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Abstract. The ABC storage policy is the most popular method used to determine storage 
location assignment in warehouses. It consists of dividing the storage area into three zones, 
and the products to be stored into three classes, such that the most demanded class of 
products is assigned to the best-located storage zone. Despite the method’s popularity, 
zone sizes are still majorly determined by simple rules-of-thumb, which can lead to major 
efficiency losses in many common warehouse settings. In this work, we investigate how 
several factors, such as the warehouse layout, the pick list characteristics, and the policies 
used to decide the way zones are arranged and to create the routes, can impact the optimal 
solution for the zone-sizing problem in a multi-block warehouse. We simulate different 
warehouse settings to obtain the best zone sizes using an extensive grid search and 
analyzing the data. We show that the best sizes found vary significantly under different input 
factors. Since extensive simulations are too costly to be done in practice, we train four 
different machine learning techniques – ordinary least squares, decision tree, random 
forest, and multilayer perceptron – to predict the optimal zone sizes from the data generated 
in the simulations. The results show a trade-off between the attributes considered when 
deciding which model to use, notably related to their applicability and performance. 
Regardless of the choice made, the use of any of these models leads to a significant 
improvement in order-picking efficiency, both in the average and worst-case scenarios, 
when compared to the zone sizes commonly used in practice, including the one-zone 
system (random policy) and the two-zone system, where classes are split using the 20/80 
rule. 
 
Keywords: Storage location, zone sizing, order picking, warehouse, machine learning 
computing. 
 
Acknowledgements.  The authors thank Compute Canada for providing high-performance 
parallel computing facilities. This work was partly supported by the Natural Sciences and 
Engineering Research Council of Canada (NSERC) under grants 2019-00094 and 2020-
00401. This support is gratefully acknowledged. 
 
 
 
 
Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: allyson.fernandes-da-costa-silva.1@ulaval.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
Bibliothèque et Archives Canada, 2021 

© Silva, Roodbergen, Coelho, Darvish and CIRRELT, 2021 



1. Introduction

When products from a supplier arrive at a warehouse, they are often temporarily stored in a storage

area, for example, in pallet racks or on shelves. The products reside in this storage area until they

are retrieved in response to customers’ orders. Methods for storage location assignment decide which

location of the storage area to assign to which product [42]. Typically, a warehouse receives products

from a supplier in bulk (for example, a full pallet), while shipments to customers are in significantly

smaller quantities (for example, in cardboard boxes). Hence, the retrieval of products from storage,

called order-picking, tends to be much more labor-intensive than their storage. Generally, order-picking

is the most time-consuming activity of the entire warehouse [14]. Furthermore, the order-picking

process is often time critical, for example, due to strict deadlines for meeting same-day or next-day

delivery requirements in the e-commerce [4]. It is for these reasons that the design of good policies

for storage location assignment is vital for achieving an efficient order-picking process in warehouses

[9, 38].

If the storage and order-picking processes are performed by workers who walk or drive between lo-

cations in the storage area, this is commonly referred to as a manual warehouse or a picker-to-parts

warehouse [9]. Of course, there is significant attention to automated warehouse systems in the lit-

erature [4]. However, manual warehouses can provide better flexibility for accommodating demand

fluctuations, and have lower investment costs [6]. Flexibility and scalability are especially valuable

in warehouses of online retailers [48]. These emphasize the need for continued process improvements

for manual warehouses. The storage area of a typical manual warehouse has a rectangular shape

consisting of parallel pick aisles. The area is divided into blocks and pickers use cross aisles between

pairs of blocks to change aisles. Pick routes start and end at an I/O point located at one corner of

the storage area. A graphical display of such layout is provided in Silva et al. [50, Figure 3].

Policies for storage location assignment match products with locations based on properties of both the

products and the locations. The ‘most important’ products should be assigned to the ‘best’ locations,

and the ‘least important’ products to the ‘worst’ locations. For deciding which products are ‘most

important’, the criterion of order frequency is commonly used, i.e., how often a product occurs on a

customer’s order [e.g., 16, 21, 37]. However, order frequency is not stable over time, which may induce

the need for repositioning products when their demand has changed [35]. To mitigate the need for

repositioning, while simultaneously maintaining the advantages of assigning ‘most important’ products

to ‘best’ locations, the concept of class-based storage is widely deployed in practice and studied in the

1

Estimating Optimal ABC Zone Sizes in Manual Warehouses

CIRRELT-2021-22



literature [e.g., 8, 28]. In the class-based storage, products are grouped into classes, based on order

frequencies, and each class is subsequently assigned to a dedicated zone of the warehouse. Within a

zone, the assignment is random. The class of the fastest moving products is generally called class A,

the next fastest-moving class is called class B, and so on.

To implement class-based storage, three decision problems are to be addressed: (i) determining the

number of classes, (ii) determining the size of each zone for each class, and (iii) determining the

positioning of each zone in the layout. From the literature on decision problem (i), it is known

that additional classes tend to increase efficiency, albeit at a decreasing rate [10]. Since having a

large number of classes defeats the purpose of hedging against demand frequency changes, a common

compromise between the two objectives is to use three classes [see, e.g., 17, 43, 27], which is often

referred to as ABC storage. Also decision problem (iii) is studied extensively [see, e.g., 8, 20, 38]. In

contrast, decision problem (ii) has received only little attention in the literature. In Section 2, we

review relevant literature in more detail. Note that methods for addressing decision problem (iii) are

often referred to as storage policies [37, 50]. Even though this wording may appear more encompassing

than it actually is, we adhere to this convention.

In this paper, we develop and compare several methods for determining zone sizes for class-based

ABC storage in manual warehouses. The objective is to minimize the average order-picking time.

The first challenge in addressing this problem is that the best zone sizes depend on a multitude of

factors, including the warehouse layout, and other operating policies that impact the process. Notably,

relevant operating policies to consider are storage policies (how the zones are positioned in the layout)

and routing policies (how a route through the warehouse is determined to retrieve a customer’s order).

The second challenge is that there are no closed-form mathematical expressions to determine average

order-picking time for every possible configuration, which leaves only simulation as a potential method

for a consistent performance analysis. The third challenge is that simulation requires relatively high

computation times, which makes it intractable to compare very large number of solutions.

Our approach is to deploy four machine learning (ML) regression methods to estimate zone sizes when

using the class-based storage policy. Specifically, we develop models using ordinary least squares,

decision tree, random forest, and multilayer perceptron. As independent variables, we use five layout

properties, demand frequency of products, the number of products in customers’ orders, four storage

policies, and four routing policies. As dependent variables, we use the best zone sizes for each con-

sidered configuration of the independent variables. We determine these best zone sizes by obtaining
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the average order-picking time through a simulation. For every combination of zone sizes and every

configuration of independent variables, we subsequently select the zone sizes with the lowest aver-

age order-picking. For this purpose a tailor-made simulation model is implemented. The number of

possible configurations is infinite, therefore we used as input for our models a limited set of config-

urations, randomly selected from warehouse settings commonly found in practice. We used 16,000

configurations as input data for our methods, for each of which we simulated 4350 zone sizing options

to determine the best zone sizes. In total the calculation time amounted to about 12,000 CPU hours.

By deploying ML techniques on this data set, we aim at developing models that can quickly and easily

determine proper zone sizes, without future need for building a simulation model and running it for

thousands of hours.

Computational experiments attest the effectiveness of our methods by a comparison against the most

common zone sizes approaches from practice, including the use of a random policy, a two-zone policy,

and a classical 20/30/50 policy. We show that there is a trade-off between simplicity and performance

among the ML models used, so that the most adequate one depends on the conditions available during

the decision making process. This paper also analyses and quantifies the impact of different features

on the predicted zone sizes. This can help better understand the zone sizing problem and interpret

the solutions.

The remainder of this paper is structured as follows. Section 2 gives an overview of related literature.

In Section 3, we describe our simulation model, including a detailed description of the four storage

policies and four routing policies considered. Section 4 contains an overview of the four ML techniques

used. Section 5 presents the results of the computational experiments performed, with an analysis

of the best zone sizes found in the simulations and the importance of the features to the models,

the parameters set, and a performance comparison between all models and the arbitrary zone sizes

commonly used in practice. In Section 6, we present analysis of the results, including a qualitative

analysis of each method attribute and how the methods perform for different policies. Finally, the

concluding remarks of this paper are found in Section 7.

2. Literature review

Zone shapes and sizes are two problems usually investigated together in the class-based storage lit-

erature. For warehouses with single-command cycles, in which storage and retrieval operations are

performed carrying a single load, found mainly in automated systems and unit-load warehouses, these
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problems can be solved analytically. Hausman et al. [17] analyze the optimal partitioning point for

a two-zone system in terms of the demand skewness, showing that the first zone should be smaller

when demands are more skewed. For the ABC system, the best partitioning points are determined

numerically using grid search. The results show that the best combination of classes A and B tends

to be smaller when demands are more skewed and, consequently, class C tends to be larger. Eynan

and Rosenblatt [13] extend the Hausman et al. [17] procedure to determine zone boundaries optimally

for n classes. Rao and Adil [40] also develop analytical models to find optimal partitioning point in a

two-zone system, but considering that storage location assignments are determined using a heuristic

storage policy. Similar procedures are also presented for different systems, such as for a 3D compact

automated system [56], a live-cube compact system [57], and a warehouse with diagonal cross aisles [3].

Still for single picks, Van den Berg [54] solves the zone sizing problem using a dynamic programming

algorithm that simultaneously assigns locations and products to classes.

Different than for single-command cycles, there is no firm strategy on how to define class partitions

when pickers are required to perform multiple picks in each picking route [9]. The boundaries estab-

lished for the zones are usually determined in the warehousing literature from simulation experiments

that compare the average route length (ARL) traveled by pickers under different warehouse settings.

However, building and running simulation models are time-consuming and expensive for warehouses.

Therefore, in practice or mainly due to its simplicity, the adoption of arbitrary zone sizes is a common

practice. In this paper, we consider a setting where multiple picks are performed in each route.

For a specific case of a warehouse with a single-block layout, Petersen et al. [38] analyze how to set

up the class-based policy for zones shaped following simple rules commonly used in practice in a

system with two, three and four zones. A few different zone sizes are tested only for the two-zone

case, which they concluded that either a 30/70 or 40/60 partition is the best option for the specific

layout considered, depending on the number of picks to be done in the routes. For the three-zone

case, they arbitrarily considered sizes as 20/30/50. In fact, for many studies, the size of each zone

is an input parameter, not a decision variable [11, 24, 45, 51]. Many of them consider that demands

follow a 20/80 curve (20% of products account for 80% of the total demand) and, therefore, define

zones using the 20/80 partition for two classes or the 20/30/50 for three classes. Using these zone

sizes for a skewed demand scenario in an ABC system, Le-Duc and De Koster [20] investigate zone

shapes in a two-block warehouse with the I/O located in the head of the cross aisle that separates

them. A mathematical model is developed to determine the partial length of each aisle used for storing

4

Estimating Optimal ABC Zone Sizes in Manual Warehouses

CIRRELT-2021-22



each class. They show that the shape of the optimal zones depends largely on the demand skewness,

the number of picks in each route, the storage assignment policy and the warehouse length/width

ratio. For the same two-block layout, Rao and Adil [39] develop analytical models to simultaneously

determine the number of classes, class boundaries, pick list size and number of aisles. Dijkstra and

Roodbergen [11] show that the optimal class boundaries in a single-block warehouse where pickers

follow a routing policy and a single cross aisle should be used must be non-increasing as a function of

the aisle number. Chan and Chan [8] present a case study of a single-block, multi-level rack warehouse

with an ABC system where different combinations of storage policies to determine the zone shapes

and routing policies are simulated for various pick densities. Roodbergen [43] provides insights on the

interactions between layout, routing and storage policies in an ABC system, showing that the best

zone sizes change according to the policies in use. No study attempted to develop tools to estimate

optimal zone sizes precisely under different settings, including many more layouts, than those tested

in the papers discussed without requiring to run their simulators again, which is one of the main

contributions of this paper.

3. Multi-block warehouse characteristics and simulator

The routes followed by pickers to retrieve products demanded are influenced by several factors. Le-Duc

and De Koster [20] and Petersen [37] summarize them to the layout of the warehouse, the demand

pattern, the storage strategy, the batching method, and the routing method. Each of these features

are discussed next.

3.1. Layout factors

In a standard multi-block warehouse, there are five layout factors to be considered: number of aisles,

number of cross aisles, aisle length, aisle width, and cross aisle width.

The number of aisles influences travel distances since more aisles containing picks increase the distance

to be travelled in a route. Longer aisles may also increase the route length since pickers spend more

time travelling in a single aisle before a new one can be entered. Every warehouse has at least two

cross aisles, one at the front and one at the back of the storage area. Additional cross aisles may reduce

route length depending on the pick locations. Finally, wider aisles and cross aisles also increase the

travel distance. We ignore the distance between the left and right side racks in an aisle and consider

that pickers walk in the middle of aisles and cross aisles. The total storage capacity of the warehouse
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is twice the number of aisles multiplied by the aisle length. This is a continuous representation of

storage capacity, which generalizes the representation of capacity in terms of total number of slots.

3.2. Demand distribution

The only factor related to the demand is its distribution. Typically, relatively a few products account

for the vast majority of the demand volume. Some related works [20, 38] consider that the demands are

represented by a step function where a certain percentage of products account for a certain percentage

of the total demand, usually 20% of products accounting for 80% of demand. Caron et al. [7] present

an analytical function to describe this characteristic using a continuous function known as ABC curve.

Namely,

F (x) =
(1 + s)x

s+ x
, 0 ≤ x ≤ 1, s ≥ 0, s+ x 6= 0, (1)

where x indicates the zone size corresponding to the items whose order frequency represent a fraction

F (x) of total warehouse activity. The parameter s indicates the skewness of the demand. For example,

for s = 0.067 it holds that 80% of the picks are generated by 20% of the products, reducing to 70%

for s = 0.12, 60% for s = 0.2 and 50% for s = 0.333, which are common skewness values found in the

step functions of related works.

3.3. Storage strategy

The storage strategy accounts for how to assign products within the storage area. In this work, we

consider that an ABC storage policy is used. While our main objective is to estimate the optimal

combination of zone sizes, the zone shapes are determined by following one of the four methods for

the ABC storage policy shown in Figure 1. In the figure, different colors define the zones, with

the class A being represented in black, class B in grey, and class C in white. Across-aisle locates

the A products in the front-most locations of each pick aisle. Nearest-location ranks each storage

location by their distance to the I/O point and, then, locates the A products in the closest locations.

Nearest-location is closely related to the method of diagonal storage [37], which defines boundaries

following a diagonal shape. For single product orders, nearest-location minimizes the expected ARL.

Nearest-subaisle ranks subaisles according to the distance of their heads to the I/O point and, then,

the A products are assigned to the closest subaisles. In case more than one zone is assigned to the

same subaisle, the products of the best class are assigned to the best locations within this subaisle

first. Finally, within-aisle ranks aisles according to their distance to the I/O point and assigns the
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A products to the best aisles. Different studies show that each of these policies perform well under

different warehouse settings and all of them can actually be found in real cases [19, 20, 37, 43].

(a) Across-aisle (b) Nearest-location (c) Nearest-subaisle (d) Within-aisle

Figure 1: Storage policies

3.4. Batching policy

Batching accounts for how the demanded products are grouped to be retrieved by a single picking

tour. Several batching policies exist [9]. In this work, we consider the pick-by-order batching policy,

meaning that each order is picked individually. This is a common strategy when orders are fairly large.

Thus, we measure picks per route, i.e., the number of locations to visit in a single route, as another

input factor that influences the ARL.

3.5. Routing policy

Given a pick list and the location of the products contained in it, the order-picking problem (OPP)

consists in determining the route to be followed by the picker in order to retrieve them with the

objective of minimizing the total distance traveled [33, 47]. Although exact methods can be found to

solve this problem [33, 41, 46, 52], it is faster to generate routes using simple heuristic policies, which

are also more likely to be accepted by the pickers since they are more intuitive [15].

We consider the four routing policies shown in Figure 2. Aisle-by-aisle considers that each aisle

containing at least one pick is visited once. The best cross-aisle to move to the next aisle is determined

using dynamic programming. In S-shape, pickers traverse the left-most aisle that contains picks to

the back of the warehouse and then return to the front picking products one block at a time. Any

subaisle containing a pick is traversed. After the last pick in a block, the picker returns to the front

of that block and continues to the next. Largest gap also starts with the picker moving to the back
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of the warehouse, then picking products one block at a time. Whenever a subaisle contains a pick,

instead of entirely crossing it, the picker avoids the “largest gap” and returns to leave it from the same

side entered. A gap represents the distance between two adjacent picks, or between the middle of a

cross aisle and the nearest pick. The last subaisle of a block is traversed entirely to allow the picker

to enter the subaisles from the other side of the block. The last considered policy is the combined. It

follows the same logic of performing all picks from the back of the warehouse to the front, block by

block. However, whenever a subaisle is entered, the picker can choose between traversing it or making

a return when all picks within it are done. The choice is made using dynamic programming by always

looking one subaisle ahead in order to be in a better starting point for the next subaisle. A detailed

description of these policies is found in Roodbergen and De Koster [44].

(a) Aisle-by-aisle (b) S-shape (c) Largest gap (d) Combined

Figure 2: Routing policies

3.6. Warehouse simulator

Given the five layout factors, the skewness parameter, the number of picks per route, the combination

of storage and routing (S/R) policies, and the zone sizes, we use a simulator to estimate the expected

ARL. Although an extensive literature exists on route length estimation using analytical formulas

[2, 18, 20, 32, 34], they are not available for all situations, notably for most multi-block layouts. Also,

simulators can provide the exact solutions that these methods are estimating.

In the simulator, the warehouse layout is created and the zones are established, considering the storage

policy used and the zone sizes. Then, pick lists are sampled using the ABC curve. They basically

contain in which zones each pick will be performed. Then, a random location within that zone is

chosen for each pick. The simulator computes the route traveled by the picker to retrieve all products

demanded following the routing policy used. This procedure is repeated several times. Each time the
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route length is found for a new pick list sampled, the estimated ARL and its two-sided confidence

interval C are updated as:

Cα/2 = x̄± zα/2
s√
n
, (2)

where x̄ is the estimated ARL, s is the standard deviation of the route lengths estimated from the n

pick lists sampled, and zα/2 is a value that follows from the cumulative normal distribution function for

a chosen degree of certainty (1−α/2). The simulations stop when the maximum accepted half-width

ε is attained, i.e., when (3) holds.

ε ≥ zα/2
s

x̄
√
n

(3)

4. Machine learning regression methods

In the context of regression analysis, ML methods are used to predict a set of continuous output

values (targets) from a set of input variables (features). These methods are trained using real or

synthetic data in order to find a model that best fits the dataset that they are “learning” by finding

the correlations between features and targets.

The use of ML regression methods in the warehousing literature is very limited, with most applications

found in demand forecasting [31, 49], but also in rental prices estimation [23], forklifts engagement

predictions [26], and the development of a dynamic routing system for automated guided vehicles [30].

We test several ML regression methods to estimate the ABC zone sizes that minimize the ARL to

perform picks. The objective is to derive a model that learns the unknown function used by the

warehouse simulator, previously described, that indirectly leads to the optimal zone sizes through the

minimization of the ARL. If we were fitting a model to predict the route length of a single route, the

ML methods would be learning the set of instructions defined by the routing policy used. To predict

the ARL, it is reasonable to think that the unknown function is also dependent on the storage policy

used. This means that 16 different functions are to be learned considering the combinations of the

four storage strategies (S) of Figure 1 combined with the four routing policies (R) of Figure 2. For

this reason, each of the ML methods used are trained for each combination of S/R policies separately.

The dataset used to train them is generated using the simulator considering its inputs (see Section

5.2.2) as features.

The ML regression methods used in this study are: ordinary least squares (OLS), regression tree (RT),

random forest (RF), and multilayer perceptron (MLP).
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In summary, OLS constructs linear functions combining the input features to predict each zone size

[55]. RT is a multi output model composed of several binary decisions performed in a tree-like structure

that is able to capture nonlinear relationships between the features and the targets [22]. RF is an

ensemble method where multiple RTs are randomly created to perform independent predictions, then

all predictions are averaged, thus increasing the model robustness [5]. Finally, MLP is a feedforward

deep neural network, consisting of an input layer that receives problem features, one or more hidden

layers where the values of these features are transformed using nonlinear functions, and an output

layer that gives the predicted target values [1]. These methods represent four of the most commonly

used categories of supervised learning methods for regression analysis, i.e., linear regression, decision

trees, ensemble methods, and neural networks. Other methods were also tested in a preliminary round

of experiments, such as ridge and lasso regressions, AdaBoost, gradient boosting, and support vector

machines, but only the most promising ones were selected.

4.1. Ordinary least squares

OLS is one of the most popular statistical techniques used for regression analysis. It fits a linear

function using the values of the input features to predict the targets. The linear model is such that

the sum of the squared deviation is minimized.

Linear regression models assume that target values are unbounded, i.e., they can assume any real

number. In the case of ABC zone sizes, they are bounded by zero and the maximum number of

storage locations in a warehouse. Multivariate fractional regression models [29] can be an alternative

to use in this situation, however, these models are more appropriate when there are many observations

at the upper and/or lower bounds. For ABC zone sizing, it is known that optimal zone sizes lie not

too close to the bounds of the unit interval. Otherwise, it would be more advantageous to reduce the

number of classes in the solution. In this case, we ignore the bounded nature of the targets and use a

regular OLS regression.

Since OLS supports the prediction of only one target, for the ABC zone sizing, three linear functions

are modeled, one for each zone size. Advantages of OLS compared to the other models used here are

that it provides simple functions that are easy to apply in real cases and to interpret, since they show

which features contribute the most to the predicted values. However, OLS usually does not perform

well when the relationships between features and targets are nonlinear.
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4.2. Regression tree

RT is a non-parametric model that can be used for regression analysis. It is based on a hierarchical

decision scheme using a tree like structure. The tree contains a root node containing all data, a set of

internal nodes and a set of terminal nodes (leaves). At each node, a binary decision is made using a

condition associated to one of the input features, until a leaf node is reached containing a combination

of the estimated target values [22].

Construction of an RT starts from the root node, where its prediction is made based on the target

values of the training samples. Then, it searches over all features for a split that minimizes the sum of

squared errors for the two new nodes generated. This process continues for each new node generated

until a user-defined stopping criteria is reached. An RT is easy to understand and to interpret, since

it brakes complex decisions into several simpler ones, hence it can be visualized. Moreover, it can be

used to deal with complex nonlinear relationships. More on regression trees is found in Loh [22].

Since the tree is built from training samples, it may not generalize the data well, which results in a low

accuracy when applied to unseen data (overfitting). Commonly, pruning is used to reduce overfitting.

Methods used to stop early the tree building process are known as pre-pruning [12]. Pre-pruning avoids

growing an overly complex tree. The pre-pruning technique considered here determines a minimum

number of training samples (min samples leaf ) required to be at a leaf node. So, a node will only be

split if it results in two other nodes containing at least this number of samples. In Section 5.4.1, we

assess several choices for min samples leaf to obtain a robust RT to estimate optimal ABC zone sizes.

4.3. Random forest

RF [5] is a machine learning algorithm that belongs to the class of the ensemble methods. In ensemble

learning, several, usually simple, base estimators are combined such that each estimator provides a

prediction and, then, all predictions are combined, improving the robustness over single estimators.

RF combines RTs such that each tree is built from a set of randomly sampled data with randomly

sampled features with the same distribution for all trees in the forest (bootstrap sample). As the

number of trees increases, the error for the forest tends to converge, decreasing the variance of the

RF model, and reducing overfitting. Due to the randomness behind it, RF is robust with respect to

outliers.

Two parameters are important when fitting an RF model: the number of trees and the maximum

number of features. The number of trees in the ensemble should be as high as possible considering
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the total training time. The maximum number of features represents the number of features chosen

randomly at each tree node. When it is set low, trees become more complex and diverse. Otherwise,

if set to be close to the number of features, the trees will tend to be very similar. In Section 5.4.2, we

test different combinations of these parameters to set the RF model to estimate optimal ABC zone

sizes.

4.4. Multilayer perceptron

Artificial neural networks are machine learning algorithms inspired by how the human brain processes

information and are used to approximate complex functions including nonlinear relationships that

depend on several features. MLP is an artificial neural network composed of a structured network

containing one input layer, one or multiple hidden layers, and one output layer. The input layer

consists of one node for each feature considered, while the output layer consists of one node for each

target to be predicted. Each hidden layer is composed of a number of nodes where the values from

the previous (input or hidden) layer are input, transformed using a nonlinear activation function, and

sent to the next (hidden or output) layer in the forward direction (feedforward architecture). A loss

function, usually minimizing the sum of squared errors in regression problems, is optimized in the

output layer via backpropagation [1].

MLPs are scale sensitive; if one input feature has a larger range than another, and both have a similar

variance, then the MLP has a tendency to be more sensitive to the larger one. Therefore, feature

scaling is recommended when setting an MLP [1]. Standardization is a common way to scale features

and is done as:

X̂ =
X − X̄
σ

, (4)

where X represents the feature samples for a feature with mean X̄ and standard deviation σ, trans-

forming all features to have a mean of zero and unit variance.

The MLP has been demonstrated to be a very powerful tool since it does not require a high level of

abstraction about the data domain and it self-organizes its complexity by adding or removing neurons

according to the available data or computational power [1]. Its hidden layers have a non-convex loss

function, such that different initializations can lead to different validation accuracy. We detail in

Section 5.4.3 how we set the number of hidden layers and the number of neurons.
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4.5. Model evaluation

The objective of all models is to estimate the ABC zone sizes such that the ARL is minimized. Due

to the long time required to run simulations with a high level of confidence, we do not use this metric

directly when setting up the models. Instead, we use a common score metric for evaluating the model’s

performance: Mean Squared Error (MSE). The formula for MSE is shown in equation (5), where n is

the sample size, Yi is the i-th observed value for the feature and Ŷi is the value predicted.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2. (5)

A model is considered to be better for a combination of parameters that result in a lower MSE. We

show in Section 5 that this metric predicts well the model performance for the original objective of

minimizing ARL.

5. Computational experiments

In this section, we use each of the four supervised learning models to predict optimal ABC zone sizes.

Each model has its most relevant parameters set using the data generated in the simulations, and then

the performances of each model with the best settings are compared.

The simulations were run on a parallel cluster of machines with an Intel Gold 6148 Skylake with

2.4 GHz at each node with up to 1,000 nodes allowed to be used in parallel. The ML models were

implemented using the Python package Scikit-learn [36]. We demonstrate the easiness to set the

models by performing all training and testing on a personal computer with a six-core Intel Core

i5-9400 with 2.9 GHz.

5.1. Dataset generation

The dataset used to train our models was generated using the warehouse simulator described in Section

3 [43]. We generate 1000 samples to represent different warehouse settings. Each sample is generated

using common values found in practice for the features passed to the simulator. The values of each

feature were selected using a uniform distribution considering lower and upper bounds. All values

generated are integer, except for the skewness. The bounds used are:

� Number of aisles = [6, 18];
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� Number of cross aisles = [2, 6];

� Aisle length (in meters) = [10, 30];

� Aisle width (in meters) = [2, 6];

� Cross aisle width (in meters) = [2, 6];

� Picks per route = [5, 25];

� Skewness = [0.05, 0.35].

The storage assignment was determined using across-aisle (Aa), nearest-location (Nl), nearest-subaisle

(Ns), and within-aisle (Wa), and the routes were created using aisle-by-aisle (Aba), S-shape (Sh),

largest gap (Lg), and combined (Co). Therefore, a total of 16,000 instances were generated.

For each instance, we estimate the ARL by performing a grid search simulating the combinations of

zA = {1%, 2%, . . . , 75%}, zB = {1%, 2%, . . . , 75%}, and zC = 100% − zA − zB. This results in 4350

feasible combinations for each instance. Pick lists were generated until ε = 0.25% for a 99% of degree

of certainty. The result is a 5 GB data file containing the expected ARL for each combination of zone

sizes and instances. Total simulation time took around 12,000 CPU hours, which was only possible to

run due to the parallel cluster of machines available.

5.2. Data analysis

For all models, we split the 1000 sampled warehouses arbitrarily into 67% as a training set and 33%

as a test set. For the training set, we filter the solutions that result in an ARL gap up to δ percent

to the ARL of the best known solution (BKS) found in the grid search. For the simpler techniques

(OLS and RT), we use δ = 0%, such that only the BKSs are used for training. For the “black-box”

methods (RF and MLP), δ has to be determined, since more training data may allow the method to

learn more about the unknown function inside the simulator.

For the test set, we only use the BKSs, since we want to compare the predicted values with the best

ones.

5.2.1. Targets analysis

We first analyze the data obtained from the simulator regarding the best combinations of ABC zone

sizes. A summary of this data is presented in Table 1. It shows that the overall average best zone
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sizes found are zA = 18.33%, zB = 35.49%, and zC = 46.18%, which slightly deviates from the

commonly used sizes of 20/30/50. The high standard deviation and the high range between minimum

and maximum sizes observed indicate that the use of fixed zone sizes as a rule-of-thumb may lead to

a solution numerically distant from the optimal one in several cases. Differences are more noticeable

when analyzing specific S/R combinations, as shown in Figure 3. For instance, the overall optimal

zone A size is more than 2.5 times higher when using across-aisle storage with aisle-by-aisle routing

(Aa/Aba), than when using within-aisle with largest gap (Wa/Lg). We highlight that the figure

conceals actual variation in performance within each bar. Later in this paper (see Figure 5), we

detail the solutions found when using the average best zone sizes. We show that although the average

performance is better than 20/30/50, the variation is still very high.

Table 1: Statistics for the best combinations of zone sizes found in the simulations

Attributes Zone A size Zone B size Zone C size

Mean 18.33 35.49 46.18
Standard deviation 8.77 8.07 10.22

Minimum 2 1 4
Lower quartile 12 30 39

Median 17 35 46
Upper quartile 23 41 52

Maximum 55 62 81

Figure 3: Average best zone sizes per S/R policies found in the simulations
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A large deviation from optimal zone sizes does not necessarily imply a large gap to the optimal

ARL. Another metric used to justify the need for having accurate models is to observe how many

combinations of zone sizes simulated are within a gap δ from the BKS. For δ = 0%, we have that the

number of combinations that satisfy this condition is approximately one per sample, since ties rarely

occur. Due to the uncertainty when estimating ARL using the simulator, defined at ε = 0.25%, we

are interested in finding a combination that leads to an ARL below twice the value of ε from the best

solution. If this is the case, we cannot reject the hypothesis that the solution found is equal to the

BKS.

Some combinations of S/R policies are naturally easier to estimate good zone sizes since their perfor-

mance do not change significantly when changing the solutions marginally. It is the case of Aa/Sh,

which places high demanded products in as many aisles as possible with a routing policy that prefers

to travel a few aisles entirely. This is a poor combination in practice since bringing high demanded

products to the front of the aisles does not lead to a reduction in the number of aisles visited. The

opposite is expected for Wa/Sh, in which placing a single high demanded product in a new aisle can

significantly increase the ARL. This implies that a model to predict optimal zone sizes for the Aa/Sh

policies is not required to be as accurate as a model for the Wa/Lg policies to generate good solutions.

For this matter, different models are applied for each S/R policy combination.

5.2.2. Features analysis

Feature engineering is a process of using domain knowledge to create/extract new features from a

given dataset [53]. We generated new features using nonlinear operations between the original ones

and those meaningful in the warehousing context. They are:

� Number of subaisles: number of aisles / (number of cross aisles − 1)

� Subaisle length: aisle length / (number of cross aisles − 1)

� Warehouse length: aisle length + cross aisle width × number of cross aisles

� Warehouse width: number of aisles × aisle width

� Dimensions ratio: warehouse length / warehouse width

� Picks per aisle: picks per route / number of aisles

� Picks per subaisle: picks per route / number of subaisles
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� Pick density : picks per route / (aisle length × number of aisles)

These eight “artificial” features and the seven original ones constitute the preliminary set of input

features used in the models.

We performed univariate linear regressions between each of the 15 features and each of the three

targets for each S/R policy. The obtained coefficient of determination (R2) is presented in Table 2

with those above 0.1 highlighted. Observe that skewness (7) has the highest R2 values in most policy

combinations, which means that this feature shares a higher percentage of the variance with the

targets than the others. When nearest-location or nearest-subaisle storage policies are used, skewness

is almost always the only feature with a relatively high R2. For the across-aisle policy – except when

used with S-shape – number of cross aisles (2), number of subaisles (8), subaisle length (9) and picks

per subaisle (14) are the most linearly correlated with the best zone sizes found. Note that all these

features are related to each other since the three artificial ones directly or indirectly contain the number

of cross aisles. Finally, when using within-aisle – except with largest gap – several features have a

relatively high R2. We highlight that none of the correlations observed are absolutely high (above

0.5), which is an indication that either the features are not correlated at all with the targets or they

have a nonlinear correlation.

Table 2: R2 for the univariate linear regression for the train set

S/R policy (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Aa/Aba 0.00 0.25 0.00 0.00 0.01 0.01 0.20 0.14 0.25 0.05 0.00 0.02 0.01 0.10 0.02
Aa/Sh 0.01 0.04 0.01 0.00 0.01 0.01 0.05 0.01 0.04 0.03 0.01 0.03 0.00 0.02 0.00
Aa/Lg 0.00 0.33 0.00 0.00 0.00 0.02 0.03 0.19 0.37 0.10 0.00 0.03 0.00 0.22 0.00
Aa/Co 0.01 0.16 0.00 0.01 0.01 0.01 0.08 0.08 0.19 0.04 0.01 0.03 0.00 0.10 0.00
Nl/Aba 0.03 0.04 0.03 0.05 0.01 0.00 0.37 0.03 0.04 0.01 0.08 0.08 0.01 0.02 0.01
Nl/Sh 0.00 0.02 0.02 0.02 0.00 0.00 0.24 0.01 0.02 0.02 0.03 0.01 0.00 0.04 0.01
Nl/Lg 0.02 0.02 0.03 0.05 0.00 0.01 0.21 0.03 0.06 0.00 0.08 0.03 0.01 0.04 0.00
Nl/Co 0.01 0.03 0.01 0.03 0.01 0.00 0.23 0.02 0.02 0.02 0.04 0.02 0.00 0.04 0.00
Ns/Aba 0.02 0.01 0.02 0.03 0.00 0.02 0.29 0.00 0.01 0.02 0.05 0.04 0.02 0.01 0.03
Ns/Sh 0.01 0.07 0.01 0.02 0.01 0.02 0.14 0.05 0.08 0.03 0.02 0.01 0.02 0.13 0.02
Ns/Lg 0.02 0.03 0.02 0.04 0.01 0.01 0.23 0.04 0.04 0.02 0.06 0.03 0.02 0.02 0.00
Ns/Co 0.01 0.02 0.01 0.01 0.01 0.01 0.18 0.02 0.03 0.02 0.01 0.00 0.01 0.06 0.02
Wa/Aba 0.07 0.07 0.01 0.06 0.01 0.06 0.18 0.06 0.05 0.06 0.10 0.14 0.06 0.11 0.04
Wa/Sh 0.01 0.13 0.01 0.03 0.00 0.04 0.19 0.10 0.13 0.05 0.03 0.03 0.03 0.17 0.03
Wa/Lg 0.00 0.02 0.01 0.03 0.01 0.05 0.25 0.01 0.03 0.01 0.03 0.02 0.01 0.01 0.02
Wa/Co 0.02 0.10 0.02 0.04 0.00 0.05 0.21 0.09 0.08 0.06 0.02 0.04 0.03 0.11 0.04

*(1): Number of aisles, (2): Number of cross aisles, (3): Aisle length, (4): Aisle width, (5): Cross aisle width,

(6): Picks per route, (7): Skewness, (8): Number of subaisles, (9): Subaisle length, (10): Warehouse length,

(11): Warehouse width, (12): Dimensions ratio, (13): Picks per aisle, (14): Picks per subaisle, (15): Pick density
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5.3. Dimensionality reduction

The addition of highly correlated features may lead to some undesirable conditions, such as overfitting,

overly complex models, and more computational time to fit. Dimensionality reduction is the process

of transforming a dataset such that only the relevant features are used. We use the backward search to

observe which features can be removed from the linear (OLS) and nonlinear (RT, RF, MLP) models

in order to improve their performance. Backward search iteratively removes one feature at a time

considering the best removal strategy, i.e., the feature that degrades the least the model performance

[25]. For OLS and RT, fewer features lead to cleaner models, which are easier to interpret and

implement in practice. From the experiments, we observe that the use of the same features selected

for RT in the other nonlinear models leads them to perform better as well, besides being trained faster.

The results of the backward search for the linear and nonlinear models with default parameters used

in Scikit-learn are presented in Table 3. It shows the feature removed in each iteration of the search,

and the MSE values for all models fit for both train and test sets. Since no results are obtained after

removing the last feature, nothing is shown in the last row of the table.

Table 3: Results for the backward search feature selection method (which feature is removed next)

OLS RT
Feature MSE train MSE test Feature MSE train MSE test

All features 36.27 43.63 All features 1.03 45.38
Pick density 36.42 37.66 Pick density 1.03 38.46

Cross aisle width 36.51 37.66 Cross aisle width 1.03 38.77
Warehouse width 36.69 37.69 Warehouse width 1.03 38.34

Number of subaisles 37.00 37.96 Number of subaisles 1.03 38.46
Aisle length 37.59 38.35 Picks per subaisle 1.03 37.85

Number of cross aisles 38.18 38.89 Subaisle length 1.03 38.01
Picks per aisle 38.93 39.67 Warehouse length 1.03 37.46

Dimensions ratio 39.83 40.48 Aisle length 1.03 36.65
Warehouse length 40.79 41.26 Aisle width 1.03 36.13
Number of aisles 42.51 42.73 Number of aisles 1.03 36.08

Aisle width 44.54 44.33 Picks per route 1.03 38.09
Picks per route 46.13 46.02 Picks per aisle 1.13 52.43

Picks per subaisle 47.55 47.60 Dimensions ratio 29.96 47.84
Subaisle length 56.31 55.89 Number of cross aisles 53.03 56.29

Skewness – – Skewness – –

From the results shown in Table 3, we observe that a maximum performance for the test set is obtained

when 13 features are used in OLS and 5 features in RT. The most important features are read from

the bottom to the top of the table. Unsurprisingly, skewness is the most important feature overall for
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both methods. Another relevant feature is picks per route. Number of cross aisles and dimensions

ratio seem to be very relevant in RT, but not so much in OLS, which could be explained by these

features having a considerable nonlinear correlation with the targets, but a very low linear one. It is

interesting to see that most of the artifical features contain significant information to improve the OLS

performance, but for RT some of them are actually used to substitute some of the original features in

the models. For example, combining aisle length, number of aisles, cross aisle width and aisle width

with number of cross aisles seems to generate a new feature (dimensions ratio) that contains more

significant information for the problem than considering the first four as separate features. For the

remainder of our experiments, we use OLS with the best 13 features (the last 13 features in Table 3).

RT, RF and MLP are trained with the best five features (the last five features in Table 3). Next, we

detail how the parameters of these models were set in this study.

5.4. Parameter setting

All methods except for the OLS require some parameter tuning to improve performance. We show

next how these parameters were set.

5.4.1. Regression tree

The results for the feature selection presented in Section 5.3 show a very high difference in performance

between the train and test sets in the RT model. This indicates that when RT is trained using the

default parameters, it might overfit. In RTs, pre-pruning is used to avoid the tree growing too complex

by controlling the min samples leaf parameter, as previously explained. The choices for this parameter

ranged from 1 to 20. As shown in Figure 4, overfitting is observed when the value is too low. As

the value increases, the curves representing the MSE for the train and test sets converge. Past the

point where MSE for the test set is minimum (min samples leaf = 10), both curves start to increase

together, leading to an underfitted model. For a better performance, we set the min samples leaf

parameter to 10 for the remaining experiments.

5.4.2. Random forest

The first parameter set for the RF estimator is related to the dataset used for training. As previously

stated, the parameter δ determines which data from those generated by the simulator are used to train

a model. A higher δ can help the model learn more about the simulator. However, it also means that
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Figure 4: Results for the setting of the min samples leaf parameter in the RT model

significantly more data are used to train, which may lead to an exponential increase in the training

time. We train the RF with default parameters for δ = 0.0% to 0.5%. For that, we have added a

new feature to the dataset called gap. This feature measures the distance of the observed data point

to the best solution obtained for the same problem. This way, gap in the training set varies between

zero and δ, while for the test set gap is always zero, since we are interested in predicting the optimal

solution. We show the results of training the RF with different δ values in Table 4. From them, we

observe an increase in the MSE when δ increases. Although the model is highly fitted to the test set

for lower δ values, the peak score for the test set is obtained with δ = 0.0. Since the goal of the RF is

to maximize performance, we use δ = 0.0% for the remaining experiments.

Table 4: Results for the setting of the δ parameter in the RF model

δ 0.0 0.1 0.2 0.3 0.4 0.5

MSE train 3.64 5.89 12.06 19.19 26.64 34.06
MSE test 20.02 20.99 22.03 22.10 23.18 23.61

Random forests depend primarily on two parameters: the number of estimators and the maximum

number of features. The number of estimators represents the number of trees in the ensemble. Overall,

more trees reduce variance at the cost of increased computation time. After preliminary tests, we keep

the number of estimators at the Scikit-learn default value of 100. The maximum number of features

represents the number of features randomly chosen at each base estimator. More features make the

trees more similar, while fewer features can make trees more diverse. However, too few features may

turn the trees too biased. We run another batch of experiments to set the maximum number of

features, setting it from one to all six features, i.e., the five chosen using the backward search and

gap. The results show that the MSE for the test set is at its lowest point (MSE = 19.88) when the
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maximum number of features is four. We use this value for the remaining experiments using RF.

5.4.3. Multilayer perceptron

The parameters to tune in the MLP are the number of hidden layers and the number of neurons in

each hidden layer. Before tuning them, we perfomed experiments for different δ values to observe how

MLP behaves when more information about the gaps are used. The values tested for δ are the same as

those used in the RF. Table 5 shows the results obtained for an MLP with a single hidden layer with 10

neurons and the maximum number of iterations set to 5000 to allow convergence in the optimization

process. The remaining parameters are as default in Scikit-learn. All features were scaled. Unlike the

RF trained, overfitting is not a concern in the MLP. The performance for the test set increases with

more data used for training, but peak performance is obtained with δ = 0.1. Following the goal of

maximizing performance, we train the MLP in the remaining experiments using δ = 0.1.

Table 5: Results for the setting of the δ parameter in the MLP model

δ 0.0 0.1 0.2 0.3 0.4 0.5

MSE train 32.17 27.78 32.75 38.97 45.45 52.11
MSE test 34.11 28.03 28.18 29.65 30.17 29.89

As the results in Table 5 show, the performance of the MLP using the parameters described is worse

than RF. In order to improve it, the two parameters are set using a grid search. We tested the number

of hidden layers from one to three with 20, 50, 100, 200 and 300 neurons each. The maximum number

of iterations is set to 5000. Table 6 shows the results obtained in the grid search. The best setting

found is the use of two layers with 200 neurons each. The MSE for the test set improved from 28.03

to 19.63 when compared to using a single layer with 10 neurons.

Table 6: Results for the setting of the number of hidden layers and neurons parameters in the MLP model

Neurons per layer
1 layer 2 layers 3 layers

MSE train MSE test MSE train MSE test MSE train MSE test

20 24.01 25.26 19.96 22.14 18.10 21.37
50 20.62 22.81 16.45 20.30 15.06 20.40
100 18.59 21.26 15.43 19.92 13.67 19.88
200 17.81 20.77 15.06 19.63 13.33 20.03
300 17.37 21.08 14.61 19.84 12.83 19.77
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5.5. Performance comparison

In this section, we compare the performance of each model. First, we recap how each model performed

using the MSE metric and the training time (Table 7). The results show that OLS scores worse than

the other models for the test set, while MLP generates solutions closer to the best solutions found in

the simulations. However, the time to fit the MLP is significantly higher than the time to fit the RF,

and the score improvement is marginal.

Table 7: MSE among different models

Method MSE train MSE test Time to fit (s)

Ordinary least squares 36.51 37.65 5.8
Decision tree 18.90 28.58 5.8

Random forest 3.60 19.88 9.2
Multilayer perceptron 15.06 19.63 173.1

A model that performs well in the MSE metric will not necessarily do well for the zone sizing problem.

In order to measure the real model performances, we run the simulator using the predicted zone sizes

for the test set and compared against the BKS found by the grid search done using the simulator

as reference. In Figure 5, we compare the quality of the predictions made by each model against a

random policy, which is equivalent to the use of a single zone, a 20/80 policy representing the most

common partition for a two zones system, a 20/30/50 policy representing the most common sizes used

for an ABC system, a 18/35/47 policy representing the average target values shown in Table 1, and

S/R policy mean representing the average target values derived for each S/R policy (Figure 3).

The conclusions drawn from Figure 5 and the previous experiments indicate that the use of three

zones performs significantly better on average than a random storage or a two zone system, regardless

of the method used to define zone boundaries. Moreover, although 20/30/50 is the most common

combination used in practice, actually 18/35/47 has on average a better performance (1.61% versus

1.50%), and if fixed sizes are picked from the list derived for each S/R policy, the solutions are even

better on average (1.37%).

Regarding the first regression method, although the linear relationship between features and targets

is weak, OLS is capable of improving the average gap to the reference solutions compared to the

fixed sizes (1.05%), but the variance in performance remains high. RT, which is a competing method

against these due to its easy interpretability and replicability, has an even better average performance

(0.76%) and a much lower variance.
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Figure 5: Methods gaps to the ARL of the best combination of zone sizes found in the simulations

Finally, as expected, RF and MLP show the best average performances among all methods (0.65%

both). Also, variance is low with a slight advantage to MLP. On the other hand, RF finds better

solutions in the best cases, sometimes even finding solutions with a negative gap to the reference

solutions.

These conclusions attest that the models that performed better for the MSE metric also performed

better for the real zone sizing problem, even though this metric is not contained in the objective

function of the problem.

6. Managerial analysis

In this section, we provide a discussion to highligth the pros and cons of using each modeling strategy

to solve the zone sizing problem in practice. We also deepen in the model performance analysis for

the S/R policy combinations.

6.1. Methods comparison

Whenever developing models to solve optimization problems, it is usual to give all attention to their

performance and overlook their applicability. In practice, there are many variables that are usually
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disregarded when modeling the problem. They may play a vital role when deciding whether a better

performing method is of practical use. For the zone sizing problem, we present a set of seven important

characteristics a method must have in order to be applicable. All methods presented in this work

are evaluated according to these attributes. The first one is, obviously, the method’s performance

considering the average quality of the solutions obtained. Another desirable attribute is the variance

of solutions. Ideally, a method provides similar solutions in terms of quality regardless of the warehouse

setting. Infeasible solutions, such as negative zone sizes or sizes that sum up more than 100%, can be

generated from models so that the infallibility is another point to be considered. An infallible method

can always provide feasible solutions, disregarding its performance, even for unusual features. The

fourth point considered is the interpretability. Methods that result in interpretable models have a

decision process easy to understand and, therefore, to be accepted by practitioners. This can reduce

the resistance for its adoption, especially in the cases that the result are unusual zone boundaries.

Another characteristic desired is the quickness to train and run the method until satisfactory solutions

are obtained. Specifically for the zone sizing problem, it is important to evaluate whether a method

requires a demand forecasting accuracy in order to make good predictions. Some methods are more

sensible to the precision of the real skewness feature than others and, therefore, accuracy in the demand

forecasting is required. Finally, the implementation cost of the method should be considered. The

cost can be measured based on the effort required for its implementation.

Table 8 provides a summary of how each method is classified among these seven characteristics.

Arbitrary sizes consider zone boundaries established from commonly used arbitrary values or the

reference values for the S/R policy combinations. For OLS and RT, we consider the adoption of the

models provided in this work, which are ready to be adopted and very easy to understand since they

consist of simple arithmetic operations in the OLS case or a tree with binary decisions in the RT

case. For RF and MLP, we understand that the models trained here are hardly replicable. Therefore,

new models would have to be trained, for example, using real data from the warehouse operations.

Finally, for the simulator method, we consider that the warehouse would have to implement their own

tailor-made simulator and perform a grid search to find the best combination of zone sizes.

From a practical perspective, no single method absolutely outperforms others for all attributes. Over-

all, arbitrary sizes are better applicable in cases where no demand forecasts are available. This is

hardly the case for existing warehouses. The only advantage of OLS over RT is its slightly easier

interpretability. However, RT has many more advantages and is more recommended to be used in the
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Table 8: Qualitative comparison between different methods to solve the zone sizing problem

Method Performance Variance Infallibility Interpretability Quickness Forecasting accuracy Cost

Arbitrary sizes Poor Very high Yes Very easy No run required None None
OLS Fair High Can fail Very easy No run required Required None
RT Good Average Yes Easy No run required Desirable None
RF Very good Average Yes Hard Fast train and test Desirable Low∗

MLP Very good Low Can fail Very hard Slow train, fast test Required Low∗

Simulator Excellent Very low Yes Average Very slow Required High

*Considering that data for training is readily available. Otherwise, gathering data for the warehouse performance under different
zone sizes can be significantly more expensive than building a simulator

same conditions. RF and MLP are better options when the slightly better performance they provide

can result in significant savings, for example, in companies with large scale operations and many

warehouses. Therefore, it is reasonable to assume that data is available to train them. The simulator

is recommended in case an even better performance is desirable and enough resources are available to

implement it.

6.2. S/R policy combination analysis

All results presented so far are for the ensemble of models trained. Another way to evaluate their

performance is by looking at each of the 16 models individually. Table 9 shows the average and

maximum percentage deviation for the predictions obtained with each model to the ARL of the BKS

for the samples in the test set. The results show that solutions are better for some S/R policy

combinations than others. The solutions for the combinations with the across-aisle and the nearest-

location are closer to optimum than those for the nearest-subaisle and, even worse, the within-aisle.

However, regardless of the policies, all average solutions are improved when using a trained ML

method. This is true even for a bad performing method, such as OLS.

As explained in Section 5.2.1, some combinations are naturally easier to find good estimations for

the optimal zone sizes. The combinations involving the nearest-subaisle and the across-aisle policies

(except Aa/Lg) are those for which the models approximate the BKS better. The hardest problems

are mostly those involving a storage policy linked to the aisles (within-aisle) and subaisles (nearest-

subaisle). After investigating the data from the simulations, we noted a trend for these two policies

that the BKS found usually have zone boundaries overlapping the point where aisles or subaisles end.

In order to investigate that, we rounded all predictions found for the zones A and B to the percentage

representing the nearest number of full subaisles that these zones should cover. For example, instead of

predicting that zA covers 14.7 subaisles, it is rounded such that 15 subaisles belong to it. In Table 10,

we show the new average and maximum results for each S/R policy combination using this rounding
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Table 9: Average and maximum percentage deviations to the ARL of the BKS found in the simulations for
each S/R policy combination (best values in boldface)

S/R Policy
18/35/47 S/R policy mean OLS RT RF MLP

Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%)

Aa/Aba 1.55 4.30 1.44 8.58 0.63 6.75 0.34 3.41 0.27 1.42 0.28 2.02
Aa/Sh 0.99 4.35 0.85 6.45 0.75 5.52 0.23 2.59 0.29 5.44 0.37 6.21
Aa/Lg 2.08 5.47 1.81 6.08 1.60 5.46 0.53 5.33 0.66 4.74 0.61 5.17
Aa/Co 1.16 3.77 1.22 4.29 0.94 3.64 0.42 5.50 0.30 2.57 0.36 2.74
Nl/Aba 0.76 5.22 0.81 6.88 0.49 3.21 0.44 2.28 0.35 2.28 0.38 2.93
Nl/Sh 0.96 5.24 0.91 4.90 0.69 4.01 0.61 2.83 0.46 2.74 0.45 2.73
Nl/Lg 0.98 5.97 0.87 4.22 0.62 3.45 0.58 3.44 0.47 3.63 0.49 3.52
Nl/Co 0.93 5.79 0.87 4.94 0.63 3.70 0.48 2.43 0.38 1.90 0.39 2.58

Ns/Aba 1.31 7.64 1.45 9.55 1.03 6.15 1.04 4.65 0.85 5.62 0.91 5.64
Ns/Sh 1.56 8.75 1.47 8.13 1.19 5.42 1.22 5.23 1.01 4.18 0.96 4.58
Ns/Lg 1.57 7.26 1.41 6.71 1.32 6.64 1.20 4.73 1.06 5.25 1.08 4.29
Ns/Co 1.47 6.53 1.40 5.96 1.23 5.68 1.15 5.64 0.91 4.77 1.02 6.12

Wa/Aba 2.24 14.01 2.14 15.43 1.64 10.17 1.15 5.98 1.01 6.36 1.10 7.52
Wa/Sh 1.88 10.00 1.73 7.92 1.20 7.39 0.96 5.21 0.85 3.85 0.66 3.48
Wa/Lg 2.51 10.11 1.87 11.22 1.60 18.60 0.89 7.07 0.69 6.30 0.60 3.13
Wa/Co 1.97 10.50 1.71 6.84 1.30 17.94 0.91 4.83 0.80 4.98 0.70 4.68

Average 1.50 7.18 1.37 7.38 1.05 7.11 0.76 4.45 0.65 4.13 0.65 4.21

to the nearest subaisle method for the predictions done by the RF. The average performance of the

predicted solutions improves from 0.65% to 0.50%, but the gains are most notable in the predictions

for the nearest-subaisle and within-aisle policies. This indicates that full subaisles are generally good

candidates to constitute an optimal solution for these policies.

Table 10: Comparison between the original predictions by RF against the predictions rounded to the nearest
subaisle

S/R Policy
Original predictions Rounded predictions
Avg (%) Max (%) Avg (%) Max (%)

Aa/Aba 0.27 1.42 0.28 1.71
Aa/Sh 0.29 5.44 0.24 6.01
Aa/Lg 0.66 4.74 0.65 5.14
Aa/Co 0.30 2.57 0.30 3.07
Nl/Aba 0.35 2.28 0.39 2.32
Nl/Sh 0.46 2.74 0.52 3.76
Nl/Lg 0.47 3.63 0.50 3.75
Nl/Co 0.38 1.90 0.43 2.24
Ns/Aba 0.85 5.62 0.59 2.50
Ns/Sh 1.01 4.18 0.64 3.99
Ns/Lg 1.06 5.25 0.71 3.39
Ns/Co 0.91 4.77 0.66 5.84
Wa/Aba 1.01 6.36 0.79 6.45
Wa/Sh 0.85 3.85 0.46 3.54
Wa/Lg 0.69 6.30 0.39 3.44
Wa/Co 0.80 4.98 0.50 5.34

Average 0.65 4.13 0.50 3.91

The stopping criterion used for the simulations was a maximum half-width of 0.25%. In a previous

analysis done in Section 5.2.1, we already demonstrated that this criterion leads to not rejecting

the hypothesis that a solution with a gap of 0.5% to the BKS is equal to it, due to the overlap of
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the confidence intervals of the best known and predicted solutions. With the predictions rounded

to the nearest subaisle method, the average gap of the predicted solutions reached this threshold,

which means further improvements past this point are statistically meaningless. In fact, 67.9% of the

predictions made by RF after rounding are below a 0.5% gap from the BKS. Before rounding, this

metric was only at 41.6%. Gains with rounding to the nearest subaisle are observed in all models

used for the nearest-subaisle and within-aisle storage policies. This is an important observation to be

considered as a simple guideline for practitioners to improve zone sizing solutions.

7. Conclusions

This paper investigates the ABC zone sizing problem, which arises from the class-based policy used

to solve the storage location assignment problem. In this problem, a multi-block warehouse is divided

into three zones of sizes to be determined. The set of products to be assigned to storage locations

are divided into three classes according to their demands, and, the best classes are assigned to the

best zones. Although the zone sizing is a common problem faced in manual warehouses, the literature

about it is still scarce.

We have generated detailed synthetic data to represent real warehouses and orders using a simulator

to estimate the average route length. The simulator is fed with a set of inputs related to the warehouse

layout, the pick list characteristics, and the storage and routing policies used. An analysis of the data

obtained from an extensive batch of simulations revealed that good zone sizes vary significantly within

a large range. Only half of the optimal zone sizes for the common warehouse settings analyzed fall

within a range of 12% to 23% for zone A, 30% to 41% for zone B, and 39% to 52% for zone C. We

have also shown that some combinations of storage and routing policies are harder to approximate

good solutions than others. We observed that all considered features have weak linear correlations

with the zone sizes, and that the demand skewness is the most correlated feature for most storage and

routing policies combinations.

We have then used the data from the simulations to train several machine learning methods to learn on

how to predict the optimal zone sizes. This was done by showing to them what are the best solutions

found for different settings. The main advantage of this approach is that it provides a faster way

to solve the problem without the need to implement a simulator, which can be too time-consuming

for warehouses. The models that can capture nonlinear relationships between features and targets

performed better than the linear regression. We have shown that a set of only five features – demand
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skewness, number of cross aisles, dimensions ratio, picks per aisle, and picks per route – is enough to

obtain a good performance using these nonlinear models.

There is a trade-off between performance and applicability among the models. Arbitrary sizes are easy

to remember and significantly outperform alternative methods such as the random storage or a two-

zone system. However, they do not fully benefit from the performance potential of using a three-zone

system. The linear functions and decision trees are interpretable models that consider the problem

features to improve performance. Even though linear correlations are weak, the linear regression model

outperformed the more primitive solutions. The decision tree trained predicts solutions on average

0.76% from the best ones found in the simulations and it is a method that can be easily adopted using

the trees generated here. For even better results, an ensemble method, such as the random forest, or

a neural network, such as the multilayer perceptron, can be used. We used a random forest to show

that solutions with an average gap below 0.5% to the best found in the simulations are achievable. At

this point, the loss of solution’s quality is statistically insignificant, such that most of the solutions

predicted are no different than those provided by the simulations.
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