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Abstract. Transportation activities within hospitals are becoming more complex due to the 
expansion of the number of materials and equipment used such as an increased use of 
disposable items. One of the most powerful ways of achieving more efficiency of 
transportation systems in hospitals is via the labor-saving technology of logistics processes 
using automated guided vehicles (AGVs). In this paper we study the fleet sizing and routing 
problem with synchronization for AGVs with dynamic demands (FSRPS-AGV) in the context 
of a real-life application. The goal is to simultaneously optimize the number and types of 
carts and AGVs needed to perform all daily requests in a hospital. Each request is 
composed of several tasks consisting of moving material from a pickup point to a delivery 
point using different types of carts. Operation synchronization among the tasks of the same 
request and movement synchronization with respect to AGVs and carts are major 
challenges of the adressed problem. In this paper, we describe, model, and solve the 
FSRPS-AGV. We introduce a mathematical formulation and propose a powerful 
matheuristic. The algorithm is based on a fast and efficient dynamic reoptimization of the 
routes upon the arrival of new requests. We compare the performance of our matheuristic 
under different scenarios, including against the solutions obtained by an oracle, showing 
that it can handle dynamism of demand very well and achieve near-optimal solutions. We 
assess our methods using small and large instances generated based on real data from an 
industrial partner. Finally, we provide managerial insights with respect to the number of 
AGVs and carts that should be acquired by our industrial partner. 
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1 Introduction

Healthcare systems around the world are facing many challenges such as increasing costs
of treatment, growing eldery population, and shortage of doctors, nurses, and ancillary
staff [Bač́ık et al., 2017]. These and other challenges bring up the need for improving
hospital operations in order to increase their efficiency and effectiveness. Chikul et al.
[2017] state that approximately 80% of healthcare expenses are related to patient care
activities, thereby, considerably savings can be obtained by improving clinical practices
by better managing supplies, labour, equipment, logistics, and facilities. Transportation
activities in hospitals are complex due to the large number of materials and equipments
used, justifying the need for more efficiency and productivity of transportation systems.
One of the most powerful ways of achieving these goals is via the automation of logistics
processes, for example, employing automated guided vehicles (AGVs) [Bač́ık et al., 2017].

The design of AGV systems requires taking into consideration a set of tactical and
operational issues: system design, dispatching, routing, scheduling, fleet sizing, and flow
path design [Vis, 2006]. In this paper, we study the fleet sizing and routing problem with
synchronization for AGVs with dynamic demands (FSRPS-AGV). In this problem, each
one of the daily requests is composed of at least two tasks, and each task is defined by
a pickup-delivery pair. For instance, an AGV performing a request with two tasks starts
by driving to the pickup point of the first task to pickup a cart of a given type. Then,
the AGV drives to the delivery point to deliver the cart. Subsequently, this delivery
point is the origin of the next task of the AGV. We assume that the tasks of the same
request can be served by multiple AGVs, hence, a synchronization challenge is raised in
this case with respect to the temporal coordination of AGVs serving the tasks of the same
request. One may argue that one way to avoid synchronization with respect to temporal
aspect in some transportation systems is to have disjoint time windows whenever it is
possible; however, it is important to mention that in many cases more efficiency can be
achieved by having overlapping windows. Moreover, a comparison between two AGV fleet
exploitation strategies is conducted in Section 5.3.3: in the first one, only one AGV is
used to satisfy a full request, whereas in the second one many AGVs are synchronized to
serve the tasks of a request. In contrast, the tasks of the same request must be served
using the same cart. Consequently, one may observe that this problem is charecterized by
two fleets with different operating modes. Therefore, another synchronization challenge
is related to the spatial coordination of AGVs and carts, meaning that the carts must
always move with AGVs, called movement synchronization. Finally, it is also important to
highlight that AGVs and carts are used to serve the requests of 10 different departments
at the hospital; while the AGV fleet is homogeneous, the cart fleet is heterogeneous
and is composed by 10 different types of carts including: food carts, waste carts, cage
carts, pharmacy carts, and other types of carts depending on the transportation task
that must be performed. Carts cannot be interchanged, meaning that each cart type
is limited to specific transportation tasks. Our paper finds a real-life application in the
context of a collaboration with the healthcare institution “Centre hospitalier universitaire
(CHU) de Québec Université Laval”. This setting is characterized by high uncertainty and
dynamic demands. In this system several AGVs must be available to perform automated
transportation tasks. A task, such as to deliver food, transport equipment, recover trash,
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etc, requires that a specific type of cart be transported by an AGV. Thus, the automation
of logistics operations using AGVs requires some key optimization decisions: optimizing
the number of expensive carts and AGVs used to perform all daily requests while ensuring
a high service level.

In Figure 1, we show an example derived from the real-data provided by our partner, in
which a food delivery request is composed of two tasks: the first task consists of picking up
a food cart from the food preparation section and delivering it to a given client inside the
hospital, while the second task consists of picking up the same cart (with food remains)
from the client and delivering it to the food soil department where it will be cleaned before
it is ready to be sent again to the food preparation area by another task. In this example,
an empty AGV must be sent from the depot to perform the first task of this request, then
the same or another AGV is responsible for performing the second task. When no more
tasks exist, the AGV drives back to the depot for storage and charging for example. In
this example, it is clear how synchronization plays an important role in satisfying these
tasks. A time window (TW) is associated with each task, and more than one AGV may
be used to fulfill the tasks of a given request.

Food

prep.

Food preparation

Food

soil

Food soil department

D

Depot
AGV

AGV

Client

AGV + cart

AGV + cart

Task # 1

Food

prep.
Client

Task # 2

Food

soil

Client

Figure 1: An example of satisfying a request with two tasks using AGVs

In this paper, we model and solve the FSRPS-AVG using mathematical programming.
In order to cope with large instances and real-time operations, a powerful matheuristic
algorithm is also proposed. This algorithm handles dynamic demand as the routes are re-
planned immediately upon the arrival of new requests. Each time new requests arrive, we
solve a static problem that contains all the known requests that have not been served so
far. The solution procedure starts by heuristically optimizing the number of AGVs, then
based on these routes, an extended min-flow problem is solved to optimize the number
of carts. We also solve a static version of the problem which assumes the knowledge
of all requests at the start of the day. From fleet sizing perspective, to the best of our
knowledge, this paper is the first to address a double fleet sizing problem of AGVs and
carts while taking into account multiple synchronization constraints and several types of
carts.

The remainder of the paper is organized as follows. Section 2 is devoted to the litera-
ture review. Section 3 provides a formal description and a mathematical formulation for
the problem. Section 4 presents an overview of our matheuristic. Detailed computational
experiments are presented in Section 5 and conclusions follow in Section 6.
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2 Literature review

According to the survey of Vis [2006], AGVs enable a driverless transportation system
that is used for the movement of materials. Their use has then grown enormously and
the number of applications has increased significantly. The main application areas lie
in flexible manufacturing systems [Nishi et al., 2011], container terminals [Kim and Bae,
2004, Chen et al., 2020], warehouses [Boysen et al., 2019], and it has recently become more
popular in the healthcare industry [Bač́ık et al., 2017, Chikul et al., 2017]. For healthcare
facilities, AGVs are used to handle a variety of materials (samples, food, medicines, waste,
instruments, laundry, etc). Different types of carts are also used in material handling
operations by AGVs such as: waste carts, food carts, flatbed carts, etc.

The FSRPS-AGV shares many characteristics with other problems from the literature,
namely the pickup and delivery problem with TW (PDPTW), the dynamic vehicle routing
problem (DVRP), and the VRP with trailers and transshipments (VRPTT). These are
briefly reviewed next.

In the PDPTW, when a vehicle serves a customer request, it must pickup a given
item at the origin location and deliver it to its destination. The FSRPS-AGV resem-
bles the PDPTW as each task is composed of an origin-destination pair and each re-
quest is composed of multiple origin-destination tasks. Different heuristic algorithms
have been proposed to solve variants of the PDPTW, including adaptive large neighbor-
hood search (ALNS) [Pisinger and Ropke, 2007], particle swarm optimization [Ai and
Kachitvichyanukul, 2009], parallel neighborhood descent [Subramanian et al., 2010], tabu
embedded simulated annealing [Şahin et al., 2013], and a population-based metaheuris-
tic of [Cherkesly et al., 2015]. Several exact algorithms have also been proposed for
the PDPTW including the branch-and-cut [Ropke et al., 2007], branch-cut-and-price
of [Ropke and Cordeau, 2009, Cherkesly et al., 2014, Veenstra et al., 2017], and a set
partitioning-based algorithm [Baldacci et al., 2011].

The DVRP is a routing problem with many real-life applications in logistics. In the
DVRP, the data available to the planner may change during the execution of the routes.
For instance, the data can be in the form of customer requests to deliver items or requests
for trips from an origin to a destination that appear dynamically. Pillac et al. [2013]
surveyed contributions on the DVRP and classified routing problems from the perspective
of information quality and evolution. Lund et al. [1996] defined the concept of degree of
dynamism δ as the ratio between the number of dynamic requests nd and the total number
of requests ntot as δ = nd

ntot
. The survey of Ritzinger et al. [2016] summarizes the literature

in the area of dynamic and stochastic VRPs. Azi et al. [2012] studied a DVRP in which
vehicles are used to perform deliveries over multiple routes. The problem was solved
heuristically using ALNS where real-time decisions concerned the acceptance of the new
requests, not about their service. This was done by generating multiple scenarios and
solving them during the execution. A generalization of the DVRP is the dynamic PDP
[Berbeglia et al., 2010] in which the transportation decisions are performed in real-time
(Arslan et al. [2019], Mitrović-Minić and Laporte [2004]).

In the VRPTT, a set of customers with a given supply must be visited by a limited
fleet of heterogeneous vehicles (lorries and trailers) to collect it. The lorries can move
on their own, whereas trailers must be pulled by a lorry. Customers differ as some of
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them can be visited by a lorry with a trailer while others can only be visited by a lorry
without a trailer. Load transfers from lorries to trailers are performed at specific points
called transshipment locations. In addition to TW, synchronization requirements with
regard to spatial, temporal, and load aspects must also be taken into consideration. The
VRPTT has received less attention in the literature despite its numerous applications
[Drexl, 2013]. The problem can be solved using the branch-and-cut algorithm of Drexl
[2014]. A special case of the VRPTT which also deals with trailers is the truck and
trailer routing problem (TTRP) [Derigs et al., 2013, Parragh and Cordeau, 2017]. In the
TTRP which was orginally introduced by Chao [2002] a fleet of trucks and trailers serves
a set of customers. Some customers with accessibility constraints must be served just
by truck, while others can be served either by truck or by a complete vehicle (a truck
pulling a trailer) in a similar way as in the VRPTT [Villegas et al., 2013]. However, an
additional restriction on the truck-trailer assignment is imposed, that is, only one truck
is responsible for pulling each trailer, and it is the only one that can transfer a load into
the trailer. Therefore, the only synchronization requirement in this case is related to
customer covering which is also known as task synchronization. Drexl [2013] stated that
the VRPTT constitutes an archetypal representative of the class of VRPs with multiple
synchronization constraints (VRPMSs, e.g., Fink et al. [2019], Lahyani et al. [2015]).
Synchronization requirements may also appear in many real-world VRPs such as delivery
and installation routing problems [Ali et al., 2021]. A classification of different types
of synchronization in the VRPMSs is given in Drexl [2012]. The FSRPS-AGV covers
all three synchronization types among the five introduced by Drexl [2012], namely, task
synchronization, operation synchronization, and movement synchronization.

AGV fleet sizing is an important problem which received considerable attention in the
literature. Egbelu [1987] proposed four analytical models to estimate the AGVs fleet size
in an FMS facility, based on several information sources such as the expected number of
loaded trips between stations and the number of workstations in the facility. Maxwell and
Muckstadt [1982] and Mahadevan and Narendran [1993] also proposed similar approaches
to tackle the problem. Rajotia et al. [1998] proposed a mixed integer programming model
to determine the optimal AGV fleet size in an FMS. Considering load-handling time,
empty travel time, waiting time and congestion time, the objective function is to minimize
empty trips made by AGVs. A simulation approach was used to validate the results of
the model. They concluded that analytical models either under-estimate or over-estimate
the vehicle fleet size required in a system. Vis et al. [2001] developed a minimum flow
algorithm to determine the number of AGVs required at a semi-automated container
terminal. They introduced network flow modeling for the problem. Vis et al. [2005]
studied the AGV fleet size problem under time window constraints at a container terminal.
They developed an integer linear programming model. The efficiency of this model was
tested under various conditions (e.g., unloading cycle times, buffer size). The results
were validated using a simulation model. The results show that the analytical model
slightly underestimates the fleet size compared to the best fleet size obtained by the
simulation approach. They concluded that the analytical model performs well in the
context of a container terminal. Vivaldini et al. [2016] studied a problem of estimation of
the minimum number of AGVs in a warehouse. The authors applied shortest job first rule
and tabu search algorithms to determine a task assignment, in addition to an enhanced
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Dijkstra algorithm applied for the conflict-free routing task. Other analytical approaches
estimating the required number of AGVs include: queuing models [Tanchoco et al., 1987,
Talbot, 2003, Choobineh et al., 2012], statistical approach [Arifin and Egbelu, 2000], and
multi-criteria decision modeling [Sinriech and Tanchoco, 1992]. Another research stream
focuses on using simulation approaches to determine the number of AGVs [Yifei et al.,
2010, Chang et al., 2014a,b, Pjevcevic et al., 2017].

In light of the reviewed literature relative to the AGV fleet size, we observe that the
double fleet size kind of problems have not yet been studied in the literature despite their
practicality. AGV systems where AGVs must be coupled with a specific cart in order
to perform a request are increasingly used in various industries such as in healthcare
industry [Pedan et al., 2017]. The high investment cost of carts in some AGV systems
such as the ones used in hospitals leads to the need of investigating the AGV and cart
fleet size simultaneously to lower the total investment cost of the entire AGV system.
One of the main challenges raised by this problem is related to the need to coordinate the
synchronization of an AGV to a cart in order to satisfy a given request.

3 Problem description and mathematical formulation

Let us start by presenting the static counterpart of the true dynamic version of the
FSRPS-AGV. In reality, not all requests are known at the beginning of the planning
horizon, but they rather arrive dynamically throughout the day. For the sake of this
description, we assume that all requests are known, or equivalently, that we model the
problem considering only the requests known at this time.

In this problem each node can represent either a pickup or a delivery point, however,
the graph can be similarly defined with one node for a full task (pickup and delivery).
Let N be the set of task nodes, the problem can be represented by a graph G = (V,A)
in which the set of vertices V = N ∪ {0, n + 1} where the starting and ending depots
are the same and are defined by nodes 0 and n + 1. Let R = {r1, . . . , rk} be the set of
requests to be routed such that k ≤ n. Each request r ∈ R is represented by a set of
transportation tasks. The number of tasks per request is variable, and in our application
it typically ranges between two and five. Let r(i) be the request associated with node
i ∈ N . Precedence constraints must be respected, meaning that the pickup node is visited
earlier than the delivery node. Moreover, precedence constraints must also be respected
when performing the tasks of each request r ∈ R such that they are completed in a
specific order. We consider a fleet of homogeneous AGVs sufficiently large to serve all the
requests such that K = {1, . . . , k} is the set of identical AGVs with capacity of carrying
one cart. We also consider a fleet of heterogeneous carts which is composed by h different
cart types with H = {1, . . . , h}. For each cart type h ∈ H, a sufficiently large number
of carts is available to serve the requests which use a cart of type h. Each cart type h is
associated with a cost, say, the price of purchase of one cart of type h. Note that only
one type of cart is used to serve each request, and it is known beforehand. Each time a
cart finishes the service of a given request, it can be reused to serve another request which
uses the same cart type. We define W = {(ri, rj) ∈ R × R| ri and rj use the same type
of cart} as the set of pairs of requests which use the same type of cart.
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The set of arcs is A = V × V minus arcs that lead to infeasible solutions. Let
A = Aa ∪ Ac where Aa is the set of arcs traversed by an AGV alone and Ac is the set of
arcs traversed by an AGV carrying a cart. Each vertex i ∈ V has a service time si and a
time window [ai, bi] allowing an AGV to arrive at i prior to ai but waiting until ai to serve
the node, and service must start not later than bi. AGVs can depart from the depot at
a0 and must return not later than bn+1. Furthermore, a travel time tij ≥ 0 is associated
with each arc (i, j) ∈ A. The triangle inequality holds for travel times as the distances
represent shortest paths.

The set of omitted arcs is divided into two sets: the set of cart only omitted arcs, and
the set of AGV and cart omitted arcs. For simplicity, we assume two requests r1, r2 ∈ R
such that r1 = {i1, i2, i3}, r2 = {i4, i5, i6} are the sets of nodes of r1 and r2, respectively.
The set of cart only omitted arcs includes: arcs from nodes i1, i2 to nodes of r2, arcs
between nodes i4, i5 and nodes of r1, arcs from node i3 to nodes i5, i6, arcs between
node i6 and nodes i2, i3, arcs from nodes i1, i2, i4, i5 to the end depot, and arcs from
the start depot to nodes i2, i3, i5, i6. In the case where requests r1 and r2 must be
served by different types of carts, all arcs between r1 and r2 and vice-versa are omitted.
The set of AGV and cart omitted arcs includes: arcs violating TW constraints and arcs
violating precedence constraints among the nodes of the same request such as the arc
(i2, i1) for request r1. Let A+

a (i) be the set of nodes j such that there is an arc from
i to j, that is, A+

a (i) = {j ∈ V |(i, j) ∈ Aa}. Similarly, A−a (i) = {j ∈ V |(j, i) ∈ Aa},
A+

c (i) = {j ∈ V |(i, j) ∈ Ac}, A−c (i) = {j ∈ V |(j, i) ∈ Ac}.
A solution to the FSRPS-AGV optimizes the number of AGVs and carts used to serve

all the requests while minimizing the travel time, and assigns the requests to the AGVs
and carts while routing them. The static version of the problem can be mathematically
formulated with parameters αj representing the cost of the cart used to serve node j,
and β representing the cost of one AGV (price of purchase of one AGV). We define the
following decision variables: xij equal to 1 if arc (i, j) is traversed by an AGV, 0 otherwise;
yij equal to 1 if arc (i, j) is traversed by a cart, 0 otherwise; and Si indicating the starting
time of service at node i ∈ V . The model can then be formulated as follows:

min
∑
j∈N

αjy0j +
∑
j∈N

βx0j +
∑

(i,j)∈Aa

tijxij (1)

s.t.
∑

j∈A+
c (i)

yij = 1 i ∈ N (2)

∑
j∈A−

c (i)

yji = 1 i ∈ N (3)

∑
j∈A+

a (i)

xij = 1 i ∈ N (4)

∑
j∈A−

a (i)

xji = 1 i ∈ N (5)

Sj ≥ Si + si + tij i, j ∈ r, r ∈ R, j � i (6)

Sj ≥ Si + si + tij −M (1− yij) (i, j) ∈ Ac, (ri, rj) ∈ W (7)

Sj ≥ Si + si + tij −M (1− xij) (i, j) ∈ Aa (8)
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ai ≤ Si ≤ bi i ∈ V (9)

xij, yij ∈ {0, 1} (i, j) ∈ A (10)

Si ≥ 0 i ∈ V. (11)

The objective function (1) minimizes the overall cost of carts, AGVs, and the travel
time. Constraints (2)–(5) are degree constraints requiring each node to be visited exactly
once by an AGV and a cart. Constraints (6)–(9) guarantee schedule feasibility with
respect to TWs. Here, M is a big number and can be set to the maximum return time
to the depot bn+1. Note that constraints (6) also handle synchronization requirements
with regard to temporal aspect among the nodes of the same request, and they preserve
the precedence order of nodes in r. Constraints (10) and (11) impose the nature and the
domain of the variables.

In the dynamic version of the problem, not all the requests are known in advance
but must be assigned to AGVs as the routes for serving previously assigned requests are
executed. Once new requests arrive, the routes are re-planned immediately. Each request
r ∈ R is given a release time Rr (i.e., the moment it is revealed on the time horizon)
which can be just a few minutes before the start of the TW of its first task. When solving
our model, we can accommodate dynamic requests as follows. The nodes of an assigned
request are fixed in their corresponding routes as soon as an AGV departs (from the depot
or a previously visited node) to serve the first node of the request. Accordingly, the nodes
of new requests can only be inserted in routes after the nodes whose positions are fixed.
Hence, our model (1)–(11) can solve the dynamic problem as a series of static ones.

4 Matheuristic algorithm for the FSRPS-AGV

This section describes the algorithm proposed to solve the FSRPS-AGV, presenting its
general dynamic framework. The main features of the heuristic applied to optimize the
number of AGVs are described in detail in Section 4.1. The mathematical formulation
used to optimize the number of carts which is based on the classical formulation of the
min-flow problem is presented in Section 4.2.

Our algorithm is based on a periodic reoptimization of the routes whenever a new
request arises. A static problem is solved with the latest available data upon the arrival
of new requests following an “AGV First, Cart Second” approach, meaning that it starts
by optimizing AGV routes, then optimizing the number of carts. According to Ozbaygin
and Savelsbergh [2019], periodic reoptimization has been used in many existing methods
of dynamic and deterministic VRPs, either at pre-determined moments or when a certain
number of changes to the input data have occurred.

Algorithm 1 provides an overview of the periodic reoptimization approach proposed
in this paper. We assume at the beginning that a sufficiently large number of AGVs is
available to serve the requests, then an initial solution is built with all known requests
by inserting them sequentially. To minimize the number of AGVs in the initial solution,
we set a high insertion cost on moves within an AGV that has not been used. More
AGVs can be used during the execution of ALNS if the need arises. More formally, an
additional AGV is used if one or more requests cannot be inserted into the solution for
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certain number of ALNS iterations. In the while loop from lines 2–6, we repeatedly
reoptimize the previously planned AGV routes by solving a static problem with the latest
available data upon the arrival of new requests. At any given moment, previously assigned
requests which have not yet been served are also re-planned when reoptimizing the routes.
In contrast, each previously assigned request which has already been served or that has
an AGV currently driving towards it is fixed in its position of the solution, as this decision
can no longer be changed. This corresponds to some fixed variables in the mathematical
model or a partial solution S that it is not subject to any changes. Therefore, any insertion
operation must be performed after the last fixed node of a given route, and only non-fixed
requests can be removed from the solution when executing ALNS.

ALNS is executed at line 4 in order to reoptimize the routes and obtain the number
of required AGVs (see Section 4.1). Then, the extended min-flow problem is solved to
optimize the number of carts in the solution (line 5, Section 4.2). Note that solving
the extended min-flow problem implies updating the starting time of service at non-fixed
nodes. This dynamic procedure is repeated until there are no new requests not served.
For practical reasons, it is crucial to have the AGV routes into effect as soon as possible,
hence, it is critical that the reoptimization is done efficiently and in a reasonable amount
of time.

Algorithm 1 Dynamic Optimization Algorithm

1: Create a solution S that contains the initial requests

2: Do

3: Add the new requests to S

4: ExecuteALNS(S)

5: Solve Min Flow(S) to minimize the number of carts

6: While there are new events

This algorithm is designed to be executed in real-time, uninterruptedly. Each new
request known at release time R may need to be served as soon as in a few minutes
(depending on how tight the opening and closing of the time window of its first task is).
Later in Section 5, we explain the large real-life instances we obtained for a 24h period,
and how we assess the performance of this framework with respect to its sensitivity to
different parameters.

4.1 ALNS framework to minimize the number of AGVs

The ALNS is an extension of the Large Neighborhood Search proposed by Shaw [1998].
In the ALNS framework presented in Ropke and Pisinger [2006] and Pisinger and Ropke
[2007] a number of heuristics compete to modify the solution. At each iteration a removal
operator is chosen to partially destroy the solution, and an insertion operator is chosen
to repair it. Throughout the execution of ALNS, the removal and insertion operators are
selected dynamically according to their past performance. Each operator is given a score
which increases if it improves the current solution. A simulated annealing criterion is used
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to determine whether a new solution is accepted. A detailed description of ALNS can be
found in Ropke and Pisinger [2006] and Pisinger and Ropke [2007].

4.1.1 Removal operators

Removal operators are used to partially destroy a solution by removing some requests from
the routes of some AGVs. We use four removal operators from the literature, namely,
random removal, related removal, time-oriented removal, and worst removal.

4.1.2 Insertion operators

Insertion operators are used to rebuild a solution after some requests have been removed
from it. They require evaluating the positions to insert the nodes of a given request.
Synchronization requirements with respect to the temporal aspect must be taken into
consideration here. Two MIP insertion operators are proposed to handle synchronization.

1. MIP insertion: for each removed request r ∈ R, the MIP below determines the
best position (or positions) to insert the nodes of this request. Prior to solving the
MIP, we enumerate all possible insertion configurations of request r. A configuration
can be a single node of request r, a sequence of part of the nodes of r, or a sequence
of all the nodes of r, where the sequences preserve the precedence order of the nodes.
The number of configurations of a request r composed of k nodes is k(k+ 1)/2. For
example: given a request r composed of three nodes i1, i2, i3 ∈ r, then the number
of configurations is 6. The insertion configurations of this request are then: i1,
i1–i2, i1–i2–i3, i2, i2–i3, i3. After generating the configurations, we generate the set
of feasible insertion moves and their insertion costs. An insertion move is defined
as inserting the node(s) corresponding to a configuration into an insertion position
(between two nodes) in the current solution. The set of feasible insertion moves of
all configurations is then used to generate the variables ml

ij described below. Note
that intra-route constraints must be respected when generating the set of feasible
moves, therefore, infeasible moves with respect to intra-route constraints (such as
schedule feasibility constraints) are omitted which reduces the size of the problem.

We define the set I of already inserted nodes in the solution, the set IR of already
inserted requests in the solution, the set Lr of configurations of request r, if as the
first node of a configuration, and il as the last node of a configuration. The cost
of inserting node i from configuration l after node j is denoted clij. The problem
can be mathematically formulated with variables: ml

ij equal to 1 if node i from
configuration l is inserted after node j, 0 otherwise; and Si indicating the starting
time of service at node i ∈ V . The MIP can then be formulated as follows:

min
∑
l∈Lr

∑
i∈r

∑
j∈I\{n+1}

clijm
k
ij (12)

s.t.
∑
l∈Lr

∑
j∈I

ml
ij = 1 i ∈ r (13)
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Sif ≥ Sj + sj + tjif −M

(
1−

∑
l∈Lr

ml
if j

)
if ∈ r, j ∈ I (14)

Sk ≥ Sil + sil + tilk −M

(
1−

∑
l∈Lr

ml
ilj

)
j, k ∈ I, k � j, il ∈ r (15)

Sk ≥ Sj + sj + tjk −M
∑
i∈r

∑
l∈Lr

ml
ij j, k ∈ I, k � j (16)

Si ≥ Sj + sj + tji i, j ∈ r, i � j (17)

Sk ≥ Sj + sj + tjk j, k ∈ r′, r′ ∈ IR, k � j (18)

ai ≤ Si ≤ bi i ∈ V (19)

ml
ij ∈ {0, 1} i ∈ r, j ∈ I, l ∈ Lr (20)

Si ≥ 0 i ∈ V. (21)

The objective function (12) minimizes the overall insertion cost of request r. Con-
straints (13) ensure that only one configuration is used to insert each node i ∈ r.
Constraints (14)–(19) guarantee schedule feasibility with respect to time windows.
Constraints (17) and (18) also handle synchronization requirements with regard to
temporal aspect among the nodes of the same request, and they preserve the prece-
dence order of these nodes. Constraints (20) and (21) impose the nature and the
domain of the variables. M is a big enough number and can be set to the maximum
return time to the depot bn+1. This MIP is solved to determine the best insertion
position (or positions) and the best insertion configuration (or configurations) to
insert the nodes of request r.

2. MIP insertion with noise: this operator extends the previous one by adding a
noise term to the insertion cost [Ropke and Pisinger, 2006]. Each time we calculate a
configuration’s insertion cost, we add some noise and calculate a modified insertion
cost. This adds diversity to the search and helps avoid being trapped in local optima.

4.2 Mathematical formulation to minimize the number of carts

In this section, we present the mathematical programming method used to optimize the
number of carts given a set of AGV routes previously defined. This model optimizes
the number of carts needed to serve the requests already assigned to the routes. This
is achieved by optimizing departure and starting service times, by better exploiting the
available fleet, and by reducing the number of (expensive) carts needed to operate the
AGV routing solution. We define U = {(i, j) ∈ V × V | i and j belong to the same route
in the input solution and j � i} as the set of pairs of consecutive nodes belonging to the
same route.

This model is an extension of the classical formulation of the min-flow problem by
adding schedule feasibility constraints with respect to time windows. A new graph Ḡ =
(V, Ā), where the set of arcs is Ā ⊆ Ac minus omitted arcs. In addition to the set of
cart only omitted arcs presented in Section 3, we also omit arc (i, j) if: (i) (j, i) ∈ U ,
(ii) i ∈ r and j ∈ r′ with r 6= r′, i is the first node of r and j is the last node of r′, and
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Si + si + tij − Sj > slackj where slackj is the slack time at node j. Let Ā+(i) be the
set of nodes j such that there is an arc from i to j, that is, Ā+(i) = {j ∈ V |(i, j) ∈ Ā}.
Similarly, Ā−(i) = {j ∈ V |(j, i) ∈ Ā}.

The main idea of this model is to conserve the existing routes and change the starting
times of service of AGVs at the nodes in order to further reduce the number of carts used
in the system. As stated in Section 4.1, the objective function of ALNS minimizes the
total travel time of AGVs, thus, the starting time of service of AGVs at each node is
naturally set to its earliest value. It is then possible to manipulate the starting time of
service in order to optimize the number of carts.

The problem can be mathematically formulated with the following decision variables:
yij equal to 1 if arc (i, j) is traversed by a cart, 0 otherwise; and Si indicating the starting
time of service at node i ∈ V . The model can then be formulated as follows:

min
∑
j∈N

y0j (22)

s.t.
∑

j∈Ā+(i)

yij = 1 i ∈ N (23)

∑
j∈Ā−(i)

yji = 1 i ∈ N (24)

Sj ≥ Si + si + tij −M (1− yij) (i, j) ∈ Ā, (ri, rj) ∈ W (25)

Sj ≥ Si + si + tij i, j ∈ r, r ∈ R, j � i (26)

Sj ≥ Si + si + tij (i, j) ∈ U (27)

ai ≤ Si ≤ bi i ∈ V (28)

yij ∈ {0, 1} (i, j) ∈ Ā (29)

Si ≥ 0 i ∈ V. (30)

The objective function (22) minimizes the number of carts departing from the start
depot. Constraints (23) and (24) are degree constraints requiring each node to be visited
exactly once. Constraints (25)–(28) guarantee schedule feasibility with respect to time
windows. Note that constraints (26) also handle synchronization requirements with regard
to temporal aspect among the nodes of the same request for all requests, and they preserve
the precedence order of these nodes. Constraints (29) and (30) impose the nature and
the domain of the variables. Again, M is a big number and can be set to the maximum
return time to the depot bn+1.

5 Computational experiments

This section describes the computational experiments. These have been performed on a
computer equipped with a 2.1 gigahertz Intel processor. All of the proposed algorithms
are coded in C++ and CPLEX 12.10 is used with default parameters. Each test was
allowed to use up to 8 GB of RAM. Section 5.1 provides a detailed description of the
real dataset used and introduces the characteristics of the problem instances. Parameter
setting is discussed in Section 5.2. The results of detailed and extensive computational
experiments are then presented in Section 5.3.
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5.1 Test instances

The dataset provided by our partner consists of all potential transportation requests that
may be needed in a given day for all the departments in the hospital. The dataset was built
by project leaders in collaboration with all the 10 departments at the hospital including:
pharmacy, maintenance, food preparation, laboratory, and others. Each department spec-
ified their needs in terms of transportation requests which are then added to the dataset.
The dataset contains 1212 requests having a total of 3367 tasks. The number of tasks per
request in the dataset ranges between two and five. Table 1 presents a classification of
the requests based on the number of tasks per request, for each class we report the num-
ber of requests and the average time needed to perform a request which is the difference
between the TW upper bound of the last task of the request and the TW lower bound of
its first task. Each request in the dataset is defined by a set of characteristics including:
demand type, weekly frequency of occurrence, TW intervals, and cart type. The demand
type of a request can be Planned indicating that the request is known at the start of the
day, or On-demand indicating that the request is unknown but it may or may not occur
throughout the day. The release time of an On-demand request in the dataset is set to 5
minutes before the TW lower bound of its first task. In terms of frequency of occurrence,
we have: High frequency requests occuring four times a week, Medium frequency requests
occuring three times a week, and Low requests occuring twice a week. In terms of TW
intervals, on a typical day, we distinguish two types of requests: requests with fixed TW
whose tasks are characterized by urgency in execution, meaning that the intervals of the
TWs are tighter than the ones of the second type of requests known as requests with
flexible TW. In the dataset, the TW of the first type of requests is enlarged by 5 minutes,
while the one of the second type is enlarged by 30 minutes. Finally, as stated in Section
1, 10 types of carts are used to serve request, namely: linen carts, flatbed carts with rails,
flatbed carts, return tray carts, instruments carts, food carts, cage carts, pharmacy carts,
type B carts (insulated, half-sized, lockable), and waste carts. Hence, the cart type used
to perform each request is also specified in the dataset. Figure 2 depicts the number of
requests per category based on the different characteristics of the requests in the dataset.
Figure 3 depicts the scattering of the tasks in the dataset throughout the day. It shows
that most of the tasks must be performed in day time. It also shows that there are some
peak activity moments during the day where many tasks must be performed at the same
time.

Table 1: Statistics relative to the number of tasks per request classification
# tasks/req

2 3 4 5
# Requests 636 265 255 56

Avg T/req (min) 151.7 336.5 277.0 218.6

For computational experiments, we consider a set of 40 real-size instances, where the
number of requests varies between 586 and 658. Each instance is generated by executing
several successive selections based on the frequency of occurrence of each request. A
random value between 0 and 1 is generated, if the generated value is less than or equal
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Figure 3: Number of tasks over time during the day
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FrequencyOfOccurrence/7 then it is added to the instance, otherwise we pass to the
next request. Our instances have an average degree of dynamism of 42%.

5.2 Parameter setting

In our ALNS metaheuristic, the minimum number of requests to remove is set to qmin =
min(10, 0.1n), and the maximum is qmax = min(20, 0.4n) where n is the number of
assigned requests. The number of iterations in each segment is set to 100, and the cooling
rate is set to 0.8. The remaining parameters are set to the values reported in Ropke
and Pisinger [2006]. In a real environment, it is critical that the reoptimization is done
efficiently. Therefore, the maximum runtime of the algorithm at each reoptimization is
set to 5 minutes. According to our industrial partner, the speed of the AGVs is constant
at 1.8 m/s, in general. Thus, it is possible to obtain the theoretical travel times between
all the points. To ensure a safety margin, we reduce the speed to 1.5 m/s which allows
to somewhat overestimate the travel times. A preliminary testing of our metaheuristic
using a set of 25 real-size instances is conducted in order to choose the number of ALNS
iterations allowed to run before stopping at each reoptimization. The initial value was
set to 100 iterations, and we have tested running it for 200, 300, 400 and 500 iterations,
obtaining the solutions reported in Table 2. The algorithm is executed five times for
each parameter configuration per instance. In Table 2, for each configuration (defined
by the number of iterations # iter.), we report the sum of the values corresponding to
the best solutions and the sum of the average values (Avg) of: the number of AGVs, the
number of carts, and the travel time. Last column reports the average runtime per event
(T/E) in seconds. Note that the value of travel time excludes the travel time between the
pickup and delivery locations of each task which is added to the service time of the task.
Based on the results in Table 2, we observe that the 500 iterations is the best overall,
therefore, it was selected to perform the computational experiments. One can observe
that T/E corresponding to 500 iterations is 133.5 seconds which is somewhat far from the
maximum runtime per event which is set to 300 seconds. This can be explained by the
fact that the runtime per event of most events is much less than 300 seconds, however, in
specific moments during the day, the runtime per event can exceed 200 seconds such as
in the case of optimizing the routes of planned requests at the start of the day due to a
the high number of requests, this can also happen during peak activity moments where
optimization runtime may exceed the average runtime per event.

Table 2: Quality of the solution when changing the number of ALNS iterations

# iter.
# AGV # Carts Travel t. (min)

T/E (s)
Best Avg Best Avg Best Avg

100 757 757.0 8009 8009.0 32867.50 32867.50 33.5
200 749 749.0 8003 8003.0 32721.60 32721.60 61.2
300 754 754.0 8003 8003.0 32515.60 32515.60 92.2
400 748 748.0 8001 8007.2 32413.20 32474.76 117.0
500 748 753.6 7997 7998.4 32225.90 32391.86 133.5
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5.3 Computational results

We start our analysis by running our algorithm five times per instance. We report the
best as well as the average solutions. The computational results are reported as follows.

5.3.1 Comparison with the exact model

In this section, we present a comparison between our matheuristic and the exact model
(1)–(11). Four sets of ten small size instances each with 100, 200, 300, and 400 requests,
are used to perform the tests. We first compare the results of the dynamic problem: the
exact model in this case solves a series of static problems by reoptimizing the routes upon
the arrival of new requests. As in the case of the matheuristic algorithm, in this exact
algorithm, the maximum runtime per event is also set to five minutes.

Table 3 presents a comparison between the exact algorithm and our matheuristic using
small size instances. The results are summarized based on the number of requests per
instance. In the first two columns, we present the number of requests and the average
number of events per instance category. In the case of the exact algorithm, for each
instance category we report the following: the number of completed instances (# Com.)
indicating the number of instances where all events are solved to optimality, the sum of
the number of AGVs (# AGV), the sum of the number of carts (# Carts), the sum of
travel times (Travel t.) in minutes, and the average runtime per event (T/E) in seconds.
In the case of the matheuristic, for each instance category we report the sum of the Best
and the sum of the average (Avg) values of: the number of AGVs, number of carts, and
travel times. We also report the average gap with respect to the objective function of
the final solution for all instances per instance category (Gap), and the average of the
average runtime per event (T/E). The gap is calculated as 100 ∗

(
BestMath−BestEx

BestMath

)
, where

BestMath is the value of the objective function of the best final solution obtained by the
matheuristic, and BestEx is the best lower bound on the objective function of the final
solution obtained by the exact algorithm. Table 3 shows that overall, our matheuristic
achieves high quality solutions when compared to the exact algorithm, especially in terms
number of AGVs and carts, while average travel times corresponding to the best solutions
obtained by our matheuristic is higher than average travel time of the the exact algorithm
for all instance categories. The matheuristic outperforms exact algorithm in terms of
number of AGVs for large instances with 400 requests. The average runtime per event
increases significantly by increasing the size of the problems solved by the exact algorithm,
while in the case of the matheuristic the average runtime per event still increases but less
significantly than the exact method. Despite the travel times being large, they all respect
the constraints of the problem and can be justified by the effort to have fewer AGVs,
which was the main cost driver.

We also compare the results of the static problem where we assume that all input
information is known beforehand and solve a static problem. The exact model is given a
time limit of two hours. Heuristically, the static problem is solved in three steps: in step
1, we use a restricted ALNS to find the minimum number of AGVs ensuring that the tasks
of each request must be served by the same AGV, i.e., ignoring potential synchronization
opportunities. Different insertion operators are used in this case, namely regret-2 and
regret-k with and without noise where k is the number of AGVs. The restricted ALNS is
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Table 3: Comparison between the exact algorithm and the matheuristic for the dynamic
problem

Exact algorithm Matheuristic

# Req. # Eve. # Com. # AGV # Carts
Travel t.

(min)
T/E
(s)

# AGV # Carts Travel t. (min) Gap
(%)

T/E
(s)Best Avg Best Avg Best Avg

100 28.3 9 64 550 2092.3 14.3 64 65 552 554.2 2223.3 2247.9 1.12 22.8
200 38.9 4 111 1057 3775.1 67.3 111 112.4 1062 1063.6 4132.6 4175.2 1.67 44.7
300 41.9 1 157 1560 5656.5 169.2 158 159.2 1566 1572.6 6297.6 6346.9 2.02 66.5
400 48.7 0 214 2042 7347.9 223.9 203 203.6 2050 2056.6 8318.6 8380.0 -0.94 90.7

executed at the beginning using an initial number of available AGVs, then, we repeatedly
remove one AGV and run ALNS again while this procedure remains feasible. If it fails to
find a feasible solution with all requests served, we stop and the number of AGVs found in
the last feasible solution is the minimum number of AGVs of the restricted problem. The
number of iterations used each time an AGV is removed in step 1 is 500 iterations. In step
2, we run the restricted ALNS again but with 15000 of iterations in order to optimize
the travel time. We then run a non-restricted ALNS (similar to the one described in
Section 4.1) starting with the best solution obtained so far to further reduce the number
of AGVs by removing one AGV and trying to assign its requests somewhere else using a
low number of iterations (50 iterations). This process can be repeated 10 times. We then
re-run the non-restricted ALNS for 1000 iterations to further optimize the travel time.
Finally, in step 3, we use the best solution found in step 2 to solve the extended min-flow
problem in order to optimize the number of carts.

Table 4 presents a comparison between the exact algorithm and the matheuristic using
small size instances. The information reported in this table is similar to Table 3 with the
following minor differences. For the exact algorithm, the average total runtime (Time) is
reported instead of the average of the average runtime per event. For the matheuristic, the
average total runtime (Time) is reported in the last column. We also report the average
optimality gap with respect to the objective function per category named Gap, whereas
Gap sol. reports the same metric but only for the instances solved to optimality by the
exact algorithm. The optimality gap is calculated as before. Table 4 shows that the exact
algorithm solves to optimality 12 out of 40 small instances. One can also observe that
our matheuristic provides near-optimal solutions, the average optimality gap with respect
to the objective function for the instances solved to optimality by the static algorithm
varies between 0.87% and 1.39% on average. The same number of AGVs is found by our
matheuristic for instances with 100 requests, whereas for the remaining instance cate-
gories, the matheuristic outperforms the exact method. In terms of number of carts and
average travel time, the matheuristic finds slightly larger values due to the fact that fewer
AGVs are available, which makes the overall objective better. In addition to providing
near-optimal solutions, our matheuristic is also fast: the average total runtime goes from
154.5 to 741.9 seconds for all instance categories, which is one order of magnitude faster
than the exact algorithm.

One can also compare the results of the dynamic and static problems. The results of
the matheuristic in Tables 3 and 4 show that the impact of dynamism on the number
of AGVs and carts is limited, whereas it is more significant when it comes to travel
time. This is justified by the holistic character of the static problem which assumes the

16

Fleet Sizing of Healthcare Automated Guided Vehicles 
 

CIRRELT-2021-18



Table 4: Comparison between the exact algorithm and the matheuristic for the static
problem

Exact algorithm Matheuristic

# Req. Sol. # AGV # Carts
Travel t.

(min)
Time (s)

# AGV # Carts Travel t. (min) Gap
(%)

Gap sol.
(%)

Time (s)
Best Avg Best Avg Best Avg

100 8 64 550 1997.4 1510.6 64 64 551 555.4 2111.8 2125.0 0.96 0.87 154.5
200 3 112 1057 3670.8 5416.9 111 111 1062 1063.0 3999.7 4057.9 1.61 1.31 348.6
300 1 159 1560 5459.2 6940.1 157 157 1568 1573.0 5995.9 6069.1 0.99 1.39 546.2
400 0 228 2043 7308.8 7191.9 203 203 2051 2054.6 7895.0 8006.6 4.15 - 741.9

knowledge of all input information at the start of time horizon. The results of the exact
algorithm shows that the gap in terms number of AGVs between the dynamic and static
problems increases by increasing the number of requests per instance. This mainly due to
an increasing difficulty to achieve high quality solutions for larger instances when solving
the static problem, whereas, in the dynamic problem, a small and easier static problem
is solved upon the arrival of new requests. This can also be observed when comparing
the number of completed instances in the dynamic problem to the number of instances
solved to optimality in the static problem: for instances with 100 and 200 requests, the
number of completed instances is 9 and 4, versus 8 and 3 instances solved to optimality
in the static version.

We highlight the fact that the future requests are not known does not make the problem
any more difficult. Indeed, when an oracle is used and a fully static problem is solved (i.e.,
all future requests are known at once, when the optimization is performed), the results of
Table 4 indicate the optimal number of AVGs and carts; this is in contrast to the results
of Table 3 where the same instances are solved with dynamic information arrival; note
that for instances with up to 300 requests, the difference is of only 2 AVGs and zero carts
(we exclude instances with 400 requests here because those were not generally solved to
optimality). This indicates that dynamism does not make the problem more challenging
requiring more resources. In fact, this is due to the very tight time windows; even with the
full knowledge of future requests, the algorithm cannot find a better resource utilization in
order to decrease the fleet sized. This is further demonstrated by our sensitivity analyses
when we vary the size of the time windows, which cause the number of AVGs and carts
to decrease considerably.

5.3.2 Results of the dynamic optimization using real-size instances

We now present the results of the matheuristic algorithm presented in Section 4 using the
40 real-size instances. For simplicity, the instances are divided into two subsets whose
number of requests is between [526,629] and [629,685]. Table 5 reports the detailed results.
For each subset, we report the average number of events (# Eve.), the average number
of AGVs (# AGV), the average number of carts (# Carts), and the average travel time
(Travel t.). Note that Best denotes the value corresponding to the best solution and Avg
is the average value of five replications. We also report the average runtime per event
(T/E) in the last column.

The results in Table 5 show that our matheuristic is very fast and robust in solving
large instances of the FSRPS-AGV, as the total average runtime per event is 135.4 seconds
and the best values are very close to the averages. The number of AGVs corresponding to
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the best solution varies between 25 and 36 for all instances, with a total average of 29.6,
while the number of carts varies between 288 and 344 with a total average of 317.8. An
increase of all the values is observed when comparing the results of the subsets 1 and 2,
mainly due to a higher number of requests in the instances of subset 2. Figure 4 depicts
the number of AGVs and carts in use per minute over time during the day for a real-size
instance. The figure shows that the vast majority of activities are performed during day
time between 5 am and 20 pm. Several peaks of activity occur during the day such as the
peaks related to food service (breakfast, lunch, and dinner).

Table 5: Results of the dynamic optimization using real-size instances

# req. # Eve.
# AGV # Carts Travel t. (min)

T/E (s)Best Avg Best Avg Best Avg
[526,629] 53.4 29.1 29.3 310.9 310.8 1261.5 1268.0 132.8
[629,685] 54.2 30.2 30.5 325.1 325.1 1316.9 1324.8 138.1
Tot avg. 53.8 29.6 29.9 317.8 317.8 1288.5 1295.7 135.4

Figure 4: Number of AGVs and carts in use per minute over time during the day for a
real-size instance
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(b) # of carts per minute over time during the day

5.3.3 Sensitivity analysis

In this section, we conduct sensitivity analysis by varying the TW intervals, AGV fleet
exploitation strategy, AGV speed, and the release time of requests. We use the 40 real-
size instances described in Section 5.1 by changing their parameters to assess how the
parameters affect the peak usage (required number) of AGVs and carts.

In terms of TWs, we test different values of TW intervals for the Fixed and the Flexible
TW requests. Nine configurations are tested: 3-15, 3-30, 3-45, 5-15, 5-30, 5-45, 10-15,
10-30, 10-45, where the first number is the TW interval of Fixed TW requests and the
second one is the TW interval of Flexible TW requests. Table 6 and Figure 5 show the
sensitivity analysis with respect to TWs. Table 6 reports a summary of the results for
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all TW configurations where the average number of Fixed TW and Flexible TW requests
are shown in parenthesis. In general, this analysis shows that larger TWs result in an
important and significant decrease of the number of AGVs and carts. In a managerial
perspective, this shows the importance of the TW factor in lowering the cost of investment
while taking into consideration the necessity of ensuring a good service level. By looking
deeper into the results, one can observe that the change in TW intervals corresponding
to Fixed TW requests has a significant impact in decreasing the number of AGVs. For
example, varying the Fixed TW from 3 to 10 min while keeping Flexible TW constant at
15 min leads the number of AGVs to decrease from 1266 to 908. Moreover, the change in
the Flexible TW causes a significant decrease of the number of carts, as it can be observed
in case of 3 min TW interval for Fixed TW requests: the number of carts decreases from
13019 to 11833. Figure 5 shows that larger TWs help reduce the peaks of activity during
the day.

Tables 7 reports the results relative to the AGV fleet exploitation strategy, namely
if only one AGV satisfies a full request (1-AGV) or if many AGVs are synchronized to
serve the tasks of a request (M-AGV). In the sensitivity analysis with respect to AGV
fleet exploitation strategy, we compare the matheuristic which is described in Section 4
against a restricted matheuristic. This analysis clearly shows that the solution achieved by
M-AGV is overall significantly better than that procured by 1-AGV when comparing the
Best of number of AGVs and travel time. In terms of Best sum of number of AGVs, M-
AGV reports 1186 versus 1200 AGVs for 1-AGV, and in terms of Best sum of travel time,
M-AGV reports 51568.6 versus 51796.4 minutes for 1-AGV. However, 1-AGV is slightly
better than M-AGV in terms of number of carts: this can be explained by the fact that
using more AGVs increases the possibility of exchanging carts among the routes which
then leads to decreasing the number of carts. From an investment cost perspective, and
given the fact that the price of one AGV is almost seven times that of the most expensive
cart (according to our industrial partner), one can conclude that M-AGV strategy is
overall more advantageous as it has a positive net effect on investment cost. It also
confirms the added value of synchronization.

In terms of AGV speed, we test four different values starting from 1.2, 1.5, 1.8, and
2.1 m/s (meters per second). Table 8 shows that a significant decrease in the number
of AGVs and carts can be achieved by increasing the speed of AGVs. Therefore, from a
managerial perspective, the speed of AGVs in the system can be another important factor
to take into consideration while trying to reduce the cost of investment.

In terms of release time, we used five different values: R = {5, 8, 12, 20, 60} minutes.
This analysis showed that the release time has a limited impact on the quality of the
solution. Minor savings can be achieved by increasing the release time.

Table 6: Sensitivity analysis on TWs
Flexible (392.3)

15 min 30 min 45 min
# AGV # Carts # AGV # Carts # AGV # Carts

F
ix

ed
(2

37
.3

) 3 min 1266 13019 1265 12706 1263 11833
5 min 1194 13019 1186 12719 1182 11830
10 min 908 13019 754 12716 734 12033
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Figure 5: Number of AGVs in use per minute over time during the day in the case of
different TWs
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Table 7: Sensitivity analysis on AGV fleet exploitation strategy
# AGV # Carts Travel t. (min)

Strategy Best Avg Best Avg Best Avg T/E (s)
1-AGV 1200 1218.4 12675 12691.4 51796.4 51745.4 125.1
M-AGV 1186 1195.0 12719 12718.4 51568.6 51856.2 135.4

Table 8: Sensitivity analysis on AGV speed
# AGV # Carts Travel t. (min)

T/E (s)
Speed
(m/s)

Best Avg Best Avg Best Avg

1.2 1263 1271.6 12728 12744.4 64251.4 64675.0 138.4
1.5 1186 1195.0 12719 12718.4 51568.6 51856.2 135.4
1.8 1112 1124.6 12697 12709.4 29431.4 29514.8 143.9
2.1 1063 1064.4 12684 12705.2 24482.9 24682.4 143.0
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5.3.4 Managerial insights

In this section we discuss managerial insights with respect to the number of AGVs and
carts that should be acquired by our industrial partner, based on the results using the
parameters of Section 5.3.2. Tables 9 and 10 depict summary statistics relative to the
number of AGVs and carts, where for each table we report the number of AGVs (#
AGVs) or the interval of number of carts (# Carts) and their corresponding: number of
instances (# Inst.), the cumulated number of instances (Cumul. # inst.), the percentage
of feasible instances (Perc. (%)) for a given number of AGVs or an interval of number of
carts. Deciding the number of AGVs and carts to acquire by our partner based on the
results of Tables 9 and 10 depends on two main factors: the budget allocated to acquire
them and the risk tolerance to a potential violation of TWs in case where the number
of AGVs and/or carts is not sufficient to serve all the requests at a given moment of
the time horizon. The level of lateness should not be high considering that adding few
minutes to TWs drastically reduces the number of AGVs/carts as shown by the results
in Table 6. Extra percentage of AGVs and carts should be acquired as well to account
for breakdowns, damages, and high activity days and events. This percentage can be
defined based on the experience of other healthcare institutions or it can also depend on
the manufacturer’s recommandation.

Table 9: Summary statistics relative to the number of AGVs

# AGVs # Inst.
Cumul.
# inst.

Perc.
(%)

25 1 1 2.5
26 2 3 7.5
27 5 8 20
28 4 12 30
29 8 20 50
30 7 27 67.5
31 7 34 85
32 1 35 87.5
33 2 37 92.5
34 1 38 95
35 1 39 97.5
36 1 40 100

6 Conclusion

In this paper we studied the FSRPS-AGV based on a real-life application. This problem
investigates an important tactical decision in the context of a healthcare environment.
The addressed problem opens the door to a new class of problems which can be described
as multi-fleet sizing and routing problems under multiple synchronization constraints. We
described the problem and introduced a mathematical formulation. A powerful matheuris-
tic algorithm was designed for the problem. The algorithm is based on a fast and efficient
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Table 10: Summary statistics relative to the number of carts

# Carts # Inst.
Cumul.
# inst.

Perc.
(%)

]285,290] 1 1 2.5
]290,295] 1 2 5
]295,300] 1 3 7.5
]300,305] 3 6 15
]305,310] 6 12 30
]310,315] 3 15 37.5
]315,320] 10 25 62.5
]320,325] 7 32 80
]325,330] 1 33 82.5
]330,335] 4 37 92.5
]335,340] 2 39 97.5
]340,345] 1 40 100

dynamic reoptimization of the routes upon the arrival of new requests. We also solve a
static version of the problem which assumes the knowledge of all requests at the start of
the day. Computational experiments were conducted using small and large size instances
generated based on real-data from a large hospital. Computational results present a
comparison of our matheuristic against the exact method, where the performance of our
matheuristic in solving large size instances and the effects of the instances’ parameters on
the solution are highlighted. They also present findings relative to the static version of the
problem. For all small instances solved to optimality by the exact methods, near-optimal
solutions were obtained by our matheuristic. The results of large instances show that
our matheuristic is fast, very robust and it can handle dynamism of demand very well.
Finally, the results of the sensitivity analysis show that TW intervals and AGV speed
have a significant impact on the number of AGVs and carts. The results of the sensitivity
analysis with respect to AGV fleet exploitation strategies show that the strategy with
synchronization (M-AGV) is overall more advantageous especially when looking at its
effect on the investment cost.

Although our study was conducted in a specific context which is healthcare industry,
our methodology can be easily applied to different contexts where AGVs and carts are used
to handle transportation operations such as in industrial contexts and within warehouses.
Moreover, this work could be extended by considering more real-life challenges such as
battery charging constraints and congestion. If extended, the presented matheuristic can
be embedded in a general tool to build an efficient real-time routing and scheduling tool
for AGVs and carts.
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M. Şahin, G. Çavuşlar, T. Öncan, G. Şahin, and D.T. Aksu. An efficient heuristic for the
multi-vehicle one-to-one pickup and delivery problem with split loads. Transportation
Research Part C: Emerging Technologies, 27:169–188, 2013.

P. Shaw. Using constraint programming and local search methods to solve vehicle rout-
ing problems. In International Conference on Principles and Practice of Constraint
Programming, pages 417–431. Springer, 1998.

D. Sinriech and J. Tanchoco. An economic model for determining AGV fleet size. Inter-
national Journal of Production Research, 30(6):1255–1268, 1992.

A. Subramanian, L. M. A. Drummond, C. Bentes, L.S. Ochi, and R. Farias. A paral-
lel heuristic for the vehicle routing problem with simultaneous pickup and delivery.
Computers & Operations Research, 37(11):1899–1911, 2010.

L. Talbot. Design and performance analysis of multistation automated guided vehicle
systems. PhD thesis, UCL-Université Catholique de Louvain, 2003.
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