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1 Introduction

Vehicle routing and items-loading are considered as two basic elements for logistics. Making
decisions on either of them usually means dealing with NP-hard problems. Nevertheless, the
appealing improvement on operational performance (Côté et al. 2017) has motivated many
researchers to jointly solve the two problems. A representative integration in this field is the
capacitated vehicle routing problem with two-dimensional loading constraints, denoted as 2L-
CVRP, which was proposed and addressed by Iori et al. (2007) for the first time. It can be
briefly described as follows: given a homogeneous fleet of vehicles and a set of customers with
rectangular items to transport, find routes with minimal total traveling distance for the fleet to
fulfill the customers such that items associated with a route should be packed in a vehicle while
respecting the loading constraints specified by a set of restrictions. Different settings of the
loading constraints lead to different versions of the 2L-CVRP. Fuellerer et al. (2009) proposed
a taxonomy of the problem. We use the notation “2|α|L”, where α specifies the restrictions, to
denote a problem while 2L-CVRP represents the problem family.

The parameter α generally specifies two aspects: 1) item orientation; 2) rear loading. The
former determines if an item can be rotated or not. In practice, such rotation is not allowed in
some cases such as pallets unloaded by forklifts while, in other cases, the restriction is relaxed.
The latter imposes the loading sequence to be compatible with the visiting order of customers.
In other words, when serving a customer, one does not need to rearrange items belonging to
later customers. Such restriction is also called the last-in-first-out (LIFO) constraint. Different
settings of α yield four variants of the 2L-CVRP.

• 2|RO|L: rear-loading and oriented items;

• 2|UO|L: unrestricted loading and oriented items;

• 2|RN |L: rear-loading and non-oriented items;

• 2|UN |L: unrestricted loading and non-oriented items.

Over the past decade, a number of papers have worked on the 2L-CVRP and its variants
(Pollaris et al. 2015). There are mainly two research streams: 1) developing algorithms for the
2L-CVRP; 2) addressing the practical variants. Our study is in the former stream, focusing on
methodology. According to Pollaris et al. (2015), the vast majority of the algorithms developed
for the 2L-CVRP are heuristics. To the best of our knowledge, only four studies are related to
exact algorithms for the 2L-CVRP (Iori et al. 2007, Hokama et al. 2016, Pinto et al. 2016, Côté
et al. 2020). The method presented in Côté et al. (2020) outperforms all the previous exact
algorithms but there is a shortage of experiments and analysis on the algorithm, because it is
only a minor contribution in their work. Our study not only aims at developing a better exact
algorithm for the 2L-CVRP, but also providing more extensive experiments and analysis on the
proposed exact algorithm. In particular, we concentrate on 2|RO|L. The main contribution of
the article is five-fold.

1. A separation algorithm is proposed to identify infeasible set inequalities as well as weak
capacity inequalities for fractional solutions;

2. A heuristic is developed to lift the infeasible-path inequality, strengthening the linear
relaxation;

3. A B&C algorithm is developed based on the above two contributions, integrating classic
CVRP valid inequalities and a strong-branching-like strategy;

4. Extensive computational experiments are carried out to perform a more complete analysis
compared to Côté et al. (2020);
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5. New best lower bounds and upper bounds are provided and 6 open instances are closed.

The remainder of the paper is organized as follows. Section 2 reviews the related works,
especially exact algorithms for the 2L-CVRP. Section 3 presents the main problem and the math-
ematical formulation. Section 4 introduces the separation problem and the valid inequalities.
Section 5 presents the separation routines and the lifting heuristic. Section 6 describes other
elements of the branch-and-cut algorithm. Section 7 reports the computational experiments
and the analyses. Section 8 gives conclusions and future research directions.

2 Literature review

In this section, we first review relevant problems over the past five years. Secondly, existing
algorithms for the 2L-CVRP are surveyed.

2.1 Relevant problems

Iori et al. (2007) is the first study to address the 2L-CVRP, specifically on 2|RO|L. Gendreau
et al. (2008) later on investigated both 2|RO|L and 2|UO|L. Besides 2|RO|L and 2|UO|L,
two other two versions of the 2L-CVRP were then considered in Fuellerer et al. (2009). Real-
life constraints were added to the 2L-CVRP to model practical problems in further studies.
Since there is a thorough survey (Pollaris et al. 2015) on the literature before 2015, we merely
review related problems that appeared during 2015 - 2020. Note that all the following problems
reviewed are solved heuristically if not specified.

Dominguez et al. (2016b) studied 2|UO|L and 2|UN |L with a heterogeneous fleet motivated
by a practical case from the construction industry. Dominguez et al. (2016a) worked on a
2|RN |L with cluster backhauls, where delivery and pick-up services are both considered. Along
a route, the vehicle has to serve delivery points first and visit pick-up points later. Originating
from the same company, Guimarans et al. (2018) addressed a 2|UN |L with stochastic travel
times and penalty cost due to overtime. Alinaghian et al. (2017) considered time-dependent
traveling time for 2|UO|L and optimized two objectives: total traveling distance and maximal
weight load on vehicles. Zachariadis et al. (2017) introduced a variant of the 2L-CVRP in which
vehicles can serve pick-up and delivery customers simultaneously rather than separately. The
setting arises in reverse logistics of grocery store chains, where products need to be shipped from
warehouse to various store locations while empty pallets and roll cages have to be collected.
Annouch et al. (2016) studied a practical problem encountered in the natural gas industry. The
operational background is transporting gas cylinders between filling stations and a set of client
deposits. The problem has rich features including a heterogeneous fleet, time windows, multi-
depot, and split delivery. Song et al. (2019) solved a problem from the food industry. Delivery
is performed in the multi-compartment fashion because the loading area of a vehicle is split
into parts that can carry multiple types of goods including shelf-stable, chilled, frozen food,
vegetables & fruit, and kitchen-cleaning chemicals. Time window constraints are also involved
due to the short shelf life of some food. Very recently, Côté et al. (2020) studied a 2|RO|L
with stochastic items. That is to say, the width and the height of an item is not known until
it is loaded. According to the paper, this problem was motivated by a practical application
involving retailers of large appliances. The problem is solved by an exact L-shaped method.

Based on the above review, it can be observed that the 2L-CVRP and its variants are widely
encountered in practice and solved heuristically. For this reason, it calls for more algorithmic
explorations on the basic version i.e., the 2L-CVRP, hoping that better algorithms can be
developed to solve the problems.
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2.2 Development of algorithms

Iori et al. (2007) proposed the first exact algorithm for the 2L-CVRP. They adapted the clas-
sic two-index formulation of the CVRP and solved the problem by a B&C algorithm nested
with a novel exact packing algorithm. The classic rounded capacity inequality with a modified
right-hand-side is separated. When an integer solution is found, they invoke the exact packing
procedure to perform the feasibility check. If the solution is feasible, then it is accepted as a
candidate for the best global primal bound, otherwise a cut is added to eliminate the solution
from the feasible region. A heuristic algorithm is also embedded in the B&C algorithm to iden-
tify upper bounds during the tree search. They created a set of benchmark instances for testing.
On the test bed, the B&C algorithm can solve instances with up to 35 customers and 114 items.
Hokama et al. (2016) proposed a new packing algorithm based on constraint programming tech-
niques and added valid inequalities for the CVRP to improve the branch-and-cut algorithm from
Iori et al. (2007). They achieved a substantial reduction on the CPU time required to reach
optimal solutions or best-known solutions. Pinto et al. (2016) formulate 2|RO|L as a set parti-
tioning model, which is solved by a column generation approach. The resulting pricing problem
is an elementary shortest path problem with resource constraints and two-dimensional loading
constraints. No exact dominance rule was found, so the entire algorithm runs in a heuristic
fashion. To address the pricing problem, they proposed a variable neighborhood search. When
a set of columns are priced out, a packing heuristic is invoked to check their feasibility. If a
column is infeasible, a repairing mechanism is triggered. The repairing process for a column
is terminated once the reduced cost of the column becomes non-negative. A branch-and-price
algorithm was developed based on the column generation procedure. The authors observed
that for small size instances, the branch-and-price algorithm is able to improve the initial up-
per bound very quickly, but finding an integer solution over a larger network (50 customers or
more) is not trivial. Very recently, Côté et al. (2020) developed a branch-and-cut algorithm
that solved many instances to optimality for the first time and significantly reduced CPU times.
The breakthrough is attributed to a packing algorithm proposed earlier (Côté et al. 2014b) and
a new family of valid inequalities. The algorithm is the state-of-the-art exact algorithm for
2|RO|L.

As for meta-heuristics, there is a larger body of literature. Gendreau et al. (2008) proposed a
Tabu search heuristic nested with packing heuristics and an exact packing algorithm for 2|RO|L
and 2|UO|L. The heuristic found the optimal solutions for most of the closed instances and
identified feasible solutions for all the benchmark instances. Zachariadis et al. (2009), Leung
et al. (2011) enhanced two different Tabu search heuristics, respectively, by hybridizing guided
local search for the same problems. Fuellerer et al. (2009) employed an ant colony optimization
algorithm for the four variants of the 2L-CVRP. To deal with the same problems, Wei et al.
(2018) designed a simulated annealing heuristic based on a random local search packing heuris-
tic and a new data structure for tracking checked routes. The algorithm can achieve best known
solutions for most of the benchmark instances.

The 2L-CVRP has also encouraged studies on relevant packing algorithms. Checking if
a route satisfies the two-dimensional loading constraints (for 2|RO|L) is equivalent to solving
a two-dimensional orthogonal packing problem with LIFO constraints (denoted as 2OPPL).
The problem is strongly NP-hard. Most studies regarding 2OPPL are conducted under the
background of vehicle routing. Heuristics for 2OPPL are usually based on the corresponding
algorithms for 2OPP or strip packing problem (SPP) by considering visiting order (Gendreau
et al. 2008, Leung et al. 2011, Wei et al. 2015). As for exact algorithms, Iori et al. (2007)
proposed a branch-and-bound algorithm based on the algorithm from Martello et al. (2003).
A branch-and-cut algorithm was developed by Côté et al. (2014b). The algorithm enumerates
solutions for the one-dimensional contiguous bin packing problem, based on which an x-check
procedure (Boschetti and Montaletti 2010) is performed to search a solution for the original
problem. To our knowledge, this is by far the best exact algorithm for 2OPPL.
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We are also aware of studies on three-dimensional loading constraints (Gendreau et al.
2006, Mahvash et al. 2017, Zhang et al. 2015), but these are not related to our study except
Mahvash et al. (2017) who developed a column generation heuristic to deal with a VRP with
three-dimensional loading constraints. Although the algorithm is not an exact one, their compu-
tational results illustrate that the heuristic can improve the best-known solutions for a number
of benchmark instances.

3 Problem formulation

In this section, the formal description of 2|RO|L and a mixed integer linear programming model
are presented.

3.1 Problem description

Let G = (V,E) be an undirected graph, where V is the set of nodes (0, 1, 2, ..., n) with node
0 representing the depot. Vc = (1, 2, ..., n) denotes the set of customers. E is the set of
edges linking nodes, with ce denoting the traveling cost of edge e, ∀e ∈ E. An alternative
representation of an edge is (i, j), i, j ∈ V . A set of homogeneous vehicles K is ready at the
depot. Any vehicle k ∈ K has a loading surface whose length and width equal H and W ,
respectively. Thus, the total area of the loading surface is equal to A = H ×W . Each vehicle
also has a weight capacity D.

Associated with each customer i ∈ Vc, there is a set of rectangular items Mi to be delivered
to i. Each item m in set Mi has a specific width wim, length him and weight dim. We also
respectively use ai and di to denote the total area and total weights of items of customer i,
where ai =

∑
m∈Mi

wimhim and di =
∑

m∈Mi
dim. The number of items is the cardinality of set

Mi. It is assumed that all the above input data are positive integers. The problem is to plan a
route for each vehicle in fleet K to satisfy the demands of all customers such that the following
constraints are respected:

1. Each customer must be visited exactly once by a single vehicle.

2. The total weight of the carried items must not exceed the weight capacity.

3. The items transported in a vehicle must not exceed the loading area.

4. Items must be positioned without being overlapped.

5. Items are not allowed to be rotated.

6. When unloading an item, items of customers served later cannot be moved (the LIFO
constraint).

We also consider two conventions used in most articles on the 2L-CVRP: any route serving
a single customer is forbidden and the number of used vehicles equals the fleet size (Iori et al.
2007, Côté et al. 2020).

3.2 The two-index formulation

Given a node i ∈ V , δ(i) denotes the set of edges incident to it. Given S ⊂ Vc, δ(S) denotes the
edges with only one endpoint in S. Let (S, σ) be the route defined by visiting the nodes of set
S in order σ. We denote by E(S, σ) the set of edges in route (S, σ). We denote by Σ(S) the set
of feasible sequences for set S. Let xe be a binary variable for each e ∈ E where xe = 1 if edge
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e is traversed by one of the vehicles and xe = 0 otherwise. We can then formulate the problem
as follows.

[P ] min
∑
e∈E

cexe (1)

s.t. ∑
e∈δ(i)

xe = 2, ∀i ∈ Vc (2)

∑
e∈δ(0)

xe = 2|K| (3)

∑
e∈δ(S)

xe ≥ 2r(S), ∀S ⊆ Vc, |S| ≥ 2 (4)

∑
e∈E(S,σ)

xe ≤ |S| − 1, ∀(S, σ) such that σ /∈ Σ(S) (5)

xe ∈ {0, 1}, ∀e ∈ E (6)

Function (1) indicates that the objective is to minimize the total traveling distance. Con-
straint sets (2) and (3) indicate the degree on each node. Constraint set (4) is the classic rounded

capacity inequality (RCI). Here r(S) = max{d
∑

i∈S di
D e, d

∑
i∈S ai
A e} accounts for the loading area

in addition to what is defined for the CVRP (Lysgaard et al. 2004). It is trivial to see that r(S)
is a valid lower bound on the number of vehicles required to serve customers in S. Constraint
set (5) imposes the well-known infeasible-path inequalities. Constraint sets (4) and (5) are in
exponential number, so the constraints are generated iteratively. In principle, once an infeasible
path is identified, it implies the infeasibility of a group of paths. For example, if an infeasible
route 2→ 1→ 3 is identified, in theory, one could remove all the routes visiting nodes 2, 1, 3 in
that order but not necessarily contiguously, e.g. 5→ 2→ 4→ 1→ 6→ 3. This calls for adding
an exponential number of cuts. However, there is little chance for such a cut to support the
convex hull of integer solutions. Therefore, we only eliminate the identified path. Constraint
set (6) imposes the integrality of the decision variables.

4 Valid inequalities

In this section, we introduce several valid inequalities to strengthen the model (2) - (6).

4.1 Weak capacity inequalities (WCI)

WCI share the same left-hand-side with RCI, but have a tighter right-hand-side that amounts
to the minimal number of bins (k(S)) to contain items associated with set S. For a given set
S ⊂ V \ {0}, |S| ≥ 2, a WCI is defined as:∑

e∈δ(S)

xe ≥ 2k(S) (7)

The validity of WCI is trivially established.
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Figure 1: An example of violating ISI

4.2 Infeasible set inequalities (ISI)

For any set of customers S ∈ Vc, the following ISI (8) can be added to formulation P if items
associated with S cannot be packed into a vehicle without consideration of the LIFO constraint.∑

e∈δ(S)

xe ≥ 2r′(S), (8)

r′(S) =

{
1 S is feasible

2 S is infeasible

ISI essentially says that if a set of customers’ items cannot be packed in a single vehicle,
there must be at least two vehicles serving the set. If one vehicle can load the items, the
inequalities becomes the well-known sub-tour elimination constraints. Figure (1) provides an
example where an ISI is identified for an integer solution. In the figure, there is a route a→ b→ c
(or c→ b→ a), determined by the integer solution. As indicated by the flow, one vehicle serves
the route. However, there is no feasible solution for one vehicle (in yellow) to pack the items (in
grey). Adding a ISI thus eliminates the solution without losing any feasible integer solution.

Note that ISI can also be easily generalized to the two-dimensional version of WCI where
k(S) is calculated by solving a two-dimensional bin packing problem (BPP). This generalized
version has been mentioned in the seminal paper of Iori et al. (2007). Due to high computational
complexity, the generalization is not applied in our study.

4.3 Strengthened infeasible-path inequalities

For an infeasible path (S, σ) that traverses vertices vσ1 , ..., vσp in order, if another infeasible path
(S′, σ′), S′ = S \ {vσp}, is derived by removing vσp from the rear and keeping the sequence of
the remaining customers, the following strengthened infeasible-path inequality which dominates∑

e∈E(S,σ) xe ≤ |S| − 1 can be added. ∑
e∈E(S′,σ′)

xe ≤ |S′| − 1 (9)

4.4 Classic CVRP valid inequalities

Comb inequalities, framed capacity inequalities, (partial) multistar inequalities, generalized
multi-star inequalities and hypotour inequalities (Lysgaard et al. 2004) are also valid for model
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P. After some preliminary experiments, we chose to add comb inequalities and (partial) multistar
inequalities for the reason that the efforts spent on separating the other inequalities outweigh
the derived tightness.

5 Separation heuristics

5.1 Separating ISI for integer solutions

Separating ISI for integer solutions is equivalent to calculating r′(S) because a route is easily
identified. In the literature, there are some good bounding techniques for the SPP that can be
applied to calculate r′(S). The SPP can be roughly described as: given a set of rectangular
items and a strip with fixed width, pack all the items with fixed orientation with minimal total
height (Martello et al. 2003). That is to say, given a set of customers S and a strip with width
W , if the minimal height needed to pack all of their items is h, we can safely have r′(S) = d hH e.
We adopt most of the bounds of Côté et al. (2020) as follows except the trivial continuous bound
because the capacity inequality (4) renders it redundant:

LB1(S) = d
max{LBMdff (S), L8(S)}

H
e,

where LBMdff (S), proposed by Boschetti and Montaletti (2010), is a lower bound based on the
dual feasible function (Johnson 1973) and L8(S) is a constructive heuristic proposed by Alvarez-
Valdés et al. (2009), transforming an instance in such a way that if the transformed instance
cannot fit into a bin with a given lower bound of the height, then the original instance cannot
fit, neither, so the lower bound is increased by 1.

LB2(S) = dL4(S)

H
e,

where L4(S) is calculated by solving (by column generation) the linear relaxation of the non-
contiguous bin packing problem.

LB3(S) = dL5(S)

H
e,

where L5(S) is obtained by solving the corresponding parallel processor scheduling problem
with contiguity constraints (relaxation by cutting an item into slices in unit width and the
original height (Côté et al. 2014a).

Besides the above lower bounds, an exact algorithm for the 2OPP is also used in our study.
The state-of-the-art exact algorithm for the 2OPP was proposed by Côté et al. (2014a); it is
composed of a fast branch-and-bound algorithm and a branch-and-cut algorithm. The fast
branch-and-bound algorithm is chosen as the exact algorithm for our study because it is more
efficient to solve small- and mid-size instances as the ones that we encountered in 2|RO|L. We
denote by B&B the branch-and-bound algorithm. The resulting separation routine is described
by Algorithm 1.
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Algorithm 1 Routine of separating ISI for integer solutions

1: Given an integer solution x′

2: Identify the set of routes P
3: for p ∈ P do
4: Derive the set of items S associated with p
5: if max{LB1(S),LB2(S),LB3(S)} == 2 then
6: Go To Add an ISI
7: Invoke B&B to calculate r′(S)
8: if r′(S) == 2 then
9: Go To Add an ISI

10: Add an ISI:
11: Add inequality: x(δ(S)) ≥ 4

5.2 Separating WCI and SI for fractional nodes

Identifying an inequality cut for a fractional node is much more difficult than for an integer node
since there is an exponential number of routes induced by the solution. We develop a separation
routine by combining the well-known Karger’s contraction algorithm with the aforementioned
lower bounds and B&B:

Given an instance and a fractional solution x∗ satisfying Eqs (2, 3, 4), find an inequality
(8) violated by x∗ or prove that none exists. A support graph associated with x∗ is defined
as G∗ = (V,E∗) where E∗ = {e ∈ E|x∗e > 0}. Separating an ISI corresponds to finding a set
S ⊂ V such that r′(S) = 2 and 2 ≤ x∗(δ(S)) < 4 on G∗.

Let zij be a binary variable such that zij = 1 if edge (i, j) ∈ δ(S), zij = 0 otherwise. Let
yi be a binary variable such that yi = 1 if customer i ∈ S, yi = 0 otherwise. The separation
problem can be formulated as the following feasibility problem:

2 ≤
∑

(i,j)∈E∗
zijx

∗
ij < 4, (10)

yi = 1, yj = 0 or yi = 0, yj = 1⇐⇒ zij = 1,∀i ∈ V, j ∈ V, i 6= j, (i, j) ∈ V (11)∑
i∈V

yi ≥ 2 (12)∑
i∈V

yi ≤ |V | − 2 (13)

r′(S) = 2,where S = {i ∈ V |yi = 1} (14)

zij , yi ∈ {0, 1},∀i ∈ V, j ∈ V (15)

Constraint (10) restricts the total amount of flow entering the selected customers to be in the
range [2, 4). Constraint set (11) imposes the relation between the binary variables. Constraints
(12) and (13) restrict the cardinality of the set. Constraint set (14) imposes that the items
associated with the set cannot be packed in a single vehicle. A solution that satisfies the system
(10) - (14) identifies an ISI.

We solve the system (10) - (14) as a variant of the global minimum cut problem (Karger
1993). Given the undirected graph G∗, we define a cut of the graph to be a partition of V ∗

into two non-empty sets A and B. The capacity of a cut (A,B) is the sum of weights of
edges with one end in A and the other in B. The cut with the minimum capacity is called
“global minimum cut”. It is easily seen that the minimum capacity for any support graph in
our case equals 2 since there exists no sub-tour after separating Eq. (4). We are interested in
the so-called α-minimum cut, i.e., a cut with a capacity within a multiplicative factor of α of
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the minimum capacity (Karger and Stein 1996). In our case, the minimum capacity is 2.0 and
α = 2.0, implied by (10).

We employ Karger’s contraction algorithm (Karger 1993) to obtain α-minimum cuts. Karger’s
contraction algorithm is very simple and efficient for the global minimum cut problem. The
“contraction” here indicates an operation that collapses an edge into a super-node (see Figure
2) while the degree of the super-node equals the total weights of edges incident to either of the
two contracted nodes. The non-recursive Karger’s contraction algorithm was first proposed in
Karger (1993); it just performs the contraction operation on a graph until only two super-nodes
plus one edge are left.

Figure 2: An example of contracting an edge

Because the algorithm randomly selects the edge to contract, its result is not deterministic.
Nevertheless, the odd of deriving the global minimum cut can be increased to nearly 1 by running
the algorithm in O(n2log(n)) times (n is the number of vertices). This approach was further
improved in Karger and Stein (1996) by recursion. The recursive contraction algorithm can be
easily generalized to the α-minimum cut problem that satisfies Theorem 1. Accordingly, we
can produce all the cuts satisfying Eq.(10) in polynomial time.

Theorem 1. All cuts that satisfy Eq.(10) can be generated in O(n4log2(n)) (see Karger and
Stein (1996), Theorem 8.5).

With all the cuts meeting Eq.(10), the remaining job is to check whether a cut satisfies (14)
by invoking the same routine to calculate r′(S) as for integer nodes. Based on the preliminary
experiments, however, in practice we choose the non-recursive contraction algorithm because
of its computational lightness. Considering the fact that calculating r′(S) is computationally
expensive, once a list of candidate sets is derived, the sets are sorted by non-decreasing value
of the corresponding capacity. We sweep over the list, and as soon as a violated ISI is found,
the separation routine is terminated.

For those sets violating Eq.(10), it is impossible to find a violated ISI. To make better use of
them, inspired by Krushinsky and Van Woensel (2015), we try to identify a weak capacity in-
equality where the right-hand-side (denoted as k′(S)) is calculated by solving a one-dimensional
BPP associated with weights of items. The BPP is strongly-NP hard, albeit it can be solved
quite efficiently in practice. We apply the algorithm from Martello (1990). The entire sepa-
ration routine for fractional nodes is presented in Algorithm 2, where Karger’s contraction
algorithm is invoked L times independently.

Note that the contraction algorithm naturally fits parallel computing. Therefore, we divide
L by five and invoke five independent threads to perform line 3 in Algorithm 2. This can
decrease the CPU time needed by the algorithm with no impact on its performance.
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Algorithm 2 Separation routine for fractional nodes

1: Initialize L;
2: Given a fractional solution x∗ and the corresponding support graph G∗;
3: Run the contraction algorithm on G∗ for L times and derive a list of sets S;
4: Sort S by non-decreasing value of capacity;
5: for S ∈ S do
6: if 2 ≤ x∗(δ(S)) < 4 then
7: Calculate r′(S) as in Algorithm 1;
8: if r′(S) == 2 then
9: Go to Add an ISI;

10: else
11: Calculate k′(S)
12: if x∗(δ(S)) < 2k′(S) then
13: Add inequality: x(δ(S)) ≥ 2k′(S);

14: Add an ISI:
15: Add inequality: x(δ(S)) ≥ 4

5.3 Separating infeasible-path inequalities

At an integer node, a set of routes are identified. On each route, we apply an exact algo-
rithm from Côté et al. (2014b) to check its feasibility regarding the two-dimensional loading
constraints. We referred to the packing algorithm as feasibility checker (FC). Once an infeasible-
path inequality is found, Algorithm 3 is invoked to lift it. One may be concerned that Al-
gorithm 3 slows down the entire process because the FC has to be called more intensively.
However, due to the efficiency of the checker, we have not found any negative effect resulting
from the lifting procedure.

Algorithm 3 An algorithm to lift an infeasible-path inequality

1: Given an infeasible route (S, σ);
2: while True do
3: Remove the last customer from (S, σ) and check the feasibility of (S, σ);
4: if (S, σ) is feasible then
5: Add the removed customer back to (S, σ);
6: Break the loop and return (S, σ)
7: else
8: Continue the loop

5.4 Separating the other valid inequalities

Because there is an exponential number of constraints (4) and constraints (5), we generate them
iteratively to ensure the feasibility as we solve an instance. For an integer solution, rounded
capacity inequalities and infeasible-path inequalities are trivially identifiable.

For a fractional solution, the separation is not performed for infeasible-path inequalities.
We apply the algorithms from Lysgaard et al. (2004) to separate rounded capacity inequalities,
comb inequalities, and (partial) multistar inequalities.
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6 The branch-and-cut algorithm

In this section, a branch-and-cut algorithm is presented based on the above valid inequalities
and the corresponding separation routines.

6.1 Separation strategy

An efficient branch-and-cut algorithm relies not only on good separation algorithms but also on
when to invoke them. We distinguish the root node and the other nodes.

At the root node, when the current solution is fractional, we first try to separate rounded
capacity inequalities. If this succeeds, we go to the next iteration. If not, the separation heuris-
tic for comb inequalities is called. When no comb inequality can be found, we run Algorithm 2
with L = 5000 to separate ISI. If no ISI is found, the (partial) multi-star inequalities separation
is finally called. When the current solution is integer, a sweep over the corresponding routes is
performed to identify violated rounded capacity inequalities, ISI, and infeasible-path inequali-
ties. There is a sequence of calls: rounded capacity inequalities are of the highest priority; if
the separation fails, Algorithm 1 is called for ISI; if the separation fails, perform a sweep over
the routes to check the feasibility regarding the two-dimensional loading constraints and try to
lift an infeasible-path inequality, if any, by Algorithm 3.

For the other nodes, the strategy is the same as for the root node except for the following:
when calling Algorithm 2, we set L in a hierarchical fashion with respect to the number of
nodes explored. Imagine that the enumeration tree has visited a great number of nodes and,
as a result, there are even more remaining nodes to explore. Then parameter L can have a
huge impact on the accumulated CPU time consumed by Algorithm 2. Therefore, we cannot
have a uniform L throughout the search. Based on the the preliminary results, we set L = 100
for the first 10, 000 nodes (if any). Afterwards, L is reduced by 20 every 10, 000 nodes until it
becomes 0 (this means after visiting 50, 000, the separation routine is disactivated).

6.2 Branching strategy

It is acknowledged that selecting the variable to branch on at each node in the enumeration
tree affects the speed of the branch-and-cut algorithm and tightness of the lower bounds. This
gives rise to a very hard problem – the variable selection problem, which tests each fractional
variable and determines which one to select based on some score. A typical scoring mechanism
is fully solving the resulting two sub-problems when a tentative variable is branched upon.
Others are less computationally intense (see details in Achterberg et al. (2005))). To balance
computational efforts and performance of selecting branching variables, we choose the Pseudo-
Shadow Prices strategy where the score of a variable depends on the dual variables associated
with each constraint at the current node (Land and Powell 1979). Note that the branching
strategy is crucial here in the sense that it determines the number of nodes to some extent and
consequently affects the CPU time of Algorithm 2.

6.3 Initial upper bound

A good upper bound allows to accelerate the search. We use the upper bounds from Côté et al.
(2020), which are obtained using an adaptive large neighborhood search algorithm.

7 Computational experiments and analyses

This section presents the computational experiments of the branch-and-cut algorithm on the
2L-CVRP benchmark instances from Iori et al. (2007).
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Table 1: Parameters associated with the benchmark instances

Vertical Homogeneous Horizontal
Instance family |Mi| him wim him wim him wim

1 1 1 1 1 1 1 1
2 [1,2] [4H/10, 9H/10] [W/10, 2W/10] [2H/10, 5H/10] [2W/10, 5W/10] [H/10, 2H/10] [4W/10, 9W/10]
3 [1,3] [3H/10, 8H/10] [W/10, 2W/10] [2H/10, 4H/10] [2W/10, 4W/10] [H/10,2H/10] [3W/10, 8W/10]
4 [1,4] [2H/10, 7H/10] [W/10, 2W/10] [H/10, 4H/10] [W/10, 4W/10] [H/10,2H/10] [2W/10, 7W/10]
5 [1,5] [H/10, 6H/10] [W/10, 2W/10] [H/10, 3H/10] [W/10, 3W/10] [H/10,2H/10] [W/10, 6W/10]

There are five families of instances (Table 1). The main characteristics distinguishing the
five families is the average size of items. Items are unit rectangles in the first family. The other
families are sorted by the decreasing order of the size: the second family has the largest items
while the fifth family has the smallest items. The benchmark instances were generated based
on some CVRP instances from the literature (Toth and Vigo 2002), ranging from 15 to 255
customers. Throughout the rest of the paper, we use **0x to denote instance family x. Several
groups of comparisons and analyses are conducted.

The entire branch-and-cut algorithm was implemented in C++ under the framework of
CPLEX 12.9 and the open source package CVRPSEP. We used the default CPLEX parameter
settings except for CPX PARAM V ARSEL = 4 specifying the branching strategy. The
program was compiled by MSVC 14.0 on Windows 10 operating system. All experiments
were carried out on a personal laptop with 8G Ram and Intel(R) Core(TM) i7-6700HQ CPU
(2.60GHz).

7.1 The newly-solved instances

We set 4 hours as the time limit and 7 gigabyte as the memory limit. In addition to proving
optimality for all the previously-solved instances, our B&C algorithm manages to prove the
optimality for 6 new instances as shown in Table 2. The first three columns indicates the name
of the instance, number of customers and number of items, respectively. UB gives the best
upper bound for an instance. LB gives the best lower bound. Time represents the CPU time
in seconds. Tree size gives the number of nodes explored by the algorithm.

Table 2: Results for newly-closed instances

Instance No C No I UB LB Time Tree size
1204 30 82 606 606 3031 21,768
1701 40 40 842 842 13876 65,374
1703 40 73 842 842 12409 49,853
1704 40 96 842 842 12542 51,977
1705 40 127 842 842 11592 50,564
1804 44 112 1113 1113 9541 27,700

7.2 Comparison of two algorithms for 2L-CVRP

We compare the proposed B&C algorithm with the state-of-the-art algorithm of Côté et al.
(2020). To make a fair comparison, we reproduced the algorithm with CPLEX 12.9 and reran
the experiments under the same computational settings.

Table 3 reports the comparison between the two algorithms on the newly-solved instances.
In the table, the meaning of the columns is consistent with Table 2. Column Gap indicates the
percentage gap between UB and LB. It can be observed that Côté’s B&C algorithm fails to
prove the optimality for instances 1701, 1703, 1704, 1705 within the time limit. For the other
instances, our B&C algorithm costs less CPU time and memory.
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Table 4: Comparison between two algorithms on hard instances

Instance No C No I
Côté’s B&C Our B&C

Dif-Gap
UB LB Gap Time Tree size UB LB Gap Time Tree size

1102 29 43 708.00 673.16 5.17% 8027 623,176 708.00 691.25 2.42% 8034 285,566 2.75%
1402 32 47 1241.00 1204.57 3.03% 7740 125,832 1241.00 1220.33 1.72% 8686 88,584 1.30%
1502 32 48 1101.00 1076.30 2.30% 9066 126,823 1101.00 1080.36 1.91% 8437 79,076 0.38%
1503 32 59 1174.00 1107.89 5.97% 7047 88,586 1174.00 1125.56 4.30% 7964 51,952 1.66%
1702 40 60 851.00 831.51 2.34% 14400 61,015 851.00 837.68 1.59% 14401 36,003 0.75%
1802 44 66 1044.00 991.43 5.30% 8269 102,746 1044.00 1005.00 3.88% 8229 79,684 1.42%
1803 44 87 1101.00 1054.10 4.45% 8987 113,372 1101.00 1060.86 3.78% 8260 87,461 0.67%
1902 50 82 776.00 722.69 7.38% 13935 62,903 776.00 732.60 5.93% 14400 57,430 1.45%
1903 50 103 782.00 739.84 5.70% 14400 50,733 782.00 748.60 4.46% 14400 43,876 1.24%
1904 50 134 797.00 778.42 2.39% 14400 95,330 794.00 781.00 1.66% 14259 62,984 0.72%
2002 71 104 559.00 475.40 17.59% 14401 25,000 559.00 477.12 17.16% 14400 12,944 0.42%
2003 71 151 539.00 496.52 8.56% 14400 31,475 539.00 495.93 8.69% 14400 21,845 -0.13%
2004 71 178 555.00 527.28 5.26% 14400 44,791 555.00 527.50 5.22% 14400 28,392 0.04%
2102 75 114 1079.00 900.77 19.79% 14400 13,810 1079.00 915.56 17.85% 14400 7,849 1.93%
2103 75 164 1168.00 1027.11 13.72% 14400 14,238 1168.00 1043.54 11.93% 14400 8,348 1.79%
2104 75 168 1038.00 982.92 5.60% 14400 24,050 1038.00 987.06 5.16% 14400 17,424 0.44%

Table 3: Comparison between the two algorithms on the newly-solved instances

Instance No C No I
Côté’s B&C Our B&C

UB LB Gap Time Tree size UB LB Gap Time Tree size
1204 30 82 606.00 606.00 0 2142 33,668 606.00 606.00 0 1970 21,796
1701 75 75 842.00 835.16 0.82% 14400 79,980 842.00 842.00 0 11809 53,409
1703 40 73 842.00 835.87 0.73% 14400 87,359 842.00 842.00 0 9128 50,315
1704 40 96 842.00 836.519 0.65% 14400 83,111 842.00 842.00 0 12542 51,977
1705 40 127 842.00 835.883 0.73% 14400 87,542 842.00 842.00 0 9898 49,646
1804 44 112 1113.00 1113.00 0 7357 114,343 1113.00 1113.00 0 4060 28,762

Table 4 illustrates the results on hard and open instances less than 75 customers because
the other instances are too large to tackle. The difficulty stems from two aspects: 1) the gaps
between the upper bounds and the lower bounds are still large despite of adding ISI; 2) the
resulting tree size is so large that for some instances the algorithm terminates before the time
limit due to being out of memory. Instance 2105 is excluded since the FC cannot solve the
majority of the packing problems. Column Dif-Gap reports the difference between the gaps of
the two algorithms. Among 16 instances, there is only one of them (instance 2003 ) on which
our algorithm performs worse. For the rest, our algorithm provides a lower bound on average
1.0% better and saves more than half of the tree size needed by the other algorithm. The
improvement relies on instance families **02 – 1.23%, **03 – 0.98%, **04 – 0.27%. Such
observation is in accordance with the fact that in general **02 tends to have more infeasible
routes in terms of the two-dimensional loading constraints because the continuous lower bound
has a relatively poor approximation. As a result, there are more ISI separated for the family,
leading to better improvement on the lower bound. In light of the newly-solved instances,
although family instance **02 benefits the most from ISI, it is still very hard to close the gap
for instances from this family. By contrast, the improvement for the other families are less on
average but turns out to be sufficient enough to reach optimality. Table 4 also illustrates that
for instances with more than 70 customers, the gap can be as large as more than 15%, which
implies the limit of both B&C algorithms.

7.3 Impact of the set inequalities

We aim to analyze the effectiveness of separating ISI for both fractional solutions and integer
solutions. Two algorithmic variants are created to this end. The first setting All Cuts represents
the full version where the separation is triggered for both integer and fractional solutions. The
second setting ISI Cuts Int corresponds to the version that merely separates infeasible set in-
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equalities for integer solutions. The last setting No ISI Cuts corresponds to the version without
ISI. The sixth column Dif-LB gives the relative percentage between the lower bounds of All Cuts
and ISI Cuts Int (the latter is the baseline). The next column Dif-M gives the relative difference
between the tree sizes. The last two columns give the relative difference between ISI Cuts Int
and No ISI Cuts (the latter is the baseline). To avoid memory-out, we set a time limit of 2000
seconds. One can see that ISI substantially tighten the lower bound. It is more evident for **02
and **03. The inequalities are also able to reduce the size of the tree. Separating the inequalities
for fractional solutions provides a better lower bound for 14 instances out of 16 with a smaller
tree, on average 0.30% higher lower bounds and 17.58% fewer nodes. The last two columns
indicate the impact of the inequalities separated for fractional solutions. On average, ISI for
integer solutions can strengthen the lower bound by 1.14% and decrease the tree size by 26.69%.

Table 5: Impact of the set inequalities

Instances
All Cuts ISI Cuts Int

Dif-LB Dif-M
No ISI Cuts

Dif-LB Dif-M
LB Tree size LB Tree size LB Tree size

1102 680.50 81,804 677.67 10,8470 0.42% -24.58% 656.90 18,0560 3.16% -39.93%
1402 1210.00 28,297 1207.07 32,328 0.24% -12.47% 1196.84 60,246 0.85% -46.34%
1502 1074.54 28,148 1072.67 33,746 0.17% -16.59% 1069.72 49,000 0.28% -31.13%
1503 1122.00 16,382 1110.85 17,920 1.00% -8.58% 1105.30 38,703 0.50% -53.70%
1702 829.32 8,508 828.42 9,153 0.11% -7.05% 823.91 14,128 0.55% -35.21%
1802 999.57 22,199 995.00 25,310 0.46% -12.29% 978.81 39,403 1.65% -35.77
1803 1055.41 26,459 1055.14 23,484 0.03% 12.67% 993.00 32,712 6.26% -28.21%
1902 725.18 11,622 720.17 12,809 0.70% -9.27% 712.88 18,955 1.02% -32.42%
1903 739.74 8,400 735.65 10,858 0.56% -22.64% 729.13 14,281 0.89% -23.97%
1904 772.64 10,690 771.69 12,648 0.12% -15.48% 765.56 18,727 0.79% -32.46%
2002 475.48 2,921 473.27 5,209 0.47% -43.92% 470.80 7,500 0.52% -30.55%
2003 494.82 4,621 494.83 6,745 0.00% -31.49% 494.78 6,979 0.01% -3.35%
2004 526.43 6,673 526.47 8,500 -0.01% -21.49% 526.30 11,059 0.03% -23.14%
2102 909.83 1,644 906.53 1,920 0.36% -14.38% 897.42 3,802 1.02% -49.50%
2103 1038.61 1,645 1032.26 2,418 0.62% -31.97% 1020.58 3,779 1.14% -36.01
2104 983.64 5,034 980.44 6,155 0.33% -18.21% 976.80 6,003 0.37% 2.53%

7.4 Impact of branching strategies

To analyze the impact of the branching strategy on our algorithm, we create a variant of the
B&C by setting the branching strategy as the default of CPLEX 12.9 MIP solver. We set 2000
seconds as the time limit to avoid memory out. The comparison is tested over the same open
instances as shown by Table 6. Column Default gives results of the default branching strat-
egy. Column PSP (Pseudo-Shadow Prices) gives the results of the chosen branching strategy.
Dif-LB presents the relative difference. Dif-M presents the relative difference of the tree sizes.
In terms of tightening the lower bound, the effort for performing the chosen branching strategy
pays off. The lower bound is 0.55% higher on average. Unlike separating ISI, the average of the
M-Gap is nearly zero.
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Table 6: Impact of the branching strategy

Instances
Default PSP

Dif-LB Dif-M

LB Tree size LB Tree size
1102 658.33 79,732 680.50 81,804 3.37% 2.60%
1402 1201.71 31,404 1210.00 28,297 0.69% -9.89%
1502 1068.81 31,306 1074.54 28,148 0.54% -10.09%
1503 1114.50 22,424 1122.00 16,382 0.67% -26.94%
1702 826.73 12,782 829.31 8,508 0.31% -33.44%
1802 992.66 28,090 999.57 22,199 0.70% -20.97%
1803 1046.33 20,676 1055.41 26,459 0.87% 27.97%
1902 721.96 11,283 725.18 11,622 0.45% 3.00%
1903 738.56 9,004 739.74 8,400 0.16% -6.71%
1904 768.20 10,769 772.64 10,690 0.58% -0.73%
2002 477.65 3,763 475.48 2,921 -0.46% -22.38%
2003 494.60 4,349 494.82 4,621 0.04% 6.25%
2004 525.56 5,995 526.43 6,673 0.17% 11.31%
2102 907.45 1,824 909.83 1,644 0.26% -9.87%
2103 1036.60 1,792 1038.61 1,645 0.19% -8.20%
2104 977.11 3,598 983.64 5,034 0.67% 39.91%
2105 964.41 4,688 965.20 6,616 0.08% 41.13%

7.5 Observation on the packing algorithms

The importance of the FC is self-evident. Over the past decade, there have been many studies
on developing efficient heuristics and exact algorithms for similar packing problems. A question
naturally rises: is the state-of-the-art exact packing algorithm good enough for the 2L-CVRP?

Based on the experiments, we think the FC is no longer a bottleneck. Over the course of
the B&C algorithm, the FC never fails for instance families **02, **03 and **04. The average
solution time on an instance from these families is very low as shown by Figure 3. A large
computational effort is only needed for family **05. Nevertheless, the computational effort
can be drastically reduced by having a good upper bound. Table 7 gives two typical examples.
Column Time on the FC gives the accumulated time spent on the FC throughout the algorithm.
When we set a better initial upper bound for both instances, one can see a sharp drop in total
time. The reason for the large amount of time is that the FC occasionally cannot solve a
packing problem to optimality within 1200 seconds (the time limit for the FC). But a majority
of these unsolved packing problems are associated with sub-optimal solutions. With a better
initial upper bound, the packing problems are avoided by the bounding mechanism of the B&C
algorithms. Since there are many powerful heuristics for 2L-CVRP in the literature, it can be
realistic to have a very good solution (even the optimum) at the very beginning.

Table 7: Solution time on two special instances

Instance UB LB Total time Time on the FC
1505 1336.00 1336.00 6999 6986
1505a 1336.00 1336.00 41 31
1805 937.00 937.00 5294 5219
1805a 937.00 937.00 133 84

a With a better initial upper bound
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Figure 3: The CPU time cost by the FC

Besides the FC, BB also plays a critical part in the B&C algorithm in the sense that it
determines the quality of the linear relaxation as well as it is invoked many times during a
search. The time limit for the BB is 2 seconds. If it fails to solve a packing problem within the
limit, we count it as one failure. The failure rate is a good indicator showing us if the algorithm
is efficient enough. Figure 4 presents the average failure rates to the four families. The figure is
in a ladder form which indicates that the risk of failure grows as the size of items decreases. But
the worst failure rate is relatively small, under 10.0%, so we believe that BB is not a bottleneck.

Although both the FC and BB perform the best for **02, the majority of the open instances
(with fewer than 75 customers) come from **02. This observation also supports the argument
that BB and the FC are no longer bottlenecks.

Figure 4: The average failure rates of BB
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8 Conclusions and future research

In this paper, we investigated the capacitated vehicle routing problem with two-dimensional
loading constraints. We proposed a separation routine to identify infeasible set inequalities
and weak capacity inequalities for fractional solutions. A lifting heuristic for infeasible-path
inequalities was also developed. Finally, a branch-and-cut algorithm was proposed to solve the
problem. We also reproduced the state-of-the-art algorithm and ran the same experiments with
it.

Computational results on the benchmark instances illustrate that the newly-introduced
inequalities can tighten the lower bound and reduce the tree size for the majority of the hard
instances. Six instances are solved to optimality for the first time. Among these instances, there
are: four instances exclusively solved by the proposed B&C algorithm; two instances solved
by the proposed algorithm and the reproduced algorithm. For hard instances, our algorithm
increases the lower bound by 1.0% on average and saves more than half of the tree size. The
impact of the chosen branching strategy was also analyzed. On hard instances, the strategy
pays off in terms of strengthening the lower bound, but there is no clear reduction on the tree
size. Afterwards, the impact of the ISI (infeasible set inequalities) is verified. Fractional ISI
strengthens the lower bounds by 0.30% and trims 17.58% nodes on average. Finally, analyses
are carried out for the packing algorithms. It seems that the packing algorithms are no longer
the biggest bottleneck as they were a decade ago. For one thing, they are not the bottleneck for
instances from the **02, **03 and **04 families with fewer than 75 customers, though better
packing algorithms can lessen the CPU time by a moderate amount. Interestingly, in light of the
fact that most open instances are from the **02 and **03 families, we think one needs to work
on something other than the packing algorithms to close these instances. This naturally brings
up a future direction which is to develop exact algorithms by applying the column generation
approach and cut generation together.
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