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Abstract. This paper introduces the maximum availability service facility location problem, 

which integrates the set covering and flow capturing problems to service both stationary 

and mobile demand in an urban region. The problem has applications in location of 

government offices, medical facilities and polling stations. We present a mixed-integer linear 

programming formulation and develop a Benders decomposition algorithm. We implement 

several acceleration techniques including multi-cut and Pareto-optimal cut generation. We 

construct these cuts analytically using closed-form expressions for subproblem solutions. 

Our best algorithm optimally solves instances with up to one thousand nodes, one million 

commuting customers and one hundred candidate facilities. We also conduct a case study 

with real data from the city of Chicago and show an application of our model for the location 

of medical facilities in a pandemic situation. We find that confinement restrictions in a 

pandemic do not significantly affect the total demand coverage, but facility layout may be 

significantly different under different confinement levels. 
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1. Introduction

Service facilities such as government offices, medical centers, refueling stations and automatic

teller machines offer various types of services to the public, and their location has an impact

on their availability and ultimately on their success. Individuals can visit such facilities on an

independent trip or as part of their daily commute on their preplanned paths. In this paper, we

consider both types of customers when planning for the location of service facilities and maximize

their availability by respecting fairness among the individuals.

The location optimization of service facilities aims at maximizing the covered demand. The

demand can be stationary, such as in residential areas or work places where the customers are

immobile for extended periods of time, or they can be mobile and travel during the period when

facilities provide their service. We now review the problems in location science that address the two

demand types. Hodgson (1990) introduces the flow capturing location problem (FCLP) where the

demand is considered to be mobile and is defined as an origin-destination (OD) pair. The objective

is to cover the maximum demand by opening a given number of facilities. Berman et al. (1992)

independently introduce the discretionary service facility location problem, which is structurally

the same as the FCLP. The authors propose a solution method based on branch-and-bound (B&B)

algorithm and present computational results on random networks. Real-world applications of the

FCLP are investigated by Hodgson et al. (1996) in a traffic network from the city of Edmonton. In

the basic FCLP definition, the drivers are neutral to the location of facilities and do not change their

preplanned paths to visit a facility. The problem has witnessed a surge of interest in the literature

and one of the touted applications is the the flow refueling location problem (FRLP) by Kuby and

Lim (2005), in which covering a demand requires intercepting a vehicle flow possibly for multiple

times en route. This ensures the connectivity of the OD pair without running out of the fuel.

Upchurch et al. (2009) extended the FRLP by including the capacities of refueling stations. The

above FRLP models assume that the vehicles are half-fuelled at the beginning of their trip. The

FCLP can be categorized into three groups according to the drivers’ behavior (Arslan et al., 2018):

the drivers can be neutral, cooperative or non-cooperative to change their paths to visit or avoid

the facilities. In the cooperative case, Berman et al. (1995) consider driver deviation from their

preplanned trips to visit the service facilities and Kim and Kuby (2012) implement the same idea

for the FRLP. Yıldız et al. (2016) develop a branch-and-price algorithm and Arslan et al. (2019)

develop a branch-and-cut algorithm for the same problem. When the drivers are noncooperative,

as in the case of overweight truck drivers avoiding to encounter weighing stations, the problem we

face is then an evasive flow capturing problem (Marković et al., 2015). Other relevant applications

include health care facility locations. Taymaz et al. (2020) address the problem of locating health

care facilities for mobile workers, who work across cities under severe conditions that debilitate

their health. The authors propose a stochastic model to locate walk-in clinics and allocate different

services by considering mobile demand.
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While the FCLP captures demand flow between OD pairs, covering location problems (CLP)

are used to locate facilities by considering the coverage of stationary demand. Depending on

the available resources, all the demand can be covered by minimizing the number facilities or a

maximum amount of demand can be covered by locating a given number of facilities. Covering

problems are extensively used in various applications including humanitarian logistics and health

care. Ndiaye and Alfares (2008) introduce a facility location model for healthcare facilities for

nomadic or Bedouin populations that move seasonally. They present a facility location model

to determine the number and location of the healthcare facilities while minimizing the relocation

and operating costs of the facilities. Erkut et al. (2008) propose a model for locating emergency

medical service facilities. The authors enhance three classical covering models by including a

survival function that puts in relation the response time and survival probability. They show that

their model produces more realistic solutions than the classic maximal covering location models.

Murali et al. (2012) introduce a capacitated facility location problem to locate medical distribution

centers in case of a bio-terror attack. They assume that demand satisfaction is related to distance

and they consider demand uncertainty in their model. Recent applications of the CLP include

facility location for drones. Chauhan et al. (2019) introduce the problem and propose a 3-stage

heuristic approach to solve it. We refer to Snyder (2011) and Garćıa and Maŕın (2019) for various

CLP applications and their extensions.

FCLP and CLP are among numerous location models used to optimize facility locations.

Turkoglu and Genevois (2020) provide a comprehensive survey of service facility locations and

categorize them by application, from banking and health care services to food and refueling appli-

cations. While these models can be used in multiple settings, various application contexts require

the need to cover the demand at their origins and destinations as well as the need to capture the

demand flow on the OD paths. In particular, a regular daily routine of a working individual starts

at their home, continues with a commute and finally a journey from work back to home. Depend-

ing on their departure and arrival times, they may find a service facility at their origin, on their

commute route or at their destination. In the same network, there are also stationary demands

that are located at nodes and the service facility planning process needs to take into consideration

both types of demand. Such a demand definition is applicable in the location of several facility

types:

• Government offices: such as immigration services, employment and pension services or health

insurance services,

• Testing and vaccination clinics during a pandemic: The goal is to provide the population

with an opportunity to get tested in close proximity to their homes, schools, workplaces, or

on their daily commute,

• Polling stations for voting.
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Even when the customers are in close proximity to the service facilities, they have limited access

to these facilities due to their daily routine and work or school commitments. The aim is to provide

customers the opportunity to benefit from these services during their available time. To this end,

we introduce the maximum availability service facility location problem (MASFLP), which locates

service facilities by maximizing their availability to the customers. A demand is defined as an OD

pair and it can be covered at the origin, at the destination, or on their way from their origin to the

destination. The coverage is defined in terms of the time they have access to at least one facility

and is bounded above by a limit. This demand definition allows us to model the customers who

commute using their private vehicles or public transportation as well as the stationary customers

at nodes. Time dimension is involved in this demand definition. Customers can have available

time at their origin (for example, before work or school), on their journey to work, or at their

destination (for example, during breaks or after work). To ensure fairness, each demand point can

only be covered for a limited number of hours. This guarantees that the service facilities are not

concentrated in densely populated regions and all the demand are treated fairly. The MASFLP

also handles flow cannibalization (Hodgson, 1990) that arises when facilities are located at strategic

intersections with high flow, which leads to covering high flows multiple times and ignoring smaller

demand flows. Further elaborations are presented in Section 2.

Solution methods for the FCLP and the CLP have been explored extensively, and Benders

decomposition (BD) algorithms (Benders, 1962) are especially suited for the structure of these

location problems. Arslan and Karaşan (2016) use BD decomposition and propose different cut

implementations to solve the charging station location problem with electric vehicles and plug-

in hybrid vehicles. Cordeau et al. (2019) introduce a new approach based on BD to solve large

scale partial set covering problems and maximal covering problems. Their algorithm is capable

of solving massive data instances. BD methods are also used in other applications. Zetina et al.

(2019) present two exact algorithms to solve the multicommmodity uncapacitated fixed-charge

network design problem. They show that their algorithm provides an acceleration when compared

to CPLEX. We refer to Costa (2005) and Rahmaniani et al. (2017) for a review on the application

of BD algorithms in different optimization problems. Other solution methods are covered in the

survey by Turkoglu and Genevois (2020).

The location optimization of service facility requires consideration of various factors. The main

contributions of this paper are as follows:

• We introduce the maximum availability service facility location problem (MASFLP) by con-

sidering both stationary and mobile demand in an urban region. We also consider fairness

among the individuals.

• We present a mixed-integer linear programming formulation for the MASFLP.

• We develop a BD algorithm to solve the model and test various acceleration techniques
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including multi-cut and Pareto-optimal cut generation. We exploit the subproblem structure

to solve them analytically and generate Pareto-optimal cuts as closed-form expressions.

• We conduct extensive computational experiments to evaluate the effectiveness and perfor-

mance of our proposed solutions compared to CPLEX.

• We demonstrate the efficiency of our algorithm on random networks and present a case study

in the city of Chicago for testing center location optimization in a pandemic situation.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and the

mathematical model. We present the BD algorithm and the analytical solutions of the subproblems

in Section 3, the computational experiments in Section 4, and we conduct a case study in Section

5. Finally, we conclude and offer directions for future work in Section 6.

2. Mathematical model

We now introduce the problem and present a mathematical formulation for the MASFLP.

2.1. Problem definition and notation

Let K be the set of candidate facilities and m be the number of facilities to locate. Let Q

be the set of customer demands, and G = (N,A) be the transportation network where N is the

set of nodes and A = {(i, j) : i, j ∈ N, i 6= j} is the set of directed arcs. The length of arc

(i, j) ∈ A is lij . We assume that the distance matrix satisfies the triangular inequality. Each

customer demand q ∈ Q is defined by 〈oq, dq, fq, toq, tdq , t
p
q , λq〉, where oq and dq are the origin and

destination nodes, respectively, and fq is the volume of customers living at oq, working at dq and

commuting in between. Parameters toq, t
d
q and tpq represent the customers’ available time during

the business hours at the origin, at the destination, and on the OD path, respectively, and λq is

the customers’ deviation tolerance from their preplanned OD path. A non-commuting demand

residing at oq can be represented by setting dq = oq. Each candidate facility k ∈ K has a coverage

range of rk. A facility k covers demand at node i if lik ≤ rk, and on path between oq and dq if

loqk + lkdq ≤ (1 +λq)loqdq . For a q ∈ Q, the maximum contribution to the objective function can be

at most tmax, which ensures that the service is provided fairly to all demand in the network. The

service is defined as time availability and not as binary, hence the higher the availability the higher

the service provided. Times toq, t
d
q and tpq can be regarded as a weight for each demand q ∈ Q and

do not encourage flow cannibalization, which is be handled by binary location variables defined

in Section 2.2 as introduced by Hodgson (1990). Let Np the set of potential locations on path p,

No the set of potential locations covering origin o, and Nd the set of potential locations covering

destination d.
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Definition 1. The MASFLP is defined as selecting a subset of K to open such that the total

availability provided to the demand is maximized and the maximum contribution of each demand

is at most tmax.

f1

f2
oq dq

f5

f4

f3

f6

No
q = {f1, f2}

Departure time = 9h
Np

q = {f1, f2, f3}
Commuting time = 45 minutes

Np
q = {f5}

Work break = 12h − 13h

Facility work hours = 7h − 16h

Legend

Customer nodes Potential

facilities

Figure 1: Network model of the MASFLP.

Figure 1 shows an example of a demand on a small network. Observe that demand q can be

covered at origin oq by facilities f1 and f2 for toq = 2 hours. Availability time toq is the difference

between the facility opening hour (7h) and the departure time (9h). Demand q can also be covered

on the OD path by facilities f1, f2 and f3 for a fixed amount of time, which is taken as tpq = 45

minutes and around the destination dq by facility f5 for tdq = 1 hour during the work break. Demand

q cannot be covered by f4 because the driver is intolerant to high deviations and cannot be covered

by f6 either because node dq is not within the facility’s range.

Remark 1. If oq = dq, tpq = tdq = 0 for all q ∈ Q, and tmax is a very large number, the MASFLP

reduces to the MCLP.

Remark 2. If toq = tdq = 0 and tpq = 1 for all q ∈ Q and tmax is a very large number, the MASFLP

reduces to the FCLP.

Therefore, the MASFLP generalizes the MCLP and the FCLP and is NP-hard.
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2.2. Mathematical model

We use the following decision variables to formulate the MASFLP.

xk = 1 if a facility is located at location k, 0 otherwise,

yoq = 1 if demand q is captured at origin oq, 0 otherwise,

ydq = 1 if demand q is captured at destination dq, 0 otherwise,

ypq = 1 if demand q is captured on path pq, 0 otherwise and

θq is the time that a service facility is available for demand q.

The MASFLP is then formulated as the following MILP.

maximize
∑
q∈Q

θqfq (1)

subject to
∑
k∈K

xk = m (2)

θq ≤ tmax q ∈ Q (3)

θq ≤ toqyoq + tdqy
d
q + tpqy

p
q q ∈ Q (4)∑

k∈No
q

xk ≥ yoq q ∈ Q (5)

∑
k∈Nd

q

xk ≥ ydq q ∈ Q (6)

∑
k∈Np

q

xk ≥ ypq q ∈ Q (7)

θq ≥ 0 q ∈ Q (8)

xk ∈ {0, 1} k ∈ K (9)

yoq , y
d
q , y

p
q ∈ {0, 1} q ∈ Q. (10)

The objective function maximizes total availability of facilities to the customers. Constraints (3)

ensure that the available time of demand q ∈ Q to the service does not exceed a maximum amount

of time tmax. Constraints (4) ensure that the available time is correctly calculated. Constraints

(5), (6), and (7) ensure that a demand is covered only if a facility is open within the coverage range

of its origin and destination or on an OD path. Finally, constraints (8), (9), and (10) define the

domain of variables. It is straightforward to show that, without loss of generality, we can relax the

integrality requirement of the yoq , ydq , and ypq variables. We refer to the formulation with relaxed y

variables as P.

3. Benders Decomposition

In this section, we develop a BD algorithm (Benders, 1962) for solving the P model. BD is a

decomposition algorithm, in which the continuous variables are projected out from the formulation
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and an exponential number of constraints are appended instead. These constraints correspond to

the extreme points and rays of the linear programming model, which is obtained by fixing the

integer variables in the original formulation. Adding all such cuts is impractical, therefore they are

added to the formulation as needed. For more information on various implementation details of

the algorithm, we refer the reader to Rahmaniani et al. (2017). We now present the reformulation

of our problem and introduce analytical solutions of the subproblems and different cut generation

strategies to accelerate the algorithm.

3.1. Benders subproblem

By fixing the variable x in the P formulation to x̂ ∈ {0, 1}|K|, we obtain a linear programming

(LP) model, which we refer to as subproblem SP(x̂).

maximize
∑
q∈Q

θqfq (11)

subject to θq ≤ tmax q ∈ Q (12)

θq − toqyoq − tdqydq − tpqypq ≤ 0 q ∈ Q (13)

yoq ≤
∑
k∈No

q

x̂k q ∈ Q (14)

ydq ≤
∑
k∈Nd

q

x̂k q ∈ Q (15)

ypq ≤
∑
k∈Np

q

x̂k q ∈ Q (16)

yoq ≤ 1 q ∈ Q (17)

ydq ≤ 1 q ∈ Q (18)

ypq ≤ 1 q ∈ Q (19)

θq, y
o
q , y

d
q , y

p
q ≥ 0 q ∈ Q. (20)

Note that the subproblem is closed and bounded and therefore feasibility cuts are not required

and optimality cuts are enough to ensure convergence of the algorithm. Let α, β, γ, µ, ρ, φ, σ, δ be

the dual variables associated with constraints (12)−(19), respectively. Then the dual subproblem

referred to as DSP(x̂) is the following:

minimize
∑
q∈Q

tmaxαq +
∑
q∈Q
k∈No

q

x̂kγq +
∑
q∈Q
k∈Nd

q

x̂kµq +
∑
q∈Q
k∈Np

q

x̂kρq +
∑
q∈Q

φq +
∑
q∈Q

σq +
∑
q∈Q

δq (21)

subject to αq + βq ≥ fq q ∈ Q (22)
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γq − toqβq + φq ≥ 0 q ∈ Q (23)

µq − tdqβq + σq ≥ 0 q ∈ Q (24)

ρq − tpqβq + δq ≥ 0 q ∈ Q (25)

αq, βq, γq, µq, ρq, φq, σq, δq ≥ 0 q ∈ Q. (26)

3.2. Benders master problem

Let D(DSP) denote the set of extreme points of DSP(x̂). We construct the master problem

referred to as MP as follows:

maximize η (27)

subject to η ≤
∑
q∈Q

tmaxαq +
∑
q∈Q
k∈No

q

xkγq +
∑
q∈Q
k∈Nd

q

xkµq

+
∑
q∈Q
k∈Np

q

xkρq +
∑
q∈Q

φq +
∑
q∈Q

σq +
∑
q∈Q

δq (α, γ, µ, ρ, φ, σ, δ) ∈ D(DSP ) (28)

∑
k∈K

xk = m (29)

xk ∈ {0, 1} k ∈ K. (30)

To handle the exponential number of constraints (28) in MP, we use a branch-and-cut approach.

Cuts are added iteratively to the MP by solving the DSP(x̂). We solve the MP in a single B&B

tree similar to Codato and Fischetti (2006).

3.3. Subproblem solution

Given x̂, DSP(x̂) is an LP and can be solved using a solver. In this section, we present analytical

solutions of DSP(x̂) without the need to build and solve an LP. First, note that the dual subproblem

DSP(x̂) can be decomposed based on the demand q ∈ Q. We refer to the following decomposed

dual subproblem formulation as DSPq(x̂).

minimize tmaxαq +
∑
k∈No

q

x̂kγq +
∑
k∈Nd

q

x̂kµq +
∑
k∈Np

q

x̂kρq + φq + σq + δq (31)

subject to αq + βq ≥ fq (32)

γq − toqβq + φq ≥ 0 (33)

µq − tdqβq + σq ≥ 0 (34)

ρq − tpqβq + δq ≥ 0 (35)

αq, βq, γq, µq, ρq, φq, σq, δq ≥ 0. (36)
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We now start constructing a closed-form solution for DSPq(x̂). For conciseness, let x̂oq =
∑

k∈No
q

x̂k,

x̂dq =
∑

k∈Nd
q

x̂k, and x̂dq =
∑

k∈Np
q

x̂k.

Proposition 1. Constraint (32) is always active in an optimal solution of DSPq(x̂).

Proof. Observe that SP(x̂) can be decomposed based on q. For a given q̂ ∈ Q, consider the

primal-dual subproblem pair. Constraint (32) in the DSPq(x̂) corresponds to the non-negative θq

variable in the MP. When θq = 0, the particular demand cannot be covered and therefore the

objective function value is zero. The dual objective function value therefore equals zero due to

strong duality. Observe that the solution αq = φq = σq = δq = 0, βq = fq, γq = t0βq, µq = tdβq

and ρq = tpβq is feasible and has an objective function value of zero. Therefore it is optimal and

satisfies constraint (32) at equality. Now, consider the case with θq > 0. Constraint (32) is then

always active due to complementary slackness conditions. �

Proposition 1 implies that we can set αq = fq − βq and variable αq can be projected out from

the formulation by replacing this term in the objective function. We then obtain the following

equivalent model.

maximize tmaxβq − x̂oqγq − x̂dqµq − x̂pqρq − φq − σq − δq (37)

subject to γq + φq ≥ toqβq (38)

µq + σq ≥ tdqβq (39)

ρq + δq ≥ tpqβq (40)

fq ≥ βq (41)

βq, γq, µq, ρq, φq, σq, δq ≥ 0. (42)

Note that the nonnegativity of αq induces constraint (41). The objective function is also

modified to a maximization to better see the multidimensional knapsack nature of the model.

For fixed x̂ and a given q ∈ Q, we define gq(x̂) = tmax − to min{x̂oq, 1} − td min{x̂dq , 1} −
tp min{x̂pq , 1}, which represents the gap between tmax and the potential availability of facilities for

demand q. If gq(x̂) < 0, the existing network of facilities can provide more availability than tmax

and If gq(x̂) > 0, the availability of the facilities is less than tmax for q. We are now ready to

present a closed-form solution for the DSPq(x̂).

A Benders Decomposition Algorithm for the Maximum Availability Service Facility Location Problem

CIRRELT-2021-21 9



Proposition 2. Given x̂ ∈ {0, 1}|K| and a demand q ∈ Q, the following is an optimal solution of

the DSPq(x̂):

βq =


fq if gq(x̂) ≥ 0

0 otherwise

γq =


toqfq if gq(x̂) ≥ 0 and x̂oq ≤ 1

0 otherwise

µq =


tdqfq if gq(x̂) ≥ 0 and x̂oq ≤ 1

0 otherwise

ρq =


tpqfq if gq(x̂) ≥ 0 and x̂oq ≤ 1

0 otherwise

φq = toqfq − γq

σq = tdqfq − µq

δq = tpqfq − ρq

�

Proof. The constructed solution is feasible. Observe that the objective function coefficients of γ

and φ variables in model (37)−(42) are negative and these two variables only appear in constraint

(38), which implies that there exists an optimal solution satisfying constraint (38) at equality, that

is γq + φq = toβq. Therefore, the objective function contribution of γ and φ is −x̂oqγq − φq =

−min{x̂0q , 1}t0βq. With a similar reasoning for the other variables, the objective function can

be restated as tmaxβq− min{x̂oq, 1}toβq− min{x̂dq , 1}tdβq− min{x̂pq , 1}tpβq. Hence, the optimal

objective function value is zero if gq(x̂) := tmax− min{x̂oq, 1}to− min{x̂dq , 1}td− min{x̂pq , 1}tp ≤ 0.

If gq(x̂) > 0, we have βq = fq. Due to the knapsack nature between the remaining variables, the

conditions follow. �

In the following, we present three Benders cut selection schemes: single-cut, multi-cut and

Pareto-optimal cut.
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3.4. Benders cut selection scheme 1: single-cut

For a given x̂, the dual values are computed according to Proposition 2, then a cut is added to

the MP at each iteration in the form of inequality (28).

3.5. Benders cut selection scheme 2: multi-cut

The Multiple-cut generation scheme is implemented and is proved to be efficient in various

studies including de Camargo et al. (2008) and You and Grossmann (2013). To implement the

multi-cut scheme, we need to modify the master problem. A new set of variables ηq is introduced to

the MP, each of which approximates the cost of a decomposed subproblem. Let ηq be the variable

associated with DSPq(x̂), and D(DSPq) the set of extreme points of the dual problems DSPq. The

modified master problem is formulated as follows.

maximize
∑
q∈Q

ηq (43)

subject to ηq ≤ tmaxαq +
∑
k∈No

q

xkγq +
∑
k∈Nd

q

xkµq

+
∑
k∈Np

q

xkρq + φq + σq + δq (α, γ, µ, ρ, φ, σ, δ) ∈ D(DSPq), q ∈ Q (44)

∑
k∈K

xk = m (45)

xk ∈ {0, 1} k ∈ K. (46)

For a given x̂ vector, the values of the dual variables for each subproblem are computed accord-

ing to Proposition 2 and each subproblem solution represents an extreme point used to generate a

cut.

3.6. Benders cut selection scheme 3: Pareto-optimal cut

Generating effective cuts that can reduce the number of iterations is highly important. As we

observe in Proposition 2, the subproblem can have multiple optimal values. In fact, when x̂oq = 1,

γq and φq values are interchangeable, which implies that infinitely many different cuts can be

generated from the same x̂ solution. With the objective of generating stronger cuts by selecting

one among these alternative cuts, we now investigate the Pareto-optimal cut generation scheme

(Magnanti and Wong, 1981). Let X be the feasible solution set of the master problem, opt(DSP(x̂))

be the optimal objective function value of problem DSP(x̂), and the function C(x, d) be defined as

follows:

C(x, d) =
∑
q∈Q

tmaxαq +
∑
q∈Q
k∈No

q

xkγq +
∑
q∈Q
k∈Nd

q

xkµq +
∑
q∈Q
k∈Np

q

xkρq +
∑
q∈Q

φq +
∑
q∈Q

σq +
∑
q∈Q

δq,
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where we use d = (α, γ, µ, ρ, φ, σ, δ) to refer to dual variables of DSP(x), for conciseness.

In the Pareto-optimal cut scheme, we only add non-dominated cuts. A cut generated by the

dual solution d̄ is considered to be dominated by the cut generated by the dual solution d̃, if and

only if C(x, d̄) ≤ C(x, d̃) for all x ∈ X with a strict inequality for at least one of the points (Magnanti

and Wong, 1981). Solving the following LP allows us to obtain Pareto-optimal cuts.

minimize C(x̄, d) (47)

subject to (22)− (26)

C(x̂, d) = opt(DSP (x̂)). (48)

We refer to the formulation above as MW(x̂, x̄), where x̄, referred to as the core point, is an

interior point of the convex hull of X . The initial core point is a vector of length |K| and values
m

|K|
for each dimension. Similar to Papadakos (2008), the core point is updated after each iteration

and takes the value of the average of the previous iteration and the current MP solution.

3.7. Magnanti-Wong problem solution

The MW(x̂, x̄) can be decomposed based on demand q ∈ Q. Let x̄oq =
∑

k∈No
q

x̄k, x̄dq =
∑

k∈Nd
q

x̄k,

and x̄dq =
∑

k∈Np
q

x̄k. We refer to the problem below as MWq(x̂, x̄).

minimize tmaxαq + x̄oqγq + x̄dqµq + x̄pqρq + φq + σq + δq (49)

subject to αq + βq ≥ fq (50)

γq − toqβq + φq ≥ 0 (51)

µq − tdqβq + σq ≥ 0 (52)

ρq − tpqβq + δq ≥ 0 (53)

C(x̂, d) = opt(DSP (x̂)) (54)

dq ≥ 0. (55)

The analytical solution of the MWq(x̂, x̄) is as follows:

Proposition 3. Given x̂ ∈ {0, 1}|K| and a demand q ∈ Q, the following is an optimal solution of

the DSPq(x̂):

αq =


0 if gq(x̂) ≥ 0

fq otherwise
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βq =


fq if gq(x̂) ≥ 0

0 otherwise

γq =


toqfq if (gq(x̂) ≥ 0 and x̂oq = 0) or (gq(x̂) ≥ 0 and x̂oq = 1 and x̄oq ≤ 1)

0 otherwise

µq =


tdqfq if (gq(x̂) ≥ 0 and x̂dq = 0) or (gq(x̂) ≥ 0 and x̂dq = 1 and x̄dq ≤ 1)

0 otherwise

ρq =


tpqfq if (gq(x̂) ≥ 0 and x̂pq = 0) or (gq(x̂) ≥ 0 and x̂pq = 1 and x̄pq ≤ 1)

0 otherwise

φq = toqfq − γq

σq = tdqfq − µq

δq = tpqfq − ρq

�

The correctness of Proposition 3 follows from Proposition 2 and similar multi-dimensional knapsack

arguments. For sake of conciseness and to avoid repetition, we omit the details here.

4. Computational Study

We now present the data, the design of experiments, and the performance of our algorithms.

We present four different cut selection schemes and compare the solution efficiency of the BD

algorithm to that of P model solved using CPLEX without any decomposition. We also carry

out a case study using our best performing algorithm on a real-world Chicago dataset and discuss

managerial findings. All the experiments are performed on a desktop computer with a 2.80 GHz

10-core Intel Core i9-10900F processor and 64GB of RAM, running 64-bit Windows operating

system. The algorithms were implemented using Python 3.7.7 and the Python API of CPLEX

12.10.0.

4.1. Design of Experiments

We have randomly generated 10 different networks with a number of nodes n going from 100 to

1000 by increments of 100. The node coordinates are randomly selected in the interval [0, 25]. The

demands are generated between all pairs of nodes and the customer volume f is assigned randomly

in [1, 100] interval and rounded to the nearest integer. We have coverage distance d ∈ {1, 3, 5}
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and driver tolerance λ ∈ {10%, 30%, 50%}. Sets No, Nd and Np are constructed accordingly. A

work day is divided into 30 minute intervals for a total duration of 8 hours and we generate toq, t
d
q ,

and tpq randomly in [1, 6], [1, 2], and [1, 4], respectively, and rounding to the nearest integer. We

set tmax to 8, and ensure that for any demand q, to + tp + td ≤ 8. All nodes are considered

as potential facility locations and the number of OD pairs in each network is n2. We set the

maximum number of open facilities m ∈ {5, 10, 15, 20, 30, 40, 50, 75, 100}. Using nine randomly

generated networks and these settings, we test the performance of the BD algorithm and compare

different cut implementation schemes. All performance results presented in the tables hereafter

represent the average performance on d and λ.

4.2. Computational Results

In this section, we first present the performance of constructing the subproblem solutions an-

alytically as opposed to building an LP model and solving in CPLEX. We then compare different

BD implementations using closed-form solutions presented in Section 3 with the implementation

on CPLEX without any decomposition. We consider five implementations:

• CPLEX: the MILP is solved using CPLEX directly without any decomposition.

• BD-single: single-cut implementation.

• BD-multi: multi-cut implementation.

• BD-single-Pareto: single-cut implementation where the subproblem is solved analytically and

only Pareto-optimal cuts are added.

• BD-multi-Pareto: multi-cut implementation where the subproblem is solved analytically and

only Pareto-optimal cuts are added.

In Table 1, we present the results of the performance of BD-single with subproblems solved

using LPs and BD-single with subproblems solved analytically. We consider four network sizes

from 100 to 400 and the number of facility locations considered is 5, 10, or 15. The three leftmost

columns represent the instance setting and solution; n is the number of nodes in the network, m

is the number of facility locations, and “Opt. Sol.” is the optimal objection function value of the

corresponding instance. Columns 4−7 are the total solution time, the subproblem solution time,

the number of subproblems, and lastly the average subproblem solution time, respectively, all in

seconds (s). The average solution time for the BD-single with subproblems solved using LPs and

BD-single with supbroblems solved analytically is 251.9 and 33.8 seconds, respectively. BD-single

with supbroblems solved analytically is significantly more efficient and the acceleration increases

more for larger networks.

We now present the results of the four BD implementations using analytical solutions and use

CPLEX as a benchmark to compare the performance of these algorithms. The computational
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Table 1: Comparison of BD subproblem solved analytically and subproblem solved using LPs.

Instance BD-single BD-single
(subproblems solved using LPs) (subproblems solved analytically)
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5 3.17 5.0 4.9 5 1.0 1.3 1.2 6 0.2
100 10 3.29 13.0 12.9 12 1.0 5.5 5.4 23 0.2

15 3.39 35.2 35.2 28 1.3 30.2 29.9 121 0.3

5 12.35 55.1 55.0 4 13.8 6.7 6.7 4 1.7
200 10 12.60 73.7 73.7 6 12.3 22.8 22.7 14 1.6

15 12.82 238.0 237.9 17 14.0 60.3 60.1 33 1.8

5 27.69 166.0 165.9 3 55.3 15.8 15.7 3 5.2
300 10 28.13 329.8 329.7 5 66.0 29.3 29.2 5 5.9

15 28.53 331.1 331.1 5 66.2 31.4 31.3 6 5.2

5 49.12 509.9 509.9 3 170.0 37.5 37.4 3 12.5
400 10 49.70 759.8 759.8 4 190.0 53.8 53.8 4 13.4

15 50.18 1010.7 1010.7 5 202.1 111.4 111.3 9 12.4

performances are shown in Table 2. The column “Instance” presents the network size, the number

of facility locations and the objective function value. The next column “CPLEX” shows the solution

time and the gap (%) using CPLEX implementation. The gap is defined as (UB − LB)/UB∗100,

where UB and LB are upper and lower bounds, respectively. For each of the BD implementations,

we present the number of iterations under the column “# Iterations”, the total number of cuts

under “# Cuts”, the total subproblem solution time and the total solution time in the columns

“Subp. Sol. Time (s)” and “Total Sol. Time (s)” respectively, and finally the optimality gap (%).

Values “TL” in the table refer to the cases that terminated because of the time limit. We consider

networks with 100, 200, and 300 nodes.

Table 3 summarizes the performance of the algorithms. The average solution times are 327.6,

288.7, 233.9, 1622.0, and 116.2 seconds for the CPLEX, BD-multi, BD-multi-Pareto, BD-single,

and BD-single-Pareto, respectively. The table shows that all the algorithms but the BD-single are

computationally more efficient than CPLEX, with the BD-single-Pareto being the most efficient.
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This is expected due to the fact that Pareto-optimal cuts are stronger and adding them as single

cuts reduces their number significantly compared to multiple cuts. The BD-single algorithm is the

least efficient, as shown in Table 2, it fails to solve several instances optimally within a one hour

time-limit. BD-multi and BD-multi-Pareto add on average 95365.3 and 49849.3 cuts, respectively

as shown in Table 3, a reduction in the number of added cuts of almost half (47%). This shows the

importance and efficacy of Pareto-optimal cuts. The average number of iterations required is 18.8,

17.4, 1987.0, and 56.8 for BD-multi, BD-multi-Pareto, BD-single, BD-single-Pareto, respectively.

Both multi-cut algorithms require fewer iterations to solve the instances. BD-multi-Pareto and BD-

single-Pareto perform the best out of all the algorithms with BD method, therefore, we present

the performance of the two algorithms and CPLEX on larger instances to test their limits. Table

4 contains the results.

We considered increasing network sizes from 400 nodes to 1000 nodes with increments of a 100,

and the number of facility locations m similar to instances in Table 2. Table 4 also contains the

same parameters as Table 2. Values “TL” and “Memory” refer to the termination of the algorithm

because of time and memory limits, respectively. The results show that the CPLEX algorithm

is unable to solve the majority of instances to proven optimality within a one-hour time limit,

meanwhile the BD-multi-Pareto fails due to memory limits. The BD-single-Pareto is able to solve

all instances to optimality but 4 instances, those with n ∈ {900, 1000} and m ∈ {75, 100}. BD-

single-Pareto algorithm is the most efficient, it adds fewer cuts and requires the lowest number of

iterations.
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Table 2: Performance comparison of the BD algortihms and CPLEX on small instances.

Instance CPLEX BD-multi BD-multi-Pareto BD-single BD-single-Pareto
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5 3.17 4.4 0.0 8 19991 7.0 11.5 0.0 14 10105 11.1 15.2 0.0 6 4 1.3 1.3 0.0 10 3 1.3 2.3 0.0
10 3.29 7.7 0.0 16 20253 7.0 13.8 0.0 16 10632 12.3 16.9 0.0 23 20 5.4 5.5 0.0 24 8 3.2 5.5 0.0
15 3.39 10.6 0.0 36 21123 7.5 20.7 0.0 26 11430 18.3 25.0 0.0 121 115 29.9 30.2 0.0 56 22 8.1 13.4 0.0
20 3.47 12.3 0.0 26 21341 7.7 18.4 0.0 28 11948 19.5 27.0 0.0 1440 1435 372.4 391.7 0.0 60 23 8.8 14.4 0.0

100 30 3.60 11.1 0.0 16 22021 7.9 16.3 0.0 18 12706 14.2 19.5 0.0 8712 8702 2496.5 3007.5 0.0 114 45 16.6 27.3 0.0
40 3.68 8.8 0.0 18 22719 8.1 16.1 0.0 18 12884 14.3 19.7 0.0 9440 9432 2612.7 3103.8 0.0 64 24 9.2 15.2 0.0
50 3.74 5.5 0.0 22 22200 8.0 17.8 0.0 18 12631 14.3 19.6 0.0 8637 8632 2315.6 2942.8 0.0 46 15 6.3 10.5 0.0
75 3.83 3.0 0.0 16 20439 7.3 14.3 0.0 10 10081 8.9 12.1 0.0 9335 9327 2528.6 3102.3 0.0 16 6 2.3 3.8 0.0
100 3.87 0.8 0.0 6 19800 7.4 10.4 0.0 4 9900 5.8 7.4 0.0 3 2 0.6 0.6 0.0 6 2 0.8 1.4 0.0

5 12.35 65.5 0.0 8 79629 57.0 124.0 0.0 8 39921 59.8 84.0 0.0 4 3 6.7 6.7 0.0 10 4 9.4 14.8 0.0
10 12.60 95.9 0.0 10 79906 57.4 130.5 0.0 12 40417 76.8 111.0 0.0 14 10 22.6 22.7 0.0 16 6 14.6 23.2 0.0
15 12.83 116.7 0.0 22 80250 57.2 164.5 0.0 18 41003 101.9 151.1 0.0 33 29 60.1 60.3 0.0 24 9 21.6 34.5 0.0
20 13.04 161.2 0.0 12 80567 57.6 137.6 0.0 12 41441 77.9 112.6 0.0 159 149 302.5 303.4 0.0 38 15 35.2 55.7 0.0

200 30 13.42 190.0 0.0 24 81847 58.7 172.5 0.0 18 43444 103.3 151.3 0.0 520 513 1017.2 1024.5 0.0 62 20 52.5 86.0 0.0
40 13.74 223.2 0.0 20 82848 59.2 165.6 0.0 20 44988 113.2 165.9 0.0 1815 1801 3564.3 TL 0.20 134 58 129.3 202.0 0.0
50 14.01 207.1 0.0 34 84024 59.9 208.3 0.0 24 46059 130.0 192.2 0.0 1810 1802 3568.5 TL 0.38 152 62 141.1 223.6 0.0
75 14.56 230.9 0.0 42 86130 61.2 234.6 0.0 34 49124 173.2 260.6 0.0 1803 1796 3567.1 TL 0.69 264 116 254.8 397.5 0.0
100 14.94 266.9 0.0 22 86498 61.6 184.3 0.0 20 49673 116.0 170.2 0.0 1808 1799 3560.3 TL 0.93 88 34 83.1 130.3 0.0

5 27.69 337.0 0.0 6 179400 214.6 514.1 0.0 6 89741 187.4 265.8 0.0 4 2 15.7 15.8 0.0 8 3 27.6 43.0 0.0
10 28.13 477.3 0.0 10 179514 214.6 568.7 0.0 8 89842 213.8 310.9 0.0 14 4 29.2 29.3 0.0 14 6 51.0 77.9 0.0
15 28.53 621.7 0.0 10 179612 214.9 568.9 0.0 10 90232 241.2 358.8 0.0 33 4 31.3 31.4 0.0 12 5 43.6 66.8 0.0
20 28.88 739.2 0.0 18 179958 214.9 675.6 0.0 18 91017 348.6 546.9 0.0 159 23 162.7 162.9 0.0 20 7 70.4 108.7 0.0

300 30 29.50 1043.7 0.0 16 181236 215.4 653.0 0.0 20 92287 378.4 596.9 0.0 520 119 799.8 800.9 0.0 26 9 89.9 139.8 0.0
40 30.03 1171.6 0.0 22 182898 219.7 754.6 0.0 22 94612 408.1 650.6 0.0 1815 543 3595.8 TL 0.10 54 20 182.3 286.2 0.0
50 30.52 987.6 0.0 18 183176 219.6 709.1 0.0 20 95579 380.1 602.4 0.0 1810 545 3597.6 TL 0.22 46 16 152.5 240.8 0.0
75 31.53 1003.5 0.0 28 187311 225.4 882.5 0.0 26 100699 468.2 760.0 0.0 1803 461 3041.6 TL 0.40 88 33 298.9 468.5 0.0
100 32.33 840.9 0.0 22 190171 227.8 806.2 0.0 22 103535 419.0 663.9 0.0 1808 542 3595.7 TL 0.48 82 33 287.5 445.4 0.0
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Table 3: Summary of computational results on small instances.

Parameter CPLEX BD-multi BD-multi-Pareto BD-single BD-single-Pareto

Avg. # Iterartions − 18.8 17.4 1987.0 56.8
Avg. # Cuts − 95365.3 49849.3 1770.9 22.4
Avg. Subp. Sol. Time (s) − 94.9 152.4 1505.3 74.2
Avg. Total Sol. Time (s) 327.6 288.7 233.9 1622.0 116.2

Table 4: Performance comparison on large instances.

Problem CPLEX BD-multi-Pareto BD-single-Pareto
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5 49.12 949.7 0.0 6 159647 450.6 746.0 0.0 6 2 50.0 78.7 0.0

10 49.70 1138.9 0.0 8 160046 520.6 899.9 0.0 8 3 70.1 108.6 0.0

15 50.18 1649.7 0.0 12 160387 646.3 1197.0 0.0 10 4 90.6 139.4 0.0

20 50.63 1990.3 0.0 10 160977 583.2 1044.1 0.0 10 4 100.6 148.4 0.0

400 30 51.42 3088.5 0.0 20 162994 917.8 1818.8 0.0 30 11 257.5 401.5 0.0

40 52.15 3015.3 0.0 22 164351 976.2 1948.7 0.0 34 12 285.4 448.3 0.0

50 52.83 TL N/A∗ 24 166024 1036.9 2109.6 0.0 52 18 433.9 685.0 0.0

75 54.32 3203.5 0.0 16 169745 796.2 1526.0 0.0 40 14 335.2 526.6 0.0

100 55.55 2942.1 0.0 28 174626 1181.6 2448.0 0.0 120 48 1086.5 1659.1 0.0

5 76.58 2018.0 0.0 Memory N/A† 6 2 98.3 154.2 0.0

10 77.39 3156.3 0.0 Memory N/A† 6 2 100.2 156.8 0.0

15 78.08 TL N/A∗ Memory N/A† 10 4 178.2 272.2 0.0

20 78.68 TL N/A∗ Memory N/A† 16 6 279.6 431.2 0.0

500 30 79.75 TL N/A∗ Memory N/A† 28 9 449.7 714.2 0.0

40 80.70 TL N/A∗ Memory N/A† 32 11 545.2 847.8 0.0

50 81.56 TL N/A∗ Memory N/A† 22 8 393.1 601.2 0.0

75 83.42 TL N/A∗ Memory N/A† 36 12 611.1 949.9 0.0

100 85.02 TL N/A∗ Memory N/A† 32 12 553.8 858.0 0.0

5 110.09 TL N/A∗ Memory N/A† 6 2 173.8 272.5 0.0

10 110.96 TL N/A∗ Memory N/A† 6 2 173.6 272.0 0.0

15 111.74 TL N/A∗ Memory N/A† 10 4 311.2 475.6 0.0

20 112.45 TL N/A∗ Memory N/A† 12 5 419.2 615.0 0.0

600 30 113.74 TL N/A∗ Memory N/A† 16 6 482.8 745.8 0.0

40 114.92 TL N/A∗ Memory N/A† 14 5 414.5 644.7 0.0

50 116.00 TL N/A∗ Memory N/A† 18 6 513.1 807.9 0.0

75 118.33 TL N/A∗ Memory N/A† 30 10 857.2 1351.0 0.0

100 120.38 TL N/A∗ Memory N/A† 36 12 1023.0 1615.7 0.0

5 149.69 TL N/A∗ Memory N/A† 6 2 280.9 440.7 0.0

10 150.75 TL N/A∗ Memory N/A† 6 2 280.6 438.9 0.0

15 151.64 TL N/A∗ Memory N/A† 8 3 392.6 603.6 0.0

20 152.45 TL N/A∗ Memory N/A† 10 4 502.2 764.7 0.0
∗ The gap is not available because the root node relaxation cannot be solved.
† The gap is not available because of the memory limit.

(Continued on next page)
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Table 4 – Performance comparison on large instances (continued)

Problem CPLEX Pareto multi-cut Pareto single-cut
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700 30 153.95 TL N/A∗ Memory N/A† 12 5 612.0 928.6 0.0

40 155.34 TL N/A∗ Memory N/A† 14 5 667.2 1037.8 0.0

50 156.60 TL N/A∗ Memory N/A† 16 7 900.8 1327.5 0.0

75 159.42 TL N/A∗ Memory N/A† 28 10 1338.8 2086.8 0.0

100 161.95 TL N/A∗ Memory N/A† 30 9 1319.6 2116.3 0.0

5 195.35 TL N/A∗ Memory N/A† 6 2 433.5 677.4 0.0

10 196.56 TL N/A∗ Memory N/A† 6 2 436.4 681.9 0.0

15 197.63 TL N/A∗ Memory N/A† 6 2 434.5 678.4 0.0

20 198.61 TL N/A∗ Memory N/A† 14 6 1124.1 1693.4 0.0

800 30 200.40 TL N/A∗ Memory N/A† 10 4 781.6 1194.7 0.0

40 202.02 TL N/A∗ Memory N/A† 18 8 1572.9 2309.9 0.0

50 203.43 TL N/A∗ Memory N/A† 16 6 1228.4 1895.0 0.0

75 206.63 TL N/A∗ Memory N/A† 28 9 2080.5 3247.3 0.0

100 209.48 TL N/A∗ Memory N/A† 14 6 1132.8 1715.8 0.0

5 246.65 TL N/A∗ Memory N/A† 6 2 620.8 967.3 0.0

10 247.91 TL N/A∗ Memory N/A† 8 3 879.4 1348.5 0.0

15 249.03 TL N/A∗ Memory N/A† 8 3 870.1 1335.1 0.0

20 250.10 TL N/A∗ Memory N/A† 12 5 1366.3 2082.8 0.0

900 30 252.08 TL N/A∗ Memory N/A† 10 4 1118.0 1709.4 0.0

40 253.92 TL N/A∗ Memory N/A† 10 4 1117.8 1713.4 0.0

50 255.65 TL N/A∗ Memory N/A† 8 3 871.2 1342.8 0.0

75 259.42 TL N/A∗ Memory N/A† 22 8 TL TL 0.01

100 262.84 TL N/A∗ Memory N/A† 20 7 TL TL 0.01

5 304.36 TL N/A∗ Memory N/A† 6 2 888.7 1387.7 0.0

10 305.75 TL N/A∗ Memory N/A† 6 2 884.5 1388.2 0.0

15 307.04 TL N/A∗ Memory N/A† 8 3 1239.6 1915.0 0.0

20 308.22 TL N/A∗ Memory N/A† 10 4 1614.8 2463.6 0.0

1000 30 310.41 TL N/A∗ Memory N/A† 10 4 1597.6 2460.0 0.0

40 312.44 TL N/A∗ Memory N/A† 10 4 1582.8 2420.0 0.0

50 314.31 TL N/A∗ Memory N/A† 16 7 2648.1 3451.6 0.0

75 318.57 TL N/A∗ Memory N/A† 28 10 TL TL 0.01

100 322.38 TL N/A∗ Memory N/A† 24 9 TL TL 0.01
∗ The gap is not available because the root node relaxation cannot be solved.
† The gap is not available because of the memory limit.

5. Chicago Case Study

In this section, we present the results of a case study on a real-world Chicago network. We use

publicly available census data from 2010 for population counts, commuting patterns using personal

vehicles and OD pair information (Dash Nelson and Rae, 2016), and data from Chicago Transit
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Table 5: Chicago dataset characteristics.

Distance (km)
Population (million) # Nodes # OD pairs Node Density (#/km2) minimum maximum

2.701 797 35501 1.353 0.19 62.1

Authority for public transportation commuting counts (City of Chicago, 2020). The network

representing this dataset is shown in Figure 2 and its characteristics are summarized in Table 5. The

network contains 2.701 million customers aggregated into 797 nodes, 35501 OD pairs with a node

density of 1.353 nodes/km2. The minimum and maximum direct distance between a pair of nodes

is 0.19 and 52.1 km, respectively. We consider coverage distance d ∈ {1, 2, 3}. We use Manhattan

distance due to the grid structure of the road network of the city of Chicago. We consider driving

deviation tolerances λ ∈ {10%, 30%, 50%}. Availability time, maximum availability time and

numbers of potential locations are selected similar to the random dataset. We consider personal

vehicle commuting counts, representing 34% of the total customer demand, as the demand that can

be captured on OD pairs or at origin and destination, the public transportation counts, representing

45% of the total demand, as the demand that can be captured at the origin and destination, and

the rest 21% of the population count as demand that can only covered at the origin (Dash Nelson

and Rae, 2016).

5.1. Computational Performance

We use BD-single-Pareto implementation as the solution method and present the computa-

tional efficiency on solving the problem instances of the Chicago case study. Table 6 presents the

computational results on instances with varying number of facility locations m and coverage dis-

tances d. The driver tolerance λ has an insignificant impact on the performance of the algorithm.

Therefore, we report the average performance of λ ∈ {10%, 30%, 50%} in Table 6. The two left-

most columns show the coverage distance d and the number of facilities m, columns 3−6 display

the number of subproblems, the number of cuts added, the total subproblem solution time and

the total solution time. Although the total solution time increases significantly for larger d and

m values, the BD-single-Pareto implementation solves all the instances within the one-hour time

limit.
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Figure 2: Chicago network and 797 nodes representing the census tracts (City of Chicago, 2018).

5.2. Discussion

In this section, we present the results of the Chicago dataset, compare the impacts of different

settings on the demand coverage. We first investigate the change in coverage with the number of

facilities m. Figure 3 represents the percentage of coverage for increasing number of facilities in the

city of Chicago. Each red dot represents an open facility and the highlighted areas on the maps

represent the areas covered. Areas that are highlighted but do not include any facilities at their

center are areas housing customers that can be covered along their OD paths. As can be seen from

the figure, increasing the number of facilities, expands the coverage significantly. We can only cover

32.08% with 20 facilities but more than 75% with 80 open facilities. Figures 4(a) and (b) confirm

the findings that the demand coverage increases with greater number of facilities m regardless of

the coverage distance d and driving tolerance λ. Figure 4(a) also shows that we are able to cover
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Table 6: Performance of BD-single-Pareto on Chicago dataset.
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10 40 14 5.9 12.0
20 116 48 18.9 36.2

1 40 324 188 68.1 119.4
60 774 336 114.8 347.2
80 1796 874 319.7 1372.2
100 2442 1196 438.2 2944.2

10 46 18 7.3 14.2
20 121 52 22.8 56.5

3 40 386 212 86.4 185.6
60 806 362 128.6 393.9
80 1944 928 362.1 1716.9
100 2662 1232 473.8 3103.6

10 78 32 15.3 34.0
20 278 208 78.5 155.9

5 40 604 296 178.3 795.4
60 1216 572 285.6 1003.5
80 2087 1003 402.9 2093.0
100 2940 1445 512.8 3520.0

93% of the demand with 40 facilities when d = 3 but only 49% with the same number of facilities

with d = 1. We can also cover nearly the same percentage of the population with 20 facilities with

d = 3 (73%) as 80 facilities with d = 1 (75%). These results show that the coverage distance d has

a bigger impact on the percentage of demand served compared to the number of facilities m, and

increasing the coverage distance of facilities allows us to cover more customer demand compared

to increasing the number of facilities m. The coverage distance also affects where we capture the

demand, as can be seen from Figure 5(a). Increasing the value of d means that we are able to cover

more demand around origin and destination nodes rather than on OD paths.

We have also tested the impact of the driver tolerance λ on the demand coverage. Figure 4(b)

shows that increasing the driving tolerance positively impacts the percentage of covered demand.
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Nevertheless, the increase is not as significant as the one induced by larger coverage distances. On

average the number of facilities decreases by 20 from λ = 0% to λ = 50% for the same percentage of

coverage, while the number of facilities decreases by 60 from d = 1 to d = 5. The driving tolerance

impacts where the demand is captured. Figure 5(b) shows that for the instance with d = 1 and

m = 60, the higher the value of λ the more demand is captured on paths. The driver tolerance

can have more impact in less dense and more sparse areas where personal vehicles are more widely

used.

An important application of the model presented is the location of testing facilities during a

pandemic as discussed in Section 1. In the following, we present the impact of a confinement

during a pandemic on the demand coverage. To simulate a pandemic situation, we create three

different datasets from the Chicago dataset. We use public transportation total counts during

the period of April 2020, June 2020, and July 2020 as a representation of the drop in commuting

counts during the different stages of the pandemic and project them on the rest of the data. The

3 months represent three different levels of confinement: high, moderate, and low, and each level

is associated with a confinement percentage representing the decrease in travel. The high level

represents an 80% decrease in travel, the moderate level a 60% decrease and the low level a 40%

decrease. We refer to the levels as level 0 for no travel restrictions, and level 1, 2, and 3 for the

low, moderate and high confinement stages, respectively.

Figure 4(c) shows that the percentage of coverage is not affected by a confinement situation,

we can still cover approximately the same percentage of the population regardless of the travel

restrictions. The way in which the demand is captured changes drastically, Figure 5(c) shows that

higher levels of confinement signify capturing more demand around origins rather than around

destinations or on OD paths. This result is in accordance with a real-life pandemic situation, as

less people are able to travel and work from home is more prevalent. We also investigate the effects

of existing facility set-ups on coverage. We measure the percentage of coverage change of a facility

set-up optimized for level u compared to a facility set-up optimized for level v, we refer to this

change as the cost of immobility (CI). CI(u, v) represents the loss of coverage of a set-up optimized

using data from level u applied to data from level v. For instance, the facility set-up illustrated in

Figure 3(a) optimized with data from level 0, applied to data from level 3 induces an 8.1% loss in

coverage. To define CI(u, v), let zv(u) the objective function value of the optimal solution of level
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v evaluated using the demand data from level u. The cost of immobility is then defined as follows:

CI(u, v) =
zv(u)− zu(u)

zv(v)
.

Figures 6 present the cost of immobility matrices for all levels of confinement and different

number of facilities. Each matrix entry contains the cost of immobility induced by the transition

from the optimization level to the current level. For instance, a set-up with 20 facilities optimized

with data from level 0 costs up to 8% in coverage when level 3 travel restrictions come into effect.

As can be seen from Figure 6, the cost of immobility from level 0 to 3 (CI(0,3)) is higher than the

cost of immobility from level 3 to level 0 (CI(3,0)) (8.1>4.2). For m = 20, on average, the cost

of immobility when phasing out confinement is 2.46%, while the cost of immobility when entering

confinement is 4.55%. Similar findings are true for different m values. This signifies that the

optimization is more effective when confinement and travel restriction data is taken into account.

Figures 6 also show that the cost of immobility decreases with a higher number of facilities. For

example, CI(0,3) = −8.1% with m = 20 but only −2.3% with m = 80. The experiments mark

the importance of mobile facilities for providing testing services during such rapidly changing

environments as pandemics. Indeed, buses were converted into mobile testing facilities in Montreal

during the Covid-19 pandemic (Lalonde, 2020).
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(a) Facilities = 20, Coverage = 32.08%

 
 
 
 
 
 
 

(b) Facilities = 40, Coverage = 49.70%

 
 
 
 
 
 
 

(c) Facilities = 60, Coverage = 63.59%

 
 

(d) Facilities = 80, Coverage = 75.19%

Figure 3: Facility locations and their coverage for Chicago network for level 0, d = 1 and λ = 0% with m
∈ {20, 40, 60, 100} in figures (a), (b), (c), and (d), respectively.
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Figure 4: Percentage of demand coverage with m ∈ {10, 20, 40, 60, 80, 100} for different d, λ , and confine-
ment level in figures (a), (b), and (c), respectively.
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(c) Type of coverage for m = 60, λ = 0%, and d = 1
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Figure 5: Type of coverage for varying d, λ, and confinement level in figures (a), (b), and (c), respectively.
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Figure 6: Cost of immobility (CI) for all levels of confinement with m = 20, 40, 60, 80 facilities, in figures (a), (b), (c), (d),
respectively.
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6. Conclusion

We have presented the maximum availability service facility location problem, in which facility

locations are optimized by taking into account the stationary and mobile demand in an urban

region. Stationary customers are covered at their origins, the population using the public trans-

portation are covered at their origins or destinations, and personal vehicle users are covered at

their origins, destinations or on their commute paths. This problem has applications in location of

government offices, medical facilities for testing and vaccination purposes, or polling stations. We

have presented a MILP formulation to the problem and have developed a Benders decomposition

algorithm. We have proposed an analytical solution to the BD subproblems as well as four different

cut implementations to solve problem instances: single-cut, multi-cut, Pareto-optimal single-cut

and Pareto-optimal multi-cut. We have conducted extensive experiments and showed on randomly

generated datasets. CPLEX without any decomposition is unable to solve large instances of the

problem within a one-hour time limit and the Pareto multiple cut implementation struggles due to

memory limits. Our Pareto-optimal single-cut implementation of the BD algorithm, on the other

hand, performs better than all other implementations and solves large scale instances efficiently.

We also have conducted a case study on the city of Chicago and simulated a confinement situation

during a pandemic. We have found that with our model, we are capable of capturing the similar

demand volumes for all levels of confinement and that locating facilities is more efficient when

travel restrictions are taken into account during the optimization.

For future research directions, facility capacities, resource constraints, and a time dimension

can be added to the model to make the problem more realistic. Adding uncertainty for the travel

flows and demand would make the problem more applicable in the real-world. A robust optimiza-

tion approach can also help in providing a minimum level of coverage during different phases of

confinement for fixed facilities.
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