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1 Introduction

Freight distribution and logistics systems are essential to support the economic and social de-
velopment of cities. At the same time, freight transportation activities also negatively impact
urban life in terms of congestion, noise, and pollution. Multi-tier, especially two-tier city logis-
tics concepts have become a mean to promote efficient and sustainable freight transportation
in terms of economic, social, and environmental viability. In this context, the two-echelon loca-
tion routing problem ( 2E-LRP) is one of the methodologies of choice to model and plan such
two-tier systems through the integration of facility location and vehicle routing decisions. With
urbanization expanding, operational models being restructured and e-commerce accelerating
immediate delivery expectations, the interest of academics and practitioners has been shifting
toward more realistic problem settings, mostly driven by the major opportunity that these
attributes represent for the logistics industry in the upcoming years (Crainic and Montreuil,
2016). Nevertheless, the literature on more realistic 2E-LRPs characterized by several interact-
ing attributes is still very limited (Dellaert et al., 2019). Particular developments are required
in the 2E-LRP field, especially in relation to time-dependent components of operations, multi-
commody non-substituable demand, synchronization of the carriers involved, and the modeling
and algorithmic challenges these considerations imply.

We address a two-echelon location-routing problem considering multiple interacting at-
tributes. Prompted in particular by city logistics applications, the problem settings we address
include time-dependent multicommodity demand, time windows, limited storage capacity (if at
all) at intermediate facilities, and synchronization at these intermediary facilities of the fleets
operating on different echelons. Our study aims to deepen the understanding of the effects
of the integrated treatment of diverse attributes on both location and routing decisions, in
particular under the presence of tight synchronization constraints and timing features. Incor-
porating temporal considerations, however, is challenging in multi-attribute problem settings,
due to the level of detail that these attributes require (Crainic et al., 2009). From a modeling
perspective, time-space networks is a widely-known modeling technique to efficiently capture
and handle temporal information, in which physical locations are duplicated at discrete points
in time defined by a given time interval (Ford and Fulkerson, 1962). Yet, while a time-space
network yields to a static flow representation of the time-dependent problem, it suffers from
dimensionality issues of the underlying network, which can become prohibitively large due to
the time expansion.

Our goal with with paper is to provide methodology to respond to these modeling and algo-
rithmic challenges and, thus, to contribute toward filling the gaps in the literature. The paper
introduces the Two-Echelon Multi-Attribute Location-Routing Problem with fleet Synchroniza-
tion at intermediate facilities (2E-MALRPS ) proposing a unified view on the attributes con-
sidered, most notably, time-dependent multicommodity demands, fleet synchronization, and
customers’ time windows. We present and compare two mixed-integer programming (MIP)
formulations, notably a compact and a time-space formulation for the 2E-MALRPS. An ex-
act solution framework for the 2E-MALRPS based on a dynamic discretization scheme is also
proposed to address the scalability issues provoked by the time-space formulation. In the com-
putational study, we analyze the cost sensitivity, the infrastructure usage and the importance
of fleet synchronization under time-sensitive distribution systems to derive managerial insights.
It is worthwhile to mention that while we describe and develop our study under city-logistics
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guidelines, this research can also be of particular relevance for other freight distribution systems
arising in contexts beyond urban distribution (Crainic et al., 2009).

The remaining part of the paper is organized as follows. The problem definition is given
in Section 2 and an overview of related literature in Section 3. Section 4 is dedicated to the
modeling of the two-echelon system considered, while Section 5 discusses the time-dependency
characteristics of the problem and the modeling of time used in our formulations. Two math-
ematical formulations are proposed and described in Sections 6 and 7. Section 8 describes the
solution framework we developed. Computational results are presented and analyzed in Section
9. We summarize our work and propose future research directions in Section 10.

2 Problem Setting

We develop our study on a two-echelon location-routing problem characterized by several inter-
acting attributes. The system is composed of sets of suppliers (demand origins), platforms (pri-
mary facilities), satellites (the intermediate facilities), and customers (demand destinations),
as well as two garages, each holding the fleet of capacitated vehicles operating at a specific
echelon. Demand is defined between suppliers and customers, each individual demand being
characterized by origin, destination, volume, availability time at each platform facility, and due
time window at destination. As depicted in Figure (1), each origin-destination (OD) demand
has to be assigned to an existing open platform, where it will be possibly consolidated with
other commodities and moved by a first-echelon vehicle to a sequence of exiting satellites where
demand flows are transferred. Loads delivered at satellites are transshipped and consolidated
into second-echelon vehicles, which will perform the deliveries to the final destinations. Routes
from each echelon are assumed to start and end at garages. Yet, for simplifying the presen-
tation of the system, garage nodes are not displayed in Figure (1) or in any of the following
illustrations of the system throughout this paper.

Platforms are large-sized infrastructures responsible for the storage, sorting and consolida-
tion of the inbound freight provided by supply points through various modes of transportation.
Satellites, on the other hand, are medium- to small-sized facilities located within the city lim-
its, and are responsible for the second and last leg of transportation to the customers. From
a physical point of view, satellites are multimodal trans-dock infrastructures with reduced or
null storage capacity (for instance, cross-docking stations, parking lots) to enable transship-
ment operations. Freight delivery is performed by two independent fleets of homogeneous and
limited-capacity vehicles, capable to transport any kind of demand indistinguishably. Vehicles
are assumed to be available at strategically located vehicle garages for each echelon, where
vehicles start and end their routes.

The problem requires the selection of facilities at both levels, the allocation of suppliers
to platforms and of customers to satellites, as well as the routing and scheduling of vehicles
at each echelon to deliver the freight from platforms to customers, through satellite facilities.
Vehicles exchanging freight must be synchronized at a given satellite to enable efficient trans-
shipment operations, considering the time dependency on demand and the null storage capacity
at intermediate facilities. Vehicle routes and the demand freight itineraries according to which
they arrive at, wait, and depart from each location in the system must be determined within
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Figure 1: Two-echelon distribution system topology

the time restrictions imposed by each OD demand at platforms and customers as well as by
the synchronization at satellites. The costs of transportation are assumed to be equal to the
travel time to reach locations in the system, while, to simplify the presentation but without
loss of generality, waiting times at locations do not yield additional costs. The main objective
of the resulting 2E-MALRPS is to minimize the total cost of the system, composed of the cost
of selecting/opening facilities at both levels and the transportation costs, while satisfying the
demand and the capacities of the system elements.

3 Literature Review

The 2E-MALRPS is a two-echelon location routing problem, which thus belongs to the Location-
Routing Problem class (LRP). LRPs concern the selection of the locations of urban freight
infrastructure (receiving, handling, storing, distributing and dispatching terminals), and the
design of vehicle routes to support the associated transportation operations. Two-echelon LRPs
(2E-LRP) are LRPs involving location decisions of two types, “two levels” of facilities.

This section aims to situate the 2E-MALRPS within the relevant literature on the 2E-
LRP and LRP, pointing out the gaps in knowledge with respect to time dependencies, time
windows, origin-destination demand, and fleet synchronization. A brief discussion on time-
space formulations is also provided, focusing on dynamic discretization schemes used as solution
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frameworks. For an overview of the different problems in two-echelon distribution systems and
location routing problems considering attributes that are out of the scope of this work, we refer
the interested reader to recent surveys by Prodhon and Prins (2014), Lopes et al. (2013), Cuda
et al. (2015); Albareda-Sambola and Rodŕıguez-Pereira (2019); Drexl and Schneider (2015), and
Schiffer et al. (2019).

The LRP has been the object of numerous studies since Maranzana (1964). From a method-
ological perspective, the complex structure of the problem made authors focus on metaheuristics
(Prodhon and Prins, 2014). On the other hand, the study of richer problem settings, involving
multiple attributes, is becoming more and more center stage providing opportunities for more
realistic logistics-system modeling and handling (Cuda et al., 2015).

The literature on multi-attribute LRPs is rather sparse, due to the diverse variety of fea-
tures that can be addressed within the problem setting. Gianessi and Alfandari (2015) address
a multicommodity-ring LRP with a matheuristic that decomposes the problem into several
subproblems (location, allocation, network design, and routing) and sequentially solves each
subproblem, using its output as input to the subsequent problem. Boccia et al. (2018) tackle
a multicommodity LRP by introducing the flow-intercepting facility location-routing problem
inspired by city logistics applications, where the authors present a branch-and-cut algorithm
strengthened by valid inequalities and a heuristic procedure. Ponboon et al. (2016) address the
LRP with time windows (LRPTW) using a branch-and-price method. Farham et al. (2018)
extend the method of Ponboon et al. (2016) by adding new valid inequalities and other accel-
eration features. Capelle et al. (2019) introduce the LRPTW with pick-up and deliveries and
address it via column generation. Overall, contributions to branch-and-price applied to the
LRPTW rely on the set-partitioning formulation of the problem. The main strategy consists
in decomposing the problem in such a way that the pricing problem aims at finding feasible
vehicle routes for each candidate depot location (platforms and satellites), whereas the master
problem assures the location, demand satisfaction, and the respect of the depot capacities. Koç
et al. (2016) address the fleet size and mix LRP with time windows. The work contributes to
the structuring of different mathematical formulations for the problem. For this, the authors
consider the addition of valid inequalities derived from variants of the LRP to either reduce
the size of the formulation through the aggregation of variables or to tighten the linear relax-
ation bounds by disaggregating some of the constraints. In general, the literature is notably
scarce, in particular in studies addressing time-dependent, non-substitutable demands and fleet
synchronization.

The literature on multi-attribute 2E-LRP is very limited as well. Govindan et al. (2014)
introduced a bi-objective 2E-LRP with time-windows, for the simultaneous minimization of
distribution costs and greenhouses gas emissions, for perishable food supply chain distribution.
Bala et al. (2017) address the 2E-LRP with synchronized production schedules and time win-
dows. Wang et al. (2018) introduce a bi-objective model for the 2E-LRP with time windows
through a clustering-based algorithm hinged on locations and purchase behavior. Lu et al.
(2019) address the 2E-LRP heightening multimodal freight consolidation. Li et al. (2019) pro-
pose a 2E-LRP considering real-time trans-shipment capacity, varying with transshipment and
consolidation operations. Darvish et al. (2019) address the 2E-LRP incorporating multiple
periods and maximal due date on customer demands incorporating flexible decisions in terms
of location of intermediate facilities on each time period. Mirhedayatian et al. (2019) propose
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a MIP formulation and a decomposition-based heuristic for a 2E-LRP with fleet synchroniza-
tion and pick-up and delivery. In a recent work, Abbassi et al. (2020) propose two versions
of the multi-objective particle swarm optimisation algorithm for a multi-objective 2E-LRP to
minimize both distribution cost and makespan objectives. It is worthwhile to mention that,
contributions in the literature for closely related problems as the two-echelon vehicle routing
problem, have further explored variants with time-dependency (Soysal et al., 2015) and syn-
chronization constraints (see, (e.g., Li et al., 2020; Dellaert et al., 2019; Anderluh et al., 2019,
2017; Grangier et al., 2016). However, the literature for both the 2E-LRP and 2E-VRP re-
mains scarce, in particular for studies with time-dependent OD demands. Despite the fact that
fleet synchronization is the most studied attribute in the related literature, to the best of our
knowledge, its interaction with time-dependencies and non-substitutable demands is yet to be
studied.

Concerning solution methods, it is noteworthy that, due to the complexity of 2E-LRP,
exact methods have been limited to small- and medium-sized instances even when multiples
attributes were not considered (Contardo et al., 2012). The effectiveness of these methods
strongly depends on the quality of the lower bounds provided by the linear relaxation of the
models. Large-scale and industrial applications are usually handled by metaheuristics (Boccia
et al., 2010; Winkenbach et al., 2016; Bala et al., 2017; Mirhedayatian et al., 2019; Grangier
et al., 2016; Anderluh et al., 2017, 2019; Lu et al., 2019). Contardo et al. (2012) introduce
a new compact modeling framework and an exact method for the 2E-LRP that decomposes
the problem into two capacitated location routing problems (CLRPs), linked via the flows at
satellites. The exact method is strengthened by the addition of valid inequalities derived from
the CLRP. On the other hand, Darvish et al. (2019) present an exact method combining the
interaction of a pure branch-and-bound algorithm and a hybrid branch-and-bound with local
search. The proposed method relies on the parallel execution of both procedures, where the best
known incumbent is shared. Optimality is proven by a branch-and-bound algorithm. In general,
exact methods have been combined with decomposition strategies and refined mathematical
formulations to derive strong lower bounds. Although the literature covers numerous time-
sensitive problem settings, time dependencies and fleet synchronization are scarcely addressed.
In contrast, non-substituable demand and its interaction with time-dependent attributes have
not been studied from an optimization point of view.

Problems with tight or complex time considerations have often been modeled in the scientific
literature by means of time-space networks. When discretizing time, a time-space network is a
well-known approach used to model time-sensitive networks as static networks, as introduced
by Ford and Fulkerson (1962). Although some recent works address time-space networks for
modeling purposes in some vehicle routing problems (Fink et al., 2018; Anders et al., 2011),
the potential of discretization methods for obtaining lower bounds or feasible solutions has
been limited to service network design studies (Wang and Regan, 2009; Boland et al., 2017;
Scherr et al., 2020). Vu et al. (2019) proposed a solution framework, inspired by the dynamic
discretization discovery of Boland et al. (2017), for the time-dependent traveling salesman prob-
lem with time windows (TDTSPTW). The algorithm iteratively solves a time relaxed version
of the TDTSPTW defined on a partial time-space network followed by a refinement procedure
without creating a fully time-space network. Lagos et al. (2020) address the impact of time
discretization for a continuous-time inventory-routing problem. The dynamic discretization
techniques have yet to be addressed on further problem settings involving both location and
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routing decisions, in particular regarding the implications of multiple vehicle routes on iterative
refinement schemes.

4 2E-MALRPS System Modeling

Let Gph = (Vph,Aph) be the weighted directed graph representing the physical network on
which the problem is defined. The set of vertices Vph = Qph ∪ Pph ∪ Zph ∪ Eph ∪ Cph is made
up of five disjoint sets standing for the physical sites (known or among which locations are to
be decided) of suppliers Qph, potential platform sites Pph, possible satellite sites Zph, vehicle
garages Eph, and customers Cph, respectively. A fixed selection (opening) cost Fp and a capacity
Θp are defined for each possible platform location p ∈ Pph. A fixed selection (opening) cost Fz
is also defined for each potential satellite site.

The arc-set Aph = Aph1 ∪A
ph
2 represents the direct links between locations, i.e., the vertices in

Vph. A non-negative unit cost ζij and a travel time τij are associated with each arc (i, j) ∈ Aph.

The set Aph1 includes the arcs of the first echelon, corresponding to the connections between
suppliers Qph and platforms Pph, between the latter and satellites Zph, the arcs connecting
pairs of satellites as well as the arcs connecting first-echelon garages to platforms and satellites.
The set Aph2 includes the arcs of the second echelon, that is, the connections between satellites
Zph and the final customers Cph, the arcs connecting pairs of costumers, and the arcs connecting
second-echelon garages to satellites and customers.

Platform facilities are capable to hold demands for a maximum holding time W 1
max without

any additional costs. Due to the lack of storage capacity at satellites and the time dependencies
of demand, interacting vehicles from the first and second echelon must be synchronized at the
satellite at a certain point in time, where first echelon vehicles can wait for a maximum time
W 2
max. Moreover, it is assumed that each customer c ∈ Cph has a (hard) time window [ac, bc] (the

time interval in which service must start at the node) and a service time σc. The distribution
plan and the corresponding time-sensitive network are built for a given schedule length Ψ (e.g.,
a day or a week), The system, and the distribution plan, follow a cyclic and repetitive logistics
operation over a certain planning horizon (e.g., a month or a season), during which demand and
temporal properties of the system do not change (Andersen et al., 2009a,b; Zhu et al., 2014;
Wang et al., 2019). Therefore, all transportation activities can only happen from time 0 to the
given schedule length Ψ.

Let K denote the set of OD demands that must be transported from suppliers to customers.
For each commodity k ∈ K, let vol(k) be its volume, O(k) ∈ Qph the associated supplier node,
D(k) ∈ Cph the associated customer node, and αpk the time when commodity k would become
ready for transportation if assigned to be shipped from platform p ∈ Pph. This parameter takes
into consideration the time required for the transportation of each commodity from a supplier
to a given platform. Two homogeneous fleets of vehicles H = H1 ∪ H2, with limited load
capacities cap1 and cap2, are available for the first and second echelon, respectively. Vehicle
capacities are fixed. Vehicles can deliver any demand and are parked in strategically-located
garages, Eph1 for vehicles operating in the first echelon, and Eph2 for vehicles operating in the
second echelon.
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The 2E-MALRPS consists in the selection of platform and satellite facilities, the allocation
of demand from suppliers to platforms and customers to satellites, as well as the construction
of a limited set of routes for the first and second echelons in such a way that: (i) The demand of
each supplier is assigned to an open platform and satellite; (ii) every route of the first echelon

starts and ends at the same vehicle garage (Eph1 ); (iii) every route of the second echelon starts

and ends at the same vehicle garage (Eph2 ); (iv) all the customer demands are satisfied on time;
(v) the load capacity of each vehicle is not exceeded; (vi) each customer is visited by only one
vehicle; (vii) the total demand assigned to a facility (platforms and satellites) does not exceed
its capacity at any time moment; (viii) the operations of vehicles operating at both echelons
are synchronized at satellites; (ix) the time when the demand leaves platforms/satellites and
the time when vehicles start on each echelon is defined; and (x) the sum of the fixed selection
costs and the variable routing costs is minimized.

Supplier

Platform

Satellite
Customer

(a)

Sp
at

ia
l l

oc
at

io
n

Time

(b)

Figure 2: Example of a feasible solution for the 2E-MALRPS

Figure 2 illustrates the dynamics of the system from a physical and a temporal point of view.
Figure 2a shows a feasible solution where four OD demands are dispatched to their destination
by means of platform facility p1 and satellites z1 and z2, the full and dotted lines illustrating
the first- and second-echelon vehicle movements, respectively. Operations are illustrated from
a temporal point of view in Figure 2b, starting with the three OD demands, each with its
own availability time, all being assigned to platform p1 and ready to be shipped at time t4.
The fourth OD demand, available at time t4, is also assigned to platform p1, but it is ready
to be shipped at time t6. A first-echelon vehicle arrives at platform p1, picks-up part of the
available demand, and proceeds on its route to visit satellite z1 at time t6 and satellite z2 at
time t8. A different first-echelon vehicle then picks-up the remaining demand at a later time,
t6, and starts its route arriving at satellite z2 at time t8. Two second-echelon vehicles leave
their garage to arrive on time at satellites z1 and z2 to enable the freight transfer from the first-
echelon vehicles and, then, deliver on time the freight to the appropriate customers. Multiple
fleet synchronization activities take thus place at the two satellites. A first synchronization
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at satellite z1, at time t6, between one first-echelon vehicle and one second-echelon vehicle. A
second synchronization takes places at satellite z2, at time t8, between the two first-echelon
vehicles and another second-echelon vehicle. Vehicles returns to their respective garages once
their respective routes are completed.

5 Time modeling

Time is a key aspect of the system. OD demands impose important constraints in time by
means of availability restrictions at the suppliers, the need to pass through satellites of limited
capacities, and of time windows at the final destinations, creating an interdependency in time
throughout the whole distribution process. Excess in traveling or waiting times may result in
operational infeasibilities and therefore become prohibitive. The time availability at the supplier
nodes of the different commodities entail necessary scheduling decisions in the routing of those
commodities from the platforms to the satellites. The lack of storage capacity and the time
windows at the final destinations also result in the need to schedule vehicle routes departing
from the satellites to visit the different destination sites. This becomes even more critical if ones
assumes that storage at satellites is limited, which entails additional synchronization constraints
between vehicles interacting at the satellites. All these decisions in time, when seen from the
point of view of the commodities, take us to determine the itinerary for each commodity, from
the moment in which it becomes available at the supplier node, until its delivery at its final
destination, including the specific time periods associated to each of the events: arrival times
at every location, departure times from every location. More formally, an itinerary for a given
commodity is a tuple {(vi, µi, νi) : i = 1 . . . k} where vi ∈ Vph is the i-th node visited in the
itinerary of the commodity, µi its arrival time to vi, and νi its departure time from the node.
In this section we present two modeling alternatives to include these timing decisions in our
decision process, as discussed in the next few paragraphs.

The first type of modeling considers an implicit representation of these decisions by focusing
on the time of operations, e.g., when vehicles arrive and depart facilities and customers to
pick up or drop freight each echelon. As we present in Section 6, this representation leads
to a compact, continuous-time formulation with a polynomial number of variables (indexed
by the arcs and nodes of the network). Every time a vehicle visits a node v and picks up a
commodity k, we use an allocation variable to match the commodity with the vehicle. The
synchronization constraints are then imposed by restricting the difference in time between
vehicles on different echelons that interact to transfer freight. Miller-Tucker-Zemlin type of
constraints (Miller et al., 1960) are used to track the propagation of time and make consistent
the arrival at and departure from each node in the network. The itinerary of each commodity
can be constructed by matching the vehicle flow (visits of vehicles to nodes), allocation (what
commodity is allocated to what vehicle), and time variables (at what time a node is visited).

The second modeling alternative is a “classical” discretization approach. The schedule
length Ψ is partitioned into ∆ time periods, each physical node i ∈ Vph being duplicated at
each possible time period within this discretization. For simplicity of presentation, but without
loss of generality, we assume in the following that all time periods defined by the discretization
granularity ∆ are of equal length. This mechanism leads to a time-space network, where every
node is a pair (i, t) with i representing a physical node in Vph and 0 ≤ t ≤ Ψ a moment in time.
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Physical arcs (i, j) in the original system now take the form ((i, ti), (j, tj)) meaning that travel
is performed between nodes i and j departing at time ti and arriving at time tj . In contrast to
the representation of time discussed above, this new representation is explicit, in the sense that
the nodes and arcs in the network encode the timing decisions entirely. Synchronization and
other timing decisions and constraints are expressed as decisions or constraints in the resulting
time-space network. In Section 7 we introduce a mathematical model for the 2E-MALRPS
that is based on this time-space network representation of the problem. From a solution of the
mathematical model associated, an itinerary can be easily constructed by following the paths
of commodities and vehicles in the time-space network.

6 Compact Formulation for the 2E-MALRPS

The first formulation for the 2E-MALRPS is a three-index vehicle-flow formulation inspired
by the works of Boccia et al. (2010) and Anderluh et al. (2019). Dealing with time in detail
requires multiple sets of variables to record when and where each vehicle from each echelon
arrives, departs, and waits at any given point in the network. Unlike platform and customer
nodes, satellite facilities can be visited more than once by the first-echelon fleet. Therefore,
to ensure fleet synchronization, we consider for each physical satellite z ∈ Zph a set of clone
satellites Z̃phz, composed by the duplicate for each physical satellite z ∈ Zph as many times
as the number of visits the facility can allow. The number of commodities |K| represents an
upper bound on the number of visits at each satellite. We therefore duplicate each satellite
|K| times. On the other hand, origin-destination demands are expressed as an additional index
within flow variables to show how demands are transferred from platforms to customers.

Let αpk ≥ 0 be the availability time of demand k ∈ K at each platform p ∈ Pph, if assigned
to it, and M , a large integer number. The decision variables composing the formulation are
defined as:

• rijh ∈ {0, 1}, (i, j) ∈ Aph, h ∈ H: vehicle flow variable, 1 if arc (i, j) is used by vehicle h,
and 0 otherwise;

• fhkps ∈ {0, 1}, p ∈ Pph, z ∈ Zph, k ∈ K, h ∈ H1: flow of commodity k from platform p to
satellite z by a vehicle h ∈ H1;

• yi ∈ {0, 1}, i ∈ (Pph ∪ Zph): location variable, 1 if a facility i is open, 0 otherwise;

• γhsc ∈ {0, 1}, z ∈ Zph, c ∈ Cph, h ∈ H2: allocation variable, 1 if costumer c is allocated to
satellite z with a given h 0 otherwise;

• µ1
ih ≥ 0, i ∈ (Pph ∪ Zph), k ∈ H1: arrival time of vehicle h at vertex i;

• µ2
ih ≥ 0, i ∈ (Zph ∪ Cph), k ∈ H2: arrival time of vehicle h at vertex i;

• ν1
ih ≥ 0, i ∈ (Zph ∪ Cph), k ∈ H1: departure time of vehicle h at vertex i;

• ν2
ih ≥ 0, i ∈ (Zph ∪ Cph), k ∈ H2: departure time of vehicle h at vertex i;

• w1
ih ≥ 0, i ∈ Zph, k ∈ H1: waiting time of vehicle h at satellite z;
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• w2
ih ≥ 0, i ∈ Zph, k ∈ H2: waiting time of vehicle h at satellite z;

The 2E-MALRPS can then be formulated as (the constraints enforcing the feasible range
of the decisions variables are not shown as they are defined above):

min
∑
i∈Pph

Fiyi+
∑
i∈Zph

Fiyi+
∑
h∈H

∑
i∈(S∪Pph)

∑
j∈(S∪Pph)

ζijrijh+
∑
h∈H

∑
i∈(Cph∪Zph)

∑
j∈(Cph∪Zph)

ζijrijh (1)

Subject to ∑
h∈H1

∑
j∈(Eph1 ∪

˜Zph
z),i6=j

rijh ≤ |H1|yi ∀i ∈ Zph (2)

∑
j∈ ˜Zph,i6=j

rijh −
∑

j∈Eph1 ,i6=j

rjih = 0 ∀i ∈ Pph, h ∈ H1 (3)

∑
j∈(Eph1 ∪

˜Zph),i6=j

rijh −
∑

j∈(Pph∪ ˜Zph),i6=j

rjih = 0 ∀i ∈ Zph, h ∈ H1 (4)

∑
j∈Pph,i6=j

rijh −
∑

j∈ ˜Zph,i6=j

rjih = 0 ∀i ∈ Eph1 , h ∈ H1 (5)

∑
i∈Eph1

∑
j∈Pph

rijh ≤ 1 ∀h ∈ H1 (6)

∑
h∈H2

∑
j∈( ˜Zph∪Cph),i6=j

rijh = 1 ∀i ∈ Cph (7)

∑
j∈Eph2

rijh −
∑
j∈Cph

rjih = 0 ∀i ∈ Zph, h ∈ H2 (8)

∑
j∈( ˜Zph∪Cph),i6=j

rijh −
∑

j∈(Cph∪Eph2 ),i6=j

rjih = 0 ∀i ∈ Cph, h ∈ H2 (9)

∑
j∈ ˜Zph

rijh −
∑
j∈Cph

rjih = 0 ∀i ∈ Eph2 , h ∈ H2 (10)

∑
i∈Eph2

∑
j∈ ˜Zph

rijh ≤ 1 ∀h ∈ H2 (11)

µ1
ih + τij − µ1

jh ≤ (1− rijh)M ∀h ∈ H1, (i, j) ∈ Aph1 (12)

ν1
ih + τij − ν1

jh ≤ (1− rijh)M ∀h ∈ H1, (i, j) ∈ Aph1 (13)

ν1
ih ≤ (αik +W 1

max) + (1−
∑
j∈ ˜Zph

fhkij )M ∀i ∈ Pph, h ∈ H1, k ∈ K (14)

µ1
ih ≥ αih

∑
j∈ ˜Zph

fhkij ∀i ∈ Pph, h ∈ H1, k ∈ KH1, k ∈ K (15)

µ2
ih + τij − µ2

jh ≤ (1− rijh)M ∀h ∈ H2, (i, j) ∈ Aph2 , i, j ∈ Cph (16)

10

Synchronization in Two-Echelon Distribution Systems: Models,Algorithms, and Sensitivity Analyses

CIRRELT-2021-24



argmax{µ2
ih, µ

2
ih − w2

jh}+ τij − µ2
jh ≤ (1− rijh)M ∀h ∈ H2, (i, j) ∈ Aph2 , i ∈ Z̃ph, j ∈ Cph

(17)

ν2
ih + τij − ν2

jh ≤ (1− rijh)M ∀h ∈ H2, (i, j) ∈ Aph2 (18)

w1
jh ≥ µ1

jh − µ2
jb − (2− γhjc −

∑
i∈( ˜Zph

z∪Pph),i6=j

fhkcij )M ∀h ∈ H1, b ∈ H2, c ∈ Cph, j ∈ Z̃ph (19)

w2
jb ≥ µ2

jb − µ1
jh − (2− γhjc −

∑
i∈( ˜Zph

z∪Pph),i6=j

fhkcij )M ∀h ∈ H1, b ∈ H2, c ∈ Cph, j ∈ Z̃ph (20)

ν2
jb ≥ µ1

jh − (2− γhjc −
∑

i∈( ˜Zph
z∪Pph),i6=j

fhkcij )M ∀h ∈ H1, b ∈ H2, c ∈ Cph, j ∈ Z̃ph (21)

ν1
jh ≥ µ2

jb − (2− γhjc −
∑

i∈( ˜Zph
z∪Pph),i6=j

fhkcij )M ∀h ∈ H1, b ∈ H2, c ∈ Cph, j ∈ Z̃ph (22)

ai ≤ µ2
ih ≤ bi ∀i ∈ Cph, h ∈ H2 (23)∑

j∈(Cph∪Eph2 ),i6=j

rijh +
∑
j∈Cph

∑
b∈ ˜Zph

z

rbjh − γhbi ≤ 1 ∀i ∈ Cph, z ∈ Zph, h ∈ H2 (24)

cap1

∑
b∈( ˜Zph

j∪Eph1 ),b6=j

rjbh −
∑
k∈K

volk f
hk
ij ≥ 0 ∀h ∈ H1, i ∈ Pph, j ∈ Zph (25)

cap1

∑
b∈ ˜Zph

j

ribh −
∑
k∈K

volk f
hk
ij ≥ 0 ∀h ∈ H1, i ∈ Pph, j ∈ Zph (26)

∑
h∈H2

∑
i∈ ˜Zph

γhij = 1 ∀j ∈ Cph (27)

∑
h∈H1

∑
i∈Pph

fhkbij = γjb ∀j ∈ Z̃ph, b ∈ Cph; kb = {k ∈ K|dbk > 0} (28)

∑
h∈H1

∑
i∈Pph

∑
j∈ ˜Zph

fhkij = 1 ∀k ∈ K (29)

∑
h∈H1

∑
k∈K

∑
j∈ ˜Zph

volk f
hk
ij ≤ Θi yi ∀i ∈ Pph (30)

∑
k∈K

∑
i∈Pph

∑
j∈ ˜Zph

z

volk f
hk
ij ≤ cap1 ∀h ∈ H1 (31)

∑
i∈Cph

di
∑

j∈(Zph∪Cph)

rijh ≤ cap2 ∀h ∈ H2 (32)

w1
ih ≤W 2

max ∀i ∈ Z̃ph, h ∈ H1 (33)

w2
ih ≤W 2

max ∀i ∈ Z̃ph, h ∈ H2 (34)

The objective function (1) minimizes the total transportation costs of the distribution net-
work computed as the sum of the fixed cost of the selected facilities and the routing costs of
the demand flows through the resulting network. Constraints (2) impose that outbound arcs
from every open satellite must respect the total number of first-echelon vehicles. Constraints
(3-5) are the flow conservation constraints for platforms, satellites, and first-echelon garage,
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respectively. Constraints (6) ensure that each active vehicle is assigned to one platform only.
Constraints (7) ensure that every customer is visited by a single second-echelon vehicle. Con-
straints (8-10) are the flow conservation constraints for satellites, customers, and second-echelon
garage, respectively. Constraints (11) ensure that each active vehicle is assigned to one satellite
only. Constraints (12-13) handle the arrival and departure times of first-echelon vehicles.

Constraints (14) and (15) guarantee schedule feasibility with respect to demand availability
and maximum holding time at platform facilities. Constraints (16-18) handle the arrival and
departure times of second-echelon vehicles. Constraints (19) and (20) relate the arrival times
at satellites of first- and second-echelon vehicles to guarantee fleet synchronization at satellites
facilities. Constraints (21) and (22) relate the departure time and the arrival time of first
and second echelon vehicles, respectively, at satellites. Constraints (23) ensure that second-
echelon vehicles arrive within the customer time windows. Constraints (24), (25), and (26)
link allocation and routing variables. Constraints (27) impose that each customer must be
assigned to one satellite only. Constraints (29) ensure that each origin supplier is allocated to
one platform. Constraints (28) are the flow conservation constraints at satellites. Constraints
(30) ensure that the multicommodity flow going out from platforms is less than the platform
capacity. Constraint (31) and (32) impose that the multicommodity flow carried by each vehicle,
in the first and second echelon, respectively, is less that its capacity. Constraints (33) and (34)
ensure that waiting times at satellite facilities respect the maximum permitted waiting time at
each echelon.

7 Time-space Formulation for the 2E-MALRPS

Let T (∆) be the (ordered) set of time periods given by discretizing the schedule length Ψ
according to the granularity ∆. Let also Ti(∆) ⊆ T (∆) represent the set of time periods at
which node i ∈ Vph is relevant in the network because vehicles or commodity flows may access
it at that time. Each system component has its own set of relevancy periods. For example,
the time realizations of customers i ∈ Cph must satisfy Ti(∆) ⊆ [ai, bi]. Similarly, a platform
p ∈ Pph is only defined starting at the moment when the first commodity becomes available.
This is illustrated in Figure 3 depicting the time periods of relevance for the nodes i ∈ Vph
appearing in Figure 2a. Note that copies in time are made at all periods for satellites and
platforms, as these are available for the complete schedule length, compared to customers and
suppliers for which copies are made for the time periods when they are relevant only.

The time-space network G = (V,A) for the 2E-MALRPS is then defined by the node sets
V = Q∪E ∪P ∪Z ∪C reflecting the spatial and time position (i, t) of every node i ∈ V at time
period t ∈ Ti(∆), where the sets in V are the time-space nodes for suppliers Q, vehicle garages
E = E1 ∪ E2, platforms P, satellites Z and customers C. To simplify the notation, let Vi stand
for the set of time-space nodes {(i, t) : i ∈ V, t ∈ Ti(∆)}, and [ai, bi] be the time interval during
which node i ∈ V is relevant in G, i.e., ai = min{t : t ∈ Ti(∆)} and bi = max{t : t ∈ Ti(∆)}.

Similar to the physical network, the set of arcs A = A1∪A2 stands for connections between
time-space nodes representing the various system components. At the first echelon, A1, one finds
the connections between suppliers and platforms, platforms and satellites, pairs of satellites, as
well as from first-echelon garages to platforms and from satellites to the former. The second
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Figure 3: Time-space representation of the solution of Figure 2a

echelon arcs in A2 stand for the connections from satellites to customers, between pairs of the
latter, as well as from second-echelon garages to satellites and from customer to the former. An
arc ((i, t), (j, t′)) ∈ A is then defined for arc (i, j) ∈ Aph with t ∈ Ti(∆) and t′ = t+ τij ∈ Tj(∆).

Commodities must be assigned to a single platform and satellite and the flow should not
be split. Consequently, let P0(k) = {(p, t), (j, t′) : p ∈ P, j ∈ Z, t ≥ αpk} be the set of platform
to satellite arcs commodity k can be assigned to if passing through platform p to travel to a
reachable satellite.

Waiting times at nodes vi ∈ V are implicitly represented by the time difference between the
departure of a vehicle and its prior arrival at the node, considering that freight can be held in
any location at no cost. To enable waiting time at customers, the travel time of inbound arcs
to customer nodes are considered to embed any necessary delays.

The resulting time-space network captures all physical and temporal characteristics of the
problem. The size of the time-space network depends on T (∆) as it duplicates the nodes of the
physical network at all relevant periods. It is worthwhile to mention that this modeling approach
does not need to consider vehicle indexes, contrarily to the vehicle-indexed formulation. Define
the following decision variables:

• xij ∈ {0, 1}, (i, j) ∈ A: 1 if an arc is selected, 0 otherwise;

• fkij ∈ {0, 1}, (i, j) ∈ A, k ∈ K: 1, if a commodity k goes through the arc (i, j), 0 otherwise;

• yi ∈ {0, 1}, i ∈ (Pph ∪ Zph): 1, if a facility is open at node i, 0 otherwise;
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The time-space-based formulation then becomes (variable-range constraints are again not
displayed):

min
∑
i∈Pph

Fiyi +
∑
i∈Zph

Fiyi +
∑

(i,j)∈A1

ζijxij +
∑

(i,j)∈A2

ζijxij (35)

Subject to ∑
j∈Cc

∑
i∈((C\Cc)∪Z)

xij = 1 ∀c ∈ C (36)

∑
j∈Cc

∑
i∈((C\Cj)∪Z)

xij =
∑
j∈Cc

∑
i∈((C\Cj)∪E2)

xji ∀c ∈ Cph (37)

∑
i∈((C\j)∪Z)

xij ≥
∑
h∈Cj ,

t(h)≤t(j)+σc

∑
i∈((C\Cj)∪E2)

xhi ∀j ∈ C (38)

∑
i∈E2

xij ≤
∑
i∈C,

t(j)+wmax≥t(i)≥t(j)

xji ∀j ∈ Z (39)

∑
j∈Zs

∑
i∈E2

xij =
∑
j∈Zs

∑
i∈C

xji ∀z ∈ Zph (40)

∑
i∈((Z\Zj)∪P)

xij ≤ yZj ∀j ∈ Z (41)

∑
i∈((Z\Zz)∪P)

xij ≤
∑

i∈((Z\Zj)∪E1),
t(j)+wmax≥t(i)≥t(j)

xji ∀j ∈ Z (42)

∑
i∈E1

xij =
∑
i∈Z

xji ∀j ∈ P (43)

∑
j∈Z

xij ≤ |K1|yi ∀i ∈ P (44)

∑
i∈P0(k)

fkij = 1 ∀k ∈ K, j ∈ Z (45)

∑
i∈Pp

∑
j∈Z

fkij ≤ yp ∀k ∈ K, p ∈ Pph (46)

∑
i∈((C\Cj)∪Z)

∑
j∈Cj

fkij −
∑

i∈((C\Cj)∪E2)

∑
j∈Cj

fkji = 0 ∀j ∈ Cph, k ∈ K, j 6= dk (47)

∑
j∈Cj

fkij −
∑
j∈Cj

fkji ≤ 1−
∑
j∈Cj

xji ∀j ∈ Cph, k ∈ K, j 6= dk (48)

∑
i∈((C\Cj)∪Z)

∑
j∈Cj

fkij −
∑

i∈((C\Cj)∪E2)

∑
j∈Cj

fkji =
∑

i∈((C\Cj)∪Z)

∑
j∈Cj

xij

∀j ∈ Cph, k ∈ K, j = dk (49)

(50)
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∑
j∈Zz

∑
i∈((Z\Zj)∪P)

fkij =
∑
j∈Zz

∑
h∈((Z\Zj)∪E1)

fkjh +
∑
j∈Zz

∑
l∈(C)

fkjl ∀z ∈ Zph, k ∈ K (51)

∑
i∈((Z\Zj)∪P)

fkij ≤
∑

h∈((Z\Zj)∪E1),
t(j)+wmax≥t(h)≥t(j)

fkjh +
∑
l∈(C),

t(j)+wmax≥t(l)≥t(j)

fkjl ∀j ∈ Z, k ∈ K (52)

∑
k∈K

wk
∑

i∈((Z\Zj)∪P)

fkij ≤ cap1

∑
i∈((Z\Zj)∪P)

xij ∀j ∈ Z (53)

∑
k∈K

wk
∑
i∈Z

fkij ≤ cap2 ∀j ∈ C, (54)∑
k∈K

wk
∑

j∈(Z\Zj)

fkij ≤ Θpyi ∀i ∈ P (55)

fkij ≤ xij ∀k ∈ K, (i, j) ∈ A1 (56)

fkij ≤ xij ∀k ∈ K, (i, j) ∈ A2 (57)

The objective function (35) minimizes the total cost of the system, including the fixed cost of
selecting (opening) facilities on both echelons and the variable travel costs of the vehicles on both
echelons to move the demand flows. Constraints (36) ensure that each customer can be visited
only once. Equations (37) are conservation constraints on routing variables for customers.
Constraints (38) impose that outbound connections to customers must take place after their
respective service time node. Constraints (39) enforce that, for each outbound connection from
a satellite to a customer, there is an inbound connection from a second-level vehicle garage
to the satellite, including the waiting times at the satellite. Equations (40) are conservation
constraints on routing variables for each satellite facility for the second echelon. Because routing
variables are not indexed by the vehicle identification, freight flow could have been transferred
between first echelon vehicles, which is not considered as a feature of the problem setting.
Constraints (41) aim to avoid such transfers by ensuring that each open satellite is visited at
most once for each time period, while constraints (42) ensure that for each outbound connection
from a satellite to other satellite or garage, there is an inbound connection from a platform or
from a different satellite. Constraints (43) and (44) enforce the routing conservation of first-
level routing variables and impose the maximum outbound connections from platform facilities
in terms of the fleet size for the first echelon, respectively.

Constraints (45) and (46) impose that each demand departs from the assigned open platform
after their availability time, and assures that each demand is not split. Constraints (47) and
(48) impose flow conservation for commodities Constraints (49) guarantee that each commodity
flow reaches its destination customer. Constraints (51) impose flow conservation at satellites.
Constraints (52) complement constraints (51) by ensuring spatial and temporal synchronization
at time-space satellites, considering waiting time. Constraints (53) and (54) ensure that the
total flow assigned to each route is not larger than the vehicle capacity for the first and sec-
ond echelons, respectively. Similarly, constraints (55) impose that the assigned routes to each
platform do not exceed the facility capacity. Constraints (56) and (57) link flow and routing
variables.
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8 Dynamic Discretization Discovery for the 2E-MALRPS

The temporal dimension of the time-space formulation provides a more realistic model for the
problem setting. On the other hand, its pseudo-polynomial size also makes it less scalable
as the time granularity gets smaller. We therefore propose a dynamic discretization discovery
(DDD) framework for the time-space model to address this scalability drawback, building on
the method introduced by Boland et al. (2017) for service network design problems. Notice
that, demand in the problem setting we study generates compulsory time moments that must
be explicitly included in the network representation, which both increases the difficulty of the
problem and somehow facilitates the discretization of time. We provide in this section the
foundations and notation for the proposed solution framework, as well as a more in-depth
description of the inner procedures.

8.1 Preliminary notation

The proposed dynamic discretization solution framework employs a relaxation of the time-
space representation of the 2E-MALRPS in order to provide feasible solutions to the problem
without creating the complete time-space network. Without loss of generality, we assume that
the complete time-space network is defined by T (∆̄), with ∆̄ being the largest number of time
periods possible, necessary to capture all the relevant time moments within the system. Notice
that this complete time-space network contains all feasible solutions for the 2E-MALRPS, but its
dimension may be prohibitively large. A discretization parameter ∆, with 1 < ∆ < ∆̄, can then
be defined to generate a reduced time-space network by decreasing the number of time periods
which are relevant for each vertex. We provide in the following the necessary assumptions to
ensure that the reduced time-space network is a relaxation for the 2E-MALRPS, and derive
lower bounds for the 2E-MALRPS regardless of the granularity of the discretization.

We define the reduced time-space network G∆ = (V∆,A∆), for 1 < ∆ < ∆̄, composed by
a reduced set of integer time points Ti(∆) ∩ [ai, bi], for each vertex i ∈ Vph. In this context,
inbound arcs to customers no longer embed waiting times. Rather, we consider a set of time-
space nodes before each time window to represent early arrivals to customers, while the original
travel times are maintained. Unlike a complete time-space network, the reduced time-space
network is an aggregated network derived from G, where |G∆| ≤ |G|. Consequently, the arc-
length τij for each arc (i, j) ∈ Aph is also aggregated in terms of ∆. The aggregation ensures
that there is a time-space arc (i, t) and (j, t′) in G∆ for each arc (i, j) ∈ Aph, with t′ ≤ t+ τij .
An arc ((i, t), (j, t′)) ∈ A∆ is then considered to be too short when t′ ≤ t + τij as it might
model negative (t′ < t) or zero (t′ = t) travel times. We assume that the travel costs remain
unchanged when the travel time of an arc in A∆ is too short.

Constraints (41), limiting to one the number of first-echelon in-bound movements to satel-
lites, require reformulation in the present context. Indeed, while these constraints ensure that
no freight transfer takes place between first echelon routes, they may also yield too many in-
feasible solutions when a coarse time discretization is considered. We therefore rather define
constraints (58) to limit the inbound connections at time-space satellites in terms of the time
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interval ∆. ∑
i∈((Z\Zj)∪P)

xij ≤ (∆̄−∆) yZj ∀j ∈ Z (58)

In order to derive lower bounds for the 2E-MALRPS based on the reduced time-space net-
work, our solution relies on a formulation defined by the objective function (35) and constraints
(36) - (40), (58) and (42)-(57). To simplify the notation, we refer to the solution of this time-
space formulation as TEF(G∆) for a reduced time-space network G∆. In addition, we show that
the following properties are satisfied by the time-space network.

• Property 1. ∀i ∈ Vph, there is a set of time-space nodes (i, t) in V∆ for every time
interval Ti(∆) ∩ [ai, bi] , where [ai, bi] refers to the time windows for each customer node
i ∈ Cph, the complete schedule length (e.g. ai = 0 and bi = Ψ ) for each node i ∈ Zph∪Eph,
as well as the availability time of each commodity and the complete schedule length on
each platform facility Pph.

• Property 2. ∀(i, t) ∈ V∆ and arc (i, j) ∈ Aph, there is a time-space arc ((i, t), (j, t′)) ∈
A∆ with t′ ≤ t + τij . If arc ((i, t), (j, t′)) ∈ A∆, there is no time-space node (j, t′′) ∈ V∆

with t′ < t′′ ≤ t+ τij .

• Property 3. ∀(i, t) ∈ Z∆, there is a waiting time-space arc to the same time-space
satellite (i, t′) ∈ Z∆ with t′ ≤ t+W 2

max.

• Property 4. ∀(i, t) ∈ C∆, there is at least one time-space node before each customer’s
lower time window, exclusively to allow early inbound arrivals but not early outbound from
said customer. Furthermore, any active early customer connection leads to an outbound
connection coming from the time-space node at or after the customer earliest time windows
limit. This represents the potential waiting time that can take place before the customer’s
time window.

For a given commodity k ∈ K and a complete time-expanded network G, we define an
itinerary in G as a path r = (vi, ti)

l
i=1 connecting the node of the initial vehicle arrival and

the departure of the commodity at a platform (thus v1 ∈ Pph) to the node of the arrival
and departure time at its destination (meaning vl = D(k)), including the times of arrival
and departure at each intermediary node in the time-expanded network. We assume that the
transfer between the first and second echelon occurs at a satellite 1 < j < l − 1 such that
vj+w ∈ Zph with w = {0, 1, 2, 3}, meaning that tj , tj+1 and tj+2, tj+3 represent the arrival time
to and departure time from the transfer satellite at each echelon, respectively. Hence, we have
that for an itinerary r = (vi, ti)

l
i=1 in G, arcs ((vi, ti), (vi+1, ti+1)) ∈ A for every i; except for

i = j + 1, as the arc ((vj+1, tj+1), (vj+2, tj+2)) represent the departure and arrival of different
routes at each echelon. Note that connections to and from garages are omitted since vehicles
are assumed to move empty on those legs. We let RkG be the set of itineraries that can be used
to move commodity k ∈ K from its origin O(k) to its destination D(k) throughout the network
G, and we use RG = ∪kRkG to refer to the set of all possible itineraries.

Lemma 1. Let G∆ a reduced time-space network that satisfies properties 1, 2, 3 and 4.
Then for each commodity k ∈ K and for each itinerary r = (vi, ti)

l
i=1 ∈ RkG there exists an

itinerary r′ = (vi, t
′
i)
l
i=1 ∈ RkG∆

such that t′i ≤ ti for every i = 1 . . . l.

17

Synchronization in Two-Echelon Distribution Systems: Models,Algorithms, and Sensitivity Analyses

CIRRELT-2021-24



Proof Lemma 1. We conduct the proof by induction on i for the itinerary r = (vi, ti)
l
i=1

in RkG . For i = 1, let t′1 = av1 be the temporal lower bound of v1. By Property 1, we have
that the time-space node (v1, t

′
1) with t′1 = av1 yields to t′1 ≤ t1, as there is no (v1, t

′′
1) ∈

G∆ with t′′1 < av1 . From the time-space node (v1, t
′
1), we can map the remainder of the

itinerary r = (vi, ti)
l
i=1 ∈ RkG by defining an equivalent time-space node (vi, t

′
i) in G∆, for

each (vi, ti) ∈ RkG with t′i = argmax{d ∈ Ti(∆)|d ≤ ti}. By Property 2, there is an arc
((vi, t

′
i), (vi+1, t

′
i+1)) ∈ A∆ with t′i+1 ≤ t′i + τvivi+1 ≤ ti + τvivi+1 , while Property 3 and 4,

enables early waiting times at satellites as well early arrival at customers, respectively.

Assuming that i = w is true, we can prove that our condition holds for i = w + 1.
Hence, by the inductive assumption, there is an itinerary r = [(v1, t

′
1), (v2, t

′
2), ..., (vw, t

′
w)]

with (vw, t
′
w) ∈ G∆ and t′w ≤ tw. By Property 1, the set of integer time points Tvi(∆) represent-

ing the time moments at which node i = w+1 becomes relevant must exists in V∆. By Property
2, 3 and 4, arc ((vw, t

′
w), (vw+1, t

′
w+1)) ∈ A∆ with t′w+1 ≤ t′w + τvwvw+1 ≤ tw + τvwvw+1 . By

Property 3, there must exist a waiting time at satellites with a lesser of equal value to the
original waiting time, while Property 4, ensures that there is an early arrival point in time for
customers. Consequently, we can ensure that the defined conditions can be verified for each
connection within r = (vi, ti)

l
i=1 ∈ RkG , and thus for each itinerary in RG . �

Lemma 2. If a reduced time-space network G∆ satisfies properties 1, 2, 3 and 4, then the
optimal solution of the 2E-MALRPS on the reduced time-space network (G∆) is a lower bound
for the solution of the 2E-MALRPS on the complete time-space network (G).

Proof Lemma 2. To prove this lemma, we will show that each time-space arc representing
the optimal solution for the 2E-MALRPS in a complete time-space network, can be mapped
onto a reduced time-space network, with an equal or lesser operational cost.

Consider Z∗G = (x∗G , f
∗
G , y
∗
G) an optimal integer solution of the 2E-MALRPS in a complete

time-space network (G), with A∗G = {((vi, ti), (vj , tj)) ∈ AG | x(vi,ti),(vj ,tj) = 1}. Let RG be
the set of itineraries r ∈ RG dispatching each commodity k ∈ K from its origin O(k) to its
destination D(k) throughout the system with the arcs in A∗G . In what follows, we will show
that each arc in A∗G can be mapped to a unique set of arcs AG∆

of a reduced time-space network
(G∆), so we can construct ZG∆

= (xG∆
, fG∆

, yG∆
) in respect to each arc in AG∆

.

By Lemma 1, for each arc ((vi, ti)(vj , tj)) ∈ A∗G in RG (excluding garages connections), there
exists (vi, t

′
i) ∈ G∆ with t′i ≤ ti and a t′j such that ((vi, t

′
i)(vj , t

′
j)) ∈ AG∆

. Hence, for each
itinerary r = (vi, ti)

l
i=1 ∈ RG , there is an equivalent itinerary r′ = (vi, t

′
i)
l
i=1 ∈ RG∆

such that
t′i ≤ ti. Because the number of both platform and satellite facilities must hold for each r ∈ RG
mapped to G∆, we have that yG∆

= y∗G . Now we can track each commodity flow from its origin
to its destination in RG∆

to derive both routing and flow decisions to xG∆
and fG∆

. Notice that
by Lemma 1 and Property 3, fleet synchronization within each r ∈ RG∆

holds, but takes place
at the same or earlier point in time on the same satellite.

Recall that every route in the first and second echelon must start and end at a vehicle
garage. We have that for each path r ∈ RG , every origin, satellite serving as the transfer point
and destination of each commodity k ∈ K are known. Notice that, for some of these time-
space nodes, there exists an unique time-space arc in A∗G that represents the leg used for each
route as the start point after a vehicle leaves the garage or the end point before the vehicle
returns to the garage. By Lemma 1 and Properties 1 and 2, there must exist a time-space node
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(e1, t
′
e1) ∈ E1

∆ and (e2, u
′
e2) ∈ E2

∆, such that ((z, t′z), (e1, t
′
e1)) and ((c, t′c), (e2, t

′
e2)) exists in

AG∆
for each end point at the first and second echelon, with (z, t′z) and (c, t′c) in RG∆

, z ∈ Zph
and c ∈ Cph. Similarly, there are time-space nodes (e′1, t

′
e′1) ∈ E1

∆ and (e′2, u
′
e′2) ∈ E2

∆, such
that ((e′1, t

′
e′1), (p, t′p)) and ((e′2, t

′
e′2), (z′, t′′z′)) exists in AG∆

for each start point at the first
and second echelon, with (p, t′p) and (z′, t′′z′) in RG∆

, p ∈ Pph and z′ ∈ Zph. Thus, we can then
derive the routing decisions to xG∆

for the resulting inbound and outbound for each garage.

Now, the solution ZG∆
= (xG∆

, fG∆
, yG∆

) constructed in this way is feasible for the 2E-
MALRPS onto the reduced time-space network (G∆) while routing and location costs holds.
Therefore, we have that ZG∆

is identical to Z∗G with arrival and departure times taking earlier or
equal values than the ones on the complete time-space network, but with the same operational
cost. Consequently, the optimal solution for the 2E-MALRPS on a reduced time-space network
(G∆) is a lower bound of the optimal solution obtained in a complete time-space network (G).
�

8.2 Algorithm outline

The proposed solution framework, illustrated in Figure 4, iteratively refines a reduced time-
space network and solves the integer program defined by this network configuration to extract
lower bounds for the 2E-MALRPS, until the problem is solved to optimality up to a specified
tolerance. The descriptions of the main components of the algorithm are provided in the
following sections as indicated in the figure.

Preprocessing

Create the reduced time-space network G∆

Derive a lower bound z by solving TEF(G∆)

Check if z̄ is ε-optimal z∗ = z̄

Section 8.3

Section 8.4

Section 8.5

Section 8.6

Generate a candidate solution z̄ from TEF(G∆)

Refine G∆

Yes

No

Figure 4: Dynamic discretization framework for the 2E-MALRPS

8.3 Initial reduced network

The first step for the dynamic discretization framework is to create an initial reduced network
G∆ satisfying Properties 1-4. Before this creation, our method uses a specialized preprocessing
analysis to prune arcs and tighten time windows on the original static network (Gph). Indeed,
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due to the time dependency of demand, both availability time at platforms and customer time
windows can be tightened, as some time instants might be unreachable when linking the origin
to the destination of each demand.

An iterative exploration is performed for each commodity in order to perform this tightening,
by enumerating the possible combinations of single platform and satellite facilities that could
link each demand origin and destination, including garage connections for each echelon. The
algorithm repeats this process for each time period when the commodity would be available at
each platform. The resulting set of feasible partial paths traced for each commodity defines
the possible unreachable time periods for both platforms and customers, which can then be
excluded from the static network. After preprocessing the static network, the initial reduced
time-space network G∆ is then generated by duplicating each node and arc in Gph at each
relevant time periods, while Properties 1-4 are satisfied.

8.4 Derive a 2E-MALRPS lower bound on G∆

To derive lower bounds for the 2E-MALRPS, the proposed dynamic discretization framework
solves the integer program defined by the modified time-space formulation TEF(G∆) (Section
8.1), on the reduced time-space network G∆. Compounding our problem, routing decisions
boost the iterative growth of the reduced time-space network. In general, due to the presence
of short arcs, numerous candidate solutions on the reduced time-space network can have an
identical objective value and also share location and routing decisions while differing on the
vehicle schedules. Hence, although the reduced network is refined multiple times, some of
these candidate solution configurations may not change in terms of cost and structure, while
the reduced network size grows with each refinement iteration. This characteristic leads to a
certain degeneracy of the solution, which, in turn, increases the complexity of the optimization
problem addressed at each iteration.

We propose a specialized procedure to address the potential degeneracy in the reduced
time-space network. The objective of this procedure is to handle degenerate solutions within
the reduced time-space network, while mitigating the impact arising from the growth underling
network. To do so, our approach identifies whether a solution is considered degenerate, to
intensively utilize its location and routing configurations to potentially prune the lower bound
for the 2E-MALRPS. As illustrated in Algorithm 1, the procedure relies on an integer solution
Sol provided by TEF(G∆) and the values of its decision variables (z, xG∆

, fG∆
, yG∆

).

The proposed procedure solves TEF(G∆) if no solution is provided; or explores a given solu-
tion configuration within TEF(G∆), otherwise. When a solution Sol is provided, the algorithm
uses the location, routing and flow decisions as the starting point to solve TEF(G∆). The result-
ing integer solution Sollocal, can potentially match the current objective function and structure
of Sol with different vehicle schedules. In this scenario, the current solution is updated and the
procedure ends. When the objective function of Sol does not match the local solution Sollocal,
it can be assumed that Sollocal cannot be a candidate lower bound of the problem, and cannot
be further explored. Hence, the current solution Sol is no longer feasible for the current refined
reduced network.
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Algorithm 1: Degeneracy(G∆, Sol)

input: G∆, Sol = (z, xG∆
, fG∆

, yG∆
)

1 if Sol 6= ∅ then
2 Sollocal ← TEF (G∆, Sol) ;
3 if z(Sollocal) 6= z(Sol) then
4 Sol← TEF (G∆) ;
5 else
6 Sol← Sollocal;
7 end

8 else
9 Sol← TEF (G∆) ;

10 end

8.5 Obtain a 2E-MALRPS upper bound

To determine a feasible upper bound for the 2E-MALRPS, the optimal solution obtained on the
reduced time-space network (G∆) must remain feasible when evaluated with the actual travel
times for all arcs. A relaxed form of the compact model introduced in Section 6 is proposed
for this purpose. The relaxed compact formulation is defined by isolating the sets of timing
constraints (12)-(23), (33), and (34), that is, the vehicle scheduling and synchronization con-
straints, as well as constraints concerning the availability and due time of each OD demand.
The relaxed compact model also excludes the constraints (2)-(11) and (24)-(32) related to rout-
ing, location, vehicle capacity, and commodity allocation since these decisions remain feasible
for the 2E-MALRPS on the reduced time-space network.

The procedure then consists of solving this relaxed compact formulation using the optimal
solution structure, i.e., the location, routing, and allocation decisions, obtained by the time-
space model on the reduced network G∆, as well as the actual travel times. Obtaining an
optimal solution to this problem means the solution structure of the of the reduced network is
feasible with the actual travel times and, thus, that it is a feasible solution and an upper bound
for the 2E-MALRPS. The algorithm then stops and advances to the refinement step.

When an optimal solution to the relaxed compact formulation is not found, the procedure
iteratively examines the integer solutions identified while computing the lower bound (Section
8.4), performing the same evaluation described above for the optimal solution. If an optimal
solution to the relaxed problem is found and if the corresponding solution value is better (lower)
than the current upper bound (if any), then the upper bound is updated and the procedure
terminates. Otherwise, one proceeds to the next integer solution. For each such solution, this
procedure allows the dynamic discretization framework to define potentially good quality upper
bounds, without the necessity to have a well-refined reduced time-space network.

8.6 Refinement

The final step of the dynamic discretization framework is to refine the reduced time-space
network. Whether the integer solution is feasible for the 2E-MALRPS or not, short arcs may
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still be found within the routing decisions, thus potentially violating some of the temporal
constraints of the system. By Lemma 2, we have that the solution is a lower bound for the 2E-
MALRPS and thus, the reduced time-space network must be refined. Insights on how to refine
the reduced time-space network may be derived form the lower bound obtained by TEF(G∆)
and the short arcs in the integer solution it entails. Refining the reduced network in terms
of these short arcs, extracted from the lower bound obtained at each iteration, is crucial to
strengthen the reduced time-space network and improve the precision of the lower bound for
the 2E-MALRP in future iterations.

The proposed refinement procedure, Algorithm 2, then consists in extending short arcs, that
is, the arcs ((i, t), (j, t′)) in TEF(G∆) with short travel times t′ < t+ τij relative to the pair of
nodes ((i, t), (j, t+ τij)) in the initial problem, while ensuring that Properties 1-4 remain valid
for the reduced network after being refined.

Algorithm 2: Refinement(G∆, Sol)

input: G∆, Sol = (z∗, (V∗∆,A∗∆))
1 for ((i, t), (j, t′)) ∈ A∗∆ do
2 if t′ ≤ t+ τij then
3 if isFeasible(G∆, (i, t

′ − τij)) then
4 if j ∈ Zph AND δ−((j, t′)) > 1 then
5 AddSatellite(((i, t), (j, t′)));
6 end
7 AddNode(G∆, (i, t

′ − τij));
8 Restore(G∆, (i, t

′ − τij));
9 end

10 if isFeasible(G∆, (j, t+ τij)) then
11 if j ∈ Zph AND δ−((j, t′)) > 1 then
12 AddCut((j, t+ τij));
13 end
14 AddNode(G∆, (j, t+ τij));
15 Restore(G∆, (j, t+ τij));

16 end

17 end

18 end

Notice that, due to the degeneracy of the solution that routing decisions bring to the dynamic
discretization framework, refining a short arc in terms of one of its extreme points does not
exclude its counterpart to potentially appear in the following iterations. We, therefore, propose
a two-way refinement procedure to extend short arcs of the reduced time-space network based on
the analysis of the integer solution TEF(G∆) and the two extreme points of the arc. The general
procedure, Algorithm 2, examines each arc of the solution to the reduced network TEF(G∆),
searching for short arcs which can be extended. For each such short arc, the procedure checks
whether the extended arc is feasible with respect to the temporal properties of the nodes
involved. When extending a short arc, Algorithm 2 relies on additional procedures, to add
new nodes to the reduced time-space network, Algorithms 3 and 4, and to restore the reduced
network, that is, to update the arc connections on the reduced network given the new nodes
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added and the corresponding waiting times, Algorithms 5 and 6, respectively, while ensuring
that Properties 1-4 hold.

Algorithm 3: AddSatellite(((i, t), (j, t′)), δ−((j, t′)))

input: ((i, t), (j, t′))
1 Φ← OffSet((j, t′), δ−((j, t′)));
2 for (j, t̄) ∈ Φ do
3 if (i, t′) 6∈ G∆ AND isFeasible(G∆, (j, t̄)) then
4 AddNode(G∆, (j, t̄));
5 Restore(G∆, (j, t̄));

6 end
7 UpdateWaitingArcs((j, t̄));
8 AddCut((j, t̄));

9 end

Algorithm 3 ensures that no flow transshipment takes place between first echelon routes.
Recall ( Section 8.1) that, even though constraint (58) is introduced as a mean to reduce solution
errors in the reduced time-space network under different discretization granularity levels, it
might not avoid solutions where commodities are transshipped among routes at satellites. The
objective of the proposed procedure is twofold. First, to add supplementary time-space nodes
of the respective satellite, both backward and forward in time with an offset of 1 (as the
finer granularity possible) in terms of the number of inbound connections δ−((v, t)) of the time-
space satellite (v, t) being refined. The procedure then sets their feasible outbound connections,
Algorithm 5 and updates the corresponding waiting times, Algorithm 6. Second, to mark each
time-space satellite added and replace their respective constraints (58) with constraints (41) for
the next iteration of the solution framework.

Algorithm 4 adds time-space nodes to the reduced network and then sets their feasible
outbound connection and updates the corresponding waiting times. By Property 4, we assume
that waiting at customers is possible before their respective time windows. Therefore, any
new time-space customer added to the reduced time-space network within the customer’s time
windows can connect with other time-space customers within and before (but never after)
their time windows. Time-space customers located before the time windows are set to receive
inbound connections with outbound connections at or after the lower bound of the customer’s
time window.

Algorithm 4: AddNode((i, t′))

input: G∆, (i, t
′) (i, t′) with tb < t′ < tb+1

1 if (i, t′) 6∈ G∆ then
2 G∆ ← G∆ ∪ (i, t′);
3 for ((i, tb), (j, t)) ∈ A∆ do
4 AddArc(((i, t′), (j, t)));
5 end
6 UpdateWaitingArcs((i, t′));

7 end
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Algorithm 5 updates the reduced time-space network arcs given the new time-space nodes
added, while maintaining the feasible longest distance between nodes and Properties 1-4 are
satisfied.

Algorithm 5: Restore(G∆, (i, t
′))

input: G∆, (i, t
′)withtb < t′ < tb+1

1 if (i, t′) 6∈ G∆ then
2 for ((i, tb), (j, t)) ∈ A∆ do
3 t”← argmax{d ∈ Tj(∆)|d ≤ t′ + τij};
4 if t” 6= t′ then
5 Delete(((i, t′), (j, t)));
6 AddArc(((i, t′), (j, t”)));

7 end

8 end
9 for ((j, t), (i, tb)) ∈ A∆witht+ τij ≥ t′ do

10 Delete(((j, t), (i, tb)));
11 AddArc(((j, t), (i, t′)));

12 end

13 end

Waiting times are updated separately by Algorithm 6, as each node type handles waiting
time differently. Notice that, waiting times for the entire system are constrained by the avail-
ability times at platform facilities, the maximum waiting time at satellite facilities, and the
time before getting to customers, and at the customer time windows.

9 Computational results

This section presents and discusses the results of experiments conducted to asses the perfor-
mance of the proposed mathematical formulations and solution framework for the 2E-MALRPS.
We first introduce the instances used in the computational study in Section 9.1. We then com-
pare, in Section 9.2, the compact and time-space formulations in terms of computational effi-
ciency and quality of upper and lower bounds, when addressed directly with CPLEX. We also
illustrate in that section some of the challenges and impact of granularity on the discretization
of time in the time-space formulation. We present the calibration analysis of the dynamic dis-
cretization discovery solution framework, with respect to the level of granularity and the impact
of degeneracy, Section 9.3. The results of a series of experiments illustrating the performance
of the solution framework and the effects of problem instance characteristics are then analyzed
in Section 9.4.

The experiments were conducted on a single machine with Intel(R) Core(TM) i7-7800X
with 128 GB of RAM running Linux. The mathematical formulation and the proposed solution
framework are implemented in C++ using IBM ILOG CPLEX concert technology 20.1. The
MIPs used within the solution framework were solved with an optimality gap tolerance of 1%
as the stopping criterion. Computation times reported are in seconds. The lower bound values
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Algorithm 6: UpdateWaitingArcs((i, t′))

input: G∆, (i, t
′) with tb < t′ < tb+1

1 if i ∈ Pph then
2 Delete(((i, tb), (i, tb+1)));
3 AddArc(((i, tb), (i, t

′)));
4 AddArc(((i, t′), (i, tb+1)));

5 end

6 if i ∈ Zph then
7 for (i, t) ∈ Ti(∆) do
8 if t < t′ ≤ t+W 2

max then
9 AddArc(((i, t), (i, t′)));

10 end

11 end

12 end

13 if i ∈ Cph then
14 for (i, t) ∈ Ti(∆) do
15 if t ≥ ai then
16 AddArc(((i, t′), (i, t)));
17 end

18 end

19 end

provided on results obtained by the proposed solution framework correspond to, either the
optimal solution obtained by the time-space model on the reduced network, or the best linear
relaxation obtained througouth the optimization process, when the optimally gap tolerance is
not reached within given time limit.

9.1 Instances

We define our testbed based on the instances introduced by Dellaert et al. (2019) for the
2EVRPTW, since no instances are available in the literature involving the integrated treatment
of the attributes considered in the 2E-MALRPS. The testbed instances include the 2E-MALRPS
set of attributes, e.g., time-dependent origin-destination demands, vehicle garages, and fleet
synchronization, which are not included in the original instance configuration proposed by
Dellaert et al. (2019). The testbed consists on five sets of instances differentiated by the
number of customers. We extend three instance sets with 15, 30, and 50 customers (Dellaert
et al., 2019), and create two small-sized instance sets with 5 and 10 customers by extracting the
customers with the minimum distance to satellites from the set of instances with 100 customers
of Dellaert et al. (2019).

Each instance set is composed of 60 instances, divided into four categories CA, CB, CC,
and CD, differing in the time windows width and customer-demand values. The instances
simulate a circular urban area, divided into three concentric sections for platforms, satellites,
and customers. To introduce OD demands, we randomly located supplier points within the
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platform section for each instance, and assigned an unique OD demand to each supply point.
Availability time for each OD demand on each platform is defined by the ceiling (nearest higher
integer) of the Euclidean distance between the supply point and the platform. Availability
times are then included in the temporal components of the systems as a global temporal offset
ρ based on the latest availability time in the system. The offset ρ is added to each customers’
time window to include the additional time when the demand is available at platforms, yielding
[ai + ρ, bi + ρ] . The maximum waiting time at satellites is set to 4, while service time at
customers is set to 2. Load capacities for vehicles given in Dellaert et al. (2019) are considered
to be fixed, where first-level vehicles have a capacity of cap1 = 200 and second-level vehicles
have a capacity of cap2 = 50. Travel costs are computed as the ceiling of Euclidean distances.
The proposed 2E-MALRPS testbed is available at https://github.com/davesco24/2emalrpslib

9.2 Compact vs Time-expanded models and the effect of granularity

We first focus on the effectiveness of the compact and time-space formulations, as well as on
the impact of the granularity of the time discretization on the behaviour of the time-space
formulation, in terms of solution quality and computational efficiency. Three sets of small
instances, with 5, 10 and 15 customers, are used for benchmarking and the formulations are
solved directly using CPLEX. The time-space formulation is solved for a complete time-space
network with ∆̄ time periods.

Table 1 displays the comparative performance results. It provides the number of OD de-
mands for each instance set, the schedule length (Ψ), the total number of instances for each
set (NI), the number of instances for which feasible (FUB) and optimal (OUB) solutions (up-
per bounds) were found for each formulation within the maximum time limit of 2.5 hours,
the average run-time taken to address an instance of the set (CPUsec), and the average root
gap (RG) for each formulation. The root-gap values aim to measure the quality of the lower
bounds obtained by each formulation, and are computed as the percentage difference between
the initial lower bound, obtained by the LP relaxation of the respective model at the root of
the branch-and-bound tree, and the best integer solution obtained for the instance.

The results reported in Table 1 show the expected performance similarity with respect to
the upper bounds, but remarkable differences on the lower-bound and run-time values. When
compared to the compact formulation, the linear relaxation of the time-space formulation pro-
vides much better lower bounds (with an average improvement of some 23%), but is usually
slower at proving optimality. Nevertheless, as the problem size increases, its behavior is appears
more robust, providing feasible solutions for 51 instances, as compared to only 11 for the com-
pact formulation on instances with 15 OD demands. We observe that the overall lower bound
improvements by the time-space formulation result from the exclusion of big-M coefficients and
vehicle indexes in the flow variables, which help reduce noise in the mathematical model and
the symmetries in the routing, respectively.

Our experiments on instances with 15 OD demands show a significant reduction in the
numbers of feasible and optimal solutions for both formulations. Multiple factors contribute to
this behavior. On the one hand, the compact formulation presents a poor LP-relaxation of the
MIP model. On the other hand, the time-space model, despite providing better LP-relaxations,
suffers from scalability issues provoked from the size of the time-space representation of the
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Instances Compact Time-expanded

OD Ψ NI FUB OUB CPUsec RG (%) FUB OUB CPUsec RG (%)

5 100 60 56 48 2816.21 30 60 50 1706.21 20
10 100 60 7 2 8759.18 49 60 33 4453.92 27
15 200 60 11 0 9000.00 59 51 1 8977.97 33

Table 1: Performance comparison of compact and time-expanded formulations

underlying network, which, in turn, leads to larger, and thus, harder to solve, integer programs
than those defined by the compact formulation. This characteristic does not only influence the
quality of the optimization solutions but also makes it more challenging to tackle problems with
a larger number of OD demands or longer schedule lengths.

The discretization granularity plays a key role in the trade off between the accuracy and
performance of the time-space formulation. On the one hand, as seen in the results of Table
1, a finely discretized time-space network provides an accurate representation of the system,
but at the price of a large integer problem. On the other hand, the size of the time-space
representation and integer problem can be reduced by lowering the number of time instants
(see also Section 8), but at the price of a decrease in solution quality. Figure 5 illustrates
this trade off, by displaying average performance measures of the time-space formulation under
different granularity levels for the set of instances with 15 OD demands and a schedule length
of 200. Results are displayed the complete time-space network, with ∆̄ = 200 and four coarser
granularity levels. Four performance measures are considered, namely, the number of incumbent
(best feasible integer) solutions found, NIS, measuring the network accuracy; the optimality
gap %, OGP, obtained within a time limit of 2.5 hours, the solution-cost increment %, SCI,
computed with respect to the complete time-space network, and the model-size reduction %,
MSR.
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Figure 5: Number of incumbent solutions (NIS), optimality gap % (OGP), solution-cost incre-
ment % (SCI), and model-size reduction % (MSR) versus granularity level

The set of time instants under consideration and corresponding coarser granularity levels
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enable a considerable reduction in the dimension of the integer program (MRS), without a
significant degradation of performance (NIS, OGP, and SCI). The observed accuracy loss is
driven by two main aspects: network aggregation and loss of consolidation. The aggregation
of nodes and arcs resulting from time discretization, not only leads to significantly smaller
optimization problems, as depicted by the MSR (with an average model reduction of about
87%), but also adversely affects the temporal preciseness of the network. Notice that, the stan-
dalone time-space formulation is set to limit satellites to one inbound per time period to avoid
freight transshipment between first-echelon vehicles (see Section 7). This, along with coarser
granularity, often renders infeasible a number of commodity flows, as freight consolidation be-
comes more restrictive with satellite aggregation. The latter is reflected with the greater cost
increment of the integer solution, which, on average, tends to grow by 1.3% compared to the
complete time-space network. This reflects the loss of feasible low-cost connections and satel-
lite options for freight consolidation leading to generally higher solution costs. Observe that,
while the number of incumbent values is found to generally increase as the granularity of the
discretization increases, the quality of the optimality gap is not improved, mostly due to the
loss on accuracy on the optimization problem and increased solution costs.

9.3 Calibrating the dynamic discretization discovery solution framework

This section presents the experimental results of the DDD solution framework under different
parametric configurations. First, we evaluate its performance of the DDD under different levels
of granularity. Second, we investigate the effects of degeneracy (Section 8.4). Experiments are
performed on the instances with 15 OD demands. We impose a time limit of two and a half
hours and an optimality gap of 1% to the DDD, and a time limit of one hour to address the
reduced time-space formulation at each iteration. As we focus on the DDD, the set of properties
introduced in Section 8.1 are part of these experiments, which allows the construction of time-
space networks with coarser granularities without introducing infeasibility.

The results of the level-of-granularity experiments are graphically shown in Figures 6 and
7, according to the type of test instances (i.e., CA, CB, CC, and CD) and the granularity
level, namely, fine (∆ = 18), moderate (∆ = 6), and coarse (∆ = 2). Figure 6 displays the
distributions of the optimality gap % (OGP) and the number of incumbent solutions (NIS)
obtained by the DDD for the three granularity values considered. Figure 7, on the other hand,
displays the same information for the average time used by the reduced time-space formulation
at each iteration to obtain the best integer solution (TUB), and for the average total run time
(ATT).

The experimental results show, again, that coarse granularity leads to a good general per-
formance, in terms of both root gap and run time, while a finer granularity leads to larger
integer programs, e.g., 30% larger, on average, under moderate granularity compared to the
coarse-granularity case. This yields programs which are difficult to address in a reasonable
time (Figure 7), resulting in weaker lower bounds (Figure 6). This effect is most noticeable for
instances with wide and sparse time windows (e.g., types CC and CD).

While coarse granularity generally yields tighter lower bounds, it leads, however, to a very
inaccurate representation of the system. Moderate granularity, on the other hand, provides
sufficient temporal preciseness and thus, a more accurate representation of the system; however,
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Figure 6: Dynamic discretization discovery: Number of incumbent solutions (NIS) and opti-
mality gap % (OGP) versus granularity levels and instance type

it also generally results in weaker lower bounds due to the large size of the integer problem.
The latter makes the use of moderate granularity in a solution framework less suitable since it
can negatively affect the performance of the DDD, in particular, when the size of the reduced
time-space network grows with each iteration.

The lack of preciseness present in a reduced time-space network derived with coarse gran-
ularity tends to lead to degenerate solutions. This results from the wide number of candidate
solutions that can be obtained on the reduced time-space network with identical objective value
and distribution structure, but different vehicle schedules. We observe that, unless a sufficiently
fine granularity is considered, time-space formulations with moderate and coarse discretization
are more susceptible to have degenerate solutions, which can impact the complexity of the
optimization problems on each iteration of the DDD. Figure 8 illustrates the impact of the
degeneracy procedure using a coarse granularity (∆ = 2).

The performance of the DDD is illustrated by contrasting the average optimality gap ob-
tained by the DDD using the degeneracy procedure, for each instance type CA, CB, CC, and
CD, to that of the DDD without the degeneracy procedure, identified as NCA, NCB, NCC, and
NCD. The experimental results show that, using the degeneracy procedure leads to a general
improvement of the optimality gap over the entire instance set. One also observes that, larger
numbers of platform and satellite facilities, as well as wider customer time windows, are the two
key factors to drive degeneracy on the integer problem. Both of these components reduce the
temporal preciseness of the reduced time-space network and provide broader refining options
for short arcs. Instances with tighter time windows, most notably, instances of CA and CB
types, tend to benefit from the degeneracy procedure, displaying optimality-gap improvements
of 17% and 30%, respectively, compared to the results on same instances types without the
degeneracy procedure. On the other hand, instances with broader and sparse time windows,
e.g., instances of CC and CD types, display improvements of 14% and 6%, respectively. The
latter reflects the efficiency of the proposed degeneracy procedure in supporting the DDD to
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Figure 7: Dynamic discretization discovery: Reduced time-space network run times (TUB) and
DDD run times (TUB) versus granularity levels and instance type

avoid being trapped on lower bounds values for several iterations and enabling tightening the
general lower-bound values obtained by the DDD.

9.4 Performance of the dynamic discretization discovery solution framework

We investigate the performance of the DDD solution framework for the 2E-MALRPS on the
instances with 5, 10, 15, 30, and 50 OD demands. Based on the experiments presented in Section
9.3, computational tests are performed using the coarsest discretization granularity possible for
each instance to decrease the size of the underlying network, thus enabling a further reduction
of the time required to solve the integer program. The stopping criteria are an optimality
gap of less or equal to 1% and a maximum run time of 2.5 hours for small-sized instances (5
and 10 OD demands), 5 hours for medium-sized instances (15 OD demands), and 10 hours for
large-sized instances with more than 15 OD demands. Tables 2 and 3 summarize the results of
the experiments, the latter corresponding to the case when availability times are disabled. The
tables display the number of platforms, satellites, and OD demands for each instance set, the
schedule length (Ψ), the granularity of the time discretization (∆), the total number of instances
for each instance set (NI), the number of instances for which feasible (FUB) and optimal (OUB)
solutions (upper bounds) are found, as well as the average optimality gap (OG(%)) and the
average run-time (CPUsec) for the respective instance set.

The results of the computational experiments displayed in Table 2 show that the DDD
clearly outperforms the compact formulation and the time-expanded one addressed head on.
We see that the DDD is able to provide feasible solutions for the complete set of instances
with less than 50 OD demands as well as providing the optimal solution for the complete set of
instances with 5 and 10 OD demands. Concerning instances with 15 OD demands, the DDD is
able to solve 4 instances to optimality, with an average optimality gap of 18% for the remaining
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instances, while the number of optimal solutions for instances with 30 OD demands is one.
We observe that, despite a very coarse granularity, which can significantly reduce the size of
the optimization problem, the inaccuracy of the network causing degeneracy reduces the rate
at which the lower bound can increase at each iteration. This phenomenon is better captured
by results on instances with 30 and 50 OD demands, where the optimality of most solutions
obtained by the DDD remains unproven. As expected, the proposed degeneracy procedure
significantly reduces the effects of the degeneracy on the solution, in particular in cases with
tight time windows, as depicted in Figure 8. However, while the degeneracy method helps to
avoid the solution framework being trapped in a fixed lower bound, the lower bound values do
not increase significantly in several iterations. The procedure is shown to mainly help achieve
a good upper bound faster, rather than improving the lower bound at a fast rate. Therefore,
although the solution framework can converge to provably high-quality upper bounds values
for larger instances, the slow incremental rate of the lower bound makes it harder to assess the
true quality of the solution.

Further performance analysis is provided by disabling the availability times in all instances.
The results summarized in Table 3 show that the DDD algorithm is able to provide good
quality solutions for all instances sets in this case as well. Similar to the results obtained on
instances with tight availability times, the computational experiments shows that the DDD is
able to achieve optimality for 20 out of 20 instances with 5 and 10 OD demands with disabled
availability times. At the same time, the DDD converges to feasible solutions for the complete
set of instances with 15 and 30 OD demands, while obtaining feasible solutions for 17 out of 20
instances for instances with 50 OD demands. In terms of computational efficiency, the solution
framework presents a more robust performance on instances with tighter availability times
compared to the results obtained on instances with disabled availability times. The broader
number of availability options resulting from the lack of precise time moments yields larger
time-space networks and harder integer problems at each iteration of the DDD. As already
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Platforms Satellites OD Ψ ∆ NI FUB OUB OG(%) CPUsec

2 3 5 100 2 20 20 20 0.00 1123.51
3 5 5 100 2 20 20 20 0.00 1076.03
6 4 5 100 2 20 20 20 0.00 1390.17
2 3 10 100 2 20 20 20 0.22 4451.20
3 5 10 100 2 20 20 20 0.27 4780.29
6 4 10 100 2 20 20 20 0.29 4841.81
2 3 15 200 2 20 20 3 18.55 16346.97
3 5 15 200 2 20 20 1 20.09 17545.86
6 4 15 200 2 20 20 0 24.19 18000.00
2 3 30 200 2 20 20 1 47.93 34374.49
3 5 30 200 2 20 20 0 47.77 36000.00
6 4 30 200 2 20 20 0 51.52 36000.00
2 3 50 200 2 20 18 0 42.46 36000.00

Table 2: Performance of DDD solution framework for 15, 30 and 50 OD demands

mentioned, this reduces the quality of the lower bounds, impacting the number of optimal
solutions found for instances with 15 and 30 OD demands.

Cost-wise, the solutions on instances with disabled availability times tend to be cheaper,
an average cost reduction of at least 3% is observed, than those obtained on instances with
tighter availability times. This operational cost reduction can be attributed to the sets of low-
cost routes that can only be used at early time moments, but are unreachable when tighter
availability times are present. At the same time, disabling the availability times enables far more
options for consolidation of demand at satellite facilities. This greater level of consolidation,
leading to a lower number of facilities selected, lowers the system fixed costs related to facility
usage. This is more noticeable on instances with late availability times and early due times
(as in the case of instances types CA and CB), whereby a greater number of nearby platforms
and satellites needs to be open and connected to meet the final destination of each OD demand
on time. We thus conclude that, the lack of consideration of availability times can lead to an
inaccurate representation of the distribution system, in particular for time-driven systems. This
makes the DDD capable of providing not only good quality solutions for decision makers but
also avoids the inclusion of routes that might be unreachable when availability times are not
being considered.

10 Conclusions and Perspectives

This paper introduces the multi-attribute two-echelon location-routing problem with synchro-
nization constraints (MA-2ELRPS) and presents two mixed-integer programming formulations,
involving different modeling techniques to capture time. We also present an exact solution
framework that iteratively refines a reduced time-space network and solves the integer program
defined by its network configuration to extract lower bounds, in order to solve the problem to
optimality or up to a specified tolerance.
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Platforms Satellites OD Ψ ∆ NI FUB OUB OG(%) CPUsec

2 3 5 100 2 20 20 20 0.34 2013.26
3 5 5 100 2 20 20 20 0.32 2095.67
6 4 5 100 2 20 20 20 0.23 2105.53
2 3 10 100 2 20 20 20 0.50 4689.99
3 5 10 100 2 20 20 20 0.34 4490.47
6 4 10 100 2 20 20 20 0.29 4936.37
2 3 15 200 2 20 20 0 15.21 18000.00
3 5 15 200 2 20 20 0 18.52 18000.00
6 4 15 200 2 20 20 0 15.35 18000.00
2 3 30 200 2 20 20 0 46.66 36000.00
3 5 30 200 2 20 20 0 55.01 36000.00
6 4 30 200 2 20 20 0 52.77 36000.00
2 3 50 200 2 20 17 0 45.09 36000.00

Table 3: Performance of DDD solution framework for 15, 30 and 50 OD demands with no
availability time

The computational study reveals the effectiveness of the mathematical formulations and
the solution framework. Comparative analyses show that the proposed time-space formulation
obtains the same or better upper bounds, and improves the lower bounds for small-instances,
relative to the compact formulation. Similarly, the experimental results obtained by the pro-
posed dynamic discretization discovery framework show its effectiveness compared to addressing
the compact and time-space models directly. The results also show the capability of the pro-
posed DDD to address large instance sizes. The success of the dynamic discretization discovery
framework relies on the proposed degeneracy mitigation procedure, to avoid the solution frame-
work being trapped in a fixed lower bound for multiple iterations, as well as the efficient use
of the compact formulation to complement the framework by enhancing the search for feasible
upper bounds for the MA-2ELRPS in shorter times.

The bottleneck of the dynamic discretization discovery framework depends on the growing
rate of the reduced time-space network at each iteration and more complex degeneracy aspects.
Hence, future research should be directed toward studying acceleration techniques and valid
inequalities to tighten lower bounds without affecting the complexity of the integer problem.
We also consider promising to generalize the usage of the dynamic discretization discovery
framework to location-routing problem variants and other related problem settings involving
time aspects. The study of uncertainty in several problem parameters is certainly a challenging
research avenue. We aim to present contributions in this area soon.
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Complete Result Tables

Tables 4 - 6 display the detailed results of the first set of experiments focusing on the effectiveness
of the compact and time-space formulations when addressed directly using CPLEX. Three sets
of small instances, with 5, 10 and 15 customers, are used for benchmarking. The time-space
formulation is solved for a complete time-space network with ∆̄ time periods.

The tables provide the instance ID, the schedule length (Ψ), the number of instances for
which feasible (FUB) and optimal (OUB) solutions (upper bounds) were found for each for-
mulation within the maximum time limit of 2.5 hours, the run-time (CPUsec), and the root
gap (RG) for each formulation computed as the percentage difference between the initial lower
bound, obtained by the LP relaxation of the respective model at the root of the branch-and-
bound tree, and the best integer solution obtained for the instance.

Tables 7 - 10 display the detailed results of the set of experiments focusing on the perfor-
mance of the dynamic discretization discovery (DDD) solution framework for the 2E-MALRPS.
Test results are shown for the instances with 5 and 10 OD demands in Table 7, and for the same
instances with disabled availability times in Table 8. Tables 9 and 10 display the same type
of results for the instances with 15, 30, and 50 OD demands. The experiments are performed
using a coarse discretization granularity ∆ = 2. The stopping criteria are an optimality gap of
less or equal to 1% and a maximum run time of 2.5 hours for small-sized instances (5 and 10 OD
demands), 5 hours for medium-sized instances (15 OD demands), and 10 hours for large-sized
instances with more than 15 OD demands. The tables display the instance ID, the schedule
length (Ψ), the best upper bound (UB), the run-time (CPUsec), the lower bound (LB), and
the optimality gap (OG(%)).
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Instances Compact Time-expanded
ID Ψ FUB OUB CPUsec RG (%) FUB OUB CPUsec RG (%)

Ca1-2,3,5 100 280 9000.00 133.16 52.44 280 0.14 169.00 39.64
Ca1-3,5,5 100 222 5882.37 150.77 32.09 222 0.88 190.91 14.01
Ca1-6,4,5 100 286 9000.00 138.63 48.84 271 0.37 210.49 22.33
Ca2-2,3,5 100 152 136.68 131.50 13.49 152 0.27 121.45 20.10
Ca2-3,5,5 100 N.A 9000.00 171.20 39.72 284 0.15 174.00 38.73
Ca2-6,4,5 100 219 1567.85 158.27 27.73 219 1.26 160.26 26.82
Ca3-2,3,5 100 287 9000.00 129.20 54.98 287 0.05 246.00 14.29
Ca3-3,5,5 100 220 2122.07 148.70 32.41 220 0.46 191.20 13.09
Ca3-6,4,5 100 226 3702.22 149.31 33.93 226 0.64 176.19 22.04
Ca4-2,3,5 100 358 9000.00 167.00 53.35 358 0.07 190.00 46.93
Ca4-3,5,5 100 168 1637.53 121.61 27.62 168 0.42 138.60 17.50
Ca4-6,4,5 100 239 2242.18 155.49 34.94 239 1.55 202.21 15.39
Ca5-2,3,5 100 199 285.97 158.40 20.40 199 0.48 176.00 11.56
Ca5-3,5,5 100 N.A 9000.00 122.91 33.92 186 0.32 121.00 34.95
Ca5-6,4,5 100 231 1653.81 161.06 30.28 231 54.79 163.53 29.21
Cb1-2,3,5 100 152 347.05 109.96 27.66 152 0.23 131.90 13.23
Cb1-3,5,5 100 168 3045.10 127.26 24.25 168 1.98 121.45 27.71
Cb1-6,4,5 100 N.A 9000.00 155.06 49.16 305 0.31 179.00 41.31
Cb2-2,3,5 100 137 9.49 117.22 14.44 137 0.14 125.60 8.32
Cb2-3,5,5 100 154 1485.30 138.66 9.96 154 0.22 134.25 12.82
Cb2-6,4,5 100 212 1651.25 169.50 20.05 212 1.04 135.13 36.26
Cb3-2,3,5 100 332 9000.00 111.74 66.34 332 0.06 237.00 28.61
Cb3-3,5,5 100 160 2136.07 111.09 30.57 160 0.52 129.13 19.30
Cb3-6,4,5 100 273 1374.15 165.00 39.56 273 0.35 212.07 22.32
Cb4-2,3,5 100 N.A 9000.00 123.36 55.94 280 9000.00 121.16 56.73
Cb4-3,5,5 100 142 628.19 115.94 18.35 142 0.82 118.49 16.56
Cb4-6,4,5 100 267 9000.00 107.58 59.71 267 0.64 209.46 21.55
Cb5-2,3,5 100 129 212.55 106.90 17.13 129 0.47 112.54 12.76
Cb5-3,5,5 100 179 9000.00 128.97 27.95 179 0.71 152.45 14.83
Cb5-6,4,5 100 272 1449.36 114.15 58.03 272 0.43 209.86 22.84
Cc1-2,3,5 100 129 70.72 106.50 17.44 129 9000.00 112.38 12.89
Cc1-3,5,5 100 135 561.41 104.88 22.31 135 3622.10 109.89 18.60
Cc1-6,4,5 100 215 2664.15 138.88 35.41 215 9000.00 147.67 31.32
Cc2-2,3,5 100 122 20.85 99.99 18.04 122 51.00 96.21 21.14
Cc2-3,5,5 100 175 1031.37 119.67 31.62 175 9000.00 149.45 14.60
Cc2-6,4,5 100 190 2296.00 120.47 36.59 190 9000.00 127.08 33.11
Cc3-2,3,5 100 136 47.18 109.67 19.36 136 208.75 115.97 14.73
Cc3-3,5,5 100 142 469.91 113.52 20.06 142 3906.78 128.83 9.28
Cc3-6,4,5 100 228 2241.48 135.00 40.79 228 9000.00 178.48 21.72
Cc4-2,3,5 100 171 76.03 144.86 15.29 171 3160.12 161.00 5.85
Cc4-3,5,5 100 154 360.16 106.23 31.02 154 9000.00 125.80 18.31
Cc4-6,4,5 100 213 2288.94 140.73 33.93 213 9000.00 163.95 23.03
Cc5-2,3,5 100 123 113.27 113.76 7.51 123 9000.00 116.31 5.44
Cc5-3,5,5 100 124 530.07 108.78 12.27 124 246.22 113.17 8.73
Cc5-6,4,5 100 202 1572.93 152.22 24.64 202 9000.00 168.91 16.38
Cd1-2,3,5 100 155 391.97 131.99 14.85 155 1.31 135.22 12.76
Cd1-3,5,5 100 170 545.91 144.00 15.29 170 0.75 159.60 6.12
Cd1-6,4,5 100 254 4119.62 135.40 46.69 254 99.91 187.61 26.14
Cd2-2,3,5 100 140 109.62 118.78 15.16 140 1.72 126.76 9.46
Cd2-3,5,5 100 158 468.17 136.32 13.72 158 6.96 138.20 12.53
Cd2-6,4,5 100 210 4144.27 128.52 38.80 210 25.38 162.90 22.43
Cd3-2,3,5 100 142 120.44 114.20 19.58 142 3.05 117.35 17.36
Cd3-3,5,5 100 147 500.62 109.23 25.70 147 11.45 119.09 18.99
Cd3-6,4,5 100 231 804.23 134.29 41.87 231 600.47 195.98 15.16
Cd4-2,3,5 100 202 146.58 153.80 23.86 202 0.58 168.88 16.40
Cd4-3,5,5 100 162 1542.11 128.99 20.38 162 1.70 138.15 14.72
Cd4-6,4,5 100 222 9000.00 139.23 37.29 222 156.39 184.01 17.11
Cd5-2,3,5 100 178 239.92 134.29 24.56 178 1.13 159.08 10.63
Cd5-3,5,5 100 178 706.87 133.80 24.83 178 5.14 146.54 17.68
Cd5-6,4,5 100 228 1218.31 158.99 30.27 228 191.79 206.46 9.45
Averages 2816.21 30.24 1706.21 20.06

Table 4: Direct solving of both formulations on instances with 5 OD demands

39

Synchronization in Two-Echelon Distribution Systems: Models,Algorithms, and Sensitivity Analyses

CIRRELT-2021-24



Instances Compact Time-expanded
ID Ψ FUB OUB CPUsec RG (%) FUB OUB CPUsec RG (%)

Ca1-2,3,10 100 N.A 9000.00 101.28 70.21 340 2.81 252.99 25.59
Ca1-3,5,10 100 N.A 9000.00 119.56 61.56 311 84.24 242.91 21.89
Ca1-6,4,10 100 N.A 9000.00 140.54 57.80 333 7.62 233.20 29.97
Ca2-2,3,10 100 N.A 9000.00 136.30 44.82 247 2210.60 192.42 22.10
Ca2-3,5,10 100 N.A 9000.00 164.97 51.48 340 1.21 215.00 36.76
Ca2-6,4,10 100 N.A 9000.00 155.05 54.13 338 2537.13 249.87 26.07
Ca3-2,3,10 100 N.A 9000.00 177.31 48.46 344 0.30 219.00 36.34
Ca3-3,5,10 100 N.A 9000.00 144.49 54.56 318 4.29 298.43 6.16
Ca3-6,4,10 100 N.A 9000.00 157.17 48.81 307 4.15 264.01 14.00
Ca4-2,3,10 100 N.A 9000.00 192.00 56.06 437 0.96 288.50 33.98
Ca4-3,5,10 100 N.A 9000.00 108.11 64.90 308 485.53 226.41 26.49
Ca4-6,4,10 100 N.A 9000.00 135.00 58.97 329 9.32 268.37 18.43
Ca5-2,3,10 100 N.A 9000.00 203.42 53.13 434 8.18 239.07 44.92
Ca5-3,5,10 100 N.A 9000.00 156.13 47.43 297 13.21 228.66 23.01
Ca5-6,4,10 100 N.A 9000.00 150.54 55.59 339 9000.00 276.89 18.32
Cb1-2,3,10 100 N.A 9000.00 144.76 20.02 181 3.35 159.09 12.11
Cb1-3,5,10 100 N.A 9000.00 160.72 42.80 281 3913.71 252.11 10.28
Cb1-6,4,10 100 N.A 9000.00 131.69 56.40 302 4.71 244.43 19.06
Cb2-2,3,10 100 N.A 9000.00 158.80 28.79 223 0.99 198.31 11.07
Cb2-3,5,10 100 N.A 9000.00 148.08 53.87 321 2.54 247.19 22.99
Cb2-6,4,10 100 N.A 9000.00 174.42 31.06 253 1017.00 219.09 13.40
Cb3-2,3,10 100 N.A 9000.00 168.94 49.87 337 0.70 277.90 17.54
Cb3-3,5,10 100 N.A 9000.00 124.96 60.70 318 1061.83 205.65 35.33
Cb3-6,4,10 100 N.A 9000.00 147.48 57.50 347 11.74 230.19 33.66
Cb4-2,3,10 100 N.A 9000.00 179.28 45.84 331 1.04 210.57 36.38
Cb4-3,5,10 100 N.A 9000.00 160.19 51.01 327 806.72 209.83 35.83
Cb4-6,4,10 100 N.A 9000.00 204.76 52.71 433 2519.29 236.08 45.48
Cb5-2,3,10 100 N.A 9000.00 147.70 52.66 312 30.08 233.63 25.12
Cb5-3,5,10 100 N.A 9000.00 148.55 50.65 301 1579.01 206.68 31.33
Cb5-6,4,10 100 N.A 9000.00 155.02 60.05 388 4.77 335.31 13.58
Cc1-2,3,10 100 288 9000.00 175.04 38.58 285 9000.00 195.98 31.24
Cc1-3,5,10 100 N.A 9000.00 170.80 33.02 255 9000.00 186.47 26.88
Cc1-6,4,10 100 N.A 9000.00 214.78 31.38 313 9000.00 202.80 35.21
Cc2-2,3,10 100 268 9000.00 168.17 37.25 271 9000.00 192.73 28.09
Cc2-3,5,10 100 N.A 9000.00 121.90 62.38 324 9000.00 217.08 33.00
Cc2-6,4,10 100 N.A 9000.00 192.73 38.03 311 9000.00 190.65 38.70
Cc3-2,3,10 100 275 2846.39 103.33 62.43 276 9000.00 203.63 25.95
Cc3-3,5,10 100 N.A 9000.00 198.86 38.62 324 9000.00 208.04 35.79
Cc3-6,4,10 100 N.A 9000.00 186.09 32.33 275 9000.00 199.53 27.44
Cc4-2,3,10 100 225 704.69 211.00 6.22 226 9000.00 173.93 22.70
Cc4-3,5,10 100 N.A 9000.00 199.46 36.48 314 9000.00 198.43 36.81
Cc4-6,4,10 100 N.A 9000.00 178.24 43.23 314 9000.00 197.62 37.06
Cc5-2,3,10 100 289 9000.00 150.35 46.68 282 9000.00 132.89 52.88
Cc5-3,5,10 100 279 9000.00 164.20 37.33 262 9000.00 192.31 26.60
Cc5-6,4,10 100 N.A 9000.00 193.91 52.82 411 9000.00 199.93 51.35
Cd1-2,3,10 100 N.A 9000.00 150.64 47.51 287 9000.00 238.43 16.92
Cd1-3,5,10 100 N.A 9000.00 112.75 62.04 297 9000.00 257.23 13.39
Cd1-6,4,10 100 N.A 9000.00 143.80 64.14 401 9000.00 253.06 36.89
Cd2-2,3,10 100 N.A 9000.00 152.94 43.98 273 3145.09 232.92 14.68
Cd2-3,5,10 100 N.A 9000.00 140.98 55.53 317 9000.00 233.32 26.40
Cd2-6,4,10 100 N.A 9000.00 147.20 59.67 365 9000.00 264.63 27.50
Cd3-2,3,10 100 N.A 9000.00 157.92 42.16 273 4709.40 224.49 17.77
Cd3-3,5,10 100 N.A 9000.00 106.47 65.09 305 9000.00 211.74 30.58
Cd3-6,4,10 100 N.A 9000.00 118.58 56.40 272 9000.00 218.97 19.49
Cd4-2,3,10 100 257 9000.00 162.44 36.79 257 5.25 232.53 9.52
Cd4-3,5,10 100 N.A 9000.00 119.79 63.03 324 9000.00 221.01 31.79
Cd4-6,4,10 100 N.A 9000.00 132.04 50.36 266 9006.83 206.24 22.47
Cd5-2,3,10 100 N.A 9000.00 161.04 46.32 300 41.39 199.46 33.51
Cd5-3,5,10 100 N.A 9000.00 139.42 53.68 301 9000.00 260.13 13.58
Cd5-6,4,10 100 N.A 9000.00 200.86 40.75 339 9000.00 220.84 34.86
Averages 8759 48.77 4453.92 26.77

Table 5: Direct solving of both formulations on instances with 10 OD demands
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Instances Compact Time-expanded
ID Ψ FUB OUB CPUsec RG (%) FUB OUB CPUsec RG (%)

Ca1-2,3,15 200 415 9001.73 122.35 63.48 335 9000.06 238.22 28.89
Ca1-3,5,15 200 N.A 9000.83 148.71 58.23 356 9000.11 274.37 22.93
Ca1-6,4,15 200 N.A 9000.06 222.82 44.16 399 9000.15 282.2 29.27
Ca2-2,3,15 200 N.A 9000.08 173.73 54.64 383 9000.06 255.09 33.4
Ca2-3,5,15 200 N.A 9000.1 159.7 61.8 418 9000.18 290.96 30.39
Ca2-6,4,15 200 N.A 9000.1 185.41 54.89 411 9000.14 286.52 30.29
Ca3-2,3,15 200 N.A 9000.01 148.6 57.18 347 9000.35 282.37 18.63
Ca3-3,5,15 200 N.A 9000.15 125.84 N.A N.A 9000.29 301.53 N.A
Ca3-6,4,15 200 N.A 9000.08 203.94 49.52 404 9000.29 252.92 37.4
Ca4-2,3,15 200 372 9001.51 146.4 60.22 368 9000.33 278.64 24.28
Ca4-3,5,15 200 N.A 9000.09 117.95 63.6 324 7656.37 282.78 12.72
Ca4-6,4,15 200 N.A 9000.16 198.48 46.36 370 9000.43 279.8 24.38
Ca5-2,3,15 200 N.A 9000.19 138.9 N.A 377 9000.2 322.81 N.A
Ca5-3,5,15 200 N.A 9000.77 127 65.11 364 9001 342.65 5.86
Ca5-6,4,15 200 N.A 9000.12 170.39 51.04 348 9000.88 219.21 37.01
Cb1-2,3,15 200 N.A 9000.06 137.14 N.A 369 9000.21 303.62 N.A
Cb1-3,5,15 200 N.A 9000.08 142.6 61.97 375 9000.2 311.2 17.01
Cb1-6,4,15 200 N.A 9000.09 201.5 53.36 432 9000.2 266.34 38.35
Cb2-2,3,15 200 N.A 9000.07 136.38 N.A N.A 9000.23 324.83 N.A
Cb2-3,5,15 200 N.A 9000.89 135.95 65.41 393 9000.17 244.29 37.84
Cb2-6,4,15 200 N.A 9000.12 206.03 51.29 423 9000.08 291.12 31.18
Cb3-2,3,15 200 N.A 9000.08 134.33 63.3 366 9000.1 288.16 21.27
Cb3-3,5,15 200 N.A 9000.18 123.95 62.89 334 9000.28 245.48 26.5
Cb3-6,4,15 200 N.A 9000.06 189.21 53.17 404 9000.11 239.55 40.7
Cb4-2,3,15 200 383 9000.05 132.56 62.87 357 9000.1 244.67 31.46
Cb4-3,5,15 200 N.A 9000.13 124.11 64.44 349 9000.16 302.74 13.26
Cb4-6,4,15 200 N.A 9000.05 197.66 53.38 424 9000.08 241.71 42.99
Cb5-2,3,15 200 N.A 9000.09 167.51 56.15 382 9000.16 286.44 25.02
Cb5-3,5,15 200 N.A 9000.1 142.28 58.88 346 9000.17 252.27 27.09
Cb5-6,4,15 200 N.A 9000.12 198.82 46.41 371 9000.16 199.91 46.12
Cc1-2,3,15 200 330 9000.08 124.39 62.08 328 9000.75 197.01 39.94
Cc1-3,5,15 200 N.A 9000.16 150.26 56.95 349 9001.78 265.58 23.9
Cc1-6,4,15 200 N.A 9000.12 206.61 N.A N.A 9000.21 264.94 N.A
Cc2-2,3,15 200 376 9000.07 132.7 64.71 N.A 9000.87 219.49 41.63
Cc2-3,5,15 200 N.A 9000.17 146.01 N.A N.A 9000.26 264.3 N.A
Cc2-6,4,15 200 N.A 9000.15 193.12 88.11 1624 9000.62 265.28 83.67
Cc3-2,3,15 200 N.A 9000.07 124.64 65.57 362 9000.4 157.95 56.37
Cc3-3,5,15 200 330 9000.06 111.49 66.22 723 9000.2 248.01 24.85
Cc3-6,4,15 200 N.A 9000.15 186.43 N.A N.A 9000.24 220.21 N.A
Cc4-2,3,15 200 371 9001.46 136.49 63.21 397 9000.3 164.98 55.53
Cc4-3,5,15 200 N.A 9000.09 109.04 85.28 741 9000.24 230.93 68.84
Cc4-6,4,15 200 N.A 9000.12 175.79 N.A N.A 9004.36 186.01 N.A
Cc5-2,3,15 200 324 9004.63 114.83 64.56 336 9000.33 221.03 31.78
Cc5-3,5,15 200 N.A 9000.08 124.09 N.A N.A 9000.48 245.88 N.A
Cc5-6,4,15 200 N.A 9000.15 164.94 N.A N.A 9000.34 245.88 N.A
Cd1-2,3,15 200 330 9000.26 140.24 57.11 327 9000.74 223.64 31.61
Cd1-3,5,15 200 N.A 9000.11 152.67 54.02 332 9000.25 233.22 29.75
Cd1-6,4,15 200 N.A 9000.08 185.32 54.24 405 9000.3 266.85 34.11
Cd2-2,3,15 200 N.A 9000.04 152.37 57.08 355 9000.1 225.22 36.56
Cd2-3,5,15 200 N.A 9000.08 157.95 57.77 374 9000.15 268.27 28.27
Cd2-6,4,15 200 N.A 9000.09 204.93 50.02 410 9000.13 299.23 27.02
Cd3-2,3,15 200 348 9000.08 132.98 59.95 332 9000.09 204.26 38.48
Cd3-3,5,15 200 N.A 9000.19 138.47 53.22 296 9000.16 196.86 33.49
Cd3-6,4,15 200 N.A 9000.08 192.96 52 402 9000.2 267.6 33.43
Cd4-2,3,15 200 385 9000.04 159.58 58.33 383 9000.06 238.7 37.68
Cd4-3,5,15 200 N.A 9000.06 118.15 62.13 312 9000.18 202.29 35.16
Cd4-6,4,15 200 N.A 9000.06 165.67 56.52 381 9000.26 243.74 36.03
Cd5-2,3,15 200 N.A 9000.07 145.88 58.44 351 9000.08 238.75 31.98
Cd5-3,5,15 200 N.A 9000.07 157.8 55.04 351 9000.13 238.55 32.04
Cd5-6,4,15 200 N.A 9000.14 164.94 57.71 390 9000.7 221.03 43.33
Averages 9000.29 58.88 8854.65 33.39

Table 6: Direct solving of both formulations on instances with 15 OD demands
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ID Ψ UB CPUsec LB OG (%) ID Ψ UB CPUsec LB OG (%)
Ca1-2,3,5 100 280 84.48 280 0.00 Ca1-2,3,10 100 340 2632.89 340 0.00
Ca1-3,5,5 100 222 240.83 222 0.00 Ca1-3,5,10 100 311 2665.06 311 0.00
Ca1-6,4,5 100 271 326.86 271 0.00 Ca1-6,4,10 100 333 2757.28 333 0.00
Ca2-2,3,5 100 152 259.12 152 0.00 Ca2-2,3,10 100 247 4610.19 247 0.00
Ca2-3,5,5 100 284 146.15 284 0.00 Ca2-3,5,10 100 340 2719.61 340 0.00
Ca2-6,4,5 100 219 145.68 219 0.00 Ca2-6,4,10 100 338 4683.19 338 0.00
Ca3-2,3,5 100 287 131.13 287 0.00 Ca3-2,3,10 100 344 2724.71 344 0.00
Ca3-3,5,5 100 220 112.50 220 0.00 Ca3-3,5,10 100 318 2981.32 318 0.00
Ca3-6,4,5 100 226 318.72 226 0.00 Ca3-6,4,10 100 307 2815.94 307 0.00
Ca4-2,3,5 100 358 338.31 358 0.00 Ca4-2,3,10 100 437 2262.91 437 0.00
Ca4-3,5,5 100 168 148.84 168 0.00 Ca4-3,5,10 100 308 2838.09 308 0.00
Ca4-6,4,5 100 239 314.10 239 0.00 Ca4-6,4,10 100 329 2320.93 329 0.00
Ca5-2,3,5 100 199 266.40 199 0.00 Ca5-2,3,10 100 434 2629.16 434 0.00
Ca5-3,5,5 100 186 248.09 186 0.00 Ca5-3,5,10 100 297 2260.71 297 0.00
Ca5-6,4,5 100 231 396.00 231 0.00 Ca5-6,4,10 100 339 3313.91 339 0.00
Cb1-2,3,5 100 152 374.55 152 0.00 Cb1-2,3,10 100 181 2027.53 181 0.00
Cb1-3,5,5 100 168 174.64 168 0.00 Cb1-3,5,10 100 281 6253.40 281 0.00
Cb1-6,4,5 100 305 161.17 305 0.00 Cb1-6,4,10 100 302 2480.83 302 0.00
Cb2-2,3,5 100 137 349.67 137 0.00 Cb2-2,3,10 100 223 2472.83 223 0.00
Cb2-3,5,5 100 154 207.78 154 0.00 Cb2-3,5,10 100 321 2996.65 321 0.00
Cb2-6,4,5 100 212 154.05 212 0.00 Cb2-6,4,10 100 253 3246.87 253 0.00
Cb3-2,3,5 100 332 82.09 332 0.00 Cb3-2,3,10 100 337 2323.08 337 0.00
Cb3-3,5,5 100 160 145.04 160 0.00 Cb3-3,5,10 100 318 3183.35 318 0.00
Cb3-6,4,5 100 273 348.96 273 0.00 Cb3-6,4,10 100 347 2892.64 347 0.00
Cb4-2,3,5 100 280 374.37 280 0.00 Cb4-2,3,10 100 331 2557.21 331 0.00
Cb4-3,5,5 100 142 211.63 142 0.00 Cb4-3,5,10 100 327 3793.88 327 0.00
Cb4-6,4,5 100 267 76.34 267 0.00 Cb4-6,4,10 100 433 4662.86 433 0.00
Cb5-2,3,5 100 129 163.68 129 0.00 Cb5-2,3,10 100 312 2941.38 312 0.00
Cb5-3,5,5 100 179 177.29 179 0.00 Cb5-3,5,10 100 301 4108.44 301 0.00
Cb5-6,4,5 100 272 293.33 272 0.00 Cb5-6,4,10 100 388 2948.55 388 0.00
Cc1-2,3,5 100 129 1680.53 128 0.78 Cc1-2,3,10 100 281 7045.98 281.00 0.00
Cc1-3,5,5 100 135 3017.01 134 0.74 Cc1-3,5,10 100 254 7115.80 252.00 0.79
Cc1-6,4,5 100 215 4611.40 214 0.47 Cc1-6,4,10 100 306 8154.46 304.00 0.65
Cc2-2,3,5 100 122 3103.75 121 0.82 Cc2-2,3,10 100 271 5205.04 269.00 0.74
Cc2-3,5,5 100 175 1826.48 174 0.57 Cc2-3,5,10 100 319 5704.49 317.00 0.63
Cc2-6,4,5 100 190 5372.75 189 0.53 Cc2-6,4,10 100 312 6928.43 310.00 0.64
Cc3-2,3,5 100 136 4375.43 135 0.74 Cc3-2,3,10 100 276 7236.21 274.00 0.72
Cc3-3,5,5 100 142 5571.93 141 0.70 Cc3-3,5,10 100 309 7442.47 307.00 0.65
Cc3-6,4,5 100 228 5797.59 227 0.44 Cc3-6,4,10 100 266 6100.56 265.00 0.38
Cc4-2,3,5 100 171 3868.22 170 0.58 Cc4-2,3,10 100 225 7142.61 223.00 0.89
Cc4-3,5,5 100 154 6169.20 153 0.65 Cc4-3,5,10 100 310 6011.60 309.00 0.32
Cc4-6,4,5 100 213 2283.80 212 0.47 Cc4-6,4,10 100 312 5794.55 310.00 0.64
Cc5-2,3,5 100 123 5796.96 122 0.81 Cc5-2,3,10 100 182 7180.07 181.00 0.55
Cc5-3,5,5 100 124 2007.81 123 0.81 Cc5-3,5,10 100 254 6752.82 253.00 0.39
Cc5-6,4,5 100 202 5759.53 201 0.50 Cc5-6,4,10 100 339 7379.21 337.00 0.59
Cd1-2,3,5 100 155 225.53 154 0.65 Cd1-2,3,10 100 282 4246.68 280.00 0.71
Cd1-3,5,5 100 170 188.82 169 0.59 Cd1-3,5,10 100 270 4882.50 269.23 0.29
Cd1-6,4,5 100 254 274.39 253 0.39 Cd1-6,4,10 100 380 4894.86 377.00 0.79
Cd2-2,3,5 100 140 230.87 139 0.71 Cd2-2,3,10 100 273 5569.29 271.00 0.73
Cd2-3,5,5 100 158 342.02 157 0.63 Cd2-3,5,10 100 317 7149.74 316.00 0.32
Cd2-6,4,5 100 210 184.80 209 0.48 Cd2-6,4,10 100 350 6953.20 347.00 0.86
Cd3-2,3,5 100 142 330.62 141 0.70 Cd3-2,3,10 100 273 5185.51 273 0.00
Cd3-3,5,5 100 147 360.91 146 0.68 Cd3-3,5,10 100 300 5367.44 297.00 1.00
Cd3-6,4,5 100 231 305.07 230 0.43 Cd3-6,4,10 100 272 6742.48 270.00 0.74
Cd4-2,3,5 100 202 309.09 201 0.50 Cd4-2,3,10 100 257 6361.45 257 0.00
Cd4-3,5,5 100 162 133.25 161 0.62 Cd4-3,5,10 100 324 7290.98 322.00 0.62
Cd4-6,4,5 100 222 355.73 221 0.45 Cd4-6,4,10 100 266 5421.55 266.00 0.00
Cd5-2,3,5 100 178 125.49 177 0.56 Cd5-2,3,10 100 300 6669.32 300 0.00
Cd5-3,5,5 100 178 90.38 177 0.56 Cd5-3,5,10 100 290 4087.47 289.00 0.34
Cd5-6,4,5 100 228 323.12 227 0.44 Cd5-6,4,10 100 339 6344.08 337.00 0.59
Averages 1196.57 0.30 Averages 4901.96 4.76

Table 7: DDD results on instances with 5 and 10 OD demands
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ID Ψ UB CPUsec LB OG (%) ID Ψ UB CPUsec LB OG (%)
Ca1-2,3,5 100 171 339.59 171 0.00 Ca1-2,3,10 100 340 3077.29 340 0.00
Ca1-3,5,5 100 185 417.31 185 0.00 Ca1-3,5,10 100 290 2054.96 290 0.00
Ca1-6,4,5 100 194 316.68 194 0.00 Ca1-6,4,10 100 313 4572.98 313 0.00
Ca2-2,3,5 100 136 333.80 136 0.00 Ca2-2,3,10 100 247 4920.98 247 0.00
Ca2-3,5,5 100 199 417.76 199 0.00 Ca2-3,5,10 100 340 2644.54 340 0.00
Ca2-6,4,5 100 219 478.67 219.00 0.00 Ca2-6,4,10 100 338 4982.71 338 0.00
Ca3-2,3,5 100 287 456.24 287.00 0.00 Ca3-2,3,10 100 344 5257.40 344 0.00
Ca3-3,5,5 100 198 160.01 198.00 0.00 Ca3-3,5,10 100 299 3220.29 299 0.00
Ca3-6,4,5 100 226 237.57 226.00 0.00 Ca3-6,4,10 100 289 3087.53 289 0.00
Ca4-2,3,5 100 197 292.89 197.00 0.00 Ca4-2,3,10 100 306 5380.30 306 0.00
Ca4-3,5,5 100 150 474.32 150.00 0.00 Ca4-3,5,10 100 308 2055.86 308 0.00
Ca4-6,4,5 100 236 305.21 236.00 0.00 Ca4-6,4,10 100 317 3520.54 317 0.00
Ca5-2,3,5 100 185 440.84 185.00 0.00 Ca5-2,3,10 100 422 3701.48 422 0.00
Ca5-3,5,5 100 141 215.40 141.00 0.00 Ca5-3,5,10 100 296 4681.03 296 0.00
Ca5-6,4,5 100 231 437.18 231.00 0.00 Ca5-6,4,10 100 339 3774.23 339 0.00
Cb1-2,3,5 100 139 393.61 139.00 0.00 Cb1-2,3,10 100 181 2055.20 181 0.00
Cb1-3,5,5 100 147 181.29 147.00 0.00 Cb1-3,5,10 100 281 4634.56 281 0.00
Cb1-6,4,5 100 257 395.55 257.00 0.00 Cb1-6,4,10 100 302 2370.37 302 0.00
Cb2-2,3,5 100 137 131.13 137.00 0.00 Cb2-2,3,10 100 199 2891.89 199 0.00
Cb2-3,5,5 100 152 231.99 152.00 0.00 Cb2-3,5,10 100 321 5075.24 321 0.00
Cb2-6,4,5 100 212 111.85 212.00 0.00 Cb2-6,4,10 100 253 2395.87 253 0.00
Cb3-2,3,5 100 332 234.12 332.00 0.00 Cb3-2,3,10 100 337 4405.89 337 0.00
Cb3-3,5,5 100 133 296.53 133.00 0.00 Cb3-3,5,10 100 300 3001.60 300 0.00
Cb3-6,4,5 100 273 375.23 273.00 0.00 Cb3-6,4,10 100 331 5357.60 331 0.00
Cb4-2,3,5 100 280 179.89 280.00 0.00 Cb4-2,3,10 100 315 3547.27 315 0.00
Cb4-3,5,5 100 135 227.81 135.00 0.00 Cb4-3,5,10 100 327 4925.07 327 0.00
Cb4-6,4,5 100 265 262.36 265.00 0.00 Cb4-6,4,10 100 424 3333.37 424 0.00
Cb5-2,3,5 100 129 161.27 129.00 0.00 Cb5-2,3,10 100 306 2460.66 306 0.00
Cb5-3,5,5 100 146 384.40 146.00 0.00 Cb5-3,5,10 100 270 2625.74 270 0.00
Cb5-6,4,5 100 272 449.97 272.00 0.00 Cb5-6,4,10 100 296 2339.10 296 0.00
Cc1-2,3,5 100 129 3573.50 128.00 0.78 Cc1-2,3,10 100 281 6381.30 280.00 0.36
Cc1-3,5,5 100 135 4862.27 134.00 0.74 Cc1-3,5,10 100 252 6759.99 250.00 0.79
Cc1-6,4,5 100 215 2849.92 214.00 0.47 Cc1-6,4,10 100 304 5704.65 304.00 0.00
Cc2-2,3,5 100 122 3629.07 121.00 0.82 Cc2-2,3,10 100 268 4957.86 266.00 0.75
Cc2-3,5,5 100 175 3268.61 174.00 0.57 Cc2-3,5,10 100 319 5764.52 317.00 0.63
Cc2-6,4,5 100 190 3462.29 189.00 0.53 Cc2-6,4,10 100 312 7214.03 310.00 0.64
Cc3-2,3,5 100 136 4988.50 135.00 0.74 Cc3-2,3,10 100 275 4953.59 275 0.00
Cc3-3,5,5 100 142 4346.75 141.00 0.70 Cc3-3,5,10 100 309 5004.70 307 0.65
Cc3-6,4,5 100 228 5020.70 227.00 0.44 Cc3-6,4,10 100 266 6660.94 264 0.75
Cc4-2,3,5 100 171 5366.22 170.00 0.58 Cc4-2,3,10 100 225 4629.25 225 0.00
Cc4-3,5,5 100 154 3354.18 153.00 0.65 Cc4-3,5,10 100 309 4646.84 307 0.65
Cc4-6,4,5 100 213 3881.94 212.00 0.47 Cc4-6,4,10 100 311 5418.83 309 0.64
Cc5-2,3,5 100 123 4075.29 122.00 0.81 Cc5-2,3,10 100 182 5004.48 181 0.55
Cc5-3,5,5 100 124 5136.12 123.00 0.81 Cc5-3,5,10 100 254 4982.86 252 0.79
Cc5-6,4,5 100 202 4561.48 201.00 0.50 Cc5-6,4,10 100 331 6250.35 329 0.60
Cd1-2,3,5 100 155 2981.80 154.00 0.65 Cd1-2,3,10 100 287 6241.41 271.00 5.57
Cd1-3,5,5 100 170 4250.96 169.00 0.59 Cd1-3,5,10 100 297 5491.05 295 0.67
Cd1-6,4,5 100 254 3723.68 253.00 0.39 Cd1-6,4,10 100 401 6966.86 399 0.50
Cd2-2,3,5 100 140 4352.56 139.00 0.71 Cd2-2,3,10 100 273 5075.12 271 0.73
Cd2-3,5,5 100 158 3313.12 157.00 0.63 Cd2-3,5,10 100 317 5590.91 315 0.63
Cd2-6,4,5 100 210 2131.37 209.00 0.48 Cd2-6,4,10 100 365 6256.97 363 0.55
Cd3-2,3,5 100 142 2044.07 141.00 0.70 Cd3-2,3,10 100 273 5850.61 271 0.73
Cd3-3,5,5 100 147 3034.68 146.00 0.68 Cd3-3,5,10 100 305 6275.87 303 0.66
Cd3-6,4,5 100 231 4773.71 230.00 0.43 Cd3-6,4,10 100 272 4567.17 270 0.74
Cd4-2,3,5 100 202 2931.52 201.00 0.50 Cd4-2,3,10 100 243 5921.58 241 0.82
Cd4-3,5,5 100 162 2753.56 161.00 0.62 Cd4-3,5,10 100 324 6062.00 322 0.62
Cd4-6,4,5 100 222 5275.05 221.00 0.45 Cd4-6,4,10 100 266 6602.67 264 0.75
Cd5-2,3,5 100 178 3359.22 177.00 0.56 Cd5-2,3,10 100 300 7086.39 298 0.67
Cd5-3,5,5 100 178 4586.33 177.00 0.56 Cd5-3,5,10 100 301 4311.83 299 0.66
Cd5-6,4,5 100 228 3060.29 227.00 0.44 Cd5-6,4,10 100 339 7350.65 337 0.59
Averages 1196.57 0.30 Averages 4901.96 4.76

Table 8: Results of the DDD on instances with 5 and 10 OD demands.
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