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1. Introduction

Traffic congestion and air pollution are common problems in metropolitan
areas. In addition to the environmental impact, these issues have an immediate
impact on urban quality of life. To mitigate these issues, cities may encourage
individuals to engage in ridesharing.

The act of ridesharing consists of traveling together to share trip expenses,
which contributes to the reduction of vehicle emissions. The practice of rideshar-
ing is not new, and dates as back as WWII and the 1970s oil crisis [1]. Nev-
ertheless, ridesharing still has a huge growth potential: the average vehicle
occupancy rate in the United States is estimated to be about 1.67 persons per
vehicle [2]. Additionally, the occupancy rate of vehicles used for work-related
trips is even smaller (see Figure 1). Those vehicles, operating under capacity,
could potentially engage in ridesharing. Note that there is no consensus in the
literature on the differences between carpooling and ridesharing [3]. We therefore
use these terms interchangeably.

Figure 1: Vehicle occupancy rate by trip purpose, source: [2].
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In this work, we revisit a matching and rematching problem with applications
in ridesharing systems, previously defined in [4]. Ridesharing systems are
matching agencies for drivers and riders that are interested in sharing commute
expenses. Over time, these systems receive requests from their customers
corresponding to the intent of engaging in ridesharing for a certain itinerary,
either as a driver or as a rider. In this context, an itinerary is composed of an
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origin, a destination, the earliest departure time, and the latest arrival time. A
common goal of ridesharing systems is to create matches that generate profit
and that promote customer engagement. We use the term match to refer to the
pairing of two requests, meaning that the customers behind these requests are
assigned to travel together to fulfill their corresponding itineraries. Requests
may not only be matched, but may also be unmatched afterward (for a certain
penalty cost) such that they can be reassigned to better rideshares.

In [4], a static formulation, spanning the entire planning horizon, as well as
a myopic and a two-stage stochastic model that can be integrated in a rolling
horizon framework have been proposed. In this work, we additionally consider
the expected value problem, which optimizes over the average demand of the
considered scenarios. We then evaluate the performance of all models in exten-
sive computational experiments on problem instances generated based on trip
data from an industrial collaborator. Specifically, we simulate a rolling horizon
planning, where new requests are dynamically released into the system and the
different models are used to dynamically generate matching and unmatching
decisions. Finally, we also investigate different matching profit and unmatch-
ing penalty functions, providing valuable insights on how different corporate
strategies may affect profitability and customer satisfaction.

2. Related Work

Ridesharing has been the focus of extensive research in the literature. For
surveys on ridesharing and related shared mobility systems, we refer the reader
to [5], [6] and [7]. In [5] components and challenges of ride-matching optimization
for dynamic ridesharing systems are discussed. Shortly after, [6] presented a
broad taxonomy for 39 ridesharing matching agencies and identified challenges
in the mass adoption of ridesharing. A more general survey on shared mobility
systems was recently conducted by [7], which not only includes problems where
vehicles carry passengers, but also parcels next to passengers.

Ridesharing studies usually focus either on operational-level decisions or on
policy studies. Studies focusing on operational planning typically formulate an
optimization model to find efficient rideshares for the participants. Policy-based
studies explore the impact of pricing and incentive policies on ridesharing, and
focus less on individual-based decisions and more on a macro-level analysis.

2.1. Operational planning studies

In operational planning studies, ridesharing problems are usually formulated
as vehicle routing problems (VRPs) or as bipartite matching problems.

2.1.1. Vehicle routing based problems

One of the first studies to model a ridesharing problem as a VRP formulation
is the work of [8]. The authors solve a carpooling problem with a common
workplace destination. The authors propose exact and heuristic methods based
on Lagrangean column generation. In [9], the authors study the impact of
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dedicated drivers on ridesharing systems. A ridesharing problem with transfers
is studied in [10]. In [11], the authors study a dynamic VRP where the objective
function has a penalty term proportional to the amount of time that customers
are left unserved.

2.1.2. Bipartite matching based problems

When a bipartite matching formulation is used, one side of the graph usually
corresponds to driver requests, and the other side usually corresponds to rider
requests. These studies often focus on one-to-one matches, that is, when a driver
carries exactly one passenger. [12] were among the first to study a dynamic
bipartite matching problem with applications to ridesharing. The authors solved
this problem under a rolling horizon simulation framework. Subsequent studies
focus on specific attributes present in ridesharing operations such as meeting
points [13], participant time flexibility [14], integration with mass transit systems
[15], and matching stability [16]. Recently, [4] first defined a rematching problem
with applications in ridesharing. In this work, we further investigate this problem.

2.1.3. Online matching

Dynamic ridesharing systems have strong connections to online matching
problems. Online matching studies usually focus on the competitive ratio of
deterministic and randomized online matching algorithms. In [17], the author
studies the generalized online matching problem and its applications in search
engine advertisement. In [18], the authors study an iterative matching problem
where each edge of the graph has a probability of existing. Edges with a
probability of existing are useful when the compatibility between two nodes is
uncertain, for example, in kidney exchange settings. In our problem, the nodes
of our graph are uncertain. The existence or not of an edge between two nodes is
certain, as it depends only on the profitability and on the time-window feasibility
of the rideshare associated with these nodes.

2.2. Policy studies

Pricing strategies and incentive policies may impact the viability of ridesharing
systems. In some cases, subsidies must be allocated to encourage adoption. In
[19], the authors study the impact of incentive policies such as reserved parking
and guaranteed rides home. To evaluate the impact of these policies, the authors
built a discrete choice model. The impact of high occupancy vehicle (HOV)
lanes is studied in [20]. Later, [21] study the impact of introducing tolls for
solo drivers that decide to take HOV lanes, referred to as high occupancy toll
lanes. To motivate rider participation in ridesharing, [10] propose a mechanism
design where riders are matched on a first-come, first-served basis, but are also
offered the opportunity to buy the itinerary of a previously-matched rider. Our
study focuses less on policy and more on the daily operational planning of a
ridesharing company.
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3. Problem Definition

We now formally define the setting of our ridesharing matching problem.
Requests in a ridesharing system arrive dynamically over a planning horizon
T = { 1, 2, . . . , h }. Let G = (V,E) be a bipartite graph where V is the set of
requests that may be released and E is the set of edges between compatible
requests. The set of requests is partitioned into a set D of drivers requesting
a passenger and a set R of riders requesting a driver, such that V = D ∪ R,
D ∩ R = ∅, and E ⊆ D × R. For each request v ∈ V , let ov ∈ R2 be its origin
coordinates, dv ∈ R2 be its destination coordinates, rv ∈ T be its release time,
av ∈ R be its earliest departure time, and bv ∈ R be its latest arrival time. Let
Et be the set of pairs of requests that can be matched or unmatched at time
period t ∈ T , with E =

⋃
t∈T Et. At each time period t ∈ T , a pair of released

requests (ij) ∈ Et can be matched for a profit of ptij and unmatched for a cost
of ctij . We assume that

ptij ≤ ctij ,

i.e., it is never profitable to unmatch a pair of requests and then match it in the
same time period. A pair of requests (ij) is said to be active at the beginning of
the time period t if it was matched before t and not unmatched ever since. The
objective of the problem is to match and unmatch requests such that the net
profit over the planning horizon is maximized.

3.1. Release of requests

Whether a request v ∈ V is released or not is uncertain, and is represented as
a random binary variable qv equal to 1 if and only if v is released. The value of
qv is observed at period rv, i.e., at the corresponding release time of v. We write
q when referring to a possible realization of q, and we write q′ when referring to
the actual realization of q within our rolling horizon simulation framework.

3.2. Request compatibility

A pair of requests (ij) is in Et if and only if

• both requests have already been released, i.e., max{ri, rj} ≤ t;

• the departure time of both requests is not in the past, i.e., t ≤ min{ai, aj};

• the rideshare generates distance savings for its participants;

• and the rideshare is time-window feasible.

The value of a ridesharing trip is often assumed to be the amount of travel
distance savings generated by the trip when compared to the individual trips for
each participant [12, 16]. Let d(o, d) be the distance (in km) between two points
o and d. The distance savings sij (in km) generated by a rideshare (ij) ∈ Et is
the difference between the distance of the individual trips and the distance of
the rideshare trip, as below

sij = d(oi, di) + d(oj , dj)− [d(oi, oj) + d(oj , dj) + d(dj , di)].
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To determine if a rideshare (ij) is time-window feasible, we check if the
departure and arrival times of the participants are compatible. Let t(p1, p2) be
the travel time (in periods) between any two points p1 and p2. The following
conditions must be met to ensure time-window feasibility:

max{ai + t(oi, oj), aj}+ t(oj , dj) ≤ bj

for the rider, and

max{ai + t(oi, oj), aj}+ t(oj , dj) + t(dj , di) ≤ bi

for the driver. Next, we give a formal definition of the static problem that
generates decisions for the entire planning horizon.

3.3. The static problem definition

When all real realizations q′v of requests v ∈ V are known in advance, a static
problem can be defined, taking optimal decisions for the full planning horizon.
The optimal objective function value of this problem gives an upper bound that
can be used to evaluate the performance of strategies that generate matches and
unmatches dynamically, as described in Section 4. Let

δt(v) = { (ij) ∈ Et | v ∈ (ij) }

be the adjacency of each node v ∈ V for each period t ∈ T and

Wij = { t ∈ T | (ij) ∈ Et }

be the periods where i and j can be matched. For each pair (ij) ∈ Et, let xtij be
a binary variable equal to 1 if and only if the pair (ij) is matched at time period
t, ytij be a binary variable equal to 1 if and only if the pair (ij) is unmatched at
time period t, and ztij be a binary variable equal to 1 if and only if (ij) is active
at the beginning of period t. Without loss of generality, we here assume that all
requests are initially unmatched, that is, z1ij = 0,∀(ij) ∈ E. The static model is
defined as:

fstat(z1) := max
h∑
t=1

∑
(ij)∈Et

(ptijx
t
ij − ctijytij) (1)

s.t.
∑

(ij)∈δt(v)

(xtij − ytij) ≤ q′v −
∑

(ij)∈δt(v)

ztij ∀t = 1, . . . , h, v∈V (2)

ytij ≤ ztij ∀t = 1, . . . , h, (ij)∈Et (3)

zt+1
ij = ztij +

{
xtij − ytij if (ij) ∈ Et
0 otherwise

∀t = 1, . . . , h, (ij)∈E (4)

xtij , y
t
ij ∈ { 0, 1 } ∀t = 1, . . . , h, (ij)∈Et (5)

zt+1
ij ∈ { 0, 1 } ∀t = 1, . . . , h, (ij)∈E. (6)
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Objective (1) maximizes the net profit over the full planning horizon. Constraints
(2) ensure that requests can only be matched if they are released and inactive.
Constraints (3) ensure that requests can only be unmatched if they are active.
Constraints (4) define the values of z for the next time period. As the static
problem assumes perfect knowledge of q′, it is not used in a dynamic environment,
but solved only once for the entire planning horizon. To tackle the dynamic
arrival of requests, we next introduce a rolling horizon simulation framework to
evaluate the myopic and stochastic decision strategies.

4. The Rolling Horizon Framework

We now describe the rolling horizon framework. Such frameworks are common,
for example, in dynamic vehicle routing problems [22]. In this framework,
information on released requests (i.e., the realization of uncertain requests)
arrives dynamically, time is discretized into τ periods per hour, and new decisions
can be taken at each time period. At period t, the system only knows the values
of q′v,∀v ∈ V, rv ≤ t, and may or may not have access to information about
the distribution of q for subsequent time periods. Previous matching decisions
can only be modified if the requests are unmatched. Thus, decisions taken at
each time period may impact the profitability of future decisions, and different
matching strategies may have different performances throughout the planning
horizon. The rolling horizon framework is outlined in Algorithm 1.

Algorithm 1: Rolling horizon simulation framework.

1 for t := 1, . . . , h do
2 observe q′v,∀v ∈ V, rv = t;
3 obtain some estimate on q′v,∀v ∈ V, rv > t;
4 decide on matches and unmatches for period t;

5 end

We now introduce three strategies that can generate decisions (as in line 4 of
Algorithm 1) within the rolling horizon framework. The first one is a myopic
strategy that assumes no knowledge on future information. The other strategies
are stochastic, each assuming different levels of knowledge about the distribution
of q.

4.1. The myopic strategy

A simple approach to generate matches and unmatches in a rolling horizon
framework when forecasts for q are unavailable consists in formulating a myopic
strategy. At each time period t, the strategy optimizes only for the current
time period. Therefore, decisions may not be optimal when considering the
full planning horizon. Given the smaller model size, this strategy may be used
when decisions are required quickly. Moreover, the performance of the myopic
strategy can be used as a benchmark to assess the performance of the stochastic
strategies, described in the next sections. We formulate the myopic problem of
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matching and unmatching requests such that the net profit at time period k ∈ T
is maximized as below:

fmyo(k, zk) := max
∑

(ij)∈Ek

(pkijx
k
ij − ckijykij) (7)

s.t.
∑

(ij)∈δk(v)

(xkij − ykij) ≤ q′v −
∑

(ij)∈δk(v)

zkij ∀v ∈ V, rv ≤ k (8)

ykij ≤ zkij ∀(ij) ∈ Ek (9)

zk+1
ij = zkij +

{
xkij − ykij if (ij) ∈ Ek
0 otherwise

∀(ij) ∈ E (10)

xkij , y
k
ij ∈ { 0, 1 } ∀(ij) ∈ Ek (11)

zk+1
ij ∈ { 0, 1 } ∀(ij) ∈ E. (12)

The objective (7) maximizes the net profit of matching and unmatching requests
at time period k. The constraints (8) ensure that only inactive requests can be
matched. The constraints (9) ensure that only active requests can be unmatched.
The constraints (10) define the values of z for the next time period. Note that
this formulation only accesses the values of q′v for the requests released up to
the current period k (rv ≤ k).

4.2. The stochastic strategies

The decisions generated at period k impact the decisions for subsequent
time periods k + 1, . . . , h. It is therefore beneficial to develop strategies that go
beyond the myopic view and explicitly consider the impact of decisions made at
period k on subsequent time periods. While the static model may be used based
on forecasts for the requests, such point-estimates may not well represent their
stochastic nature. We therefore adapt the static model to a two-stage stochastic
programming model that exploits information on the distribution of q.

Two-stage stochastic programming models have two sets of decisions: first-
stage and second-stage decisions. Variable coefficients associated with the
first-stage decisions are assumed to be known and certain. On the other hand,
some coefficients associated with the second-stage decisions are uncertain, but it
is assumed that their distributions can be sufficiently well estimated. First-stage
decisions are optimized based on the objective associated with the first stage
decisions and their anticipated impact on the second-stage problem. This impact
is referred to as the second-stage value function, and quantifies the impact of the
first stage decisions over all possible realizations of the second-stage coefficients.
For further reading on stochastic programming, we refer the reader to [23].

In our case, first-stage decisions are given for the requests available at the
current time period. In the second stage, these decisions are made for the
remainder of the planning horizon, considering all possible outcomes for q. This
leads to first-stage decisions that maximize the expected net profit over the
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remainder of the planning horizon. The stochastic program is defined as follows.

fsto(k, zk) := max
∑

(ij)∈Ek

(pkijx
k
ij − ckijykij) + Q(k + 1, zk+1) (13)

s.t.
∑

(ij)∈δk(v)

(xkij − ykij) ≤ q′v −
∑

(ij)∈δk(v)

zkij ∀v ∈ V, rv ≤ k (14)

ykij ≤ zkij ∀(ij)∈Ek (15)

zk+1
ij = zkij +

{
xkij − ykij if (ij) ∈ Ek
0 otherwise

∀(ij)∈E (16)

xkij , y
k
ij∈{ 0, 1 } ∀(ij)∈Ek (17)

zk+1
ij ∈ { 0, 1 } ∀(ij)∈E, (18)

where
Q(k + 1, zk+1) = Eq[Q(k + 1, zk+1, q)]

is the expected second-stage value function. The objective (13) maximizes the
first-stage net profit (for period k) plus the expected second-stage net profit
(for periods k + 1, . . . , h). The constraints (14) and (15) match and unmatch
requests for period k. The constraints (16) define the values of z for the next
time period. The first-stage problem has a structure similar to the one of the
myopic problem (7)–(11). For a specific realization q of q (also called scenario),
the second-stage value function Q(k + 1, zk+1, q) is a multiperiod problem over
the time periods (k + 1), . . . , h, defined below.

Q(k, zk, q) := max
h∑
t=k

∑
(ij)∈Et

(ptijx
t
ij − ctijytij) (19)

s.t.
∑

(ij)∈δt(v)

(xtij − ytij) ≤ q′v −
∑

(ij)∈δt(v)

zkij ∀t = k, . . . , h, v∈V, rv < k (20)

∑
(ij)∈δt(v)

(xtij − ytij) ≤ qv −
∑

(ij)∈δt(v)

zkij ∀t = k, . . . , h, v∈V, rv ≥ k (21)

ytij ≤ ztij ∀t = k, . . . , h, (ij)∈Et (22)

zt+1
ij = ztij +

{
xtij − ytij if (ij) ∈ Et
0 otherwise

∀t = k, . . . , h, (ij)∈E (23)

xtij , y
t
ij ∈ { 0, 1 } ∀t = k, . . . , h, (ij)∈Et (24)

zt+1
ij ∈ { 0, 1 } ∀t = k, . . . , h, (ij)∈E, (25)

and has a structure similar to the one of the static problem (1)–(6). We emphasize
that this two-stage stochastic program maximizes the expected profit over all
possible realizations. However, given that in the rolling horizon simulation a
specific realization q′ will occur, the planning is not guaranteed to be optimal
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for q′. Additionally, our stochastic program is limited to two stages, which only
approximates the true multistage structure of our problem.

4.2.1. The expected value strategy

Solving the stochastic program is a challenging task, as the number of all
possible realizations of q is exponential in the number of requests. We are thus
interested in alternative models that approximate Q(k+1, zk+1). A first approach
to approximate the second-stage value function is to replace the random variables
q with their expected values E[q]. We refer to this problem as the expected
value problem (EVP). As we can not reasonably assume perfect knowledge
of E[q] in a real-life setting, we build the EVP based on the expected value
over N independent samples q1, . . . , qN of q (which may stem from historical
observations). To build the EVP, we replace the expected second-stage value
function Q(k + 1, zk+1) by

Q̄(k + 1, zk+1) = Q(k + 1, zk+1, q̄),

where

q̄ =
1

N

N∑
j=1

qj

is the expected value of the samples q1, . . . , qN . The EVP is defined below.

fevp(k, zk) := max
∑

(ij)∈Ek

(pkijx
k
ij − ckijykij) + Q̄(k + 1, zk+1) (26)

s.t. (14)–(18). (27)

As the expected values of our random variables can be fractional and the second-
stage decision variables are binary, most of them will assume value zero to satisfy
the matching constraints. Therefore, the first-stage decisions would likely be
identical or similar to the ones generated by the myopic model, leading to an
ill-defined EVP. To circumvent this issue, we relax the integrality constraints of
all second-stage variables.

4.2.2. The sample average approximation strategy

The EVP may not generate good first-stage decisions, and solving the full
stochastic program may be necessary. However, enumerating all 2|V | realizations
of q together with their probability distribution may be infeasible in practice
and computationally intractable. We consider instead an approximation of
Q(k + 1, zk+1), where we sample N � 2|V | samples q1, . . . , qN of q. With these
realizations, we replace Q(k + 1, zk+1) with

QN (k + 1, zk+1) =
1

N

N∑
j=1

Q(k + 1, zk+1, qj),
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and solve the so-called sample average approximation (SAA) problem:

fsaa(k, zk) := max
∑

(ij)∈Ek

(pkijx
k
ij − ckijykij) + QN (k + 1, zk+1) (28)

s.t. (14)–(18). (29)

5. Computational Study

In this section, we evaluate the performance of the dynamic strategies. We
generate an extensive set of benchmark instances based on data obtained from
an industrial partner. We then repeatedly simulate each strategy in the rolling
horizon framework.

5.1. Benchmark instances

To ensure that we consider multiple realistic set-ups for ridesharing systems,
we generate an extensive benchmark set of 240 instances based on the demand
patterns of Netlift, a Montreal-based ridesharing company. We based our
instances on their ridesharing patterns observed from January to June 2019.
A problem instance consists of a planning horizon T , a set of requests V , the
random vector q, the probabilities P (qv = 1),∀v ∈ V , and a real realization
q′ of q. We consider a planning horizon T = { 1, . . . , 72 }, where each period
corresponds to an interval of 20 minutes. The first period corresponds to 8pm
and the last period corresponds to the same time 24 hours later. We also
consider that |V | = 150 · |T |, where 77% of the requests are requests from drivers.
We generate instances with different characteristics: patterns of origins and
destinations, request groups, release times, and proportion of recurrent requests.
We generate 10 instances for each combination of such characteristics, which are
described in the following.

5.1.1. Patterns of origins and destinations

Origins and destinations are restricted to the greater Montreal region and
are distributed according to three different patterns: 3g, 5g, and 7g. We
define the greater Montreal region with the following longitude and latitude
bounding box: -73.9058, 45.4146, -73.4769, 45.7029. All patterns have one
demand center representing downtown Montreal (coordinates -73.56154389,
45.49721524). The other demand centers represent different regions of inter-
est in the Montreal metropolitan area, such as La Petite-Italie (-73.61233988,
45.53537754), Côte-Vertu (-73.6882723, 45.52320286), Dollard-des-Ormeaux (-
73.836727, 45.49915694), Montréal-Est (-73.53648307, 45.61656685), Rosemère
(-73.81177627, 45.63200686), and Montréal-Nord (-73.63821111, 45.59797576). In
pattern 3g, points are sampled from three demand centers. In pattern 5g, points
are sampled from five demand centers. Finally, in pattern 7g, points are sampled
from seven demand centers. The coordinates for each demand center are obtained
by sampling from Gaussian distributions with variance 10−4. Additionally, to
represent requests outside common demand centers, all patterns have some
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points that are generated uniformly over the greater Montreal region bounding
box (described in the next section). The different patterns are illustrated in
Figure 2, with the downtown region highlighted in orange.

Figure 2: The distribution of points for different patterns. Orange points refer to downtown.

(a) Pattern 3g. (b) Pattern 5g.

(c) Pattern 7g.

5.1.2. Request groups

Requests belong to one of the following groups: central or random. The
central requests have a downtown origin and a non-downtown destination, or a
non-downtown origin and a downtown destination. These origins and destinations
are generated from the Gaussian distributions of each pattern. The random
requests have origins and destinations uniformly sampled from the greater
Montreal region. We use a centrality parameter ωc to control the proportion
of central requests (ωc) and the proportion of random requests (1− ωc), where
ωc ∈ { 25%, 75% }. Figure 3 exemplifies how the distribution of points changes for
two different values of ωc. Note that when ωc approaches zero, the distribution
of points becomes entirely uniform.
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Figure 3: Distribution of points for different values of ωc.

(a) ωc = 25%. (b) ωc = 75%.

5.1.3. Release times

The release times of requests are either uniform or clustered. In the uniform
case, for each v ∈ V , rv is a period in T chosen uniformly at random. In the
clustered case, if a request belongs to the random group, then its release time is
also a randomly chosen period in T . Otherwise, if the request belongs to the cen-
tral group, then the release time is a number randomly chosen from { 1, . . . , 12 }
(8 pm to midnight) if its destination is downtown, or from { 36, . . . , 48 } (next
day, 8 am to noon) if its destination is outside downtown.

Figure 4 shows the distribution of uniform and clustered release times for
different values of ωc. For uniform release times, the value of ωc does not affect
the shape of the distribution. However, for clustered release times, smaller values
of ωc lead to more evenly distributed request releases.
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Figure 4: Distribution of release times for different values of ωc.
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(b) Clustered release times.
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5.1.4. Random variables and recurrent requests

For each request v ∈ V , the probability of it being released (qv = 1) is a
random number in [20%, 50%]. Some requests may be recurrent. Recurrent
requests represent customers that use the ridesharing system regularly. For these
requests, we assign higher probabilities, randomly selected from [80%, 100%].
We control the proportion of recurrent requests in V with a trip-recurrence
parameter ωr and generate instances with ωr ∈ { 5%, 10% }.

5.1.5. Travel distance and time

To evaluate the profitability and the time-window feasibility of matches, it is
necessary to define the distances between origins and destinations. One option
is to use a dedicated routing software such as OSRM [24] to find real route
distances. Another more suitable option for preliminary analyses is to use a
simple distance metric d̄(a, b) as an approximation for the real distance and to
adjust it with coefficients found by fitting a regression model. We use this second
option, using the great-circle distance as an approximation for the real distance.
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We express the adjusted distance d(a, b) as a function of the great-circle distance
d̄(a, b), as shown below:

d(a, b) = β0 + β1d̄(a, b).

To obtain the coefficients β0 and β1, we built a linear least squares regression
model with 100 distances for trips within the Greater Montreal area, illustrated in
Figure 5. For each of those 100 trips, we obtained the true distances from OSRM
and fitted the linear regression, yielding β0 = 0.62 and β1 = 1.26 (rounded to
two decimal places). Finally, based on travel distance, we calculate the travel
time t(a, b) assuming a constant speed of 40km/h, i.e., t(a, b) = d(a, b)/40.

Figure 5: The regression model.
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5.1.6. Departure and arrival times

We generate the requests departure times based on their release times plus
a delay. For each request v ∈ V with release time rv, we randomly select a
period in rv, . . . , rv + 30 for its departure time av. Departure times are therefore
requested on average five hours after their corresponding release times. The
arrival time bv is av + tv(ov, dv).

5.1.7. Objective function

We define the profit coefficient p and the penalty coefficient c based on the
distance savings generated by the rideshare and on the number of time periods
between request release and request matching or unmatching:

ptij := sij −
λp

τ · 100
∆t
ijsij ∀t ∈ T, (ij) ∈ Et,

ctij := sij +
λc

τ · 100
∆t
ijsij ∀t ∈ T, (ij) ∈ Et.
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The coefficient τ is the number of periods per hour (in our case, τ = 3) and

∆t
ij =

(t− ri) + (t− rj)
2

∀t ∈ T, (ij) ∈ Et,

is the average number of periods between t and the release time of the two
requests. The parameters λp and λc are penalty coefficients that represent
the hourly decrease of matching profit and the hourly increase of unmatching
penalty. We generally assume that (λp, λc) = (5, 2), such that matching profits
are penalized 5% per hour and unmatching costs are increased 2% per hour. We
conduct further experiments with different values for λp and λc in Section 5.2.8.

5.2. Computational experiments

In this section, we evaluate the performance of the dynamic strategies when
simulated in a rolling horizon framework. We implemented the strategies in
Python 3.7 and used CPLEX 12.10 to solve the mathematical programming
models. We limited CPLEX to one thread and used its default parameters. The
experiments were run on a cluster with CPUs ranging from 2.1 to 2.4 GHz.

When solving the instances with the stochastic strategies, we consider 5
to 40 scenarios. We always perform 5 rolling horizon simulations for these
strategies, each of which considers new samples of q. We used the model
reduction techniques proposed in [4] to reduce the time needed to build and
solve the models.

5.2.1. Performance over all instances

We first analyze the average performance of each strategy over our instance
benchmark set. The set contains a total of 240 instances for all combinations of
patterns 3g, 5g and 7g, ωc ∈ { 25%, 75% }, ωr ∈ { 5%, 10% }, and clustered and
uniform release times. Average results over the instances are shown in Table 1.
The column “gap” is the percentage gap to the revenue generated by the static
model. The column “std” is the gap standard deviation. The column “T(min)”
is the average sum of computing time (in minutes) required to build and solve
the 72 models with CPLEX. The last row contains the average over all rows
(except for row STAT).
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Table 1: Rolling horizon results averaged over all instances.

algo |S| gap std T(min)

STAT – – – 0.01
MYO – 4.05 1.04 0.08

EVP 5 2.77 0.90 1.58
10 2.72 0.90 1.75
20 2.69 0.89 1.75
40 2.69 0.90 1.66

SAA 5 2.71 0.90 4.87
10 2.66 0.91 10.01
20 2.66 0.91 20.37
40 2.65 0.92 39.45

mean – 2.84 0.92 9.06

The results show that both stochastic strategies outperform the myopic
strategy. Furthermore, increasing the number of scenarios tends to reduce the
gap of the stochastic strategies. Finally, the SAA always outperforms the EVP
strategy but requires more CPU time. Note again that this is the total computing
time required for 72 optimization runs carried out during a planning horizon of
24 hours. The time required for each run is rather negligible.

5.2.2. Performance for different patterns

We evaluate the performance of each strategy on the patterns 3g, 5g, and 7g.
The average results are shown in Table 2.

Table 2: Rolling horizon results for different patterns.

3g 5g 7g
algo |S| gap std T(min) gap std T(min) gap std T(min)

STAT – – – 0.01 0.00 0.00 0.01 0.00 0.00 0.01
MYO – 4.08 1.03 0.10 3.83 0.96 0.07 4.23 1.08 0.08

EVP 5 2.81 0.89 1.81 2.69 0.91 1.40 2.81 0.89 1.51
10 2.78 0.90 2.02 2.66 0.91 1.55 2.72 0.89 1.68
20 2.74 0.89 2.03 2.63 0.89 1.54 2.71 0.89 1.68
40 2.72 0.88 1.91 2.64 0.91 1.45 2.70 0.89 1.61

SAA 5 2.72 0.87 5.89 2.63 0.92 4.10 2.76 0.91 4.61
10 2.69 0.89 12.18 2.57 0.90 8.35 2.70 0.93 9.50
20 2.67 0.88 24.71 2.59 0.90 16.99 2.71 0.95 19.42
40 2.66 0.88 47.80 2.56 0.91 32.91 2.71 0.95 37.64

mean – 2.88 0.90 10.94 2.76 0.91 7.60 2.89 0.93 8.64

The results indicate that the stochastic strategies outperform the myopic
strategy for all patterns. For patterns 3g and 5g, the SAA strategy outperforms
the EVP strategy. For pattern 7g, both strategies have a similar performance.
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5.2.3. Performance for different values of centrality parameter ωc
We now evaluate how the performance of each strategy changes for different

values of ωc. The higher the value of ωc, the more to-downtown and from-
downtown trips are present in the set of potential requests. We test ωc ∈
{ 25%, 75% }. Results are summarized in Table 3.

Table 3: Results for different values of centrality ωc.

25% 75%
algo |S| gap std T(min) gap std T(min)

STAT – – – 0.01 0.00 0.00 0.01
MYO – 4.45 0.74 0.04 3.65 1.13 0.13

EVP 5 3.37 0.59 0.91 2.17 0.75 2.24
10 3.35 0.55 0.99 2.09 0.72 2.51
20 3.31 0.55 0.99 2.07 0.71 2.51
40 3.31 0.55 0.93 2.06 0.72 2.39

SAA 5 3.27 0.57 2.02 2.14 0.81 7.72
10 3.24 0.58 4.07 2.08 0.80 15.95
20 3.24 0.56 8.36 2.07 0.81 32.38
40 3.23 0.57 15.76 2.06 0.81 63.14

mean – 3.42 0.59 3.79 2.27 0.81 14.33

The results indicate that increasing ωc leads to smaller gaps for all strategies.
This suggests that the higher geographical density of downtown trips and the
wider availability of information on periods associated with central trips reduces
uncertainty. However, increasing ωc also leads to a denser graph and therefore
bigger models, which increases the CPU time.

5.2.4. Performance for different values of trip-recurrence ωr
We now investigate the impact of the proportion of recurrent requests on

each strategy. Bigger values of ωr may represent the fact that the company has
a loyal customer base. We here test ωr ∈ { 5%, 10% }. Results are shown in
Table 4.

Rolling Horizon Strategies for a Dynamic and Stochastic Ridesharing Problem with Rematches 

CIRRELT-2021-20 17



Table 4: Results for different values of trip-recurrence ωr.

5% 10%
algo |S| gap std T(min) gap std T(min)

STAT – – – 0.01 0.00 0.00 0.01
MYO – 4.01 0.99 0.08 4.08 1.08 0.09

EVP 5 2.86 0.91 1.50 2.68 0.88 1.65
10 2.82 0.90 1.68 2.62 0.88 1.82
20 2.79 0.88 1.71 2.59 0.89 1.80
40 2.79 0.89 1.60 2.59 0.89 1.72

SAA 5 2.82 0.92 4.39 2.59 0.87 5.35
10 2.76 0.92 9.11 2.56 0.89 10.91
20 2.76 0.93 18.68 2.56 0.88 22.07
40 2.74 0.94 35.92 2.55 0.88 42.98

mean – 2.93 0.92 8.30 2.76 0.90 9.82

The results indicate that as ωr increases, the myopic strategy gap and
standard deviation increase, and the stochastic strategies gaps and standard
deviations decrease. This result is expected because the myopic strategy has
no knowledge that some requests are highly likely to be released, and therefore
it is subject to generate many suboptimal rideshares. On the other hand, the
stochastic strategies can capture this information and generate better decisions.
The results also show that as ωr increases, the CPU time increases, this is due
to having a denser graph, as more requests are released.

5.2.5. Performance on clustered and uniform release times

We now evaluate the impact of clustered and uniform release times. Results
are shown in Table 5.

Rolling Horizon Strategies for a Dynamic and Stochastic Ridesharing Problem with Rematches 

18 CIRRELT-2021-20



Table 5: Results for clustered and uniform release times.

clustered uniform
algo |S| gap std T(min) gap std T(min)

STAT – – – 0.01 0.00 0.00 0.01
MYO – 3.44 0.96 0.12 4.65 0.70 0.05

EVP 5 2.34 0.93 1.90 3.20 0.63 1.25
10 2.31 0.92 2.11 3.13 0.64 1.39
20 2.28 0.92 2.13 3.11 0.63 1.38
40 2.27 0.91 2.03 3.11 0.64 1.29

SAA 5 2.26 0.92 6.51 3.15 0.62 3.23
10 2.20 0.92 13.37 3.11 0.63 6.65
20 2.20 0.93 27.32 3.11 0.61 13.42
40 2.19 0.94 53.16 3.11 0.61 25.75

mean – 2.39 0.93 12.07 3.30 0.64 6.04

The results suggest that instances with clustered release times take longer
to be solved. This is due to denser graphs for the periods where requests are
released more often. For the instances with uniform release times, all gaps
are larger. This is due to the randomness in release times, which causes less
information to be available at each period and makes the prediction on the
release of future requests harder for the stochastic strategies.

5.2.6. The impact of forbidding unmatching

We now evaluate the performance of each strategy when unmatching is
forbidden. To do so, we assign a big value for λc. As shown in [4], the static
model never unmatches previously matched requests given that the rematching
profits are never bigger than the unmatching costs. Therefore, forbidding
unmatching does not impact the optimal objective function value of the static
model and we can directly compare the performance of the various models under
these two problem variants. Results are shown in Table 6.

Rolling Horizon Strategies for a Dynamic and Stochastic Ridesharing Problem with Rematches 

CIRRELT-2021-20 19



Table 6: Results with allowed and forbidden unmatching.

allowed forbidden
algo |S| gap std T(min) gap std T(min)

STAT – 0.00 0.00 0.01 0.00 0.00 0.01
MYO – 4.05 1.04 0.08 14.89 4.41 0.08

EVP 5 2.77 0.90 1.58 3.48 1.26 1.57
10 2.72 0.90 1.75 3.18 1.11 1.75
20 2.69 0.89 1.75 3.10 1.07 1.75
40 2.69 0.90 1.66 3.07 1.04 1.66

SAA 5 2.71 0.90 4.87 3.50 1.21 4.80
10 2.66 0.91 10.01 3.34 1.11 9.89
20 2.66 0.91 20.37 3.34 1.09 19.97
40 2.65 0.92 39.45 3.38 1.11 38.16

mean – 2.84 0.92 9.06 4.59 1.49 8.85

When unmatching is forbidden, the gap of the myopic strategy is about 4
times higher, and the gap of the stochastic strategies is about 1.5 times higher.
Thus, the flexibility of unmatching is beneficial to all strategies and may increase
the profits of ridesharing companies. This is particularly the case for the myopic
strategy, given that the lack of predictions for future requests may lead to bad
premature decisions which can only be corrected if unmatching is allowed.

The results also allow us to draw interesting conclusions on the relationship
between the value of unmatches and the value of stochastic information, and how
unmatching or stochastic information can be used in isolation to find solutions
with similar gaps.

No stochastic information. When stochastic information is not available, un-
matches can be used to correct past decisions. In this case, the myopic strategy
gap is only slightly larger than the best gap of the stochastic strategies with
forbidden unmatches (4.05% vs. 3.07%).

No unmatches. Otherwise, when unmatching is forbidden, stochastic informa-
tion can be exploited to generate matches that are less likely to benefit from
rematching. In this case, increasing the number of scenarios reduces the stochas-
tic strategies gaps from 3.50% to 3.07%. Due to that, stochastic strategies with
forbidden unmatches attain a gap slightly smaller than the myopic strategy gap
with allowed unmatches (3.07% vs. 4.05%).

Everything is available. Finally, when unmatches are allowed and stochastic
information is available, the average gap of the stochastic strategies is even
smaller than the myopic strategy gap with allowed unmatches (2.65% vs. 4.05%).
However, increasing the number of scenarios decreases the gap at a slower pace.
As it is unlikely that good forecasts on future information will be always available
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during daily practice, the possibility of unmatching becomes a valuable asset in
a decision-maker toolset.

5.2.7. Solution characteristics

The goal of this section is to understand the structure and characteristics of
the solutions generated from each strategy by investigating solution attributes
besides profit, such as the number of matches and unmatches. For this analysis,
we consider only the subset of experiments where unmatches are allowed. Average
results are shown in Table 7. Columns “matches” and “unmatches” give the
number of matches and unmatches generated in the rolling horizon, respectively.
Column “net” represents the difference between both values, i.e., the number
of active matches at the end of the planning horizon. Column “prop” gives the
proportion of unmatches over all matches and unmatches. Column “match delay”
shows the average number of periods between release times and matches. Finally,
column Tmax indicates the highest computing time (in minutes) encountered in
the different optimization runs throughout the day.

Table 7: Statistics on matches and unmatches.

algo |S| matches unmatches net prop match delay Tmax

STAT – 270.52 0.00 270.52 0.00 3.29 0.01
MYO – 395.73 126.30 269.43 24.19 3.16 0.00

EVP 5 279.48 10.00 269.48 3.46 4.55 0.04
10 276.90 7.38 269.52 2.60 4.63 0.04
20 276.07 6.53 269.55 2.31 4.65 0.04
40 275.85 6.30 269.55 2.23 4.66 0.04

SAA 5 283.39 13.97 269.42 4.70 4.44 0.11
10 280.71 11.24 269.48 3.85 4.53 0.23
20 279.18 9.65 269.53 3.34 4.60 0.47
40 278.47 8.95 269.52 3.11 4.63 0.93

mean – 291.75 22.26 269.50 5.53 4.43 0.21

Unmatch proportion. The results highlight the greediness of the myopic strategy.
Even if it has a net match balance similar to all other strategies, it has a large
unmatch proportion of 24.19%. It matches far more than the static model, which
indicates that many matches are created prematurely and are unmatched as
soon as new information arrives. Alternatively, the stochastic strategies have a
smaller unmatch proportion. Increasing the number of scenarios reduces this
proportion even more, while keeping the net match balance stable.

The EVP unmatch proportion. The EVP strategy has a slightly smaller unmatch
proportion than the SAA strategy. In [4], it is shown that the unmatching of
requests in the isolated second-stage problem is never profitable, provided that
matching profits are smaller than unmatching costs. The same assumption is also
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present in our problem definition, and the results on unmatching profitability
trivially extend to our EVP model with continuous second-stage variables and
fractional right hand side coefficients. This suggests that the first-stage decisions
generated by the EVP strategy are the ones that are less likely to require
unmatching upon the arrival of new information, which may explain the smaller
unmatch proportion of the EVP strategy.

Matching delay. The myopic strategy has a matching delay similar to the one
found in the static model (3.16 and 3.29 periods, i.e., about 60 minutes). The
stochastic strategies have a longer delay (about 4.5 periods, i.e., about 1h30min),
and increasing the number of scenarios slightly increases this delay. The SAA
strategy has a slightly smaller matching delay than the EVP strategy, which
may explain its slightly bigger unmatch proportion, as early decisions lead to
more unmatches. The fact that the stochastic strategies have a delay of only 30
minutes longer shows that the solutions generated by these strategies are not only
more profitable, but they also do not much degrade the customer experience.

Time per iteration. The SAA with 40 scenarios requires the longest computing
time: about one minute at most. Considering that each period corresponds to
an interval of 20 minutes, the SAA with up to 40 scenarios is solved sufficiently
fast for real-time usage.

5.2.8. Performance under different corporate preferences

Ridesharing companies may have different objectives when it comes to the
desired customer experience. A company may therefore adjust the profit and
penalty parameters λp and λc to best fit their corporate strategy. The goal of this
section is to assess the performance of the dynamic strategies when the objective
function penalties λp and λc change. We conduct two sets of experiments on the
subset of instances with pattern 3g, ωc ∈ { 25%, 75% }, and ωr ∈ { 5%, 10% }. In
the first set of experiments, we fix λc = 2 and test values for λp from 0 to 10. In
the second set of experiments, we fix λp = 5 and test values for λc from 0 to 10.
We limited the stochastic strategies to five scenarios, and for each instance, we
conducted five runs with different random samples of q. Results are illustrated
in Figure 6. The vertical axis represents the average percentage gap between
the obtained profit (for each strategy) and the optimal profit (obtained from the
static model). The horizontal axis represents the different values of λp and λc.
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Figure 6: Gap for different values of λp and λc.

0 1 2 3 4 5 6 7 8 9 10
p

2

4

6

ga
p

c = 2 MYO
EVP
SAA

0 1 2 3 4 5 6 7 8 9 10
c

p = 5

The results indicate that the stochastic strategies always outperform the
myopic strategy. Below we discuss the results for interesting values for λp and
λc.

Inexpensive vs. expensive delayed matching. When the profit parameter λp
decreases, the gap between the stochastic strategies and the myopic strategy
widens, as matching early is less important. Given that the stochastic strategies
have forecasts for future requests, they may avoid premature matches, favoring
delayed matching without the need of frequent unmatching. In contrast, when
λp increases, the gap between the stochastic strategies and the myopic strategy
narrows, as matching as soon as possible becomes more important, and therefore
the stochastic strategies start to behave similarly to the myopic strategy.

Inexpensive vs. expensive unmatches. When the penalty parameter λc reduces,
the gap between all strategies reduces, as there are seemingly no disadvantages
for matching myopically and unmatching for little or no cost when necessary.
Still, when unmatching is free (λc = 0), the myopic strategy is still the worst
performer. This suggests that even when unmatching is free, matching as soon
as possible may not be the best decision, as some matches may permanently
block unmatches (e.g. when a rideshare starts) and restrict better matches in
the future. In contrast, when λc > 3, the EVP strategy slightly outperforms the
SAA strategy. This may be explained by the results in Table 7: as the unmatch
proportion of the EVP is smaller than the one of the SAA, the EVP is more
profitable when the unmatching costs increase.

We now analyze how the number of unmatches for each strategy changes as
we vary λp and λc. Results are illustrated in Figure 7.
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Figure 7: Unmatches for different values of λp and λc.
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The results indicate that as λp increases, the myopic strategy unmatches
less. Contrarily, the SAA tends to unmatch more as λp increases, and the
number of unmatches of the EVP is relatively stable regardless of the value of
λp. Quite understandably, an increase of λc leads to a reduction in the number
of unmatches for all strategies.

6. Conclusions and Future Work

In this paper, we have revisited a matching and rematching problem with
applications in request matching for ridesharing systems. In addition to the
existing myopic and two-stage stochastic models, we have proposed an EVP
variant of the problem. Given that the demand averaged over all scenarios
is typically fractional, a classical implementation of this model would tend to
prevent any matches in the second-stage. We therefore relax the integrality for
the second-stage decisions.

We then conducted computational experiments for all models on an extensive
set of benchmark instances representative of different ridesharing settings. Our
results demonstrate the value of unmatches and the value of stochastic informa-
tion: the average gap for the myopic strategy is 4.05% and the average gap for
the stochastic strategies is 2.69%. When unmatching is forbidden, the benefits
of stochastic information are clear, resulting in significantly lower average gaps
(4.59% vs. 14.89%). These benefits are less pronounced when unmatches are
allowed, which indicates that the possibility to unmatch and rematch is a good
substitute for when reliable forecasts on future requests are difficult to obtain.
Furthermore, the SAA strategy generates slightly better solutions than the EVP
strategy: it has an average gap of 2.67%, while the EVP strategy has an average
gap of 2.72%. We believe that our results can provide valuable insights to
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ridesharing operators, such as understanding in which scenarios unmatching
may provide benefits, how much effort should be allocated to forecast future
information, and how to define the penalties for delayed matches and unmatches.
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