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Abstract. We study a two-dimensional packing problem where rectangular items are placed 
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We adapt a mixed integer linear programming model from the case with a rectangular 
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1. Introduction

In packing problems, a set of items has to be packed into containers considering their physical char-

acteristics [26, 38]. In this paper, we consider a packing problem in which items are represented by

rectangles of different sizes and values to be packed into a circular container. We call this problem the

two-dimensional circular packing problem (2D-CPP). Although we refer to the 2D-CPP as a packing

problem, it can be applied in the cutting context without loss of generality. The objective is to choose

a subset of rectangles that fits into a circular container to maximize the value of packed items, which

can be represented by the number of items or their total area. As usually considered in the packing

and cutting literature, items are required to be packed orthogonally to each other [26].

Two-dimensional packing problems with rectangular items have been widely studied since at least

1963 [22]. However, the packing problem with a circular container of fixed radius was formulated

only recently in Hinostroza et al. [25] as a case study on lumber sawing in the forestry sector, being

later studied again in López and Beasley [32]. Both studies present non-linear formulations to the

problem that can only solve instances of very small size. Therefore, both studies proposed the use of

heuristics to solve larger instances, being a simple constructive heuristic and a simulated annealing

(SA) in Hinostroza et al. [25] and a search space algorithm in López and Beasley [32]. A new efficient

heuristic procedure that is integrated with a variable neighborhood search (VNS) and another SA is

presented in Bouzid and Salhi [5] to quickly find good solutions for instances with up to 200 items.

A relevant subproblem of packing problems is to determine whether a feasible packing exists given a

set of items. For the two-dimensional case, this is known as the two-dimensional orthogonal packing

problem (2D-OPP) [11, 26]. The 2D-OPP is a decision problem since its objective is to answer the

above statement without optimizing any metric. Although simple to state, the 2D-OPP is a hard

problem to solve [14, 34], belonging to the class of NP-complete problems [26]. It appears as a

subproblem of many 2D packing problems [13, 36], which are NP-hard since they contain the one-

dimensional bin packing problem [21], and it is not any different for the 2D-CPP [32].

In this paper, we present two new methods to solve the 2D-CPP using mixed integer linear program-

ming (MILP) models. In the first one, the problem is formulated as a two-dimensional rectangular

packing problem (2D-RPP) and solved using branch-and-cut (B&C). Precisely, the container is initially

designed as a square where a circular container is inscribed. Then, whenever items are packed outside

the circular container, linear cuts are added dynamically to reduce the size of the square container
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and to enforce that only items placed inside the circular container are accepted. The cuts are found

using simple trigonometric functions. In our second method, we suitably enumerate all subsets of

items to verify whether each set fits into the circular container. We prove the feasibility of a packing

by adapting our B&C to solve the 2D-OPP. Once a set is proven to be feasible, the remaining sets

dominated by it are discarded. We speed up the process using parallelism by verifying the feasibility

of multiple sets simultaneously in different threads. Computational experiments are performed on two

available benchmark datasets from the literature and on a new one generated based on them.

The main contributions of this paper are to model the 2D-CPP and the 2D-OPP linearly, and to solve

them exactly. In order to achieve this, we:

� adapt a 2D-RPP model and design a B&C algorithm to solve the 2D-CPP and the 2D-OPP with

a circular container, resulting in the first linear model in the literature to solve both problems;

� introduce numerous valid inequalities to speed up the solution process of B&C, including cuts

to remove parts of a rectangular container that are outside of the circular container inscribed in

it;

� propose an efficient parallel enumeration algorithm (PEA) to solve the problem using an adapted

version of our B&C for the 2D-OPP with a circular container;

� attest the performance of both methods (B&C and PEA) by proving optimality for instances

more than three times the size of the largest one solved in the literature;

� analyze the performance of these methods considering the characteristics of the problem (objec-

tive function, container size, number of items to pack, possibility to rotate the items);

� show that a truncated version of our parallel algorithm can find many new best known solutions

(BKS) for large size instances in a comparable run time as state-of-the-art metaheuristics.

This paper is structured as follows. Section 2 presents a brief literature review on exact methods to

solve the 2D-RPP. Section 3 defines the 2D-CPP and presents the B&C used to solve it. In Section 4,

we describe the parallel enumeration procedure to solve the 2D-CPP. The computational experiments

are presented in Section 5. Finally, the conclusions follow in Section 6.
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2. Literature review

A two-dimensional packing problem with rectangular items was first described in Gilmore and Gomory

[22] as the cutting stock problem, where a required number of items from a given set are to be packed

in an unlimited number of identical containers. This problem belongs to the class of bin packing

problems, which along with the knapsack, the strip packing, and the orthogonal packing constitute

the major classes of cutting and packing problems [26]. In this section, we briefly review the literature

on two-dimensional packing problems. We refer the reader to the reviews of Iori et al. [26] and Wäscher

et al. [38].

Unlike the bin packing problem described in Gilmore and Gomory [22], knapsack problems consider

that a single container is available and a maximum value should be obtained from packing a number

of items from a given set. The problem of packing rectangular items into a rectangular container is the

most commonly found in the literature [4, 6, 8], and it includes many variants, such as packing with

orthogonal rotation [10] and arranging items to consider guillotine cuts [20, 31, 33]. We can also find

the packing of circular items into a rectangular container [24, 35], rectangular items into an arbitrary

convex region [7], and even irregular shaped items into rectangular containers [3].

The problem of packing rectangles into a circular container is still underinvestigated, despite its impor-

tance in practice. Examples of circular containers found are: wooden logs, which can be approximated

to rounded shapes when choosing the wooden boards of predetermined sizes to be cut [25]; bearing

plates inside satellite modules, where a set of weighted objects are to be packed to guarantee the

satellite stability, control, and performance [40]; and silicon wafers, a thin round slice of crystalline

silicon used as a substrate for microelectronic devices, such as integrated circuits and solar cells, and

where dies with square or rectangular shapes should be cut in a process called silicon wafer dicing

[16].

2.1. Exact methods for the 2D-RPP

Several exact methods for the 2D-RPP are found and used as an inspiration to the methods developed

to solve the 2D-CPP. When all items have integer length and height dimensions, Beasley [2] and Had-

jiconstantinou and Christofides [23] propose integer linear programming (ILP) models that consider

positions inside the container as discrete points. The position of an item within the container is tracked

by the coordinates of its bottom-left corner. A pseudo-polynomial number of constraints are used to
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check whether the items overlap. These models are solved using branch-and-bound algorithms with

improved upper bounding techniques and reductions derived from Lagrangean relaxations to improve

their performance. Instances with up to 15 items are solved. Other methods to enumerate possible

positions of the items also exist [12, 27].

A more effective approach to solve the same problem with integer dimensions is proposed by Fekete

and Schepers [18]. It is based on solving the 2D-RPP using a two-level approach. At the first level, an

enumeration scheme is used to select subsets of items to be packed, then, at the second level, a feasible

packing is searched. This procedure was later improved by Caprara and Monaci [6] and Baldacci and

Boschetti [1] in which the first level is solved using an ILP for the one-dimensional knapsack problem,

while the second level solves a 2D-OPP.

Other recent studies propose exact methods such as dynamic programming [10] and MILP models

[20, 33] for 2D-RPP variants, e.g., with guillotine cuts. Adapting models from different classes of

packing problems is also possible [8]. Several heuristic approaches for the 2D-RPP can also be found

[15, 30, 39]. A generator of instances for the 2D-RPP is proposed by Silva et al. [37]. Three-dimensional

variants, known as the container loading problem, are also well studied [17, 29], and studies even for

n-dimensional cases exist [19]. An efficient model for the three-dimensional case proposed by Chen

et al. [9] is adapted here to solve the 2D-CPP and is shown in Section 3.

2.2. Related studies for the 2D-CPP

When considering circular containers, many variants exist as shown in Bouzid and Salhi [5]. The

2D-CPP similar to the one considered here was first investigated in Hinostroza et al. [25], where a

container with a fixed size is given, the items to be packed have continuous sizes, no item rotation is

allowed, and the problem is formulated as a mixed integer non-linear programming (MINLP) model.

Due to its non-linearity, its practical use is limited. When using a commercial solver, only an instance

with up to eight items could have its optimality proven within one hour. Therefore, the authors

proposed an ordering heuristic, based on packing items iteratively from the lowest to the highest

width, and an SA is used to improve the initial solution generated by the ordering heuristic to deal

with larger instances. The study of Hinostroza et al. [25] remains, up to this date and to the best of

our knowledge, the only one that presented results for the 2D-CPP using an exact method.

A second related study is that of López and Beasley [32], which considered the same 2D-CPP as in

Hinostroza et al. [25] but allowing items to be rotated orthogonally. The 2D-CPP without rotation
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is also modeled as an MINLP. They showed that the variant with rotation can be solved using the

same model by duplicating each item to represent its rotated version, and adding new constraints

to impose that either the regular or the rotated item can be packed. The authors reported to have

used a solver that is capable of solving their non-linear formulation. However, none of the instances

used, with 10 items or more, were solved within the time limit imposed. The authors then proposed

an implementation of a formulation search space (FSS) algorithm to solve the problem, which relies

heavily on the use of the solver. Instances with up to 30 rectangles were generated and solved. Good

results are provided using the FSS though requiring a relatively long time.

The third related study is presented in Bouzid and Salhi [5]. They introduced a heuristic procedure

that iteratively packs items following a given order. Items are placed contiguous to others already

packed, forming a polygon that fits in the circular container boundaries. This procedure was embedded

into SA and VNS frameworks used to modify the order of the items hoping that the packing procedure

results in better solutions. They solved the instances created by López and Beasley [32] very fast,

easily outperforming their FSS algorithm. These metaheuristics were tested on newly generated larger

instances with up to 200 items, which were also quickly solved.

In our paper, we prove optimality for many of the instances from López and Beasley [32] for the first

time, some with up to 30 items. We also show that a truncated version of our parallel algorithm finds

many new BKS for the larger instances of Bouzid and Salhi [5] for similar run times when maximizing

the number of items packed.

3. Mathematical model and branch-and-cut algorithm for the 2D-CPP

Let I be a set of rectangular items to be packed with dimensions (li, hi), ∀i ∈ I, where l is the item

length (horizontal edge) and h is the item height (vertical edge), both representing continuous values.

Each item has an associated value αi. The objective of the 2D-CPP is to choose a set J ⊆ I that fits

into a circular container of radius R such that the value of J , i.e., the sum of the value of its items,

is maximized.

We present next the mathematical models and the B&C algorithm used to solve the problem. We first

present the 2D-RPP version without rotation (Section 3.1), then the version with rotation (Section

3.2), the 2D-OPP still with a rectangular container (Section 3.3), then we show the cuts added to

solve these problems for a circular container (Section 3.4), and finally we present valid inequalities

5

A Branch-and-Cut and a Parallel Algorithm for Packing Two-Dimensional Rectangles in a Circular Container

CIRRELT-2021-35



used to speed up the solution process (Section 3.5). In Section 3.6, we summarize the configurations

of the models described for the many variants handled in this paper.

3.1. Two-dimensional rectangular packing problem without rotation

Consider a circle with its center located at C = (R,R) and with a radius R. The 2D-CPP can be

relaxed to a 2D-RPP by considering a square container with sides equal to 2R. The representation of

a solution for this 2D-RPP in the continuous space can be done considering a Cartesian coordinate

system, where the bottom-left vertex of the square container is located at the origin and its center is

at the point (R,R). Then, for the 2D-CPP, the circular container is concentric to the square.

Let ai be the assignment variables indicating whether item i ∈ I is packed. The placement variables

(xi, yi) are the coordinates in the Cartesian system of the bottom-left vertex of item i. The interassign-

ment variables zij represent whether items i and j, i 6= j, are both packed. Finally, the non-overlap

variables δijp represent whether items i and j do not overlap, where p = {1, 2, 3, 4} indicates whether

item i is to the left, or to the right, or below, or above item j, respectively. In the example of Figure

1, the placement of i1 to the left of j implies that δi1j1 = 1, packing i2 to the right of and above j

implies that δi2j2 = δi2j4 = 1, and since i3 is below j but only partially to the left of it, we only have

that δi3j3 = 1.

ji1

i2

i3

Figure 1: Example of non-overlapping placements of items

Based on the formulation of Chen et al. [9] for the container loading problem, a continuous space

formulation for the 2D-RPP without rotation is given as:

max
∑
i∈I

αiai, (1)
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subject to

ai + aj − 1 ≤ zij ≤ ai, aj , ∀i < j ∈ I, (2)

zij ≤
4∑

p=1

δijp ≤ 2zij , ∀i < j ∈ I, (3)

xi + li ≤ xj +Mij1(1− δij1), ∀i < j ∈ I, (4)

xi ≥ xj + lj −Mij2(1− δij2), ∀i < j ∈ I, (5)

yi + hi ≤ yj +Mij3(1− δij3), ∀i < j ∈ I, (6)

yi ≥ yj + hj −Mij4(1− δij4), ∀i < j ∈ I, (7)

ai, zij , δijp ∈ {0, 1}, ∀i < j ∈ I, p = {1, 2, 3, 4}, (8)

0 ≤ xi ≤ 2R− li, ∀i ∈ I, (9)

0 ≤ yi ≤ 2R− hi, ∀i ∈ I. (10)

The objective function (1) maximizes the value of the items packed. When αi = 1 for all items, then

we maximize the number of items packed. When αi = lihi, we maximize the total area packed, or,

equivalently, minimize the container area wasted. Constraints (2) set the value of variables z. When

ai = aj = 1, then zij = 1, and when either ai = 0 or aj = 0, then zij = 0, since z cannot be negative.

Constraints (3) impose that when zij = 1, then one or two δijp should be activated, i.e., item i must

be located to the left or to the right and/or above or below item j. Constraints (4)–(7) impose items

i and j not to overlap. Big-M values are used to deactivate these constraints when a respective δ

variable is equal to zero. We show in Section 3.5.6 how Mij1 to Mij4 are set to their lowest possible

valid values. Constraints (8) define variables a, z, and δ as binary. Finally, constraints (9)–(10) define

the feasible values that variables x and y can assume considering the top and rightmost points where

each item can be located.

3.2. Two-dimensional rectangular packing problem with rotation

In the previous formulation for the 2D-RPP, rotation of items is not allowed. So, when an item is

packed, its horizontal edge (length) must be parallel to the x-axis and its vertical edge (height) must be

parallel to the y-axis. By allowing items being rotated, the problem becomes more complex, although

rotation might lead to better solutions [32]. Many papers in the 2D-RPP literature allow rotation,

being the 90° turn the most common situation enabled [10, 28, 32]. We explain next how a simple
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modification in our formulation can deal with 90° rotation of items, while keeping the linearity of the

model.

Let ri be a binary variable indicating whether item i is rotated when packed. The 2D-RPP with

rotation is modeled by subjecting the objective function (1) to constraints (2), (3), and (8), and to

the following new constraints:

xi + (1− ri)li + rihi ≤ xj +Mij1(1− δij1), ∀i < j ∈ I, (11)

xi ≥ xj + (1− rj)lj + rjhj −Mij2(1− δij2), ∀i < j ∈ I, (12)

yi + (1− ri)hi + rili ≤ yj +Mij3(1− δij3), ∀i < j ∈ I, (13)

yi ≥ yj + (1− rj)hj + rjlj −Mij4(1− δij4), ∀i < j ∈ I, (14)

0 ≤ xi ≤ (1− ri)(2R− li) + ri(2R− hi), ∀i ∈ I, (15)

0 ≤ yi ≤ (1− ri)(2R− hi) + ri(2R− li), ∀i ∈ I, (16)

ri ∈ {0, 1}, ∀i ∈ I. (17)

Constraints (11)–(14) are the modified versions of the overlapping constraints (4)–(7), and (15)–(16)

modify the items placement bounds constraints (9)–(10). They consider that when item i is rotated,

i.e., ri = 1, its length li becomes its height hi, and vice versa. Finally, constraints (17) indicate that

variables r are binary.

Solving the above formulation is considerably more effective than solving the 2D-RPP model of Section

3.1 by duplicating items to consider rotated versions of them, as suggested by López and Beasley [32],

since it only requires the addition of |I| new variables and constraints instead of doubling the model

size.

3.3. Two-dimensional orthogonal packing problem

Given a set J ⊆ I of items, we can solve the 2D-OPP to verify whether a feasible packing exists. The

2D-OPP is a subproblem of the 2D-RPP that can be formulated using constraint programming, i.e.,

the problem is to find whether a feasible solution exists instead of optimizing an objective function. It

is optional to implement an objective function when using constraint programming. However, many

solvers require that any constant value is passed to solve the model properly.

The 2D-OPP is modeled based on the 2D-RPP models previously described. Since the set of items to
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be packed is given, variables a and z are no longer required. For the remaining variables, we model

the 2D-OPP without rotation as:

max
∑
j∈J

αj , (18)

subject to (4)–(10), and to

4∑
p=1

δijp ≥ 1, ∀i < j ∈ J . (19)

Here, the objective function (18) is a constant, representing the value of the set of items being checked.

Constraints (4)–(10) are written for set J instead of I. The new constraints (19) replace constraints

(3) in the original formulation to consider the removal of variables z.

The 2D-OPP with rotation is modeled using constraints (8), (11)–(17), and (19).

3.4. Circular container cuts

Given that the four models described – 2D-RPP and 2D-OPP, with and without rotation – consider

a square container with the circular container inscribed in it, some items may be positioned outside

the boundaries of the circle.

In this section, we derive valid cuts based on the geometric properties of the circle. The objective is to

bring the extremities of the items, which are outside the circle, to its perimeter using linear equations

corresponding to tangents to the circle.

For each item i, we identify its four corners as follows: c1 corresponds to its coordinate (xi+ li, yi+hi),

c2 to (xi, yi + hi), c3 to (xi, yi), and c4 to (xi + li, yi). Recall that the center of the circle is located at

C = (R,R) and R is its radius. We also define d(O,C) =
√

(R− xo)2 + (R− yo)2 as the Euclidean

distance between vertex O and C, and OC the corresponding line segment.

In order to maximize the impact of each cut, for each item having at least one corner outside the

circle, we identify the corner furthest from C. Its distance from the center of the circle should

be greater than R (in order to be outside the circle) and greater than the distances of all other

corners to the center. Thus, corner c1 is the furthest one outside the circle if d(c1, C) > R and

d(c1, C) > max{d(c2, C), d(c3, C), d(c4, C)}. This condition is generalized similarly for c2, c3 and c4.

Finally, we define Sk, k ∈ {1, 2, 3, 4}, as the set of all items for which corner ck is the furthest with

respect to the above conditions.
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Figure 2 shows a blue rectangle for which its corner c3 = (xo, yo) is outside the circle. The tangent

defined at point A is a valid cut for the placement of corner c3 of this item as it will move this corner

closer to the circle perimeter. To define this cut we need to find the coordinates of point A and the

equation of its tangent line.

θ

C

A
O Byo

xo R

R

Figure 2: Line tangent to the closest point A between an item’s vertex O located outside the container and
its boundary

The coordinates of A are determined as follows. From Figure 2, we have that OA = OC − AC,

thus d(O,A) = d(O,C) − R, given that d(A,C) = R. For a point B = (R, yo), we have that

d(O,B) = R − xo and d(B,C) = R − yo. An angle θ is formed between OC and CB. From these,

it follows that A is located at the point A = (xa, ya) = (xo + d(O,A) sin θ, yo + d(O,A) cos θ), where

sin θ =
d(O,B)

d(O,C)
=

R− xo√
(R− xo)2 + (R− yo)2

and cos θ =
d(B,C)

d(O,C)
=

R− yo√
(R− xo)2 + (R− yo)2

.

The line tangent to a point A = (xa, ya), where A lies on the circle, is given by y = ya + m(x − xa),

where x, y ∈ R, and m = −
(
xa −R
ya −R

)
. Thus, the constraint yi ≥ ya +m(xi− xa) is a cut for an item

for which corner c3 = (xi, yi) for all items of S3. Similarly, for an item in S1 with corner c1 located at

(xi + li, yi + hi) the constraint becomes yi + hi ≤ ya +m(xi + li − xa). For items in S2 the constraint

is yi + hi ≤ ya +m(xi − xa) and for items in S4 the constraint is yi ≥ ya +m(xi + li − xa).

Formally, the following four types of cuts are added:

yi + hi ≤ ya +m(xi + li − xa),∀i ∈ S1, (20)

yi + hi ≤ ya +m(xi − xa),∀i ∈ S2, (21)

yi ≥ ya +m(xi − xa),∀i ∈ S3, (22)

yi ≥ ya +m(xi + li − xa),∀i ∈ S4. (23)
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3.5. Valid inequalities for the circular container and big-M values

We now present several valid inequalities for all models previously introduced to accelerate solving

the 2D-CPP.

3.5.1. Items placement bounds

The minimum and maximum bounds defined in constraints (9) and (10) for the placement variables

can be narrowed when considering a circular container. Consider the circle with radius R of Figure

3a. The chord of a circle is the straight line segment with both endpoints on it. The chord of length

c is associated with the sagitta of length s and the apothem of size d. It follows that R = s+ d and,

from the triangle formed between the center, the point in the circumference that separates d and s,

and the midpoint of c, R2 = d2 +
( c

2

)2
. After some algebra, the sagitta is given as:

s = R−
√
R2 − c2

4
. (24)

θ
R

c

s

d

(a) Trigonometric relations

li

hj

hi

lj

(b) Extreme placements

Figure 3: Representation of the sagitta and apothem of a chord of a circle

Given an item i with edges (li, hi), Figure 3b shows that the bottommost place that i can be packed

is when li defines a chord. We define sli as the sagitta of a chord of length li, and shi as the sagitta of

a chord of length hi as:

sli = R−
√
R2 −

l2i
4
, (25)

shi = R−
√
R2 −

h2i
4
. (26)

It follows that the bottommost and uppermost positions for the bottom-left edge of i are bounded by
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the sagitta sli. Likewise, we can determine the leftmost and rightmost positions for the bottom-left

edge of i as bounded by shi . Therefore, constraints (9) and (10) in the 2D-RPP formulation can be

redefined for the 2D-CPP as:

shi ≤ xi ≤ 2R− (li + shi ),∀i ∈ I, (27)

sli ≤ yi ≤ 2R− (hi + sli),∀i ∈ I. (28)

These inequalities are also valid for the 2D-OPP. For the versions with rotation, we modify constraints

(27) and (28) to consider the rotation variables as follows:

(1− ri)shi + ris
l
i ≤ xi ≤ 2R−

(
(1− ri)(li + shi ) + ri(hi + sli)

)
, ∀i ∈ I, (29)

(1− ri)sli + ris
h
i ≤ yi ≤ 2R−

(
(1− ri)(hi + sli) + ri(li + shi )

)
,∀i ∈ I. (30)

3.5.2. Maximum number of items

Given the area of item i ∈ I as Ai = lihi, where the items in I are sorted by non-decreasing values

of their areas, and the area of the circular container as A = πR2, an upper bound for the number of

items N that fits into the circular container is:

N =

{
maxn|

n∑
i=1

Ai ≤ A

}
.

Then, the following inequality is a valid constraint for the 2D-CPP:

∑
i∈I

ai ≤ N. (31)

3.5.3. Infeasible subsets of items

Given a subset of items K ⊂ I, if ∑
k∈K

Ak > A,

then the following inequality is a valid constraint for the 2D-CPP:

∑
k∈K

ak ≤ |K| − 1. (32)
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Since a full enumeration of subsets may result in too many constraints, we enumerate up to a maximum

number |K| of items and add the valid inequalities that satisfy the previously mentioned condition

when solving the 2D-CPP. From preliminary experiments, we set |K| =
⌈√
|I|
⌉
.

3.5.4. Infeasible pairs of items

Given a pair of items i, j ∈ I, if li + lj ≥ 2R − (shi + shj ), then i and j do not fit side-by-side, and we

can impose δij1 = 0 and δij2 = 0. Also, if hi + hj ≥ 2R − (sli + slj), then both items do not fit one

above the other and we can impose δij3 = 0 and δij4 = 0. Furthermore, if both conditions are true,

we can add to the 2D-CPP model the following constraint:

ai + aj ≤ 1, ∀i, j ∈ I|li + lj ≥ 2R− (shi + shj ) ∧ hi + hj ≥ 2R− (sli + slj). (33)

For the case with rotation, the only condition to be verified is min(li, hi) + min(lj , hj) ≥ 2R −

(min(shi , s
l
i) + min(shj , s

l
j)). If this statement holds true, then both items cannot be packed together.

3.5.5. Symmetry breaking

Any feasible packing has three other equivalent solutions (see example in Figure 4) due to the symmetry

of the container and items shapes. In order to break symmetries in the 2D-CPP model, constraints

are added as follows:

xi + li/2, yi + hi/2 ≤ R

1 +

i−1∑
j=1

aj

 ,∀i ∈ I. (34)

These constraints enforce that the center of the lowest indexed item packed is placed in the bottom-left

sector of the circle. The left-hand side represents the packing coordinates of the center of an item i.

The sum in the right-hand side represents all items packed with an index lower than i. So, if ai is the

lowest indexed item packed, the sum will be zero, and the coordinates of the center of i are bounded

above by R. Otherwise, the sum is equal to at least one, and the constraint becomes inactive. In

the example in Figure 4, a2 = a3 = a5 = 1 and a1 = a4 = 0. It follows from (34) that for i = 2,

x2 + l2/2 ≤ R and y2 + h2/2 ≤ R; for all other items packed, x and y are bounded by at least 2R,

which inactivates the constraint. As the example shows, the symmetric solutions in Figures 4b, 4c,

and 4d violate the constraint, so only the packing of Figure 4a can be used.

The symmetry breaking constraints can be easily adapted to the 2D-OPP by adding the constraints

to any arbitrary item. For instance, x1 + l1/2 ≤ R and y1 + h1/2 ≤ R enforce the center of the first
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2

(a) Original

3
5

2

(b) Horizontal flip

3
5

2

(c) Vertical flip

3
5

2

(d) Both flips

Figure 4: Example of symmetric solutions

item to be packed in the bottom-left sector of the circle.

3.5.6. Setting the big-M

Setting the big-M to the lowest possible value may speed up the optimality proof. Given a pair of

items i, j ∈ I, it follows from constraints (4)–(7) that Mij1, Mij2, Mij3, and Mij4 must be large enough

to inactivate these constraints when any δ = 0. We prove next that setting Mij1 to 2R− (shi + shj ) is

the lowest possible value to achieve this goal for constraints (4).

Corollary 1. The minimum value for Mij1 to turn constraints (4) inactive when δij1 = 0 is Mij1 =

2R− (shi + shj ).

Proof. From constraints (4) it follows that when δij1 = 0, then xi + li ≤ xj +Mij1, ∀i, j ∈ I. When

item i is placed to the rightmost possible position and item j is placed to the leftmost possible position

we have:

Mij1 ≥ sup(xi) + li − inf(xj),

Mij1 ≥ 2R− li − shi + li − shj ,

Mij1 ≥ 2R− (shi + shj ). (35)

On the other hand, when i is placed to its leftmost possible position and j to its rightmost possible

position:

Mij1 ≥ inf(xi) + li − sup(xj),

Mij1 ≥ shi + li − (2R− lj − shj ),

Mij1 ≥ −2R+ shi + li + shj + lj . (36)
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From the inequalities (35) and (36), it follows that:

Mij1 ≥ max{2R− (shi + shj ),−2R+ shi + li + shj + lj}. (37)

Since li + lj < 2R must hold for both items to fit side by side, then it follows from (25) and (26) that

shi + shj < R for any combination of li and lj . Therefore, either both items do not fit side by side or

the first term is the maximum. �

The same procedure can be done to prove that the same value for Mij2 is valid for constraints (5),

and that Mij3 = Mij4 = 2R− (sli + slj) is the minimum value to turn constraints (6) and (7) inactive

when δij3 = 0 and δij4 = 0, respectively.

3.6. Summary

Due to the large number of models and valid inequalities presented, we summarize here the models

used to solve each of the problems presented:

� 2D-CPP without rotation: we optimize (1) subject to (2)–(8), (27), (28), (31)–(34), and add

the circular container cuts dynamically as described in Section 3.4;

� 2D-OPP without rotation: given a subset of items, we optimize (18) subject to (4)–(8), (19),

(27), (28), and add the circular container cuts as above;

� 2D-CPP with rotation: we optimize (1) subject to (2), (4), (8), (11)–(17), (29)–(34), and add

the circular container cuts as above;

� 2D-OPP with rotation: given a subset of items, we optimize (18) subject to (8), (11)–(17), (19),

(29), (30), and add the circular container cuts as above.

4. Parallel enumeration algorithm to solve the 2D-CPP

We can find an optimal solution for the 2D-CPP by solving the previously introduced MILP models.

An alternative exact method to solve it is by testing whether each element in the powerset of I, i.e.,

each element of P(I), has a feasible packing for the given circular container based on the two-level

approach proposed by Fekete and Schepers [18] for the 2D-RPP.
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We describe in Algorithm 1 this alternative method, which we call parallel enumeration algorithm

(PEA). We first define the best solution s∗ of value f(s∗) found in the search (line 1) and a list linf

containing all sets proven infeasible (line 2). PEA starts by sorting items in I (line 3). When the

objective function is to maximize the number of items packed, items are sorted by increasing areas.

When the objective is to maximize the area packed, the items are sorted in two separate lists by

decreasing and increasing areas, and the final list alternates between large and small items until all

items are in it. From preliminary experiments, this pattern resulted in better solutions than sorting

items by only increasing or decreasing areas. After that, we create a pool of P parallel threads to

run tasks (line 4). The elements j of the powerset P(I) are generated from lower to higher values

of cardinality starting with items with the lowest to the highest indices (line 5). Starting by a low

cardinality helps speed up the solution process since it is easier for the 2D-OPP model to prove

feasibility with fewer items. A parallel architecture is used to solve P different sets at the same time.

For each element j of the powerset, the algorithm computes its objective function value (line 6), i.e.,

f(sj) =
∑

i∈j αi. If sj is not an improving solution or it contains a subset already proven infeasible,

which is in linf , then we discard j. Otherwise, we create a task Solve-2D-OPP to verify whether the

items in j can be packed into the circular container and assign it to a free thread (lines 7–9).

The task to evaluate the feasibility of a set j is described in Algorithm 2. It starts by generating the

2D-OPP model to be solved and, then, the B&C process begins. The process can be stopped at any

time if s∗ is updated by another thread and set j cannot improve it. In this case, j is simply discarded

and its thread is freed. If B&C is run until feasibility is proven, s∗ is updated (line 4 in Algorithm 2).

However, if a packing is proven to be infeasible, then linf is updated (line 7). PEA finishes returning

the best solution found. Given enough time, PEA returns an optimal solution. We can also use a

truncated version (see Section 5.4.2) where a global time limit is used to truncate the search.

Algorithm 1 Parallel enumeration algorithm

1: Set the best solution: s∗;
2: Set a list containing proven infeasible sets: linf = ∅;
3: Sort items in I;
4: Create a thread pool containing P parallel threads;
5: for all sets j ∈ P(I) do
6: Calculate the objective function value f(sj) of subset j;
7: if f(sj) > f(s∗) and no subset of j is in linf then
8: Solve-2D-OPP(sj, s

∗, linf ) with a free thread in the pool;
9: end if
10: end for
11: return best solution s∗.

Algorithm 2 Solve-2D-OPP(sj, s
∗, linf )

1: Create 2D-OPP model for set sj ;
2: Solve model;
3: if sj is feasible then
4: s∗ ← sj ;
5: end if
6: if sj is infeasible then
7: linf = linf ∪ j;
8: end if
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5. Computational experiments

This section describes the results obtained from extensive computational experiments performed to

test both methods proposed to solve the 2D-CPP and compare their performances with state-of-the-art

methods. The experiments were run in computers with an Intel Gold 6148 Skylake CPU with a 2.4 GHz

clock, 32 GB of RAM, and 8 cores. PEA was implemented in C++, with the parallelism implemented

using the thread library from the STL. The exact models were solved using Gurobi 9.10. All instances

and results are available in https://www.leandro-coelho.com/packing-circular-container/.

5.1. Test instances

Three sets of instances are used to solve the 2D-CPP. The first one (set 1) is a benchmark set from

López and Beasley [32] and contains instances with 10, 20 and 30 items with dimensions randomly

generated from [1,5]. Each instance size has two versions: one where all items are rectangles and

another where they are squares. Each of these six sets of instances is tested for three different container

radii, where the area of the circle in relation to the total area of the items, represented by ρ, is equal

to ρ = 33%, 50%, and 67%. Each instance is solved for maximizing the number of items and the total

area packed, and considering the variants with and without orthogonal rotation of items. This totals

54 tests.

The second set (set 2) is a larger set from Bouzid and Salhi [5], which followed the same instructions

to generate instances with 100, 150 and 200 items. This set also totals 54 tests.

We generated a third set (set 3) with items’ dimensions also randomly generated from [1,5]. This new

set contains five instances with 30 items each. We set ρ = 100%. Set 3 is used to set up our methods

without biasing them towards the benchmark sets.

Unfortunately, the larger instances solved by the heuristics of Hinostroza et al. [25] are not made

public despite our best efforts, so a comparison against their method is not possible.

5.2. Maximum instance size each method (B&C and PEA) can prove optimality within one hour

In this round of experiments, we use set 3 to observe the largest instance size that both our methods

can solve within one hour. Each instance was solved considering the first 10 generated items up to

all 30 items. We also tested different container sizes for ρ = 20% to 100%. The results are shown in

Figure 5. It presents a heat map indicating the average run time when using the original B&C for the
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2D-CPP and PEA to solve five instances for each combination of number of items and container sizes.

The area of the heat map with the lightest color indicates that no instance was solved within one

hour. Meanwhile, the black area shows the combinations tested where all five instances were solved

very quickly, mostly in less than one second.

(a) B&C

(b) PEA

Figure 5: Maximum instance size solved within one hour

Analyzing the results for B&C in Figure 5a, we observe that instances are easier to prove optimality

when the container size is small, when rotation is not allowed, and when we maximize the number of

items packed. Only one instance with 30 items could be solved within the one-hour limit, and it was

the largest instance size solved by any method. For PEA, Figure 5b shows that it is also easier to prove

optimality when the container size is small, when rotation is not allowed – although the difference is

less than when using B&C – and when maximizing the total area packed. The largest instance solved

has 29 items. Hence, both methods perform well for the two objective functions, proving optimality

for 29 and 30 items.

It should be noted that the largest instance solved in Hinostroza et al. [25] when maximizing the total

area packed without rotation contains eight items, and the container used has approximately ρ = 65%.
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5.3. Convergence analysis

Another round of experiments was performed to observe how quickly the best solution improves during

the execution of each method. We used again the instances of set 3, now with ρ = 33%, 50%, and

67% to meet the same characteristics of the other two benchmark sets. Only instances with 30 items

were tested as they are hard enough to highlight the differences in performance between the proposed

methods. Therefore, each problem variant was tested 15 times (five seeds, three container sizes), for

a one-hour run each. The results obtained are summarized in Figure 6. Each graph shows, for each

problem variant, the average gap to the BKS, i.e., the best feasible solution found after the one-hour

run among both methods. Since in some runs it may take some time to find the first feasible solution,

mainly for B&C, it is possible to observe an increase in the gap to the BKS as we are showing averages

over 15 instances.

(a) B&C (b) PEA

Figure 6: Convergence of the best solution found

Figure 6 reveals some very interesting findings. It shows that compared to B&C, PEA starts with

a much better average solution, and it converges much faster when maximizing the number of items

packed. However, B&C converges much faster than PEA when maximizing the total area packed.

These results are consistent with the first tests of the previous section. The difference in both cases is

so significant that a quick run of a few seconds of one method leads to solutions that the full one-hour

run of the other could not yet find. This confirms that each method is better suited to solve the

problem for one of the two objective function metrics.

5.4. Comparison against state-of-the-art heuristics

In this section, we use B&C and PEA to prove optimality for many of the benchmark instances of set

1 for the first time. Also, the previous findings raise a question of whether a truncated version of PEA
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can be competitive against heuristic methods due to its quick convergence. To answer this question,

we use PEA to solve the instances of set 2 with run times of similar magnitudes as those reported for

state-of-the-art metaheuristics. The results of these two rounds of experiments are presented next.

5.4.1. Proving optimality for instances from set 1

We showed in Section 5.2 that our methods can prove optimality for instances about the same size

as those in set 1. We now run both exact methods for eight hours to prove the optimality of many

of these instances for the first time. The results are presented in Tables 1 and 2, where each row

represents an instance from set 1. In the tables, we show the best solutions found by the FSS of

López and Beasley [32], and the SA and VNS of Bouzid and Salhi [5] as reported in their papers.

We highlight that our goal here is not to compete against the heuristics, since both B&C and PEA

are exact methods and, naturally, require a longer time to prove optimality of a solution. But it is

still valuable to observe how far the solutions provided by the heuristics are from the optimal ones,

therefore assessing their real quality. We provide the best bounds – lower (LB) and upper (UB) –

found by B&C and the best solution found by PEA. Solutions reported with a run time of less than

28,800 seconds are those with optimality proven. Overall, SA and VNS find the solutions reported in

less than one minute each, while FSS can take several hours, as reported in their papers. Values in

boldface indicate a BKS, while underlined values are new BKSs.

Table 1 shows the results when maximizing the number of items packed. All instances from set 1 had

either the optimality proven or a new BKS found using PEA. Meanwhile, Table 2 shows the same

for B&C when maximizing the total area packed, except for three instances. When maximizing the

number of items, PEA proves optimality for 12 instances – B&C proves it for another one – and

improves the BKS for the remaining 15 instances. When maximizing the total area packed, B&C

proves optimality for 13 instances – PEA proves it for another one – and improves the BKS for a total

of 16 instances, five of them optimal.

Although exact and heuristic methods have clear distinct goals, it might be necessary to come up, in

practice, with a well-defined scheme to decide when to use one over another. From our experiments,

the best option is clearly defined by the number of items n to pack. So, for n = 10, and possibly lower,

exact methods are as fast as the heuristics and have the advantage of guaranteeing optimality. For

n = 20, although the best heuristics can quickly provide good solutions, we see that the exact methods

could find better solutions given enough time. Finally, for n = 30, either the SA and VNS heuristics

20

A Branch-and-Cut and a Parallel Algorithm for Packing Two-Dimensional Rectangles in a Circular Container

CIRRELT-2021-35



Table 1: Best solutions found by state-of-the-art heuristics and our exact methods when maximizing the
number of items packed for set 1

Set n ρ FSS SA VNS
B&C PEA

BKS
LB UB T(s) Sol T(s)

Rectangular
(no rotation)

10
33 5 5 5 5 5 0.2 5 0.6 5∗

50 6 6 6 6 6 0.2 6 0.7 6∗

67 7 7 7 7 7 0.3 7 0.7 7∗

20
33 7 7 7 8 8 153.0 8 2253.8 8∗

50 10 10 10 11 14 28800.5 11 28800.1 11
67 11 13 12 13 16 28800.2 14 28816.4 14

30
33 13 14 14 15 21 28801.0 15 28818.1 15
50 16 18 17 18 23 28800.3 19 28823.1 19
67 19 21 21 21 25 28800.1 22 28824.3 22

Rectangular
(rotation)

10
33 5 5 5 5 5 0.1 5 0.7 5∗

50 6 6 6 6 6 0.3 6 0.8 6∗

67 7 7 7 7 7 1.1 7 0.7 7∗

20
33 8 8 8 8 8 19984.1 8 4509.7 8∗

50 10 10 10 11 14 28800.4 11 28828.7 11
67 12 13 12 13 16 28800.3 14 28835.1 14

30
33 14 14 14 14 21 28800.3 15 28831.0 15
50 17 18 18 17 23 28800.1 19 28837.4 19
67 20 21 20 21 25 28800.1 22 28823.2 22

Square

10
33 4 4 4 4 4 0.1 4 1.1 4∗

50 5 5 5 5 5 0.5 5 1.1 5∗

67 6 6 6 6 6 4.1 6 1.0 6∗

20
33 11 11 10 11 11 10.5 11 484.6 11∗

50 12 13 12 13 13 180.7 13 28803.7 13∗

67 14 14 14 15 15 8675.2 15 28800.5 15

30
33 16 16 15 16 23 28800.6 17 28814.9 17
50 20 20 20 19 25 28800.3 21 28818.9 21
67 23 23 22 23 26 28800.2 24 28817.0 24

∗: optimality proven; boldface: BKS; underlined: new BKS

or the best exact method for each objective function could be chosen considering the trade-off between

time and quality. Moreover, while some results from the literature remain the best known ones when

maximizing the area (Table 2), Table 1 shows that for the maximization of the number of items, our

exact methods dominate the alternative algorithms on all instances.
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Table 2: Best solutions found by state-of-the-art heuristics and our exact methods when maximizing the total
area packed for set 1

Set n ρ FSS SA VNS
B&C PEA

BKS
LB UB T(s) Sol T(s)

Rectangular
(no rotation)

10
33 18.4441 18.4441 18.4441 18.4441 18.4441 0.1 18.4441 0.8 18.4441∗

50 28.9390 28.9390 28.9390 28.9390 28.9390 0.7 28.9390 1.3 28.9390∗

67 37.6878 39.4588 38.7870 39.4588 39.4588 2.3 39.4588 1.6 39.4588∗

20
33 43.3885 45.1727 45.1567 45.9961 46.0000 946.1 45.9961 220.7 45.9961∗

50 63.1643 69.9263 68.8314 72.7850 107.5065 28801.7 72.7850 28800.1 72.7850
67 84.4446 93.0556 91.6368 96.5377 147.1685 28803.1 95.9797 28800.1 96.5377

30
33 60.3570 65.2856 64.4689 66.8049 152.9675 28804.0 66.3047 28800.3 66.8049
50 85.2113 100.1839 102.1196 103.5390 223.6899 28800.8 98.2185 28800.1 103.5390
67 103.4802 135.9217 137.4149 136.4249 230.3991 28800.4 126.9673 28800.4 137.4149

Rectangular
(rotation)

10
33 19.6702 19.6702 19.6702 19.6702 19.6702 0.2 19.6702 0.8 19.6702∗

50 29.5041 30.8746 30.8746 30.8746 30.8746 2.4 30.8746 1.2 30.8746∗

67 37.9687 41.1612 40.9063 41.5246 41.5246 2.1 41.5246 2.1 41.5246∗

20
33 43.6850 45.4200 45.4200 47.8299 81.0636 28804.0 47.8299 1382.9 47.8299∗

50 63.5279 71.2331 70.8221 72.7698 125.6325 28802.1 72.0126 28800.1 72.7698
67 84.7008 95.1127 95.2162 97.7258 159.8655 28800.8 94.8381 28800.2 97.7258

30
33 57.9328 66.6947 66.6329 66.8074 164.7611 28802.5 66.1901 28800.2 66.8074
50 84.3715 100.4537 100.3020 102.2846 223.6899 28800.5 95.0703 28800.1 102.2846
67 110.3253 135.2908 137.5277 129.8499 230.3991 28800.3 127.6377 28803.5 137.5277

Square

10
33 22.9485 23.9878 23.9878 23.9878 23.9878 0.1 23.9878 0.7 23.9878∗

50 36.7126 37.7471 37.7471 37.7471 37.7471 0.8 37.7471 1.1 37.7471∗

67 51.7583 52.7555 52.7555 52.7555 52.7555 3.9 52.7555 1.7 52.7555∗

20
33 54.1054 63.7430 63.7523 64.7463 64.7463 37.5 64.7463 7.8 64.7463∗

50 85.2107 94.7706 94.7706 95.9219 95.9219 342.0 95.9219 24.6 95.9219∗

67 109.8363 126.7480 132.4100 137.2832 137.2832 5903.2 137.2832 198.1 137.2832∗

30
33 54.4941 63.1167 63.9965 64.3278 139.9398 28803.3 63.9141 28800.2 64.3278
50 77.5814 97.2366 98.1142 97.8900 173.7835 28802.5 94.4836 28800.1 98.1142
67 103.0963 129.6979 131.5472 131.6949 224.6918 28800.6 126.8909 28800.1 131.6949

∗: optimality proven; boldface: BKS; underlined: new BKS

5.4.2. Using truncated PEA to solve set 2

Previous experiments showed that solutions converge very quickly to the best solutions found after a

long run when using PEA for the maximization of the number of items packed, and that PEA finds

all BKS in instances with n ≤ 30. In this last round of experiments, we assess the competitiveness

of PEA against the metaheuristics when solving larger instances for the same objective. We compare

here the results obtained by PEA for a similar run time as the metaheuristics proposed by Bouzid and

Salhi [5] for the instances of set 2. To do so, we run it with a time limit of five, 10, and 30 minutes

for instances with 100, 150, and 200 items, respectively. The results are presented in Table 3. We

compare our solutions against those obtained by SA, VNS, and accelerated versions of them (xSA and

xVNS). As before, the best solutions are shown, now followed by the total time to perform all runs

as reported in their papers. Values in boldface are the BKS, and underlined values are new BKS. We

have also tested both B&C and PEA on the same instances for the objective function of maximizing

the total area packed. As before, this objective leads to a more challenging problem and the results
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of our exact methods are not competitive for instances of that size. The results appear online.

Table 3: Comparison of state-of-the-art heuristics against PEA when maximizing the number of items packed
for set 2

Set n ρ
SA xSA VNS xVNS PEA

BKS
Best T(s) Best T(s) Best T(s) Best T(s) Sol T(s)

Rectangular
(no rotation)

100
33 45 505 45 165 45 330 44 145 48 300 48
50 59 705 58 245 58 425 59 215 60 300 60
67 70 905 70 320 69 475 70 255 71 300 71

150
33 70 1360 69 480 72 1085 72 420 74 600 74
50 91 1900 91 780 92 1290 91 590 93 600 93
67 110 2505 110 1040 110 1430 110 875 109 601 110

200
33 95 2670 96 1060 99 2340 99 1105 99 1806 99
50 123 4090 124 1585 124 3685 124 1220 125 1802 125
67 146 5190 146 2055 146 3415 147 1670 146 1801 147

Rectangular
(rotation)

100
33 46 925 45 280 45 550 44 220 48 300 48
50 59 1195 59 395 59 820 59 345 61 300 61
67 71 1375 71 485 70 745 70 325 72 300 72

150
33 70 2290 69 835 73 2315 72 600 74 600 74
50 92 3055 90 1145 93 1895 92 875 94 600 94
67 110 3725 109 1435 110 2850 109 1045 110 601 110

200
33 95 4635 95 1605 98 4025 98 1335 100 1801 100
50 125 6335 122 2345 126 5950 125 2965 126 1801 126
67 148 7595 147 2910 147 7895 147 2255 148 1804 148

Square

100
33 53 590 52 180 52 630 52 210 55 300 55
50 67 765 66 260 64 725 64 275 67 300 67
67 76 880 76 330 73 715 73 265 77 302 77

150
33 84 1445 86 550 84 1540 84 570 88 601 88
50 103 2145 103 780 100 1595 101 780 105 602 105
67 117 2555 116 955 113 1965 113 700 117 606 117

200
33 107 2925 107 1090 108 2845 108 1620 110 1801 110
50 132 4160 131 1615 130 3435 130 1855 135 1802 135
67 152 5410 152 2150 152 4475 152 2875 154 1802 154

boldface: BKS; underlined: new BKS

The solutions presented in Table 3 show that the truncated PEA finds all but two BKS, improving 20

BKS out of 27 instances. This is an impressive performance considering that PEA is a simple greedy

algorithm compared to the very well designed metaheuristics used as comparison.

We attribute this advantage of PEA over the metaheuristics to the facility B&C has to prove feasibility

of a packing when items fit too easily into the container. Analyzing the detailed logs, we see that PEA

can very quickly find a solution with one or two items below the BKS for most instances. Then, it

spends most of the remaining time searching for a feasible packing for the next couple of items. The

same behavior was observed for the smaller instances (set 1).
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6. Conclusions

In this paper, we solved the two-dimensional circular packing problem, which deals with packing

rectangles into a circular container with the objective of maximizing the number of items or the total

area packed. A literature review shows that only non-linear models exist to prove the optimality of

solutions for this problem. In practice, these models are very limited since the largest instance with

optimality proven contained only eight items.

We proposed a linear model to solve the 2D-CPP using a B&C method, where the problem is for-

mulated considering a square container with the circle inscribed, and cuts are added iteratively to

remove infeasible packings during the solution process. Alternatively, we transformed this model to

consider the decision problem of whether a given set of items can be packed into the circular bin.

Then, we used this model to solve the 2D-CPP with a two-phase algorithm. In the first phase, we

select the items set using an explicit enumeration of all non-dominated subsets of items. Then, the

second phase tests each subset’s feasibility using the decision model. This approach is implemented

using parallelism such that multiple models can be solved simultaneously.

Computational experiments show that these two exact methods can solve instances with up to 30

items, depending on the characteristics of the problem, such as bin size, objective function, and

whether rotation of items is allowed. Smaller bin sizes allow larger problems to be solved. We also

show that B&C converges faster to good solutions when maximizing the total area packed, while

the parallel enumeration algorithm converges faster when maximizing the number of items. Two

benchmark instance sets are used to compare our exact methods to heuristic approaches from the

literature to the 2D-CPP. For smaller instances, with 10 to 30 items, our models prove optimality of

half of them for the first time and improved the best known solution of almost as many instances.

For larger instances, with 100 to 200 items, we show that a truncated execution of our parallel

enumerative algorithm outperforms all of the state-of-the-art heuristics when maximizing the number

of items packed, also finding new best known solutions for most of the instances.
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