

 CIRRELT-2021-30

Data-driven Vehicle Routing in Last Mile Delivery

 Okan Arslan
 Rasit Abay

August 2021

Data-driven Vehicle Routing in Last Mile Delivery

Okan Arslan1, *, Rasit Abay2
1. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT) and, Department of Decisions Sciences, HEC Montréal, QC, Canada
2. School of Engineering and Information Technology, UNSW Canberra, Northcott Drive,

Campbell, ACT, Australia

Abstract. This report presents a methodological approach developed for the Last Mile

Routing Research Challenge organized by Amazon and supported by the MIT Center for

Transportation & Logistics in 2021. We develop a prescriptive method based on rules that

are extracted through descriptive analysis of the data. The method involves solving the

traveling salesman problem on a transformed graph. In this transformation, we only use the

zone_ids for modifying the travel times between node pairs. The method is effective in

generating high-quality solutions. The average score that the model achieved when tested

locally is 0.0367 on the 1107 routes from the dataset, which share similar characteristics to

the ones in the model apply phase. This method received the third place in the routing

challenge.

Keywords: routing, last-mile, traveling salesman problem

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: okan.arslan@hec.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
Bibliothèque et Archives Canada, 2021

© Arslan, Abay and CIRRELT, 2021

mailto:okan.arslan@hec.ca

1. Introduction

Given a complete graph, the problem of finding a shortest tour that visits every node in the graph is

defined as the traveling salesman problem (TSP), which is a well-known NP-hard problem in operations

research. Di↵erent than distance-minimizing objective in the TSP, the aim in this challenge is to generate

tours similar to those that were historically executed by the Amazon drivers. To this end, we present

descriptive analysis of the data to help better understand the driver’s choices and develop prescriptive

methods for generating high quality routes. In particular, our main approach is (1) to deduce rules through

descriptive analytics, (2) to develop a network transformation guided by these rules and (3) to solve the

classical TSP on the transformed network. We are expecting that in the model apply phase, our approach

generates a feasible route for every problem instance, and yields an average score of 0.0367. We have three

modeling strategies that governed choice of methods:

(I) E↵ectiveness: We take the score as the primary factor a↵ecting our model selection.

(II) Interpretability: We prefer to maintain the complexity of the model low (in terms of data require-

ment) in order to make it easy to interpret the factors a↵ecting the score.

(III) Flexibility: We prefer to keep the model flexible without much dependence on excessive input data.

Our method is e↵ective because it achieves a competitive score on the provided dataset. It is also

interpretable and highly flexible because it involves solving a TSP on a modified graph using only the travel

time and zone id data. There is no additional data requirement including the package dimensions, delivery

time windows or service times. This flexibility also implies generalizability of the method to similar datasets.

In Section 2, we review the related literature. We then present our methodological approach in two parts.

We first present a descriptive analysis in Section 3 and develop a network transformation approach in Section

4. Results and conclusions are presented in Section 5.

2. Literature Review

In this section, we review the methods for solving the TSP, which is one of the most touted problems in

operations research. Consider a complete graph G = (N,A), where N is the set of nodes and A is the set

directed arcs, representing direct travel between nodes. The cost of arc (i, j) 2 A is dij . Let 0 represent the

depot, and nodes N \ {0} represent the customers. In this report, we use node and stop interchangeably. If

dij = dji for all (i, j) 2 A, the problem is a directed TSP. It is undirected TSP, otherwise.

There is a multitude of both exact and approximate solution approaches in the literature (Applegate

et al., 2011). In this challenge, the objective is the minimization of the average score, which requires the

actual visit sequence of the customers to be known. Therefore, this objective function cannot be evaluated

when solving the problem and the lower bounds on the objective function are not relevant in this context. On

the other hand, any feasible solution for the TSP is also a feasible solution for the problem considered here.

1

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

Given the limited time available to generate the routes, heuristics and metaheuristics are potentially the best

candidates for generating such feasible tours. One of the best performing heuristics for the TSP is developed

by Lin & Kernighan (1973) and an e↵ective implementation is presented by Helsgaun (2000). For a review

of heuristic algorithms developed for TSP, we refer the reader to Laporte (1992). Several metaheuristics are

also developed for the TSP such as genetic algorithm (Potvin, 1996), tabu search (Knox, 1994), simulated

annealing (Pepper et al., 2002; Wang et al., 2009), variable neighborhood search (Carrabs et al., 2007; Hore

et al., 2018), among others. Kottho↵ et al. (2015) report that the LKH algorithm (Helsgaun, 2000) and the

genetic algorithm with a powerful edge assembly crossover operator (Nagata & Kobayashi, 2013) are the two

most powerful algorithms for inexact solution of the TSP.

The TSP solution methods considered in the literature have a well-defined objective function, which is

the minimization of the cost (in terms of a measure such as time, cost or distance). Our approach is di↵erent

from the existing studies because we consider an objective function that is unknown during the solution of

the problem. In our approach, we transform the input graph in order to model the driver choices and use

the TSP as a subroutine for generating solutions.

3. Methodology, Part 1: Descriptive Analytics

The dataset contains 6112 routes from five major locations and their surrounding cities: Los Angeles,

Seattle, Chicago, Boston, and Austin. The routes are classified as high, medium and low in terms of quality.

The summary of the data is presented in Appendix A. Five remarks are in order, which guide the development

of our prescriptive method.

Remark 1. In the dataset, 4.78% of the stops have time windows that can impact the routes.

Remark 2. In the dataset, the travel time constitutes one of the most important features.

Remark 3. In the actual routes, the zone ids of two consecutive nodes are the same 85.2% of the times.

In the dataset, the ‘zone id ’ property of a node is of the following format: L-M.PR, where L and R are

letters and M and P are numbers. We refer to each of these four entries as a token.

Remark 4. In the actual routes, the zone ids of two consecutive nodes change only in the 3rd or 4th token

11.3% of the times.

Remark 5. In the actual routes, the first and the last stops are not necessarily close to the depot.

The justification of these remarks are optional and are presented in the remainder of this section. Inter-

ested readers can continue reading or they can directly proceed to Section 4 without loss of continuity.

2

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

3.1. Time windows

Time window is a critical property for algorithm selection. TSP with time windows is computationally

more challenging than the classical TSP (without time windows). Therefore a thorough investigation of the

data is necessary to see if it is indeed necessary to model the time windows in the solution method. In the

provided dataset, there are 1,457,175 packages delivered on 6112 routes. Among these packages, 113,993 have

time windows, which corresponds to %7.82 of the total number of packages. We now make two observations:

(1) in the actual competition, there will not be any delivery reattempts of a package, and (2) in the dataset,

the latest start time of any time window at a given stop is never after the earliest end time of any time

window at the same stop. Considering these two observations, it is suboptimal to visit a stop more than once

and all packages at the same stop must be delivered in a single visit. Thus, we consider the time windows

per stop instead of per package. There are a total of 898,415 stops visited on 6112 routes. The number

of stops with at least one package with a delivery time window is 59,172, which corresponds to %6.58 of

the total stops. The earliest delivery time requirement of 32,711 of these stops are automatically satisfied,

because the soonest time that the delivery vehicle can arrive at the customer’s location (considering the

departure time and the travel time from the depot directly to the stop) is after the start of the time window.

The latest delivery time of 28,277 of these stops are also automatically satisfied because the time that the

delivery vehicles serve the last customer on the actual routes is before the end of the time window for these

stops. When we exclude those stops that without a need for special treatment for their start and end of

time window requirements, 42,989 stops remain, which corresponds to 4.78% of the total customers. This

justifies Remark 1.

3.2. Travel times

When the objective is defined as the minimization of the tour duration and the time windows are not

considered, the problem is then a TSP. Using only the travel times, we solved the TSP problem for every

route, which gave a competitive score of 0.0795. This naive approach demonstrates that the drivers prefer

shorter route durations and travel time is an important measure in route selection. This justifies Remark 2.

3.3. Zones

Zoning is critical for delivery. Delivery region is usually partitioned into multiple zones considering several

factors such as the geographical and structural di↵erences between locations. In the 6112 routes provided,

there are an average of 21.04 zone ids per route including the depot. The average number of times that the

drivers change region between two consecutive visits is only 23.61. In other words, the drivers generally visit

the stops in the same zone ids before changing zones. A sample route is plotted in Figure 1.

The observation that the drivers generally visit the customers in the same zone id before going into

another zone is an important observation. But the zone id property contains more information than this. In

particular, as a general rule of thumb, the more similar two zone names are, the closer they are geographically

3

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

Figure 1: Map of actual route ‘RouteID 62955f5e-57a2-4425-bfe6-6989d8dae565’. Stops are marked by their zone ids and the

route is shown in blue line. The depot is not shown on this map. Google Map data ©2021

4

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

to each other, similar to military grid reference system∗. We now recall the definition of a token. In the

dataset, the ‘zone id ’ property of a node is of the following format: L-M.PR, where L and R are letters and

M and P are numbers. We refer to each of these four entries as a token. Each token breaks the service region

into subregions. Let xk
ij = 1 if the kth token of the zone id of nodes i and j are di↵erent, and 0 otherwise.

Definition 1. Given two nodes i, j 2 N , we define ⌘ij =
Pk=4

k=1 x
k
ij to be the ‘token di↵erence of nodes i and

j’, which is a parameter to measure the dissimilarity between the zone ids of the two given nodes.

Having ⌘ij = 0 implies that nodes i and j share the same zone id. Table 1 shows the average number of times

that a token di↵erence is observed on 6112 routes. Two consecutively visited nodes are in the same region

124.38 times, on average. This corresponds to 85.2% of the average number of nodes. This justifies Remark

3. Note that the drivers very rarely change zones with ⌘ij � 2. Majority of these zone changes are between

zones with a token di↵erence of 1. For example, the vehicle visits a stop in zone A-1.2A and continues with

another stop in zone A-1.3A. In other words, the consecutive visited zones share 3 tokens 17.38 times on

average, which corresponds to 11.9% of the average number of nodes. This case is particularly important

and we now further investigate such zone changes.

Table 1: Average number of times that a token di↵erence appears between two consecutive stops on actual routes

Token di↵erence (⌘ij) Average number of times per route

0 124.38

1 17.38

2 1.88

3 0.34

4† 2.02

Total† 145.99

† Excluding the arcs from the depot

When the token di↵erence equals 1 in Table 1, the two zone ids are di↵erent only in ith token for

i = 1, . . . , 4. Table 2 shows the average number of times that ith token is di↵erent in consecutive stops of

the actual routes, for i = 1, . . . , 4. Among the 17.38 zone changes with single token di↵erence, the vehicle

visits 11.33 times another zone that changes only in the 3rd token (Table 2). For example, the vehicle goes

from zone A1.1A to A1.2A. They go to another zone that changes only in the 4th token 5.22 times. This

corresponds to 11.3% of the stops, which justifies Remark 4.

3.4. Depots

The average travel time from the depot to the first stop is 1811.4 seconds, the travel time from the last

stop to the depot is 1857.7 seconds and the travel time travel time spent between customers is 8972.8 seconds.

∗https://en.wikipedia.org/wiki/Military_Grid_Reference_System

5

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

https://en.wikipedia.org/wiki/Military_Grid_Reference_System

Table 2: Average number of times that two zone ids are di↵erent only in ith token for i = 1, . . . , 4 (when the token di↵erence

equals 1 in Table 1).

Token # Average number

1st 0.02

2nd 0.81

3rd 11.33

4th 5.22

Total 17.38

Therefore, 29% of the route time, the driver is enroute from and to the depot. This signifies the importance

of these two trips. We therefore further investigate the first and the last stops on the route from the depot.

In particular, we sort the stops with respect to their distance from the depot, and plot the distribution of

the ranks of first and the last stops in Figure 2. The first stop on the route is in top 10% ranking in travel

time from the depot in 35% of the routes. Similarly, the last stop on the route is in top 10% ranking in travel

time from the depot in 23% of the routes. As shown in the graph, there is a high probability that those stops

that are farther away from the depot can be selected as the first and the last nodes. This justifies Remark 5.

4. Methodology, Part 2: Prescriptive Analytics

In this section, we first discuss some preliminary tests to justify the reasons for not considering the time

windows in our algorithm. We then present the metaheuristics we used for solving the TSP in Section 4.2

and develop a network transformation using Remarks 2�5 in Section 4.3. Lastly, we present implementation

details in Section 4.4.

4.1. TSP with or without time windows?

In our preliminary tests, we solved the TSP instances (by only considering the travel times) with and

without time windows. In these tests, considering the time windows did not improve the score. Furthermore,

considering the small ratio of the stops in Remark 1 (4.78%) that require special treatment in terms of time

windows, we prefer to neglect the time windows in our approach. The TSP with time windows is also

computationally more di�cult to solve and may lead to infeasible solutions. Since the score only mildly

deteriorates when the sequence of the customer visits is locally correct, but not precisely in the same order

as the actual route, neglecting the time windows insignificantly impacts the score. This modeling choice

aligns with our modeling strategies presented in Section 1.

4.2. Metaheuristics for TSP

In our methodology, we solve the TSP for every route. Therefore, an e↵ective implementation of a solution

methods is critical. Given the limited time we have in the context of this competition, we investigated three

6

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

[0
, 1
0)

[1
0,
20
)

[2
0,
30
)

[3
0,
40
)

[4
0,
50
)

[5
0,
60
)

[6
0,
70
)

[7
0,
80
)

[8
0,
90
)

[9
0,
10
0]

5

10

15

20

25

30

35

Rankings with respect to distance from the depot

P
er
ce
nt

of
oc
cu
rr
en
ce

(%
)

First stop
Last stop

Figure 2: The first node and the last stops on the actual routes are not always the nearest two stops to the depot. This plot

shows the ranking distribution of the first and last stops in terms of distance from the depot.

online source code repositories (Skiena, 2021; Bossek et al., 2021; Operations Research Group Bologna,

2021) that compares the computational e�ciency of the TSP solution algorithms. Taking into account the

licencing requirement of the competition and the competitiveness of the algorithms, we found the genetic

algorithm with a powerful edge assembly crossover operator, developed by (Nagata & Kobayashi, 2013) and

implemented by Liu (2014) to be the most promising alternative. Its implementation is available online‡ and

is under Apache License 2.0.

4.3. Network transformation

Our network transformation is based on modifying the travel times between stops to discourage an arc

from appearing in the solution provided by the metaheuristics. To this end, we penalize the arc costs by

multiplying by constant values based on their zone ids. This aligns with Remarks 2�4. Recall that xk
ij = 1

if the kth token of the zone id of nodes i and j are di↵erent, and 0 otherwise. Consider graph Ĝ = (N, Â),

where Â = A and the cost of arc (i, j) is equal to tij , which is defined as follows:

‡https://github.com/sugia/GA-for-TSP

7

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

https://github.com/sugia/GA-for-TSP

tij =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

b1dij if i = 0

b2dij if j = 0

a1dij if i, j 6= 0, x1
ij = 1 and

k=4X

k=2

xk
ij = 3

a2dij if i, j 6= 0, x1
ij = 1 and

k=4X

k=2

xk
ij = 2

a3dij otherwise

(i, j) 2 A, (1)

where (b1, b2, a1, a2, a3) are ‘discouragement multipliers’ with a1 < a2 < a3. Parameter a1 is the discour-

agement multiplier for the stops in the same zone. Due to Remark 3, it is convenient to set it equal to 1.

Parameter a2 is the multiplier between two stops i and j whose zone ids share three tokens including the first

token, due to Remark 4. By construction, a1 < a2. Parameter a3 is the discouragement multiplier between

all other stop pairs when neither of the two stops is the depot. If the tail or head of the arc is the depot,

the arc cost dij is multiplied by b1 or b2, respectively. By changing these two discouragement multipliers,

we can adjust the importance of the first and the last stop selection on the route, aligned with Remark 5.

When the network is transformed, we run the aforementioned genetic algorithm on the corresponding TSP

instance to generate the tour.

Remark 6. The algorithm presented in this study does not require a learning phase.

4.4. Implementation details

In this section, we present details on implementation of the algorithm.

• We adapted the genetic algorithm implementation of Liu (2014) in C++. As parameters of the algo-

rithm, we set maxNumOfTrial = 1, Npop = 50 and Nch = 50 (see Liu (2014) for details).

• This algorithm is developed for solving the symmetric TSP; however, the travel times in the dataset

are asymmetric. By modifying the input graph, we can solve a symmetric TSP instance in order to

find a solution for the asymmetric TSP (see, e.g., Jonker & Volgenant, 1983, 1986).

• We modified the genetic algorithm source code to read distance matrix and added a time limit of 4.42

seconds per instance not to violate the 4 hour running time bound.

• Since the zone ids are critical for the correct calculation of the arc costs, our implementation detects

stops with zone id=‘nan’ and assign the closest stop’s zone id.

• If genetic algorithm fails to provide a feasible solution, we run a simple greedy heuristic in order not

to return an infeasible tour. In our computational tests, we have encountered 2 such occurrences.

• In our algorithm, we use (b1, b2, a1, a2, a3) = (0, 1, 1, 10, 100).

8

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

Algorithm 1: Route generating algorithm
Input: new route data.json and new travel times.json

Output: proposed sequences.json

1 foreach route 2 allRoutes do // Main loop

2 Create a symmetric TSP instance for the asymmetric network Ĝ with arc costs as defined in (1)

3 success := Solve the instance using the genetic algorithm

4 if success !=0 then // Contingency plan

5 Run greedy heuristic on Ĝ

6 Append the proposed route to proposed sequences.json

7 return proposed sequences.json

The Pseudo-code is presented in Algorithm 1. Note that, in this report, we present the best version of

our algorithm in terms of e�ciency, interpretability and flexibility. We have also implemented various other

techniques, which did not improve over the method presented here. We report such approaches in Appendix

B.

5. Results and Conclusions

In themodel apply phase, the routes will be high quality and will not contain ‘DELIVERY ATTEMPTED’

status in any stops. There are a total of 1107 routes in the dataset that satisfies these two conditions and we

present scores on this subset of the routes. We tested our algorithm with our baseline parameter settings,

(b, 1, b2, a1, a2, a3) = (1, 0, 1, 10, 100) and obtained an average score of 0.0367. The distribution of the route-

based scores is shown in Figure 3. Our algorithm with the same settings results in a score of 0.0403 on all

2718 routes with high quality.

5.1. Analysis for tuning parameters

We randomly generated 494 (a1, a2, a3) values respecting a1 < a2 < 10a1 and a2 < a3 < 10a2 conditions

and tested our algorithm. None of these implementations performed better than the baseline settings. The

average score of these experiments is 0.0396 and the maximum score is 0.0543, demonstrating the robustness

of our algorithm for di↵erent parameter settings.

The b1 and b2 parameters determine the importance of the trips from and to the depot. We tested (0, 0),

(1, 0), (0, 1), (1, 1) and (0.5, 0) settings with (a1, a2, a3) = (1, 10, 100). The average scores are 0.0381, 0.0367,

0.0378, 0.0374 and 0.0371, respectively. Therefore, we set (b1, b2) = (1, 0) as in the baseline settings.

5.2. Discussion and avenues for further improvement

Our model scored relatively poorly specifically in Austin. The average scores for Austin, Boston, Chicago,

Los Angeles and Seattle regions are 0.0573, 0.0377, 0.0438, 0.0339 and 0.0311, respectively. Another feature

9

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

[0
.0
0,

0.
01
)

[0
.0
1,

0.
02
)

[0
.0
2,

0.
03
)

[0
.0
3,

0.
04
)

[0
.0
4,

0.
05
)

[0
.0
5,

0.
06
)

[0
.0
6,

0.
07
)

[0
.0
7,

0.
08
)

[0
.0
8,

0.
09
)

[0
.0
9,

0.
10
)

[0
.1
0,

0.
11
)

[0
.1
1,

0.
12
)

[0
.1
2,

0.
13
)

[0
.1
3,

0.
14
)

[0
.1
4,

0.
15
)

[0
.1
5,

0.
16
)

[0
.1
6,

0.
17
)

[0
.1
7,

0.
20
1)

0

5

10

15

20 Average = 0.0367 Maximum = 0.201

Score bins

P
er
ce
nt

of
th
e
ro
u
te
s
(%

)

Figure 3: Score distribution on 1107 high routes without ‘DELIVERY ATTEMPTED’ status on any stop. These routes share

similar characteristics as in the model apply phase. The average score is 0.0367 and the maximum score is 0.201.

is the number of stops on the route. Our model also performs relatively poorly when the number of stops

on the route is less than 100.

As mentioned in Section 5.1, we tested several di↵erent settings for tuning a parameters. When we

consider the best performing parameter setting per route, the score we can potentially obtain reduces to

0.018. Therefore, parameter tuning by techniques such as reinforcement learning is a promising avenue to

further improve the score (see, e.g., Kottho↵ et al., 2015). We are currently working on training an algorithm

for learning the best parameter settings for a given instance.

5.3. Conclusion

We have developed an e↵ective, interpretable and flexible model for a real-world last mile delivery prob-

lem. The methodology involves a network transportation and a genetic algorithm. The best version of our

algorithm scores 0.0367 on the 1107 routes from the dataset, which share similar characteristics to the ones

in the model apply phase. Therefore, our expected performance on the real dataset is 0.0367.

10

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

Appendix A. Summary statistics

• There are 2718 high, 3292 medium and 102 low quality routes in the dataset.

• The routes are executed between July 19, 2018 and August 26, 2018.

• The departure times change between 10:48:03 and 18:27:10.

• There are three types of vehicles in size with capacities of 4.2475 m3, 3.313 m3 and 3.1149 m3.

• Number of nodes per route (including the depot) changes between 33 and 238 with an average of 146.99

per route. The average number of customer stops is therefore 145.99 per route.

• The customer service times change between 39.6 and 521.1 seconds, with an average of 116.6 seconds.

• The average travel time between two stops is 61.5 seconds.

• The average time from the depot to the first stop is 1811.4 seconds, the time from the last stop to the

depot is 1857.7 seconds and the time travel time spent between stops is 8972.8 seconds.

• Average vehicle load is %74.2 of their capacity.

• Among 1,457,175 packages in the dataset, 1,446,129 have ‘DELIVERED’, 11,014 have ‘DELIVERY

ATTEMPTED’ status and only 32 have ‘REJECTED’ status.

• The routes come from five major locations and their surrounding cities: Los Angeles, Seattle, Chicago,

Boston, and Austin. Approximately half of the routes come from Los Angeles.

• There are a total of 17 depots in the dataset.

Appendix B. Other methods considered

Note that one can build various rules out of the zone id naming convention. We also tested assigning

discouragement multipliers according to the distance between the centers of gravity of the zones, which

did not help in improving the results. Since we have no information as to how the regions are named, we

preferred to follow a general rule. If more information is available on the zone naming convention, one can

potentially improve the quality of the solution method.

We tested adding package service time to the arc costs in the graph, which did not improve the score. We

also restricted visiting a stop with time windows directly from the depot, if the start of any time windows

in the same zone is after the arrival of the vehicle to the zone. However, this did not improve the score.

11

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

References

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2011). The traveling salesman problem.

Princeton university press. doi:10.1515/9781400841103.

Bossek, J., Hoos, H. H., Kerschke, P., Kottho↵, L., Neumann, A., Neumann, F., Trautmann, H., & Wagner,

M. (2021). Tsp algorithm selection. URL: https://tspalgsel.github.io last accessed on Jun 22, 2021.

Carrabs, F., Cordeau, J.-F., & Laporte, G. (2007). Variable neighborhood search for the pickup and delivery

traveling salesman problem with lifo loading. INFORMS Journal on Computing , 19 , 618–632. doi:10.

1287/ijoc.1060.0202.

Helsgaun, K. (2000). An e↵ective implementation of the lin–kernighan traveling salesman heuristic. European

Journal of Operational Research, 126 , 106–130. doi:10.1016/S0377-2217(99)00284-2.

Hore, S., Chatterjee, A., & Dewanji, A. (2018). Improving variable neighborhood search to solve the traveling

salesman problem. Applied Soft Computing , 68 , 83–91. doi:10.1016/j.asoc.2018.03.048.

Jonker, R., & Volgenant, T. (1983). Transforming asymmetric into symmetric traveling salesman problems.

Operations Research Letters , 2 , 161–163. doi:10.1016/0167-6377(83)90048-2.

Jonker, R., & Volgenant, T. (1986). Transforming asymmetric into symmetric traveling salesman problems:

erratum. Operations Research Letters , 5 , 215–216. doi:10.1016/0167-6377(86)90081-7.

Knox, J. (1994). Tabu search performance on the symmetric traveling salesman problem. Computers &

Operations Research, 21 , 867–876. doi:10.1016/0305-0548(94)90016-7.

Kottho↵, L., Kerschke, P., Hoos, H., & Trautmann, H. (2015). Improving the state of the art in inexact

tsp solving using per-instance algorithm selection. In C. Dhaenens, L. Jourdan, & M.-E. Marmion (Eds.),

Learning and Intelligent Optimization (pp. 202–217). Cham: Springer International Publishing. doi:10.

1007/978-3-319-19084-6_18.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate algorithms.

European Journal of Operational Research, 59 , 231–247. doi:10.1016/0377-2217(92)90138-Y.

Lin, S., & Kernighan, B. W. (1973). An e↵ective heuristic algorithm for the traveling-salesman problem.

Operations research, 21 , 498–516. doi:10.1287/opre.21.2.498.

Liu, S. (2014). A powerful genetic algorithm for traveling salesman problem. arXiv preprint arXiv:1402.4699.

Nagata, Y., & Kobayashi, S. (2013). A powerful genetic algorithm using edge assembly crossover for the

traveling salesman problem. INFORMS Journal on Computing , 25 , 346–363. doi:10.1287/ijoc.1120.

0506.

12

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

http://dx.doi.org/10.1515/9781400841103
https://tspalgsel.github.io
http://dx.doi.org/10.1287/ijoc.1060.0202
http://dx.doi.org/10.1287/ijoc.1060.0202
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.1016/j.asoc.2018.03.048
http://dx.doi.org/10.1016/0167-6377(83)90048-2
http://dx.doi.org/10.1016/0167-6377(86)90081-7
http://dx.doi.org/10.1016/0305-0548(94)90016-7
http://dx.doi.org/10.1007/978-3-319-19084-6_18
http://dx.doi.org/10.1007/978-3-319-19084-6_18
http://dx.doi.org/10.1016/0377-2217(92)90138-Y
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1287/ijoc.1120.0506
http://dx.doi.org/10.1287/ijoc.1120.0506

Operations Research Group Bologna (2021). Tsp software. URL: http://or.dei.unibo.it/research_

pages/tspsoft.html last accessed on Jun 22, 2021.

Pepper, J. W., Golden, B. L., & Wasil, E. A. (2002). Solving the traveling salesman problem with annealing-

based heuristics: a computational study. IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans , 32 , 72–77. doi:10.1109/3468.995530.

Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of Operations Research,

63 , 337–370. doi:10.1007/BF02125403.

Skiena, S. (2021). Stony brook algorithm repository, traveling salesman problem. URL: https://algorist.

com/problems/Traveling_Salesman_Problem.html last accessed on Jun 22, 2021.

Wang, Z., Geng, X., & Shao, Z. (2009). An e↵ective simulated annealing algorithm for solving the traveling

salesman problem. Journal of Computational and Theoretical Nanoscience, 6 , 1680–1686. doi:10.1166/

jctn.2009.1230.

13

Data-driven Vehicle Routing in Last Mile Delivery

CIRRELT-2021-30

http://or.dei.unibo.it/research_pages/tspsoft.html
http://or.dei.unibo.it/research_pages/tspsoft.html
http://dx.doi.org/10.1109/3468.995530
http://dx.doi.org/10.1007/BF02125403
https://algorist.com/problems/Traveling_Salesman_Problem.html
https://algorist.com/problems/Traveling_Salesman_Problem.html
http://dx.doi.org/10.1166/jctn.2009.1230
http://dx.doi.org/10.1166/jctn.2009.1230

	Introduction
	Literature Review
	Methodology, Part 1: Descriptive Analytics
	Time windows
	Travel times
	Zones
	Depots

	Methodology, Part 2: Prescriptive Analytics
	TSP with or without time windows?
	Metaheuristics for TSP
	Network transformation
	Implementation details

	Results and Conclusions
	Analysis for tuning parameters
	Discussion and avenues for further improvement
	Conclusion

	Summary statistics
	Other methods considered

