.25 90.87 93.21 94.53 95.63 96.08 89.10 91.32
average %filled 77.91 83.59 86.41 90.11 91.67 93.57 94.59 95.50 87.64 90.69
% filled deviation (%) 7.3 4.3 2.1 1.0 3.5
average dist. 2169.4 2262.7 2589.1 2631.3 2869.1 2869.7 3027.3 2994.6 2663.7 2689.6
dist. deviation (%) 4.3 1.6 0.0 -1.1 1.0
average time 456.3 520.8 436.5 459.8 398.4 407.7 381.6 394.3 418.2 445.6
time deviation (%) 14.1 5.3 2.3 3.3 6.6

Table 6 details the average %filled results from Table 5 by considering the
five types of time windows that have been adopted in the instance creation
(as described at the beginning of this section). Each type has been adopted
for 25 out of 125 instances. Hence, each value in the table corresponds to
an average of 100 solutions, obtained by solving the 25 instances with a
fleet of 6, 8, 10, and 12 vehicles. We believe that this analysis is of interest
because we can notice a different impact of PDRs on the time window types.
For TW.d1, TW.d2, and TW.f, which are all characterized by a somehow
regular time window start time (either fixed in the future or coincident with
the request release date), the impact is negligible, and in a few cases, even
negative. For TW.h and TW.r, which are characterized by variegate and
even randomly dispersed time window start times, the impact is instead very
relevant, being equal to 8% or 9% on average and even 10% for SBPA-AS.
We can conclude that, when solving a SDDP, it is important to consider the
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structure of the time windows to decide whether to allow or forbid PDRs.

Table 6: Impact of preemptive depot returns on %filled per time window
type

reoptimization SBPA-AS B&R-AS average

TW type no PDR PDR noPDR PDR noPDR PDR noPDR PDR
TW.d1 84.94 84.42 85.56  85.21 86.73  86.59 85.75 85.41
TW.d2 94.58  93.88 94.99 95.13 95.46  95.54 95.01 94.81
TW.f 94.78  94.22 95.04 95.11 95.42 9541 95.08 94.89
TW.h 77.89  86.26 80.22  90.29 83.19 89.24 80.43 88.78
TW.r 80.18 87.72 80.97 90.98 84.71  89.79 81.95 89.63
average 86.47  89.30 87.35 91.49 89.10 91.32 87.64 90.70

To conclude this section, we present an evaluation of our algorithms on
the instance set which has been proposed by Ulmer et al. (2019) to evaluates
PDRs. The set is made by three groups of 54 instances each, differentiated
among them by the degree of dynamism (DOD). The DOD represents the
percentage of requests that are dynamically revealed over the time horizon
over the total number of requests. Three values of DOD have been used,
namely, 25%, 50%, and 75%. In all instances, just a single vehicle is available
to perform the deliveries.

Preliminary experiments that we performed showed that both the SBPA
and B&R algorithms consume too much time and were not effective on
these instances. This is due to the fact that these algorithms have not been
tailored to deal with instances without time windows and with a single-
vehicle. In such a case, when the number of vehicles is so small compared
to the number of requests, the best option is usually to start delivering as
soon as possible, and hence the reoptimization heuristic represents the best
strategy. Of course, one still needs to decide how to route the vehicles along
their multiple routes.

The results that we obtained are shown in Table 7, where we compare
the reoptimization approach, with and without PDRs, with the approach by
Ulmer et al. (2019). The latter approach is called APDR in their paper, and
makes use of PDRs. For the reoptimization heuristic, we present the average
values of #filled, traveled distance, number of routes, and computing time.
The #filled value gives the number of requests that have been served among
those that are dynamically revealed and is the objective function used in
Ulmer et al. (2019). The number of routes corresponds to the number of
times the vehicle returns to the depot. For APDR, we only know the average
#filled value.
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We first note that the smaller is the DOD, the smaller is the #filled value.
This is simply imputed to the fact that there are fewer dynamic requests
to serve. Independently from that, the Reoptimization heuristic performs
better than APDR for all DOD values and both with and without PDRs. In
fact, the best #filled values are obtained when PDRs are not allowed. The
use of PDRs also impacts on the average number of routes per vehicle, which
increases. This is reasonable because the vehicle performs more returns to
the depot. Instead, no relevant effect can be noticed for traveled distance,
with just a slight decrease when PDRs are used, and for computing time,
which is all very low.

In contrast with what was stated by Ulmer et al. (2019), our results show
that PDRs are not useful on this set of instances to improve the number of
requests filled. This can be imputed to the fact that there are no time
windows. The very positive results of the reoptimization heuristic confirm
the strength of the routing algorithm that we developed (see Section 4.5),
which achieves good-quality solutions with very short computing times.

Table 7: Comparison on Ulmer et al. (2019) single-vehicle instances

reoptimization no PDR reoptimization PDR Ulmer et al. (2019)

DOD inst. #filled dist. routes time #filled dist. routes time #filled
25% 54 1.87 235.5 1.2 3.3 1.84 233.5 1.5 3.5 1.38
50% 54 597 341.7 1.8 0.4 5.34 336.0 2.4 1.3 4.55
75% 54 13.81 401.1 2.2 1.0 12.16  390.2 3.2 0.9 11.39
average 7.22  326.1 1.7 1.6 6.45 319.9 2.3 1.9 5.77

5.3 Comparison with Voccia et al. (2019)

In this section, we compare our algorithms with those of Voccia et al. (2019)
on their entire set of homogeneous instances with A = 0.2. This is composed
of 4050 instances, all characterized by a fleet of three vehicles. The results
that we obtained are presented in Table 8. In “Offline”, we show the results
obtained on the static variant of the problem in which all information is
assumed to be known in advance. This variant is solved with a unique call
to the routing optimize function of Section 4.5. We then show the results
obtained with the most relevant configurations of Reoptimization, SBPA,
and B&R algorithms, in our implementations and in the implementation by
Voccia et al. (2019) as well. For Voccia et al. (2019), we show the results
of their Reoptimization and SBPA-RS algorithms (which they call with and
without sampling, respectively), both of which do not use PDR. Among our
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methods, we test Reoptimization with and without PDR, SBPA with RS
and AS functions and no PDR, and B&R-AS with and without PDR.

For each algorithm, we present the values already discussed in the previ-
ous tests, in addition to the number of events (i.e., the number of times the
algorithm is invoked) and the time per event (computed as time/events).
For Voccia et al. (2019), we only know the average %filled and time per
event values, which have been taken from their papers. Their algorithms
were implemented in Python and tested on a computing cluster equipped
with a combination of 2.6 GHz and 2.9 GHz processors running CentOS 6.3,
which can be considered similar to the computer we used for our tests.

The Offline algorithm shows that the best possible %filled value achiev-
able (with our heuristic) corresponds to more than 86%. This indicates that
the more information we have about the problem, the better results we can
obtain. Among the Reoptimization methods with no PDR, our algorithm is
faster than the one by Voccia et al. (2019) and can serve many more requests
(53.29% vs. 36.81%). This can be imputed to the efficiency of our routing
optimize function and probably also to a difference in the code implementa-
tions. The Reoptimization method with PDR obtains a remarkable %filled
of 60%, which proves, as noted in the previous sections, that this simple
approach is good enough on instances with small fleet sizes.

For what concerns SBPA-RS, our method is faster and more effective
than the one by Voccia et al. (2019) (1.9 vs. 95.2 seconds of computing time
per event, and 51.53% vs. 41.99% served requests). Further improvements
are obtained by the SBPA that adopts the new AS consensus function,
which increases the %filled and slightly decreases the time per event. This
is obtained at the expense of a reasonable increase in the traveled distance
and in the number of routes.

The best results are obtained, once more, by the B&R algorithms. When
PDRs are not allowed, B&R-AS can serve 54.26% of the requests, which is
about 1% better than Reoptimization and our SBPA-RS. When they are
allowed, the %filled increases to slightly more than 60%. The number of
events faced by the B&R methods is about one-third of those faced by the
SBPA ones. However, their time is larger (about three seconds per event
vs. less than two) because of the increased complexity of the procedures
invoked at each event. Nevertheless, the computing times per event remain
very low and perfectly compatible with a real-world use of the methods.

The positive results that we obtained for the case with three vehicles can
also be confirmed for other fleet sizes, as graphically depicted in Figure 1.
We executed all algorithms given in the legend of the figure on the entire set
of instances by varying the number of vehicles as shown on the z-axis. The
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Table 8: Comparison with Voccia et al. (2019) (three vehicles)

algorithm PDR  %filled dist. time routes events time/events

Offline - 86.51 1289.3 23.2 14.9 1.0 23.2
Reoptimization NoPDR  53.29 1214.7 0.2 12.3 87.0 0.0
Reoptimization PDR 60.02 1318.6 0.4 13.7  138.0 0.0
Reopt. (Voccia et al. 2019) NoPDR  36.81 - - - - 3.3
SBPA-RS (Voccia et al. 2019) NoPDR  41.99 - - - - 95.2
SBPA-RS NoPDR  51.53 1084.0 865.7 11.5  461.8 1.9
SBPA-AS NoPDR  53.27 1236.6 766.5 13.4  453.7 1.7

B&R-AS NoPDR  54.26 1236.2 335.2 11.7  113.8 3.1

B&R-AS PDR 60.16 1304.4 377.6 13.4 116.9 3.3

y-axis shows the average %filled value achieved on the different runs. The
Offline algorithm is, quite obviously, the one obtaining the best performance,
and the second and third ones are the B&R and Reoptimization methods
with PDR. These two methods have almost coincident performance for small
fleet sizes (up to 4 vehicles) but then diverge because B&R performs better.
Then, they asymptotically converge when the number of vehicles becomes
very large. Below these methods, we can find the ones that do not allow
PDR, among which the B&R-AS is the best one.

6 Conclusions and Future Research

In this paper, we studied dynamic vehicle routing problems where stochas-
tic customers request deliveries with strict and close time windows, and the
aim is to maximize served requests and minimize traveled distances. This
type of problem is known in the literature as the same-day delivery problem
and is of great relevance because it models a number of real-world appli-
cations, including the delivery of online purchases. We developed a good
set of solution algorithms, ranging from a simple reoptimization heuristic
to a sophisticated branch-and-regret in which sampled scenarios are used to
anticipate decisions. We tested the algorithms on a large set of benchmark
instances from the literature, obtaining very favorable comparisons with
both Voccia et al. (2019), on the basic problem variant, and Ulmer et al.
(2019), on the problem variant where preemptive returns of the vehicles to
the depot are allowed. Notably, on a large benchmark set of 4050 instances
from Voccia et al. (2019), we raised the rate of served requests from about
42% to more than 60% and, at the same time, we decreased the computing
time per event from about 95 seconds to just 3.

These good results have been obtained by developing dedicated algo-
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Figure 1: Percentage of requests filled as the number of vehicles increases
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rithms that employ features from the literature as well as new techniques,
and by performing a careful calibration of the parameter settings. Overall,
we found out that a simple Reoptimization heuristic is good enough to pro-
vide efficient solutions for cases where the number of vehicles is small and
thus departing as soon as possible is usually the best option. In such cases,
it is still important to devote a good effort to optimize the vehicle routes, for
which we found convenient to adopt a classical adaptive large neighborhood
search (Ropke and Pisinger 2006).

To obtain better results, it is important to make use of stochastic infor-
mation. As suggested by Bent and Van Hentenryck (2004), we made use
of consensus functions to select the best set of routes when both real and
sample requests are taken into account. We found out that the consensus
functions have an important impact on the performance of the algorithms
and that there is still relevant research to be done in this field. Indeed, a
new consensus function that we proposed, based on assignment similarity,
is the one that allowed us to obtain the best results on average.

The best performance has obtained by branch-and-regret algorithms.
Naive implementations of these algorithms may be very time-consuming,
as a large number of alternatives must be taken into considerations and
optimized. We found out that a good management of the events might
consistently decrease the computing time and, at the same time, still allow
to get very high rates of served requests.

In the literature on dynamic stochastic vehicle routing problems, a small
problem variation might make it challenging to devise a fair comparison
among different algorithms. This difficulty is increased by the fact that
instances are complicated, as they typically contain not only the realized
requests but also the sample stochastically generated scenarios. In our work,
we pursued a fair comparison among different methods, either new or from
the literature, and we tried to foster new comparative research by making
instances publicly available. These classes of problems are very relevant
as they model many emerging real-world applications, and we believe they
should be studied in detail in the next future.

There are, indeed, several interesting future research directions to follow.
In terms of methodology, we believe that there is still room for improvements
in branch-and-regret algorithms by developing new branching rules, alterna-
tive consensus functions, and new mechanisms that make better use of the
information from the scenarios. In addition, we believe good results could
be obtained by a deep study of immediate request acceptance policies, as in
Klapp et al. (2020) and Marlin and Thomas (2020), so as to assign as soon
as possible a request to a third-party logistic operator. This could decrease
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waiting times for the customers, but at the possible expense of an increase
in the overall delivery costs.

In terms of optimization problems, as our algorithms are already equipped
to solve dynamic pickup and delivery problems, it would be interesting to
study their performance on different emerging problem variants. Among
these, we would like to cite one-to-many-to-one problems, as in Bruck and
Tori (2017), where, in addition to the delivery of merchandise, one has to
collect further merchandise to be brought back to the depot. This case could
involve stochastic customers, stochastic demands and capacitated vehicles.
Multi-pickup and delivery problems with time windows (see, e.g., Naccache
et al. 2018 and Aziez et al. 2020) too represent an emerging variant with
relevant applications. In these problems, a request is composed of several
pickups of different items, followed by a single delivery at the customer lo-
cation. Stochastic aspects might hence concern both customer and pickup
locations.

Finally, we mention the class of meal delivery problems (see, e.g., Ulmer
et al. 2021), where the customers require food from restaurants and the aim
is to deliver it promptly by considering the time in which it will be ready.
There are thus two sources of uncertainty in these problems: the customers,
which are unknown until they place an order, and the food release dates at
the pickup locations.
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