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Abstract. The vehicle routing problem with two-dimensional loading constraints (2L-CVRP) is a 

practical variant of the classic capacitated vehicle routing problem.  A number of algorithms have 

been developed for the problem, but it is very difficult for the existing exact methods to optimally 

solve instances featuring with large rectangular items.  To address this issue, a branch-and-price-

and-cut (BPC) algorithm is proposed in this study.  A novel data structure and a new dominance rule 

are developed to build an exact pricing algorithm which takes the loading constraints into account.  

Several valid inequalities are introduced to strengthen the linear re-laxation.  Extensive 

computational experiments were conducted on the bench mark instances of the 2L-CVRP, showing 

that the BPC algorithm outperforms all the existing exact methods for the problem in terms of the 

solution quality.  Fourteen instances are solved to optimality for the first time.  In particular, the size 

of solvable instances with large items is nearly doubled.  Moreover, managerial insights about the 

impact of respecting the last-in-first-out constraint are also obtained. 
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1 Introduction

The vehicle routing problem with two-dimensional loading constraints (2L-CVRP) is an exten-
sion of the classical capacitated vehicle routing problem (CVRP) in which vehicles transport
rectangular items characterized by length, width, and weight. The problem was introduced by
Iori et al. (2007) who solve it by a branch-and-cut (B&C) algorithm. Two-dimensional loading
constraints are mainly characterized by the orientation of items and a sequential restriction.
The orientation concerns whether an item can be rotated or not. For example, items that are
loaded by forklifts cannot be rotated. As for the sequential restriction, which is also called the
Last-In-First-Out (LIFO) or rear loading constraint, it specifies that items belonging to succes-
sive customers along a route are not allowed to be moved. Besides, other characteristics of the
loading constraints refer to non-overlapping loading and orthogonal loading, which respectively
mean that all the items loaded in a vehicle cannot be overlapped and that the four edges of a
loaded item should be parallel to the sides of the vehicle. Both constraints must be satisfied in
the context of the 2L-CVRP. Fuellerer et al. (2009) categorized the 2L-CVRP into four variants
based on different configurations of the loading constraints.

a) 2|RO|L: sequential restriction (R) and oriented items (O) ;

b) 2|UO|L: unrestricted (U) and oriented items (O) ;

c) 2|RN |L: sequential restriction (R) and non-oriented items (N);

d) 2|UN |L: unrestricted (U) and non-oriented items (N).

The 2L-CVRP has great practical value. It is commonly found in the transportation of
furniture, large industrial equipment, and fragile goods. Items, in these cases, cannot be stacked
for some reason. For example, kitchen appliances are not stacked in the course of delivery to
avoid being crushed. Large industrial equipment like excavators cannot be stacked for stability
reason. A concrete business case can be seen at Opein (www.opein.com), a medium-sized
company which distributes large equipment to their customers. The practical value of the 2L-
CVRP has motivated a number of studies on algorithm design, including both exact algorithms
and heuristics, and solving new practical variants (Pollaris et al. 2015).

Besides the practical value of the 2L-CVRP, there are two additional motivations for the
study. The state-of-the-art exact algorithm, the B&C algorithm developed by Côté et al. (2020),
performs less efficiently as items become relatively large with respect to the loading area of the
vehicle (Zhang et al. 2021a). By contrast, practical problems often feature large items. The
motivation is to develop a new exact algorithm to address this issue. Another reason triggering
the research is related to the performance of the column generation (CG) approach in the 2L-
CVRP. CG-based exact algorithms have been proved to be very effective in vehicle routing
problems (Costa et al. 2019); however, the only existing CG algorithm (Pinto et al. 2016) for
the 2L-CVRP works in a heuristic fashion due to the loading constraints. Its performance is not
satisfactory compared to meta-heuristics such as the ones proposed by Fuellerer et al. (2009) or
Leung et al. (2011). Based on the great success of CG algorithms in VRPs, we believe that CG
has the potential to be the key component of an efficient exact algorithm for the 2L-CVRP.

The main contributions of the study are as follows.

a) We present an exact pricing algorithm based on a novel data structure and an exact
dominance rule.

b) We propose a novel strategy for variable selection using the new data structure to build
the branch-and-price-and-cut (BPC) algorithm, which turns out to be effective for the
2L-CVRP.
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c) Extensive computational experiments are carried out showing that the algorithm outper-
forms the state-of-the-art exact algorithm. Fourteen instances are solved to optimality
for the first time. The solvable sizes of some families of instances are nearly doubled.

d) Instances without the LIFO constraint are also solved. The resulting optimal solutions
enable us to conduct precise analyses on the impact of respecting the LIFO constraint,
which provide valuable insights from a managerial point of view.

The remainder of the paper is organized as follows. Section 2 reviews the existing literature.
Section 3 presents the formal description of the problem and the mathematical formulations.
Section 4 elaborates on the set partitioning formulation, the new dominance rule, and the pricing
algorithm. Section 5 presents the novel data structure and the BPC algorithm. Computational
results are reported in Section 6, followed by conclusions in the last section.

2 Literature review

In this section, the main literature related to the 2L-CVRP and its variants is reviewed. Section
2.1 presents a variety of 2L-CVRPs that have been addressed so far. In Section 2.2, we review
the literature on the algorithms for the 2L-CVRP is reviewed.

2.1 Literature on existing 2L-CVRPs

The first study on the 2L-CVRP was carried out by Iori et al. (2007) in which the problem
addressed is 2|RO|L. Gendreau et al. (2008) further investigated 2|RO|L and 2|UO|L. Later
on, Fuellerer et al. (2009) considered all the four variants of the 2L-CVRP. There are also some
studies in which real-life constraints are added. As Pollaris et al. (2015) wrote a thorough
review on the relevant problems published before 2015, we merely focus on problems that
were studied from 2015 to 2020. Dominguez et al. (2016b) explored 2|UO|L and 2|UN |L with
heterogeneous fleet, which stemmed from the construction industry. Dominguez et al. (2016a)
studied 2|RN |L with backhauls, in which, a route may include both delivery customers and
pick-up customers. The study was motivated by the daily operation of Opein. For the same
company, Guimarans et al. (2018) addressed 2|UN |L with stochastic travel times and overtime
penalty, which usually happens in practice. Alinaghian et al. (2017) addressed 2|UO|L with
linearly time-dependent traveling times and two objectives minimizing: respectively the total
traveling distance and the maximal load of the vehicles. A practical 2L-CVRP was proposed by
Annouch et al. (2016), issued from the natural gas industry. Its background is that gas cylinders
have to be transported from stations and to deposits. The problem features an heterogeneous
fleet, time windows, several depots, and split deliveries. Another appealing practical problem
was tackled by Song et al. (2019) where vehicles have multi-compartments. The loading area of
a vehicle could carry vegetables and fruits, chemicals, frozen food and so forth, which are not
allowed to be stored together. Due to the short shelf life of some food, time windows are also
considered. Very recently, Côté et al. (2020) studied 2|RO|L where the width and the length of
an item remains uncertain until it is loaded. The problem is motivated by retailers selling large
appliances. Except for Iori et al. (2007) and Côté et al. (2020), in the above studies, heuristics
are developed to solve the problems.

2.2 Literature on algorithms for the 2L-CVRP

After the seminal work of Iori et al. (2007), Gendreau et al. (2008) developed a Tabu Search
heuristic for the 2L-CVRP. This heuristic finds optimal solutions for most of the closed in-
stances and identifies feasible solutions for all the benchmark instances much more quickly than
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the algorithm of Iori et al. (2007). The Tabu Search heuristic was then incorporated with
Guided Local Search by Zachariadis et al. (2009), leading to several new best solutions. The
best heuristic algorithm for the 2L-CVRP so far is from Wei et al. (2018); it is composed of
a simulated annealing heuristic with a local-search-based packing algorithm. The algorithm
surpasses all the other heuristics in terms of solution quality.

There is also a branch-and-price (BP) heuristic for the 2|RO|L (Pinto et al. 2016). The
authors formulated the problem as a set partitioning model, where the two-dimensional load-
ing constraint is considered in the pricing problem. Firstly, they generate a set of columns
without considering the loading constraints. Secondly, all the columns are checked by a pack-
ing algorithm. If a column is feasible, then it is added to the master problem. If a column
is infeasible, a rectifier is invoked to make the column feasible. If the rectifier fails, then the
column is discarded. To accelerate the CG approach, the same authors also proposed a variable
neighborhood search heuristic (Pinto et al. 2015) to solve the pricing problem. Because the
packing algorithm and the dominance rule used in the labeling algorithm are not exact, one
cannot guarantee the exactness of the entire BP algorithm. Although the authors explored some
interesting branching strategies for the 2L-CVRP, the overall performance of the algorithm is
not competitive. No new best-known solution was derived. It turns out that the best integer
solutions derived by the algorithm for instances with more than 26 customers are worse than
the solutions obtained by Zachariadis et al. (2009). There is one BP algorithm for a variant of
the 2L-CVRP. Zhang et al. (2021b) developed an exact BP for 2|UO|L with time window con-
straints. The authors proposed an exact dominance rule for the pricing problem which includes
the loading constraints. They trained a feasibility predictor by machine learning techniques
and installed the predictor into the CG algorithm to mitigate the computational complexity
brought by the loading constraints. The resulting BP algorithm could solve instances with 50
customers and 103 items to optimality and the majority of the best-known solutions derived
by Khebbache-Hadji et al. (2013) were improved. In addition, there is a BP algorithm for the
CVRP with three-dimensional loading constraints (3L-CVRP) (Mahvash et al. 2017). Columns
are generated by solving the classic elementary shortest path problem. Then an extreme point-
based algorithm is leveraged to check the feasibility of the columns with regards to the loading
constraints. The BP algorithm outperforms the methods proposed by Gendreau et al. (2006)
and Tarantilis et al. (2009) on both solution quality and speed.

Iori et al. (2007) proposed the first exact algorithm for 2|RO|L. The classic two-index
formulation of the CVRP is adjusted to address the loading constraints. An exact branch-and-
bound algorithm was developed to solve the packing problem. The classic rounded capacity
inequality was employed where the right-hand-side considered the continuous bound of the two-
dimensional bin packing problem (Martello and Vigo 1998). As the B&C algorithm progresses,
when an integer solution is found, the exact packing algorithm verifies the loading constraints.
If the solution is feasible, it is accepted as a candidate to update the incumbent global upper
bound, otherwise it is discarded. The authors created a set of benchmark instances for testing,
of which the algorithm could solve to optimality instances with up to 35 customers and 114
items to optimality. Hokama et al. (2016) proposed an exact packing algorithm for the same
problem using constraint programming techniques and added some classic valid inequalities for
CVRP (Lysgaard et al. 2004) to improve the B&C algorithm of Iori et al. (2007). Substantial
reduction on CPU time was achieved, however, no open instance was closed. It was only with
the publication of Côté et al. (2020) that some new open instances were solved. The authors
proposed infeasible set inequalities which worked for integer nodes of the branch-and-bound
tree. With state-of-the-art packing algorithms (Côté et al. 2014a,b), all the instances solved
by Iori et al. (2007) and 26 open instances were solved to optimality within two hours of CPU
time, compared to the 24-hour limit in the seminal study. Zhang et al. (2021a) further proposed
a heuristic to separate infeasible set inequalities for fractional nodes. The resulting B&C algo-
rithm closed 6 open instances and improved the dual bounds for other open instances by 1.0%
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on average. Their computational analysis shows that although the current framework of the
B&C algorithm significantly surpasses the B&C algorithm of Iori et al. (2007), the algorithm
struggles to solve instances with large items.

3 Mathematical formulation

The problem addressed in this study is 2|RO|L, which is formally defined as follows. We are
given a complete undirected graph G = (V,E), where V = {0, 1, 2, ..., n} is a set of vertices
including customers Vc = {1, 2, ..., n} and the depot 0. Vertex n + 1 represents a copy of the
depot. E is the set of edges. ∀e ∈ E, ce is the traveling cost associated with edge e. An
alternative representation of an edge (vi, vj) is also used throughout the article. A set K of
homogeneous vehicles is available at the depot. A vehicle k ∈ K has a loading surface whose
length and width are equal to H and W , respectively. Thus, the total area of the loading surface
is equal to A = H ×W . Each vehicle also has a weight capacity denoted as Q.

Each customer i ∈ Vc is associated with a set of rectangular items Mi. Each item m in set
Mi has a specific width wim, length him and weight qim. νi and ci denote the total area and
total weights of the items belonging to customer i, respectively, where νi =

∑
m∈Mi

wimhim and
qi =

∑
m∈Mi

qim. The number of items is the cardinality of set Mi. Set M is the union of all the
items, i.e., M = {m|m ∈ Mi,∀i ∈ Vc}. The problem is to plan a route for each vehicle in the
fleet K to cover the demands of all customers such that the following constraints are respected:

1. Each customer is visited exactly once.

2. Total weight of the carried items must not exceed the vehicle capacity.

3. Transported items in a vehicle must not exceed the loading area.

4. Items must be positioned without being overlapped.

5. Rotating items is not allowed.

6. Items of customers served later cannot be moved (the LIFO rule).

The LIFO constraint can be formally described as follows. ∀m ∈ M , let X (m) and Y(m)
stand for the x-coordinate and y-coordinate (left-bottom wise) of item m in the loading area,
respectively. For any pair of items m,m′ ∈ M such that N (m) < N (m′) where N (m) denotes
the sequence number of item m (item m′ has to be delivered before m), the following logical
constraint should be respected.

X (m) ≥ X (m′) + wm′ or X (m′) ≥ X (m) + wm or Y(m′) ≥ Y(m) + hm (1)

There are also two conventions in the field of developing exact algorithms for the 2L-CVRP:
any route serving a single customer is forbidden and the number of used vehicles equals the
fleet size (Iori et al. 2007, Côté et al. 2020).
The three-index formulation
To present the three-index formulation of the problem, we first define some necessary notations.
Given a node i ∈ V , let δ(i) represent the set of edges incident to it. Given a subset S of V ,
δ(S) denotes the edges with only one endpoint in S. Let (S, σ) be the route constructed by set
S in order σ. We denote by E(S, σ) the set of edges in route (S, σ). We denote by Σ(S) the set
of feasible sequences for set S. Let xke be a binary variable for each e ∈ E and k ∈ K, where
xke = 1 if edge e is traversed by vehicle k and xke = 0 otherwise. Let yki be a binary variable for
each vertex i ∈ Vc and vehicle k ∈ K. yki takes the value 1 if vehicle k serves customer i and 0
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otherwise. The three-index formulation is as follows:

[P ] min
∑
k∈K

∑
e∈E

cex
k
e (2)

s.t. ∑
e∈δ(0)

∑
k∈K

xke = 2|K| (3)

∑
e∈δ(i)

xke = 2yki , ∀i ∈ Vc, ∀k ∈ K (4)

∑
e∈δ(S)

xke ≥ 2yki , ∀S ⊂ Vc, 1 < |S| < n− 1, ∀i ∈ S, ∀k ∈ K (5)

∑
k∈K

yki = 1, ∀i ∈ Vc (6)∑
i∈Vc

qiy
k
i ≤ Q, ∀k ∈ K (7)

∑
i∈Vc

νiy
k
i ≤ A, ∀k ∈ K (8)

∑
e∈E(S,σ)

∑
k∈K

xke ≤ |S| − 1, ∀(S, σ) such that σ /∈ Σ(S), (9)

xe ∈ {0, 1}, ∀e ∈ E; yki ∈ {0, 1}, ∀i ∈ V (10)

This formulation is derived from the three-index formulation for the CVRP proposed by
Fischetti et al. (1995). Expression (2) indicates the objective is to minimize the total traveling
distance. Constraint (3) states the total degree of the depot. Constraint set (4) connects the
two groups of decision variables and imposes the degree associated with a customer or the depot
in terms of a single vehicle. Constraint set (5) eliminates subtours for each vehicle. Constraint
set (6) imposes that each customer is visited exactly once. Constraint sets (7 - 8) impose that
the vehicle capacity and the loading area should not be exceeded on a route. Constraint set (9)
eliminates infeasible routes from the feasible region. Constraint set (10) defines the domain of
the variables.

4 The column generation algorithm

In this section, the three-index formulation is transformed into a set partitioning model. The
CG algorithm is proposed to solve the model. It is described in the following order: the overall
framework, the route relaxation technique, the labeling algorithm with the exact dominance
rule, the new completion bounds, and the heuristic pricing strategy.

4.1 Set partitioning formulation

If we apply the Danzig-Wolfe decomposition to the three-index formulation, a set partitioning
formulation for 2|RO|L is derived. Let Ω be the collection of all possible feasible routes. Let λr
be a binary variable, where λr = 1 if a route r ∈ Ω is selected 0 otherwise. Let cr be the total
distance traveled on route r and air be a constant indicating whether or not vertex i is visited
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in route r. Then, the set partitioning formulation can be written as follows.

min
∑
r∈Ω

crλr (11)

s.t.∑
r∈Ω

λr = |K| (12)∑
r∈Ω

ai,rλr = 1, ∀i ∈ Vc (13)

λr ∈ {0, 1}, ∀r ∈ Ω (14)

The objective function (11) minimizes the total cost of the selected routes. Constraint
(12) restricts the number of selected routes to the fleet size. Constraint set (13) imposes that
each customer is served exactly once. We call model (11 - 14) the integer programming master
problem (IPM). By relaxing (14) as

0 ≤ λr ≤ 1, ∀r ∈ Ω

a lower bound of the IPM can be obtained. Usually the LP relaxation (called linear programming
master problem (LPM)) is solved by a CG-based algorithm (Desaulniers et al. 2006) because it
is unpractical to enumerate all columns. To solve the LMP, one starts from a subset of columns
Ω̄ ⊂ Ω that forms a restricted LMP. At each iteration, a pricing problem is solved to generate
columns with negative reduced cost. The pricing problem of the 2|RO|L is

[PP ] min
∑
e∈E

d̄exe − πf (15)

s.t. (16)∑
e∈δ(i)

xe = 2 ∀i ∈ V (17)

∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ Vc, 1 < |S| < n− 1, ∀i ∈ S, ∀k ∈ K (18)

∑
(i,j)∈E

xij(qi + qj) ≤ 2Q (19)

∑
(i,j)∈E

xij(νi + νj) ≤ 2A (20)

∑
e∈E(S,σ)

xe ≤ |S| − 1, ∀(S, σ) such that σ /∈ Σ(S), (21)

xe ∈ {0, 1}∀e ∈ E (22)

where d̄e is defined as

d̄ij = cij −
1

2
πi −

1

2
πj , ∀(i, j) ∈ E

πi and πf are the dual values associated with constraints (13) for node i and the constraint
(12), respectively. By removing constraint (21), PP is reduced to the classic elementary shortest
path problem with resource constraints (ESPPRC), which has been addressed in many studies
(Feillet et al. 2004, Righini and Salani 2008, Desaulniers et al. 2008, Martinelli et al. 2014).
Details on the characteristics of the ESPPRC can be found in these papers.
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4.2 The framework of the column generation algorithm

A difference with conventional CG algorithms for the CVRP (Desaulniers et al. 2006), due
to the two-dimensional loading constraints, is that, once a column (route) is identified by the
pricing algorithm, the column should be checked for the loading constraints by a feasibility
checker. Throughout this study, the state-of-the-art exact algorithm developed in Côté et al.
(2014b) is applied as the checker. When the checker approves the feasibility of a column, the
column is added to the master, otherwise it is discarded. Figure 1 provides a diagram of the
CG algorithm used in this study.

Figure 1: The diagram of the column generation algorithm

4.3 The Path Relaxation

In the literature, the elementarity of a path can be relaxed to achieve easier pricing problems.
There are many CG approaches based on such relaxation (Desrochers et al. 1992, Righini and
Salani 2008, Desaulniers et al. 2008, Baldacci et al. 2011). We apply the well-known ng-route re-
laxation according to the state-of-the-art pricing algorithms for CVRP. The ng-route relaxation
was proposed by Baldacci et al. (2011); it remains to be one of the key component of the state-
of-the-art CG approaches for CVRP. Associated with a customer i, there is a set of pre-selected
customers Ni ⊆ Vc (including i itself), such that |Ni| ≤ ∆(Ni), where ∆(Ni) is a parameter
to specify the maximal cardinality of the set. Given a partial path P = (0, i1, i2, ..., ik), any
customer in set Π(P ) is not allowed to be visited next to ik, where Π(P ) is defined as:

Π(P ) = {ir : ir ∈
k⋂

s=r+1

Nis , r = 1, ..., k − 1}
⋃
{ik}

By the restriction imposed by Π(P ), the ng-route relaxation can obtain much tighter lower
bounds than those found fully relaxing the elementarity conditions (Baldacci et al. 2011).

For example, let r = [0, 4, 1, 2, 3] be a partial path, and let N1 = {1, 3, 4}, N2 = {2, 4, 5},
N3 = {1, 3, 4}, N4 = {1, 4}. Then 1 /∈ N2 ∩N3, 2 /∈ N3, 3 ∈ N3, 4 ∈ N1 ∩N2 ∩N3. Therefore,
Π(r) = {3, 4}, meaning that the the partial path cannot be extended to customer 3 or customer
4.

4.4 The definition of labels and the exact dominance rule

Labeling algorithms have proved to be very successful in solving pricing problems when it comes
to CG methods for vehicle routing problems (Desaulniers et al. 2006). We apply the framework
of the labeling algorithm in Martinelli et al. (2014), which is one of the best pricing algorithms
for the CVRP.

A label is the main entity to manipulate in a labeling algorithm. It represents a partial path
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starting from the depot to some vertex while recording critical information based on which fur-
ther path extension is performed. Let (η(L), c(L), q(L), µ(L), s(L)) be the representation of a
label L. η(L) stands for the end vertex of the label. c(L) is the total cost accumulated along the
partial path. q(L) stands for the accumulated weight of the label. µ(L) represents the unreach-
able nodes. s(L) stores the rectangular items collected so far while memorizing the collecting
sequence. Figure 2 illustrates an example. The label representing partial path 0−1−2 is defined
as (2, 8, 15, {1, 2}, {m11,m12,m21}) since node 1 and node 2 are not allowed to be visited onward.

Figure 2: An example of the label representation

Label L1 dominates L2 if for an arbitrary legal extension of L2 towards the depot, one
can always find a legal extension of L1 towards the depot with less or equal cost. L1 ≺ L2

denotes “L1 dominates L2”. Dominance rules specify the dominance relation between two labels.
The efficiency of a labeling algorithm heavily relies on which dominance rules are applied. A
tight dominance rule enables a labeling algorithm to prune the majority of labels so that the
computational effort can be massively reduced. The following dominance rule is proposed for
the 2|RO|L.

Theorem 1. Li ≺ Lj if the following conditions are satisfied:
1) η(Li) = η(Lj);
2) c(Li) ≤ c(Lj);
3) q(Li) ≤ q(Lj);
4) µ(Li) ⊆ µ(Lj);
5) s(Li) v s(Lj).

Proof. See Lemma 3.

Conditions 1-4 of Theorem 1 are conventional, but the last condition s(Li) v s(Lj) regards
the loading constraints and is explained in Statement 1. In the rest of this subsection, we show
that checking the last condition is equivalent to solving a two-dimensional sequential variable
size bin packing problem (2DSVSBPP). We also propose a fast heuristic to address it.

Given two labels Li and Lj , if the last condition is skipped and Li ≺ Lj holds in terms of the
other four conditions, one could end up with a complete path extending from Li to the depot
that has a negative reduced cost but violates the loading constraints. If the same extension
from Lj to the depot does not violate the loading constraints and has a negative reduced cost,
then an improving column would be lost if Lj was eliminated by the dominance test. To prevent
such mis-dominance from happening, the last condition must be considered.

The general idea behind the way to check the last condition is that items in s(Lj) are seen as
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bins and then items in s(Li) are packed in the bins. If a feasible packing is found, the condition
is satisfied.

Given two sets of items s(Li) and s(Lj), items in s(Lj) are treated as bins. For any item
(bin) k ∈ s(Li)(s(Lj)), there is a sequence number N (k) attached. Let B(k), belonging to
s(Lj), be the bin holding item k,∀k ∈ s(Li). N (B(k)) represents the sequence number of the
bin holding item k. (X (k),Y(k)) represents the coordinate of item k on the loading surface.
(X (B(k)),Y(B(k))) stands for the coordinate of bin B(k) if it is placed as an item on the
loading surface. Let P(s′) = 1 (P(s′) = 0) denote that a set of items s′ can (cannot) be packed
in terms of the loading constraints in the loading area of a vehicle.

Statement 1. s(Li) v s(Lj) denotes that the items in s(Li) can be packed into the bins in
s(Lj) while respecting: for any pair of items h, k with different sequence numbers N (h) < N (k)
such that 1) N (B(h)) ≤ N (B(k)); 2) If N (B(h)) = N (B(k)), the LIFO constraint should be
considered for packing items in B(h).

Lemma 1. Given that s(Li) v s(Lj), for any pair of items k, g ∈ s(Li) and B(k), B(g) ∈ s(Lj)
if X (B(k)) ≥ X (B(g)) + wB(g), then X (k) ≥ X (g) + wg.

Proof. Because B(k) holds item k, X (k) ≥ X (B(k)). Because B(g) holds item g, X (g) + wg ≤
X (B(g)) + wB(g). Then we have X (k) ≥ X (B(k)) ≥ X (B(g)) + wB(g) ≥ X (g) + wg.

Lemma 2. Given that s(Li) v s(Lj), for any pair of items k, g ∈ s(Li) and B(k), B(g) ∈ s(Lj)
if Y(B(k)) ≥ Y(B(g)) + hB(g), then Y(k) ≥ Y(g) + hg.

Proof. Because B(k) holds item k, Y(k) ≥ Y(B(k)). Because B(g) holds item g, Y(B(g)) +
hB(g) ≥ Y(g) + hg. Then we have Y(k) ≥ Y(B(k)) ≥ Y(B(g)) + hB(g) ≥ Y(g) + hg.

Figure 3 graphically interprets Lemma 1 and Lemma 2, the coordinate relation when items
from s(Li) and bins from s(Lj) placed on the loading surface.

(a) Parameters regarding the items and the
bins

(b) Coordinates of the items and the bins

Figure 3: Graphical meaning of Lemma 1 and Lemma2

Lemma 3. Given a set of items s′, such that ∀k ∈ s′, N (k) > N (h),∀h ∈ s(Li) ∪ s(Lj), if
s(Li) v s(Lj), then P(s′ ∪ s(Lj)) = 1⇒ P(s′ ∪ s(Li)) = 1.

Proof. To prove s′ ∪ s(Li) is packable amounts to showing that the coordinates of any pair of
items satisfy constraint (1). For any pair of items k ∈ s′ and g ∈ s′ ∪ s(Li), it is trivial.

Suppose there is an pair of items k, g ∈ s(Li) such that N (k) < N (g) and N (B(k)) 6=
N (B(g)). Without loss of generality, it is assumed that N (B(k)) < N (B(g)). If X (B(g)) ≥
X (B(k)) + wB(k), then X (g) ≥ X (k) + wk (Lemma 1); if Y(B(g)) ≥ Y(B(k)) + hB(k), then
Y(g) ≥ Y(k) + hk (Lemma 2). Hence, Constraint (1) is respected.

For any pair of items k, g ∈ s(Li) such that N (k) < N (g) and N (B(k)) = N (B(g)), since
items k, g are packed into the same bin, Constraint (1) is naturally satisfied.
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We are aware of efficient algorithms for the two-dimensional variable size bin packing prob-
lem (2DVSBPP) (Kang and Park 2003, Hong et al. 2014), however, they are not suitable in the
context of the special structure of our problem: 1) the number of bins is not infinite; 2) the
size of an item can be very close to the size of a bin; 3) it is only needed to answer whether a
feasible solution exists or not; 4) we have a LIFO constraint. Moreover, since this is merely a
sub-routine of the entire algorithm, its time budget is very limited. Considering these factors,
a simple construction heuristic is developed to solve the 2DVSBPP.

While constructing a solution for the 2DVSBPP, there are two decisions to make: 1) Which
item should be assigned to which bin? 2) How to arrange the items assigned to a bin? We
borrow the backbone idea of the well-known best-fit algorithm (BFA) proposed by Burke et al.
(2004) which builds a solution in an iterative fashion. At each step, the lowest niche (a niche
is a segment as shown in Figure 4) is selected and then the most fitting item is chosen to be
placed over the niche.

Figure 4: A typical step of placing an item

A generalized best-fit algorithm (GBFA) is developed, which shares the idea of choosing the
best item for a niche at each step. Let B be the list of bins, I be the list of bubbles, each of
which contains the items with the same sequence number. The pseudo-code of the algorithm is
in Algorithm 1.

Algorithm 1 The GBFA

1: Sort B and I by the non-decreasing order of the sequence number;
2: while I is not empty and B is not empty do
3: Select the first bin of B
4: Select the remaining items in the first bubble of I.
5: Pack the selected items into the selected bin by the BFA.
6: if all the selected items are packed then
7: Remove the first bubble of I
8: else
9: Remove the first bin of B

10: Return True if I is empty else return False

The central idea of the GBFA is that bins are filled one by one in accordance with the
sequence numbers. For each bin being filled, items are packed by the classical BFA, which
naturally satisfies Constraint (1). Let nI and nB be the number of items in I and the number
of bins in nB, respectively. The worse time complexity happens when a bin can pack all the
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items. Hence, in light of the time complexity of the BFA Burke et al. (2004), the worse time
complexity is O(nI

2 + nIB). On average, the classical BFA is performed nI
nB

times, leading to

an average time complexity of O(nI
2

nB
+ nIW ). If the GBFA can find a feasible packing solution

for B and I, the algorithm returns True else it returns False. Therefore, with the GBFA we
can efficiently check whether s(Li) v s(Lj) holds for two given labels.

Algorithm 2 gives the pseudo-codes of the exact labeling algorithm. M(ν, i) is a bucket that
includes labels ending at customer i with accumulated area ν. Before a newly-generated label is
inserted into a bucket, its unreachable set should be updated from two perspectives: customers
that lead to violation of the weight limit Q or the loading constraints become unreachable; the
details regarding how to efficiently detect infeasible routes are presented in Section 5. At the
end of Algorithm 2, Algorithm 3 is invoked to build routes that satisfy the loading constraints.

A Branch-and-Price-and-Cut Algorithm for the Vehicle Routing Problem with Two-Dimensional Loading Constraints

CIRRELT-2021-27 11



Algorithm 2 The exact labeling algorithm

1: Initialize matrix M, ng-sets Ni ∈ Vc,∀i ∈ Vc ∪ {n+ 1}
2: M(ν, i)← empty list, ∀i ∈ Vc, ν = 0, ..., A
3: M(ν, i)← {i, d̄0,i, qi, {i},Mi}
4: for ν = 1, ..., A do
5: for i ∈ Vc ∪ {n+ 1} do
6: if ν − νi > 0 then
7: for j ∈ Vc do
8: for L ∈M(ν − νi, j) do
9: L′ = (i, c(L) + d̃j,i, q(L) + q(i), µ(L) ∩Ni ∪ {i}, s(L) ∪Mi)

10: InsertFlag ← True

11: for ν̃ = 1, ..., ν do
12: for ∀L̃ ∈M(ν̃, i) do
13: if L̃ dominates L′ then
14: InsertFlag ← True
15: break
16: else
17: if L′ dominates L̃ then
18: delete L̃
19: if InsertFlag then
20: Update unreachable customers µ(L′)
21: M(ν, i)←M(ν, i) ∪ {L′}
22: Return BuildRoutes(M)

Algorithm 3 BuildRoutes(M)

1: Initialize R = ∅
2: for ν = 1, ..., A do
3: for ∀L ∈M(ν, n+ 1) do
4: Parse label L as route r
5: if r satisfies Constraints (9) then
6: R = R∪ {r}
7: Return R

4.5 Completion bounds

A completion bound is used to prune the labels that cannot produce negative reduced cost. As
shown in Feillet et al. (2007), a tight bounding technique is able to significantly accelerate the
labeling algorithm. Two completion bounds addressing the loading constraints are proposed to
accelerate the labeling algorithm.

The first bound is based on the full relaxation of the loading constraints when solving the
2DVSBPP. Let PPj(Q

′, A′) be the problem to find the shortest ng-route with respect to the
given ng-sets. An ng-route should start from the depot and end up at customer j while the
accumulated area and the accumulated weights must be less or equal to Q′ and A′, respectively.
Moreover, the loading constraints should be satisfied. We denote the optimal cost of PPj(Q

′, A′)
as T ∗j (Q′, A′). Let P̃P j(Q

′, A′) be the problem variant of PPj(Q
′, A′) which excludes the loading

constraints. We denote the optimal cost of P̃P j(Q
′, A′) as T̃ ∗j (Q′, A′). We then have Lemma 4

because the relaxation of the loading constraints broadens the solution space.
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Lemma 4. T ∗j (Q′, A′) ≥ T̃ ∗j (Q′, A′)

Figure 5 shows an example of extending a label from customer i to customer j. Let l be
the extending label and a(l) be the total area of items in s(l), the cost becomes c(l) + d̃i,j
after the extension. With Lemma 4, we have c(l) + d̃i,j + T ∗j (Q − q(l) − qj , A − a(l) − νj) ≥
c(l) + d̃i,j + T̃ ∗j (Q− q(l)− qj , A− a(l)− νj). Hence, if d̃i,j + T̃ ∗j (Q− q(l)− qj , A− a(l)− νj) ≥ 0,
then there is no need to perform the extension because it never leads to a path with a negative
reduced cost.

Figure 5: A demonstration of the completion bound

The second completion bound is based on the relaxation of the LIFO constraint when
performing the labeling algorithm. Its validity is similar to the first completion bound. Note
that when the LIFO constraint is relaxed, all the sequence number attached to items become
0. Therefore, Algorithm 1 still performs correctly.

4.6 A hierarchical labeling routine

Due to the loading constraints, using dominance rules is not as effective as it is for the CVRP.
Running the exact labeling algorithm is thus much more computationally expensive. To address
this issue, we propose a hierarchical labeling routine (shown in Algorithm 4), in which five
heuristic versions of Algorithm 2 based on different combinations of settings (see Table 1) are
applied before the exact version is finally activated.

Table 1: Five heuristic labeling algorithms

Version Dominance rule Route type Bucket size
1© Theorem 1 condition 1 elementary 1
2© Theorem 1 condition 1 ng-route 1
3© Theorem 1 conditions 1-3 ng-route unlimited
4© Theorem 1 ng-route 10
5© Theorem 1, relaxing LIFO ng-route unlimited

Algorithm 4 The hierarchical labeling routine

1: Initialize i = 1
2: while i <= 5 do
3: Invoke Version i©
4: if No improving columns then
5: i← i+ 1
6: else
7: Return the columns
8: Invoke Algorithm 2
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The first completion bound can be derived by Version 3© when no columns are priced-out.
The best cost of extending a label l from customer i to customer j is the sum of c(l) + d̃i,j and
T̃ ∗j (Q−q(l)−qj , A−a(l)−νj) which is the optimal objective value of the following optimization
problem. It can be solved by simply enumerating the labels in the bucket M(ν, j).

min
L∈M(ν,j)

c(L) (23)

s.t.

0 ≤ ν ≤ A− a(l)− νj (24)

0 ≤ q(L) ≤ Q− q(l)− qj (25)

The second completion bound is derived from Version 5©. It resembles the calculation of
the first completion bound, so the details are not presented.

5 The L-Trie data structure

Even armed with the aforementioned hierarchical labeling routine and the exact dominance
rule, the CG algorithm still suffers from the loading constraints because there are still many
labels generated. To prune more labels, a new data structure named L-Trie is proposed, where
the prefix “L” represents “loading constraints” to distinguish it from the traditional Trie in the
field of string search (Brass 2008). In this section, the structure of L-Trie is described in the
first place. Furthermore, functions related to L-Trie are introduced. Finally, the way to deploy
L-Trie in the labeling algorithm is discussed.

5.1 Definitions and attributes

Definition 1. Given a route r = [i1, i2, ..., in], [j1, j2, ..., jn′ ] is a sub-route of r if we can find a
sequence of indices (k1, k2, ..., kn′), 1 ≤ k1 < k2, ..., kn′ ≤ n such that ik1 = j1, ik2 = j2, ..., ikn′ =
jn′.

Definition 2. A route r is a master-route of route r′ if and only if r′ is one of the sub-routes
of r.

For example, route 0-1-2-3-0 has the following sub-routes: 0-1-0, 0-2-0, 0-3-0, 0-1-2-0, 0-1-
3-0, 0-2-3-0, 0-1-2-3-0. Route 0-1-2-3-0 is a master-route of all these sub-routes.

L-Trie is a container to store the information on checked routes. It is inspired by the idea
of Trie, which has been successfully applied in string search (Brass 2008). L-Trie is an ordered
tree data structure. A node γ on a L-Trie has the following attributes:

1. γ1: customer id, indicating which customer is associated with the node.

2. γ2: father node, indicating the immediately-preceding node. A node has only one father
node.

3. γ3: a list of child nodes, indicating all its children.

4. γ4: a set of customers, indicating all the customers associated with the node and the
children.

5. γ5: an individual boolean sign, indicating if there exists a route ending up at the node.

Figure 6 gives an example of a L-Trie with 0-3-1-7-0, 0-3-8-1-0, 0-7-4-0, 0-9-6-1-0 stored.
The empty node is the root of the L-Trie. The attributes of the node in red are presented in
details.
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Figure 6: An example of L-Trie

5.2 Functions of L-Trie

To utilize the information stored in L-Trie, two important functions are defined upon the data
structure.

1. L-Trie::findSubRoute, for a given route, determine if there exists some route stored in the
L-Trie that is one of the sub-routes of the given route;

2. L-Trie::findMasterRoute, for a given route, determine if there exists some route stored in
the L-Trie that is a master-route of the given route.

The value of having both functions can be justified by the following example. Suppose
route 0-1-2-3-0 is passed to L-Trie::findSubRoute and route 0-1-3-0 is detected as a checked
route labeled as infeasible in terms of the loading constraints, then it is safe to say that 0-
1-2-3-0 is also infeasible without calling the feasibility checker. On the other hand, if route
0-1-2-3-0 is passed to L-Trie::findMasterRoute and some route, say 0-1-4-2-5-3-0 is detected as
a checked route labeled as feasible, then it is safe to say 0-1-2-3-0 is feasible without invoking
the feasibility checker. By calling the functions, we can check the feasibility of a route without
invoking the feasibility checker.

Let α be the number of routes stored in a L-Trie, β be the maximal length of a route. The
worst space complexity of the L-Trie in big-O notation is O(αβn). Besides L-Trie::findSubRoute
and L-Trie::findMasterRoute, like the classic Trie, L-Trie has a search function to identify if a
route has already been stored. It takes O(β) to search a route with β customers. Furthermore,
inserting a route with β customers in a L-Trie has the same time complexity.
L-Trie::findSubRoute The pseudo-codes of the function is shown in Algorithm 5. r[i :]
represents the (i+1)th customer through the last customer of r. Function findPos(r, γ) returns
the index of the first customer equal to γ1 in r. If there exists no such customer, the function
returns -1. The central idea of L-Trie::findSubRoute is to seek a sub-route in the depth-first
manner. Set γ4 is critical for the efficiency of Algorithm 5 because it prevents the search from
visiting those nodes that never leads to a sub-route. The worst time complexity of Algorithm
5 is O(αβ), when all the routes stored in the tree are enumerated. The best time complexity
of Algorithm 5 is O(ω) if there exists a sub-route with ω as the number of customers. Because
of γ4, the worst time complexity rarely occurs, in practice. In general, the algorithm works
extremely fast.

Statement 2. For a given route r, if L-Trie::findSubRoute finds a route r′, then r′ must be a
sub-route of r.
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Statement 3. For a given route r, if there exists a sub-route r′ of r stored in the tree and r′

is the only sub-route stored in the L-Trie, L-Trie::findSubRoute will find r′.

The proofs for Statements 2 and 3 are presented in Appendix A.

Algorithm 5 L-Trie::findSubRoute(r, γ)

1: if some customer in r is in γ4 then
2: for γ̄ in γ3 do
3: pos = findPos(r, γ̄1)
4: if pos ≥ 0 and L-Trie::findSubRoute(r[pos :], γ̄) then
5: Return True
6: Return γ5

L-Trie::findMasterRoute The pseudo-codes of the function is shown in Algorithm 6. r[1]
denotes the first customer of route r. The backbone idea of the algorithm is to match the
customers of a route one customer after another. Set γ4 can effectively stops exploring the
nodes that cannot produce a master-route. Likewise, the worst time complexity of Algorithm 6
is also O(αβ). The best time complexity is O(ω) if there exists a master-route with ω customers.

Algorithm 6 L-Trie::findMasterRoute(r, γ)

1: if r is empty then
2: Return True
3: else
4: for γ̄ in γ3 do
5: if all customers in r in γ̄4 then
6: flag ← False
7: if r[1] == γ̄1 then
8: flag ← L-Trie::findMasterRoute(r[1 :], γ̄)
9: else

10: flag ← L-Trie::findMasterRoute(r, γ̄)

11: if flag then
12: Return True
13: Return False

Statement 4. For a given route r, if L-Trie::findMasterRoute finds a route r′, then r′ must be
a master-route of r.

Statement 5. For a given route r, if there exists a master-route r′ of r stored in the tree and
r′ is the only master-route of r stored in the L-Trie, L-Trie::findMasterRoute will find r′.

The proofs for Statements 4 and 5 are presented in Appendix A.

5.3 The application of L-Trie in the labeling algorithm

To utilize the L-Trie in the context of 2|RO|L, in principle, one should create two L-Tries, one
for the feasible routes denoted as FL-Trie and the other for the infeasible routes denoted as
IL-Trie. Given a route r, invoke Algorithm 6 upon FL-Trie, if the algorithm returns True, r is
feasible. On the other hand, invoke Algorithm 5 upon IL-Trie, if the algorithm returns True,
r is infeasible. If the feasibility of r is still pending after going through both algorithms, r is
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checked by the feasibility checker. Afterwards, it is stored in FL-Trie or IL-Trie, depending on
its feasibility.

However, in practice we found that just creating the IL-Trie is more cost-effective in terms
of speed and memory. There are two reasons for that. First, it is generally easier to verify the
feasibility of feasible routes by a heuristic packing algorithm. Therefore, the saved time brought
by the FL-Trie is less significant than the time saved by using the IL-Trie. Second, the data
structure is very memory-intensive, so using both the L-Tries could quickly use up all memory.

In the labeling algorithm proposed in Section 4.6, for any label L, the IL-Trie is applied to
verify whether extending L to a customer produces an infeasible route. With such a technique,
the labeling algorithm can prune many labels by directly prohibiting extensions.

5.4 Features of the branch-and-price-and-cut algorithm

Valid inequalities
The following valid inequalities are applied for the 2|RO|L: the rounded capacity inequalities
(RCI) and the infeasible set inequalities (ISI). How to account the dual values associated with
these inequalities in the pricing problem are not discussed in the study for the sake of conciseness.
Readers can refer to Desaulniers et al. (2011) for details.

The RCI is widely used for vehicle routing problems. It can eliminate sub-tours and ensure
the capacity limit of any vehicle to be respected. Let S ⊂ Vc be a subset of customers and λ∗

be the optimal solution of the restricted master problem. Let Ω(e, r) be the number of times
for which edge e is traversed in route r, then the following inequality is valid∑

e∈δ(S)

∑
r∈Ω

Ω(e, r)λ∗r ≥ max{d
∑

i∈S qi

Q
e, d

∑
i∈S νi

A
e}

The well-known CVRPSEP package (Lysgaard et al. 2004) is applied to separate the RCIs.
The ISI is a family of inequalities proposed by Côté et al. (2020). For a set of customers S

whose items are not packable in a vehicle, then the following inequality is valid∑
e∈δ(S)

∑
r∈Ω

Ω(e, r)λ∗r ≥ 2

To identify ISIs, the separation algorithm in Zhang et al. (2021a) is used.
Other classic inequalities such as comb inequalities (Lysgaard et al. 2004) are not introduced

since they are not cost-effective in the BPC algorithm according to the preliminary experiments.
The branching strategy

The classic branching strategy, branching on edge, is applied because it does not alter the
structure of the pricing problem. It is acknowledged that choosing on which variable to branch
is highly critical to the efficiency of the branch-and-bound algorithm (Achterberg et al. 2005).
Hence, a novel variable selection strategy is proposed to determine which edge (variable) is to
branch upon. With the IL-Trie storing the infeasible routes that have been checked, the number
of occurrences of each edge in the IL-Trie is counted. Among those edges with a fractional
amount of flow, the one with the largest number of occurences is selected. The intuition behind
the strategy is as follows. The IL-Trie maintains a set of routes that are promising in terms of
the negative reduced cost but infeasible with respect to the loading constraints. Hence, branch
xe ≤ 0 is likely to produce a high lower bound that is higher than the incumbent primal bound
while the other branch xe ≥ 1 is also prone to increase the lower bound since edge e is likely
to generate infeasible paths. Further experiments illustrate that this novel variable selection
strategy effectively reduces the size of the tree and accelerates the convergence of the BPC
algorithm.
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6 Computational experiments and analysis

In this section, we report the computational results on the benchmark instances (Iori et al.
2007) for both the versions with and without the LIFO constraint. Managerial insights about
the cost of respecting the LIFO constraint are thus derived. We also compare the novel variable
selection strategy against a conventional one. All the computational experiments were carried
out on a Windows computer equipped with an Intel i5-10600KF processor (4.10 GHz). The
BPC algorithm was implemented in C++ using the CVRPSEP (Lysgaard et al. 2004) library
and CPLEX 12.9 as the LP solver. CPU times reported throughout the experiments are in
seconds if not specified.

6.1 The instances

All the instances tested were created by Iori et al. (2007). To make the study self-contained,
some important details regarding the instances are described in this section. Table 2 lists the
detailed settings of the four families of the benchmark instances. Instances of family 1 is omitted
since this family is equivalent to the classical CVRP.

Column Vertical, Homogeneous and Horizontal represents three different types of items,
respectively: an item whose height is statistically greater than its width, an item whose height
is statistically equal to its width and an item whose height is statistically less than its width.
What can be observed in Table 2 is that family 2 is featured with the largest items on average
while family 5 is featured with the smallest items on average. It can be expected that instances
with large items tend to have more infeasible paths in terms of the LIFO constraint because
there is less space to adjust. By contrast, instances with very small items are less likely to have
infeasible paths. As a result, instances of family 2,3 and 4 are solved by the proposed BPC
algorithm while instances from family 5 are solved by a simple variant of the BPC algorithm,
in which the loading constraints are moved from the pricing problem to the master problem.
By doing so, the computational complexity of the pricing problem is strikingly reduced with
very little loss on the tightness of the lower bound. Details on the algorithm is presented in
Appendix B.

Table 2: Settings for generating items

Vertical Homogeneous Horizontal
Instance family |Mi| him wim him wim him wim

2 [1,2] [4H/10, 9H/10] [W/10, 2W/10] [2H/10, 5H/10] [2W/10, 5W/10] [H/10, 2H/10] [4W/10, 9W/10]
3 [1,3] [3H/10, 8H/10] [W/10, 2W/10] [2H/10, 4H/10] [2W/10, 4W/10] [H/10,2H/10] [3W/10, 8W/10]
4 [1,4] [2H/10, 7H/10] [W/10, 2W/10] [H/10, 4H/10] [W/10, 4W/10] [H/10,2H/10] [2W/10, 7W/10]
5 [1,5] [H/10, 6H/10] [W/10, 2W/10] [H/10, 3H/10] [W/10, 3W/10] [H/10,2H/10] [W/10, 6W/10]

6.2 Solved open instances

The computational results of the newly-solved instances are reported in Table 3. The BPC
algorithm is compared with the B&C algorithm in Zhang et al. (2021a). For both algorithms,
86,400 minutes (24 hours) and 8 Gigabyte are set as the time limit and the memory limit,
respectively. Both algorithms used the same initial upper bounds from Côté et al. (2020).
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Table 3: Comparison between the two algorithms on the newly-solved instances

Instance No C No I
The BPC The B&C

Opt Time Tree size UB LB Gap Time Tree size
1102 29 43 708.0 34382.7 736 708.0 691.0 2.46% 4,139.0+ 285,831
1402 32 47 1241.0 16104.0 207 1241.0 1218.6 1.83% 4,741.0+ 77,738
1502 32 48 1098.0 40461.0 328 1101.0 1080.3 1.91% 5,098.0+ 82,310
1702 40 60 851.0 11.56 0 851.0 839.1 1.42% 13,658.0+ 44,765
1802 44 66 1041.0 62449.0 585 1044.0 1005.5 3.83% 4,560.0+ 77,866
1803 44 87 1085.0 6326.0 31 1101.0 1061.4 3.73% 4,752.0+ 94,114
1902 50 82 774.0 7928.0 122 776.0 732.7 5.90% 9,109.0+ 60,052
1903 50 103 782.0 3601.0 62 782.0 749.8 4.29% 11,243.0+ 52,220
1904 50 134 793.0 1551.4 48 800.0 780.5 2.49% 8,625.45.0+ 61,542
2004 71 178 538.0 5173.0 51 555.0 527.9 5.22% 13,117.4+ 42,823
2104 75 168 1021.0 62420.0 362 1038.0 991.2 4.72% 29,831.0+ 52,495
2402 75 124 1193.0 17661.0 143 1193.0 1057.0 12.86% 34,048.9+ 23,909
2404 75 195 1111.0 7152.0 72 1115.0 1038.7 7.34% 28,526.7+ 39,490
2405 75 215 1044.0 3072.0 8051 1047.0 1018 2.84% 37,472.9+ 56,760

+ Out of memory

In Table 3, column No C gives the number of customers. Column No I gives the total
number of items in the instance. Columns Opt,Time,Tree size,UB, LB, Gap gives the optimal
objective value, the CPU time, the number of nodes explored, the global upper bound, the
global lower bound, and the percentage gap between the upper bound and the lower bound,
respectively. The BPC algorithm is compared with the state-of-the-art exact algorithm for
2|RO|L from Zhang et al. (2021a). There are two observations from the table.

1. Instances with 50 customers or less except for 1503 are all closed. In terms of family,
before our study, the largest size of solvable instances in family 2 was 35 customers and
56 items (1602 ). Now, the BPC algorithm can solve instances of family 2 with up to 75
customers and 124 items. For family 3, the largest solvable instance had 40 customers and
73 items (1703 ) while the BPC algorithm improves the solvable size up to 50 customers
and 103 items. With respect to family 4, the largest solvable network used to have
44 customers and 112 items. The BPC algorithm increases the solvable size up to 75
customers and 195 items. As for family 5, the landscape is not changed significantly, as
we go from instances with 71 customers to instances with 75 customers.

2. The tree size of the BPC algorithm is significantly less than that of the B&C algorithm,
because the linear relaxation of the set partitioning formulation is much tighter than the
two-index formulation. Economical usage of memory enables the algorithm to run long
enough to prove the optimality.

The full results on the benchmark instance are provided in Appendix C, which illustrates
that all the instances optimally solved by the B&C algorithm can also be solved by the BPC
algorithm. However, a drawback of the BPC algorithm is that it has to invoke the exact checker
for much more times than the B&C algorithm due to the primal property of the CG algorithm.
As a result, the BPC algorithm needs much more CPU time on some instances, especially
on instances with less than 35 customers. Nevertheless, as the size of the instance grows,
the speed of the BPC algorithm becomes more competitive. Furthermore, because CG-based
algorithms are particularly good at solving instances with many vehicles, the BPC algorithm
runs significantly faster on instances 1703,1704,1705 than the B&C algorithm.

6.3 The effectiveness of the IL-Trie on root nodes

Two groups of experiments studying the effectiveness of the IL-Trie were carried out as well. In
the first group, we compare the CG algorithm (with the valid inequalities) with and without the
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IL-Trie in terms of solving root nodes. The detailed results are reported in Table 4. Column T-
Imp % provides the percentage improvement of the CG with the IL-Trie over the CG algorithm
without the IL-Trie. On average, the IL-Trie can save 36.98% of CPU time to solve root nodes
for the CG algorithm. The most significant impact occurs for family 2, where the average
saving reaches up to 55.63%. On the other hand, the IL-Trie has less effect on other families
of instances. It can be explained by the fact that instances with larger items tend to have
infeasible routes, so much more extensions can be prohibited by the use of IL-Trie.

Table 4: The effectiveness of the IL-Trie

Instance
CG without the IL-Trie CG with the IL-Trie

T-Imp %
Time Time

1102 564.1 167.7 70.28%
1402 407.2 200.0 50.87%
1502 1111.2 300.8 72.92%
1702 5.4 6.6 -21.56%
1802 3980.5 849.3 78.66%
1803 345.2 313.8 9.09%
1902 319.4 163.4 48.85%
1903 317.4 271.8 14.36%
1904 177.3 190.5 -7.39%
2004 729.5 488.3 33.06%
2402 4172.7 443.6 89.37%
2404 446.5 423.2 5.23%

Average 1048.1 318.3 36.98%

In the second group, the impact of the IL-Trie on the no-loading property of the pricing
algorithm (PA) is investigated. The concept of the no-loading property is defined as the quality
of the solution derived by the PA before considering the loading constraints while performing
label extensions, i.e., only running the hierarchical labeling routine including Versions 1©, 2©,
3©. It is a very important indicator to evaluate the PA, because after Version 3©, the number
of labels increases exponentially due to the consideration of the loading constraints. Better
optimal objective values obtained before invoking Version 4© implies that fewer labels lead to
negative reduced cost. As a result, more labels are bounded by the completion bounds so that
the number of generated labels even considering the loading constraints can be controlled at
a low level. We present the no-loading property of the PA without the IL-Trie and with the
IL-Trie in Table 5. Column Obj gives the optimal objective value of the LPM while Column
Obj-Red % gives the percentage reduction of the optimal objective value derived by the PA with
the IL-Trie on the value derived by the PA without the IL-Trie. On average, the percentage
reduction is 1.55%. For the majority of the instances, the IL-Trie enables the PA algorithm to
obtain better objective values before involving the loading constraints. On the flip side, without
the IL-Trie, the hierarchical labeling algorithm invokes Version 4© with a higher objective value,
which could cause massive computational effort. One might argue that the PA with the IL-Trie
took more CPU time, but the extra time pays off if compared to the amount of extra CPU time
needed by the onward label extensions without the IL-Trie.
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Table 5: The effectiveness of the IL-Trie on the no-loading property

Instance
PA without the IL-Trie PA with the IL-Trie

Obj-Red %
Obj Time Obj Time

1102 703.1 65.0 682.7 116.6 -2.90%
1402 1234.6 43.5 1227.9 124.9 -0.54%
1502 1101.8 62.3 1079.2 149.7 -2.04%
1702 851.0 2.8 851.0 3.4 0.00%
1802 1069.3 104.7 1026.3 334.9 -4.02%
1803 1085.8 70.0 1078.8 161.3 -0.65%
1902 774.3 127.1 763.9 153.5 -1.36%
1903 778.9 181.2 774.6 237.2 -0.55%
1904 784.9 138.4 783.5 151.0 -0.18%
2004 546.1 526.0 537.0 488.3 -1.71%
2104 1014.1 192.5 1013.0 317.7 -0.10%
2402 1254.3 189.7 1181.6 423.5 -5.80%
2404 1109.0 222.7 1105.2 426.6 -0.34%

Average 946.7 148.2 931.2 237.6 -1.55%

6.4 The impact of the new variable selection strategy

A group of computational analyses is also conducted for the new variable selection strategy
(VSS). We evaluate a VSS by the global lower bound obtained after exploring a certain number
of nodes. To make a comparison, a classic VSS, which is choosing the fractional variable with
the highest coefficient in the objective function, is adopted. The BPC algorithm is terminated
when the size of the tree is greater than 100 nodes. The computational results are shown in
Table 6. Column LB gives the global lower bounds. Column LB-Imp % gives the percentage
improvement of the new VSS over the classical VSS. On all the newly-solved instances, the new
VSS performs consistently better than the classical VSS in terms of the objective values. The
amount of the enhancement by the new VSS is up to 0.26% on average. Although the new VSS
generally consumes more CPU time, the extra CPU time is likely compensated by the tighter
lower bounds if the BPC algorithm continues to solve the instances to optimality.
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Table 6: The effectiveness of the new variable selection strategy

Instance
The classical VSS The new VSS

LB-Imp %
LB Time LB Time

1102 690.8 2668.8 695.6 2536.5 0.69%
1402 1234.4 4058.4 1236.1 5796.9 0.14%
1502 1087.94 5690.1 1091.0 7743.1 0.28%
1702 851.0 7.9 851.0 9.3 0.00%
1802 1032.5 10415.7 1032.6 10733.9 0.01%
1803 1084.1 8979.0 1085.0 6979.0 0.08%
1902 768.0 2334.6 772.1 2835.5 0.52%
1903 779.0 2492.1 781.2 4196.6 0.28%
1904 787.1 1543.3 793.0 1931.9 0.74%
2004 538.0 3603.3 538.0 5335.1 0.00%
2104 1016.5 5895.1 1017.7 11023.9 0.12%
2402 1186.9 6467.2 1190.5 8067.4 0.31%
2404 1108.5 3915.8 1110.6 6530.5 0.19%

Average 935.8 4467.7 938.1 5672.3 0.26%

6.5 The cost of respecting the LIFO constraint

Respecting the LIFO constraint, from the practical standpoint, is not always necessary except
for some situations where unloading items of successive customers is technically impossible at
the serving customer (e.g., driving a loaded excavator off the vehicle). For other situations,
whether or not implementing the LIFO rule relies on the management strategy. Hence, it is
insightful to study the cost of following the LIFO constraint, as the basis for practitioners to
make relevant decisions.

The proposed BPC algorithm is run over the benchmark instances while relaxing the LIFO
constraint, i.e., 2|UN |L. The computational experiment is only performed on the instances with
less than or equal to 50 customers since the vast majority of these instances are solved optimally.
The results are summarized in Table 7. MORL stands for the mean optimal objective values
with the LIFO constraint relaxed while Column MOWL represents the mean optimal objective
values with the LIFO constraint. Column Mean Obj-Diff % gives the corresponding average
relative percentage difference between the objective values. It can be observed that for instances
of family 2, following the LIFO constraint produces 2.6% more cost on average. As the average
size of the items is smaller, the cost due to the LIFO constraint gradually decreases. Especially
for family 5, the LIFO constraint brings no extra cost.

For practitioners, according to Table 7, if the items are relatively large with respect to the
vehicles, the LIFO constraint could significantly raise the operational cost. To address the issue,
the following policies could provide some insights for managers.

1. Hierarchize service level of delivery. Generally, the LIFO constraint is respected to
make speedy delivery for customers. In a distribution network, service level can be set
in a hierarchical fashion. That is to say, only for customers that need speedy delivery,
the LIFO constraint is respected. One can even charge for the speedy delivery as the
compensation for the extra cost.

2. Purchase vehicles with larger loading surface. The policy can reduce the extra cost
effectively as implied by Table 7. Although a large amount of investment is required at
the very beginning, it can be covered by the saved extra cost in the long run. Moreover,
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the average extra cost can be a good reference for the purchase.

Table 7: The results for the analysis on the cost of respecting the LIFO constraint

Instance family MORL MOWL Mean Obj-Diff %
2 758.3 778.2 2.60%
3 739.5 749.4 1.10%
4 786.1 794.2 1.00%
5 777.4 777.4 0.00%

7 Conclusion

This study has developed a state-of-the-art exact method to solve the 2L-CVRP. The problem
is formulated as a set partitioning model of which the linear relaxation is solved by a column
generation algorithm boosted by a new data structure and a new dominance rule. The branch-
and-price-and-cut algorithm is enhanced by a novel variable selection strategy and some existing
valid inequalities. The algorithm solved 14 instances optimally for the first time. For the
benchmark instances from family 2, family 3 and family 3, the solvable size is substantially
increased by the study. Besides methodological contributions, valuable managerial insights
regarding the LIFO constraint is also derived. Future work will explore the effectiveness of the
new data structure in meta-heuristics for the 2L-CVRP. Also, it is appealing to address variants
of the 2L-CVRP with stochasticity.
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Iori M, Salazar-González JJ, Vigo D (2007) An exact approach for the vehicle routing problem
with two-dimensional loading constraints. Transportation science 41(2):253–264.

Kang J, Park S (2003) Algorithms for the variable sized bin packing problem. European Journal
of Operational Research 147(2):365–372.

A Branch-and-Price-and-Cut Algorithm for the Vehicle Routing Problem with Two-Dimensional Loading Constraints

24 CIRRELT-2021-27



Khebbache-Hadji S, Prins C, Yalaoui A, Reghioui M (2013) Heuristics and memetic algorithm
for the two-dimensional loading capacitated vehicle routing problem with time windows.
Central European Journal of Operations Research 21(2):307–336.

Leung SC, Zhou X, Zhang D, Zheng J (2011) Extended guided tabu search and a new packing al-
gorithm for the two-dimensional loading vehicle routing problem. Computers & Operations
Research 38(1):205–215.

Lysgaard J, Letchford AN, Eglese RW (2004) A new branch-and-cut algorithm for the capaci-
tated vehicle routing problem. Mathematical Programming 100(2):423–445.

Mahvash B, Awasthi A, Chauhan S (2017) A column generation based heuristic for the capac-
itated vehicle routing problem with three-dimensional loading constraints. International
Journal of Production Research 55(6):1730–1747.

Martello S, Vigo D (1998) Exact solution of the two-dimensional finite bin packing problem.
Management science 44(3):388–399.

Martinelli R, Pecin D, Poggi M (2014) Efficient elementary and restricted non-elementary route
pricing. European Journal of Operational Research 239(1):102–111.

Pinto T, Alves C, de Carvalho JV (2015) Variable neighborhood search for the elementary
shortest path problem with loading constraints. International Conference on Computa-
tional Science and Its Applications, 474–489 (Springer).

Pinto T, Alves C, de Carvalho JV (2016) A branch-and-price algorithm for the vehicle routing
problem with 2-dimensional loading constraints. International Conference on Computa-
tional Logistics, 321–336 (Springer).

Pollaris H, Braekers K, Caris A, Janssens GK, Limbourg S (2015) Vehicle routing problems with
loading constraints: state-of-the-art and future directions. OR Spectrum 37(2):297–330.

Righini G, Salani M (2008) New dynamic programming algorithms for the resource constrained
elementary shortest path problem. Networks: An International Journal 51(3):155–170.

Song X, Jones D, Asgari N, Pigden T (2019) Multi-objective vehicle routing and loading with
time window constraints: a real-life application. Annals of Operations Research 1–27.

Tarantilis CD, Zachariadis EE, Kiranoudis CT (2009) A hybrid metaheuristic algorithm for the
integrated vehicle routing and three-dimensional container-loading problem. IEEE Trans-
actions on Intelligent Transportation Systems 10(2):255–271.

Wei L, Zhang Z, Zhang D, Leung SC (2018) A simulated annealing algorithm for the capacitated
vehicle routing problem with two-dimensional loading constraints. European Journal of
Operational Research 265(3):843–859.

Zachariadis EE, Tarantilis CD, Kiranoudis CT (2009) A guided tabu search for the vehicle
routing problem with two-dimensional loading constraints. European Journal of Opera-
tional Research 195(3):729–743.

Zhang X, Chen L, Gendreau M, Langevin A (2021a) A branch-and-cut algorithm for the vehicle
routing problem with two-dimensional loading constraints .

Zhang X, Chen L, Gendreau M, Langevin A (2021b) Learning-based branch-and-price algo-
rithms for a vehicle routing problem with time windows and two-dimensional loading con-
straints .

A Proofs for L-Trie

Statement 2.

Proof. We prove the statement by contradiction. Suppose we are given a route r = [i1, i2, ..., in]
and the root node γ of the L-Trie. The route found by L-Trie::findSubRoute(r, γ) is r′ =
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[ik1 , ik2 , ..., ikm ] and r′ is not a sub-route. By Definition 1, we can deduce that 1 ≤ k1 <
k2, ..., km ≤ n is not true otherwise r′ would be a valid sub-route. However, the function
findPos in Algorithm 5 ensures that the found route must respect 1 ≤ k1 < k2, ..., km ≤ n,
which achieves the contradiction.

Statement 3.

Proof. We prove the statement by contradiction. Suppose we are given a route r = [i1, i2, ..., in].
There exists a sub-route r′ = [ik1 , ik2 , ..., ikm ] stored in the L-Trie. L-Trie::findSubRoute(r, γ)
fails to find r′. Suppose the algorithm finds node “ikm−1” as shown in Figure 7, then it will
continue to search node “ikm” according to Algorithm 5. By recursion, nodes ik1 , ik2 , ..., ikm
must be all visited. Then the only possible reason that can justifies the failure to find r′ is that
the algorithm ends at some children of node “ikm”. Because r′ is the only sub-route of r, so
no child of node “ikm” leads to a sub-route. Eventually, Line 6 in Algorithm 5 is performed,
which is to return True since r′ ends at node “ikm”. Hence, the contradiction is achieved.

Figure 7: Interpretation of the proof for Statement 3

Statement 4.

Proof. We prove the statement by contradiction. Suppose we are given a route r = [ik1 , ik2 , ..., ikm ]
and the root node of the L-Trie is γ. L-Trie::findMasterRoute(r, γ) finds route r′ = [i1, i2, ..., in]
and r′ is not a master-route of r. By Definition 2, there are two cases: i) r′ includes some cus-
tomer that is not visited in r; ii) all customers in r′ are visited in r as well, but 1 ≤ k1 <
k2, ..., km ≤ n is not true. The first case is prohibited by Line 5 in Algorithm 6. As for the
second case, it is also impossible because the search is performed in the order of route r as
shown in Line 8. Hence, the contradiction is achieved.

Statement 5.

Proof. Suppose we are given a route r = [ik1 , ik2 , ..., ikm ] and the root node of the L-Trie is
γ. r′ = [i1, i2, ..., in] is the only master-route of r stored in the L-Trie. As shown by Figure 8,
once Algorithm 6 starts to explore node “i1”, it will eventually reach node ikm , which exactly
corresponds to route r′. Since node “i1” is bound to be explored by Algorithm 6, r′ can be
surely found.
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Figure 8: Interpretation of the proof for Statement 5

B The variant of the BPC

Generally, the simple variant of the BPC is the version where the two-dimensional loading
constraints are excluded in the pricing problem but moved to the master problem. Let Ω(e) be
the set of routes that traverse edge e. Formally, the resulting set partitioning formulation and
the pricing problem are as follows.

min
∑
r∈Ω

crλr (26)

s.t.∑
r∈Ω

λr = |K| (27)∑
r∈Ω

ai,rλr = 1, ∀i ∈ Vc (28)∑
e∈E(S,σ)

∑
r∈Ω(e)

λr ≤ |S| − 1, ∀(S, σ) such that σ /∈ Σ(S) (29)

λr ∈ {0, 1}, ∀r ∈ Ω (30)
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min
∑
e∈E

d̄exe − πf (31)

s.t. (32)∑
e∈δ(i)

xe = 2 ∀i ∈ V (33)

∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ Vc, 1 < |S| < n− 1, ∀i ∈ S, ∀k ∈ K (34)

∑
(i,j)∈E

xij(qi + qj) ≤ 2Q (35)

∑
(i,j)∈E

xij(νi + νj) ≤ 2A (36)

xe ∈ {0, 1}∀e ∈ E (37)

Hence, the pricing problem is the classic ESPPRC, which is solved by the dynamic programming
proposed in Martinelli et al. (2014). Other components of the BPC algorithm are not changed.
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C Full results of the BPC algorithm on the benchmark instances

Instance No C No I
The BPC The B&C

Opt Time Tree size UB LB Gap Time Tree size
0102 15 24 285.0 65.3 3 285.0 285.0 0.0% 1.9 314
0103 15 31 280.0 43.4 0 280.0 280.0 0.0% 1.9 97
0104 15 37 288.0 15.0 0 288.0 288.0 0.0% 0.3 0
0105 15 45 279.0 0.8 0 279.0 279.0 0.0% 0.2 0
0202 15 25 342.0 6.3 10 342.0 342.0 0.0% 0.2 71
0203 15 31 347.0 7.9 6 347.0 347.0 0.0% 0.6 127
0204 15 37 336.0 16.5 23 336.0 336.0 0.0% 0.5 59
0205 15 48 329.0 0.3 3 329.0 329.0 0.0% 0.03 11
0302 15 37 396.0 7.5 2 396.0 396.0 0.0% 0.3 148
0303 20 46 387.0 13.5 0 387.0 387.0 0.0% 0.6 18
0304 20 46 374.0 16.3 5 374.0 374.0 0.0% 3.9 36
0305 20 49 369.0 0.5 0 369.0 369.0 0.0% 0.15 9
0402 20 32 434.0 8.3 0 434.0 434.0 0.0% 0.6 70
0403 20 46 432.0 8.3 2 432.0 432.0 0.0% 0.8 53
0404 20 50 438.0 14.1 0 438.0 438.0 0.0% 0.8 151
0405 20 62 423.0 0.3 0 423.0 423.0 0.0% 0.1 2
0502 21 31 380.0 20.3 2 380.0 380.0 0.0% 0.6 24
0503 21 37 373.0 28.8 0 373.0 373.0 0.0% 0.2 7
0504 21 41 377.0 27.4 0 377.0 377.0 0.0% 0.5 13
0505 21 57 389.0 0.2 0 389.0 389.0 0.0% 0.1 0
0602 21 33 491.0 16.5 0 491.0 491.0 0.0% 0.5 79
0603 21 40 496.0 17.2 3 496.0 496.0 0.0% 3.3 234
0604 21 57 489.0 31.4 0 489.0 489.0 0.0% 0.5 3
0605 21 56 488.0 1.2 4 488.0 488.0 0.0% 0.2 40
0702 22 32 724.0 27.5 0 724.0 724.0 0.0% 0.5 24
0703 22 41 698.0 39.9 0 698.0 698.0 0.0% 1.4 7
0704 22 51 714.0 50.8 0 714.0 714.0 0.0% 1.1 6

A Branch-and-Price-and-Cut Algorithm for the Vehicle Routing Problem with Two-Dimensional Loading Constraints

CIRRELT-2021-27 29



0705 22 55 742.0 4.7 9 742.0 742.0 0.0% 0.8 0
0802 22 29 720.0 49.7 0 720.0 720.0 0.0% 5.6 342
0803 22 45 730.0 32.1 0 730.0 730.0 0.0% 3.0 10
0804 22 48 701.0 38.9 0 701.0 701.0 0.0% 0.3 0
0805 22 52 721.0 0.6 0 721.0 721.0 0.0% 0.8 0
0902 25 40 612.0 4.0 0 612.0 612.0 0.0% 0.3 26
0903 25 61 615.0 7.9 0 615.0 615.0 0.0% 0.7 41
0904 25 63 626.0 66.3 8 626.0 626.0 0.0% 3.5 331
0905 25 91 609.0 0.9 0 609.0 609.0 0.0% 0.17 18
1002 29 43 687.0 124.1 2 687.0 687.0 0.0% 4.7 567
1003 29 49 637.0 279.6 4 637.0 637.0 0.0% 17.9 1,316
1004 29 72 738.0 817.2 37 738.0 738.0 0.0% 4.7 12
1005 29 86 704.0 21.2 13 704.0 704.0 0.0% 13.6 64
1102 29 43 708.0 34,382.7 736 708.0 691.0 2.5% 4,139.5 285,831
1103 29 62 743.0 749.4 46 743.0 743.0 0.0% 83.7 18,651
1104 29 74 781.0 1,893.3 49 781.0 781.0 0.0% 104.1 2,583
1105 29 91 681.0 33.2 3 681.0 681.0 0.0% 79.7 5
1202 30 50 605.0 41.3 0 605.0 605.0 0.0% 405.2 1,1631
1203 30 56 596.0 99.0 6 596.0 596.0 0.0% 145.2 5,624
1204 30 82 606.0 22.8 2 606.0 606.0 0.0% 901.3 19,990
1205 30 101 596.0 4.7 6 596.0 596.0 0.0% 166.7 5,208
1302 30 101 2,714.0 444.8 16 2,714.0 2,714.0 0.0% 40.8 7,284
1303 32 56 2,574.0 229.2 8 2,574.0 2,574.0 0.0% 23.5 2,202
1304 32 78 2,668.0 1,435.9 54 2,668.0 2,668.0 0.0% 175.6 2,3445
1305 32 102 2,632.0 55.8 5 2,632.0 2,632.0 0.0% 94.1 4
1402 32 47 1,241.0 16,104.0 207 1,241.0 1,218.6 1.83% 4,740.8 77,738
1403 32 57 1,190.0 5,592.5 57 1,190.0 1,190.0 0.0% 65.4 5,474
1404 32 65 1,166.0 464.3 0 1,166.0 1,166.0 0.0% 2.7 17
1405 32 87 1,288.0 1.4 0 1,288.0 1,288.0 0.0% 0.7 27
1502 32 48 1,098.0 40,461 328 1,101.0 1,080.3 1.91% 5,098.2 82,310
1504 32 84 1,348.0 3,027.3 64 1,348.0 1,348.0 0.0% 163.0 7,550
1505 32 114 1,335.0 24.3 0 1,335.0 1,335.0 0.0% 6,756.8 128
1602 35 56 682.0 9.0 3 682.0 682.0 0.0% 15.9 533
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1603 35 74 682.0 12.3 2 682.0 682.0 0.0% 17.1 654
1604 35 93 691.0 17.2 0 691.0 691.0 0.0% 33.2 1,492
1605 35 114 682.0 1.6 2 682.0 682.0 0.0% 16.6 651
1702 40 60 851.0 11.5 0 851.0 839.1 1.42% 13,658.7 44,765
1703 40 60 842.0 7.6 0 842.0 842.0 0.0% 5,860.6 53,227
1704 40 60 842.0 7.9 0 842.0 842.0 0.0% 5,291.2 50,236
1705 40 60 842.0 2.6 0 842.0 842.0 0.0% 5,675.7 51,226
1802 44 66 1,041.0 62,449.0 585 1,044.0 1,005.5 3.83% 4,560.3 77,866
1803 44 87 1,085.0 6326.0 31 1101.0 1061.4 3.73% 4,752.0 94,114
1804 44 112 1,113.0 2,334.8 17 1,113.0 1,113.0 0.0% 2,167.2 31,823
1805 44 122 937.0 364.8 114 937.0 937.0 0.0% 4,880.9 612
1902 50 82 774.0 7,928.0 122 776.0 732.7 5.9% 9,109.7 60,052
1903 50 103 782.0 3,601.0 62 782.0 782.0 4.3% 11,243.0 52,220
1904 50 134 793.0 1,551.4 48 800.0 780.6 2.49% 8,625.4 61,542
1905 50 157 724.0 136.0 47 724.0 724.0 0.0% 1,029.7 115
2004 71 178 538.0 5,173.0 51 555.0 527.9 5.22% 13,117.4 42,823
2005 71 226 505.0 3,623.1 264 505.0 505.0 0.0% 1,865.2 7,082
2104 75 168 1021.0 62,420.0 362 1,038.0 991.2 4.72% 29,831.0 52,495
2402 75 124 1,193.0 17,661.0 143 1,193.0 1,057.0 12.86% 34,048.9 23,909
2404 75 195 1,111.0 7,152.0 1,470 1,115.0 1,038.75 7.34% 28,526.7 39,490
2405 75 215 1,044.0 16,100 30,72 1,047.0 1,018.05 2.84% 37,472.9 56,760
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