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1 Introduction

Buying or selling large number of shares of a given stock over a given period of time in financial markets is

a common quest, faced by traders on a daily basis. For example, passive funds need to regularly trade large

numbers of shares to minimize their tracking errors. The costs associated with the execution of large orders

over a certain period of time can be substantial, especially for stocks and/or periods with limited supply of

liquidity. For example, Lesmond et al. (2004) find that returns on momentum strategies, which are known to

be economically and statistically significant and cannot be accounted for by risk-based explanations, disappear

when one takes into account transaction costs faced when implementing these strategies. Trading large number

of shares such as to minimize transaction costs is therefore a recurrent challenge.

In an effort to limit transaction costs, large orders are commonly split into smaller trades, sometimes

referred to as “packages” (see, e.g., Chan and Lakonishok, 1995) that are executed over the given period of

time. The question how to optimally select the size and timing of these packages so as to minimize overall

transaction costs is known as the optimal execution problem. This problem has attracted renewed attention in

the academic literature and has been analyzed, among others, by Almgren and Chriss (1999, 2001), Brunnermeier

and Pedersen (2005), Huberman and Stanzl (2005), Almgren and Lorenz (2007), Schoeneborn and Schied (2009),

Carlin et al. (2007), Schied et al. (2008, 2010) and Obizhaeva and Wang (2013).

Bertsimas and Lo (1998) define best execution as the choice of package sizes (traded at regular intervals over

a given period of time) to minimize the expected cost of execution. They solve the optimal execution problem

under the assumption that the law of motion for the underlying asset’s price has two components: a random

walk component in the absence of a given trade and a price impact that is a linear function of trade size. In

this mathematical formulation, the price impact function is assumed to be time invariant, i.e., it does not vary

over time.

However, it is well known that liquidity supply exhibits strong variation over time (see, e.g., Chordia et al.,

2001; Kempf and Mayston, 2008; Lorenz and Osterrieder, 2008). More recent articles relax this assumption.

Obizhaeva and Wang (2013) show the importance of liquidity dynamics in determining optimal trading strate-

gies. Specifically, they demonstrate that the optimal trading strategy is a combination of large and small trades,

contrasting the naive approach of splitting the total order into equal-sized packages as suggested in earlier lit-

erature. Building on the model of Obizhaeva and Wang (2013), Fruth et al. (2014) analyze optimal trading

strategies when the liquidity is changing deterministically. They characterize optimal strategies in terms of

trading and waiting periods and find that it might even be optimal not to trade during periods of low liquidity

depending on the expected future liquidity.

All of the above-mentioned articles analyze the best execution problem theoretically, using various assump-

tions about liquidity supply and dynamics. To the best of our knowledge, there is no paper that analyzes the

problem empirically.

In this paper, we address this gap in the literature and analyze this problem from an empirical standpoint

by quantifying its economic importance using historical data on transaction costs. Our empirical approach is

motivated by the recent theoretical literature, but differs from it in one important aspect. Most papers make

assumptions on the price dynamics and/or price impact functions and obtain the optimal trading strategies

Reducing Transaction Costs using Intraday Forecasts of Limit Order Book Slopes

CIRRELT-2021-36 1



by solving the resulting dynamic optimization problem. Of course, some of these underlying assumptions are

rather limiting and might not always hold in reality.

In contrast, we examine the dynamics of high-frequency transaction costs using a comprehensive panel data

and treat the optimal execution problem as a forecasting problem with static optimization. Specifically, we have

in mind a trader who can trade every five minutes and needs to trade a specific number of shares by the end of

a given trading day. We obtain optimal package sizes for this day by minimizing the expected total transaction

costs at the beginning of this day based on forecasts of transaction costs.

Our forecasting approach to the best execution problem requires measures of intraday transaction costs. In

this paper, we follow Cenesizoglu and Grass (2018) and measure buy and sell side transaction costs separately

as the slope of the corresponding side of the limit order book. To be more precise, we use millisecond time-

stamped snapshots of the limit order book for stocks traded on the New York Stock Exchange (NYSE) from

the Thomson Returns Tick History (TRTH) database, now called Refinitiv Tick History. For each snapshot

of the limit order book, we compute a measure of the slope of the limit order book called Marginal Cost of

Immediacy (MCI). We define MCI as the transaction cost of immediately buying (selling) all shares in the

first ten levels of the ask (bid) side of the limit order book via market order, scaled by dollar quantity. MCIA

(MCIB) measures the marginal cost of buying (selling) an additional $1,000 of a stock in basis points and can

also be thought of as the price impacts of a market buy (sell) order as a function of its size in dollar terms.

We aggregate snapshot-by-snapshot MCI measures by computing their averages for each five-minute interval

between 9:30 and 16:00. We thus use these five-minute MCI measures as our estimate of buy and sell side

transaction costs. This measure has several advantages compared to others proposed in the literature (such as

the buy and sell side lambdas of Brennan et al. (2013)). It can be computed for any desired interval and for

ask and bid sides separately. Furthermore, it is observed and does not need to be estimated, which is especially

useful when modeling and forecasting intraday transaction costs.

As the main determinants of liquidity exhibit seasonality at various frequencies, so do transaction costs.

Among others, high volatility at market opening - when overnight information is included in prices - translates

into high transaction costs in the morning. Similarly, increases in information asymmetry ahead of earnings

announcements decrease market liquidity. We first analyze the seasonalities in MCIA and MCIB at intraday,

weekly, and quarterly frequencies before modeling and forecasting them. We find that transaction costs exhibit

strong intraday and intraquarter but not intraweek seasonalities. The transaction costs tend to be higher in the

morning and before earnings announcements, in line with our expectations.

We consider two approaches to capture seasonality patterns. The first, which we refer to as 22-day avg.,

captures the intraday seasonality in a simple fashion. It forecasts the transaction cost for a given five-minute

interval, day and stock as its average over the same five-minute interval and stock over the preceding 22 trading

days. The second model improves on the first model to also capture intra-week and intra-quarter seasonalities

in addition to intra-day seasonalities. In this second model, which we refer to as Adj. 22-day avg, we regress

five-minute transaction costs for a given day and stock on the corresponding averages from the first model

computed over the preceding 22 days including the day in question. The forecasts for five-minute transaction

costs for the next day are then given by the fitted values from this regression. This second model accounts for

seasonality at different frequencies while reducing the noise associated by simply using the last day transaction
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costs as our forecasts.

We then consider different autoregressive models, one with 1 lag and another with 78 lags (which corresponds

to the number of five-minute intervals in a trading day). For each of these models, we consider two variants. In

the first variant, we directly model and forecast intraday transaction costs without modelling or forecasting the

seasonal component. The models of the first variant, referred to as AR(1) and AR(78), assume that the dynamics

of the AR model captures, to a certain extent, the seasonal component. In the models for the second variant,

referred to as SAR(1) and SAR(78), we remove the seasonal component from intraday transaction costs and use

the AR models to model and forecast the non-seasonal component. To obtain our forecasts for the transaction

costs. we add the forecast for the seasonal component to that of the non-seasonal component. Finally, we also

consider two state-of-the-art recurrent neural networks, namely Long Short-Term Memory (LSTM) and Gated

Recurrent Units (GRU). LSTM networks are a distinct type of Recurrent Neural Networks, which are able to

learn long-term dependencies. They are thus very popular for working with sequential data such as time-series

data. GRU is similar to an LSTM but has a less complicated structure with fewer parameters.

We estimate/train all AR/ML models recursively using a rolling window of 22 days intraday observations

for MCIA and MCIB separately. We do not use any data from the day we are forecasting in the sense that our

forecasts are not dynamic but rather static. In other words, we assume that the trader obtains her forecasts at

the beginning of the trading day and do not update her forecasts as she observes transaction costs during the

day. She can, of course, obtain better forecasts if she considers updating her forecasts and parameters as she

observes data throughout the trading day. Furthermore, we also implicitly assume that the limit order book is

resilient in the sense that any transaction that a trader executes does not impact prices in the subsequent five-

minute interval. These assumptions in turn imply that our results provide a lower bound in terms of forecasting

ability of a trader.

Given that we need good forecasts of intra-day transaction costs to choose the optimal package sizes, we

first focus on the statistical performance of each model in forecasting intra-day transaction costs based on Root

Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The forecast based on the averages

over the last 22 days, which is our benchmark model, performs relatively well for such a simple model. This

rather good performance of a simple model suggests that the seasonal component plays an important role in

the intraday time variation of transaction costs. More importantly, the proposed adjustment to this simple

benchmark to capture daily and weekly time variation in intraday seasonality performs better than all other

models considered. Specifically, the RMSE and MAPE of this model has not only the lowest mean and median

across stocks and trading days, but are also much less dispersed as measured by its standard deviation. The

MAPE of this model has a median of 29.22% showing that it captures more than 70% of the absolute variation

in intraday MCIA. The AR(1) model is a close second best, but its performance exhibits much more variation

across stocks and days. The two machine learning models, LSTM and GRU perform relatively poorly mostly

due to the high number of parameters to estimate and relatively short training sample (22 days times 78 intraday

observations) that we chose to be comparable to other competing models.

Having shown that we can predict intraday transaction costs especially well using models capturing its

seasonality, we now turn our attention to the economic value of these predictions for traders with large orders

to execute. We measure the economic performance of a given forecasting model based on the resulting total
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realized transaction costs, using the optimal package sizes implied by the out-of-sample forecasts from that

model. We compare the performances of different models to a hypothetical scenario where the trader has

perfect knowledge. We also consider two values for the total amount to be transacted, a fixed amount of

$100M and a proportional amount based on market capitalization. Our conclusions are very similar regardless

of whether we consider a fixed or a proportional amount. Here, we summarize those based on trading a fixed

amount.

The naive approach of trading the same amount every five minutes results in total buying and selling costs

with a median of $1.60M and $1.76M for $100M traded, respectively. These numbers are respectively 29%

and 25% percent higher than the unattainable perfect knowledge case. In other words, if we ignore intraday

seasonality and potential predictability of transaction costs, one can do only about 30% worse than the perfect

knowledge case by trading the same amount every five minutes.

Among all the other models considered, the simple model of 22-day Avg. delivers the best forecasts in

terms of both total buying and selling costs. Specifically, the median total cost of buying (selling) $100M of a

stock based on our forecast from the model of 22-day Avg. is $1.38M ($1.59M). These numbers are only 11%

and 13% higher than the median buying and selling costs from the unattainable perfect knowledge case. More

importantly, they represent a significant improvement compared to the naive approach. The adjusted 22-day

average and AR(1) are close second best performing models, based on median total buying and selling costs.

There are no other models that result in lower transaction costs than the naive approach for both buying and

selling a fixed or a proportional amount.

We lastly examine how trading costs vary with size in the cross-section. Not surprisingly, trading a fixed

amount of $100M is substantially more costly for small stocks than for large ones. The benefits of forecasting

intraday trading costs accurately are accordingly largest for small stocks. In contrast, dollar trading costs

increase drastically in size when trading a proportional amount of 0.69% of a stock’s market capitalization.

Our paper makes several important contributions to the academic literature. First, to the best of our

knowledge, we are among the first to approach the best execution problem from a forecasting perspective.

Second, we state the non-linear optimization problem that identifies the optimal package sizes and time periods

based on such forecasts, and we provide a closed-form formula to solve this problem. We show that better

forecasts can provide economic benefits for a trader by significantly decreasing total transaction costs. Third,

we examine the intraday and daily dynamics and seasonalities of transaction costs. Fourth, we are among the

first to model and forecast these intraday transaction costs. Fifth, we show that simple forecasting models that

capture intraday and lower frequency seasonalities perform better than more advanced time series and machine

learning models in forecasting high frequency transaction costs in limit order books. Finally, to ensure practical

relevance of our empirical results, all our experiments have been carried out on 11 years of the extensive NYSE

data set.

Our paper also has important practical implications. First of all, our results provide important insights

about the dynamics of transaction costs to traders. Second, our approach can be easily automatized so that

discretionary traders can simply focus on the total amount and the direction to trade and leave the optimal

trade execution to an algorithm based on our forecasting approach. Last but not least, our approach is easily

scalable in the sense that it can be rapidly implemented across a large number of stocks and can provide an
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edge to traders in today’s extremely fast financial markets.

The rest of the paper is organized as follows. Section 2 presents the data and how we compute intraday

transaction costs from this data. Section 3 presents different models used for forecasting intraday transaction

costs. Section 4 presents performances of different models in an out-of-sample forecasting exercise. Section 5

formulates the best execution problem and shows how it can be approached from a forecasting perspective.

2 Data Description

2.1 Measure of Transaction Costs

Our objective is to understand how a trader that needs to either buy or sell a specific quantity of stocks by the

end of a given trading day should split this quantity into multiple market orders to minimize transaction costs.

To carry out such an analysis, we require a measure of transaction costs that depends on the trading quantity.

While there are many such measures such as Kyle’s lambda (Kyle, 1985), most of these measures need to be

estimated. This becomes an issue when the trader needs a measure of transaction costs that is available at

intraday frequency for each trading day. Furthermore, it is also crucial for the trader to measure, model and

forecast buying and selling transaction costs separately as they can sometimes behave quite differently from

each other. We therefore use a measure for buy and sell side transaction costs proposed by Cenesizoglu and

Grass (2018), the Marginal Cost of Immediacy (MCI). This measure is based on limit order book snapshots

and can be computed at any frequency required, therefore removing the need for estimations.

Cenesizoglu and Grass (2018) define MCI as the transaction cost of immediately buying (selling) all shares

in the first ten levels of the ask (bid) side of the limit order book via market order, scaled by dollar quantity.

MCI measures the marginal cost of buying (selling) an additional $1,000 in basis points and is ultimately a

measure of the slope of the ask (bid) side of the limit order book.

We briefly describe how MCI can be computed for a given snapshot s of the ask side on a given trading

day d, MCIAd,s, for a given stock i. MCIBd,s is defined in a similar fashion. To simplify the notation, we drop

the subscript for stock i, but it should be understood that the measures are stock-specific.

For a given snapshot s of the ask side of the limit order book, we first compute the volume-weighted average

price of the ask side scaled by the midprice, VWAPMA,L
d,s , as follows:

VWAPMA,L
d,s = ln

VWAPA,L
d,s

Md,s

 , (1)

where

VWAPA,L
d,s =

V lmA,L
d,s∑L

l=1Q
A,l
d,s

(2)

and V lmA,L
d,s =

∑L
l=1 P

A,l
d,s ×Q

A,l
d,s and PA,l

d,s and QA,l
d,s are the price and quantity available at the lth level of the

ask side for the snapshot s and trading day d. Md,s is the midquote price defined simply as the average of PA,1
d,s

and PB,1
d,s . For the bid side, VWAPMB,L

d,s is defined analogously.

VWAPMA,L
d,s and VWAPMB,L

d,s are, respectively, the transaction cost of buying and selling all shares

available up to level L in the book, expressed as a log return relative to the midquote price. We obtain MCIAd,s

Reducing Transaction Costs using Intraday Forecasts of Limit Order Book Slopes

CIRRELT-2021-36 5



by dividing VWAPMA,L
d,s by the total dollar volume acquired, V lmA,10

d,s , as follows:

MCIAd,s =
VWAPMA,10

d,s

V lmA,10
d,s

. (3)

MCIBd,s is defined analogously as follows:

MCIBd,s =
−VWAPMB,10

d,s

V lmB,10
d,s

. (4)

MCI is a measure of the slope of the limit order book. A higher MCI implies that less liquidity is supplied

via the limit order book and thus transaction costs are high. We measure MCIAd,s and MCIBd,s in basis points

(bp) per $1,000. This provides a simple interpretation of the MCI measures. For example, an MCIAd,s = 0.2

means that a trader who wants to buy an additional $1,000 worth of shares via a market order and facing the

snapshot s on trading day d will incur a transaction cost 0.2 bp, i.e., 0.002%. However, if she decides to buy

$1,000,000, she will face a transaction cost of 2.0%.

2.2 Data Set

Our limit order book data is from the Market Depth files of the Thomson Returns Tick History (TRTH)

database, now called Refinitiv Tick History. While it includes data for several exchanges, we restrict our

analysis to stocks traded on the New York Stock Exchange (NYSE).

Each snapshot has a millisecond time stamp and includes prices and quantities for the first ten levels of

both bid and ask sides of the limit order book. The TRTH data do not include hidden orders and comprises

only NYSE limit orders and no limit orders from other markets. Our transaction cost measures based on the

TRTH data might therefore overstate the actual transaction costs faced by a trader who has access to limit

orders from other markets.

NYSE began making this level-two LOB data available to market participants outside the trading floor in

January 2002. Our sample period starts in January 2002 and ends in December 2012. We focus on an 11-year

period due to sheer size of data.

2.3 Data Processing

Our initial data set includes 52.44 billion LOB snapshots for the years 2002-2012. We follow the steps described

in Cenesizoglu and Grass (2018) to initially process this data. Specifically, we remove any snapshot for which

the price or volume information is either missing or is equal to zero for any of ten levels of the ask or bid side,

as well as any snapshot with the best ask price lower than the best bid price, Level 1 (Level 10) bid-ask spreads

above 25% (250%), midquote prices below $1 or above $1000. We discard snapshots for which prices do not

increase monotonically from level 10 of the bid side to level 10 of the ask side and snapshots outside regular

trading hours.

We also delete all securities other than ordinary common shares and any security for which we are unable to

find a match in the Center for Research in Security Prices (CRSP) files, using the same matching procedure as

Cenesizoglu and Grass (2018). Finally, we exclude data for any firm-day with fewer than 100 snapshots in the
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TRTH data or less than 100 trades in the matched TAQ data set, as well as any observations with incomplete

CRSP or Compustat data to obtain a sample including 31.19 billion observations reported for 2,103 stocks over

2,740 trading days and 3.37 million stock-day observations.

We compute the MCIAd,s and MCIBd,s for each snapshot s, trading day d and stock i (subscript dropped)

in our sample. For a given stock, we compute the average buying and selling transaction costs for five-minute

interval t on trading day d, MCIAd,t and MCIBd,t, as the equal-weighted average of the snapshots in that five-

minute interval, i.e. MCIAd,t = 1
NA

d,t

∑NA
d,t

s=1 MCIAd,s and MCIBd,t = 1
NB

d,t

∑NB
d,t

s=1 MCIBd,s, where NA
d,t and NB

d,t are

respectively the number of snapshots of the ask and bid sides available in five-minute interval t on trading day

d. MCIAd,t and MCIBd,t are the variables of interest, which we model and forecast. If a given stock has less than

78 observations on a given trading day, we remove this stock-day pair from our final sample.

2.4 Descriptive Statistics

Table 1 presents summary statistics for MCIAd,t and MCIBd,t (multiplied by 10,000,000 for ease of presentation)

across stocks and trading days in our sample. The median MCIAd,t is 0.156 basis points, suggesting that a trader

who wants to instantaneously buy $1,000 worth of stock would pay 0.156 basis points in transaction costs. The

median MCIBd,t is slightly higher at 0.174 basis points suggesting that selling via a market order is slightly more

expensive in our sample than buying via a market order. Means are much higher than the medians suggesting

that the distribution is skewed to the right. This can also be seen in the distributional statistics. Furthermore,

the standard deviations are multiple times as high as the average values, suggesting a high degree heterogeneity

in terms of transaction costs across stocks and over time.

Table 1: Descriptive statistics of MCI

MCIA MCIB

Mean 1.456 1.627

Median 0.156 0.174

Std. Dev. 8.686 9.625

25% Percentile 0.048 0.052

75% Percentile 0.624 0.728

Nb of Obs 125939000 125939000

Note: This table presents summary statistics for 5-minute transaction costs MCIA and MCIB multiplied by 107, which

can be interpreted as transactions cost in basis points for trading 1000 $. Our sample period is between January 2002

and December 2012.

Figure 1 presents the time series of MCIAd,t and MCIBd,t averaged over all stocks. Average transaction costs

are high at the beginning of our sample period with MCIBd,t slightly higher than MCIAd,t. They then gradually

decrease until the Global Financial Crisis, when they reach their highest values. The transaction costs decline

following the financial crisis but remain higher than what they were before the financial crisis.
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Figure 1: Time Series of the Daily averages of MCIA and MCIB

Note: This figure presents the time series of MCIAd,t (blue line) and MCIBd,t (red line) averaged over all stocks in our

sample on trading days between January 2002 and December 2012.

2.5 Seasonality

Transaction costs are driven by various factors including information asymmetry and volatility. As these exhibit

seasonality over time, so do transaction costs. In this section, we document such seasonality patterns at daily

and quarterly frequency.

During a trading day, bid-ask spreads are known to start high and drop sharply within the first hour of

trading. Among others, this is due to the fact that news announcements made after the previous close are

incorporated into stock prices when market opens, boosting volatility. Not surprisingly, we observe a similar

pattern for our measure of transaction costs, MCI.

Figure 2 shows average transaction costs over all stocks and trading days for each five-minute interval

between 9:30 and 16:00. The figure shows a clear intra-day pattern in transaction costs. Both MCI measures

are high at the beginning of the day and decrease gradually until 11:00. They then remain practically constant

until one hour before closing when they start to decrease rapidly. Although not reported here, this seasonal

pattern exhibits significant variation across stocks and trading days. All else equal, the intraday seasonality in

transaction costs is more pronounced when the level of transaction costs is higher. As mentioned above and

as we will discuss in more detail at the end of this section, transaction costs exhibit intraquarter seasonality in

relation to the quarterly earnings announcement cycle. As such, the intraday seasonality of transaction costs

also depends on the intraquarter seasonality of transaction costs.
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Figure 2: Intraday seasonality in MCIA and MCIB

Note: This figure shows the intraday seasonality of ask and bid side transaction costs. More specifically, it plots average

MCIAd,t (blue line) and MCIBd,t (red line) values computed across all stock-days for five-minute interval during trading

hours between 9:30 and 16:00 EST.

The decrease in transaction costs throughout the trading day is substantial. Specifically, MCIA and MCIB

are around 3 and 2 basis points, respectively, at the beginning of the day and they both decrease to around 0.6

basis points by the end of the trading day. This represents almost an 80% decrease for MCIA and 70% decrease

for MCIB . Given that our objective is to model and forecast intraday transaction costs, it is very important

to capture this intraday variation in transaction costs.

Over a quarter, transaction costs are impacted by changes in information asymmetry over the earnings cycle.

Just after companies publish their earnings data – together with other fundamentals such as sales forecasts,

changes in management, new supply partners – information asymmetry is relatively low. As companies do

not update investors every day, information asymmetry starts accumulating and peaks just prior to the next

earnings announcement. As information asymmetry is a key determinant of bid-ask spreads, this seasonality in

information asymmetry over a fiscal quarter translates into a similar seasonal pattern in MCI. The sharpest

spikes in transaction costs can typically be observed at fiscal year end, when investors anticipate even more

information to be released than ahead of the other three quarters.

Figure 3 plots average ask and bid side MCI as a function of the number of calendar days remaining until the

next quarterly earnings announcement. MCI averages are computed across all stock-days with the same number

of days remaining until the next announcement. The graph shows a clear pattern in line with the dynamics of

information asymmetry described above. Trading costs are relatively low in between the weeks surrounding the

earnings announcements. They begin to increase about a week before the next earnings announcement. They

reach their highest level, on average, right after the earnings announcement and decrease gradually over the two

weeks following the earnings announcement. Average MCIA values increase from about 1.4 to about 1.8 right

before earnings announcements. Similarly, average MCIB values increase from about 1.55 to about 2.2 right

before earnings announcements.
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Figure 3: Quarterly seasonality in MCIA and MCIB

Note: This figure shows how daily averages MCIA (blue line) and MCIB (red line) change as a function of the number

of days remaining to the next earnings announcement. Averages are computed across all stock-days with the same

number of days remaining before the next earnings announcement. Zero indicates the earnings announcement day.

Seasonal patterns observed within a day and within a fiscal quarter are economically large. In contrast,

MCI does not exhibit a large seasonality within a week, as shown in Figure 4. While ask and bid side MCI

slightly increase towards the end of the week, the variation in average MCI values within a week is a small

fraction of the variation within a day and within a quarter.

Figure 4: Weekly seasonality in MCIA and MCIB

Note: The figure shows how average values of MCIAd,t (blue line) and MCIBd,t (red line) evolve over the week. The

averages are computed over all stocks.

Given the strength of the observed seasonality patterns, we conclude that accounting for seasonality at

intraday and intraquarter level is essential when forecasting liquidity. In the following, we propose simple

approaches to do so.
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3 Forecasting Models

In order to be able to devise efficient trading strategies that minimize the overall transaction costs, we need to

predict intraday transaction costs as accurately as possible. In this section, we propose several approaches to

predict the intraday time series of transaction costs. A particular challenge in this context is that transaction

costs exhibit seasonality at multiple intervals, as documented in the previous section. We thus propose several

approaches to explicitly account for these seasonalities. Table 2 summarizes the different models used and its

acronyms:

Table 2: Acronyms for Different Forecasting Models

Model Acronym Description

22-day Avg. Average of MCId,t over the preceding 22 days.

Adj. 22-day Avg. Regression of MCId,t on the the average of MCId,t over the preceding 22 days.

AR(1) Autoregressive model with 1 lag for MCId,t estimated over the last 22 days.

SAR(1) Seasonality-adjusted autoregressive model with 1 lag of MCId,t estimated over the last 22 days.

AR(78) Autoregressive model with 78 lags for MCId,t estimated over the last 22 days.

SAR(78) Seasonality-adjusted autoregressive model with 78 lag of MCId,t estimated over the last 22 days.

LSTM Long Short-Term Memory model for MCId,t trained using data over the last 22 days.

GRU Gated Recurrent Units model for MCId,t trained using data over the last 22 days.

Note: This table presents the acronyms used for different forecasting models in the paper.

Note that, while some of the approaches may potentially benefit from accounting for exogenous variables

(such as trading price and volume), in this work, we restrict our analysis to the performance of the models that

can be obtained exclusively using information on transaction costs and the corresponding time stamps.

In all the models, our objective is to predict MCIAd+1,t and MCIBd+1,t for t = 1, 2, . . . , 78, using information

available up to and including trading day d. While these predictions will be computed separately for the ask

and bid sides, in the following, we will simply refer to these forecasts to as MCId+1,t.

We introduce the seasonality component and the related predictive models in Section 3.1. We then propose

auto-regressive models in Section 3.2 and models based on Recurrent Neural Networks in Section 3.3.

3.1 Accounting for Seasonality

As discussed above, MCI exhibits strong intraday seasonality, which in turn depends on the quarterly season-

ality. Accounting for these patterns can significantly increase the accuracy of our predictions.

A simple prediction of tomorrow’s intraday time series of the MCI is simply today’s intraday time series of

MCI. Using today’s 78 MCI values at the five-minute frequency as a forecast for tomorrow’s pattern would

not only account for intraday seasonality but also for the quarterly seasonality described before. Given the

proximity of today to tomorrow, today’s MCI has to be a better predictor of tomorrow’s MCI than the MCI
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observed yesterday or the day before – all else equal. However, MCI values at five-minute intervals tend to be

rather noisy. To reduce the noise, we use average values computed over the last 22 trading days and suggest

alternative ways to account for intraquarter seasonality.

The 22-day Average Model.

The Adjusted 22-day Average Model. While the previous model averages out the volatility over several

days, it is insensitive to cycles other than daily or monthly seasonality. A detailed analysis of our data sug-

gested that the daily variation in intraday seasonality pattern (see Figure 2) strongly depends on the earnings

announcement cycles of a stock. To capture the variation in the intraday seasonality patterns over a fiscal

quarter, our second seasonality-based model (in the following referred to as the Adj. 22-day Avg.) regresses

five-minute transaction costs over the current day d (i.e., MCId,t) on the averages over the last 22 days (i.e.,

MCId,t):

MCId,t = α+ βMCId,t + εt. (5)

We then obtain the forecasts for the intraday transaction costs over the following trading day d+ 1 as the fitted

values, i.e., M̂CId+1,t = α̂ + β̂MCId,t, where α̂ and β̂ denote the estimated coefficients of the regression in

Equation (5).

Figure 5 visualizes the forecasts from the 22-day average and the adjusted 22-day average models, along

with the realized intraday transaction costs for the IBM stock on 28-03-2012 and 29-03-2012. It is easy to see

the importance of the adjustment, which produces a forecast much closer to the realized intraday transaction

costs on 29-03-2012.
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Figure 5: Accounting for Seasonality Example

Note: This figure provides an example of how different models used for accounting for intraday and intraquarter

seasonality perform on a specific day for a specific stock. Our objective in this example is to forecast the realized

intraday transaction costs for IBM on 29-03-2012 (blue line). The red line presents the realized intraday transaction

costs for IBM on the previous day 28-03-2012. The green and orange lines present respecively the forecasts from the

22-day average and adjusted 22-day average models obtained at the end of the previous trading day on 28-03-2012.

3.2 Autoregressive models

The first approach presented above is based on the average of the last 22 trading days. As such, it does

not account for variations between days including potential trends in the data over recent days. The second

approach uses a linear regression to fit the intraday curve of the last available day to the 22-day average

curve, and therefore incorporates the most recent trend to forecast the transaction costs for the next day.

In this section, we present autoregressive models that aim at incorporating more specific information of the

last training day (or potentially several days). Instead of using the daily average, these autoregressive models

estimate the correlation of the transaction costs of a specific five-minute interval with those of the k preceding

five-minute intervals, i.e. k lags, by means of a linear combination.

We consider autoregressive models which differ in terms of the number of lags and how we treat the seasonal

component. Specifically, we consider different number of lags between 1 and 78 (which corresponds to up to one

complete trading day). For the sake of brevity, we only present results for models with k = 1 and with k = 78

lags (since values in between did not improve the forecasting results). For each of those, we consider two model

variants.
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Simple autoregressive AR(k) models. In the first variant, we directly model and forecast intraday

transaction costs without modelling or forecasting the seasonal component. For a given trading day d and

five-minute interval t, the autoregressive model of order k for k ≤ 78, also referred to as AR(k) is estimated as:

MCId,t =

 β0 +
∑t−1

i=1 βiMCId,t−i +
∑k−t

i=0 βt+iMCId−1,78−i + εd,t if t ≤ k

β0 +
∑k

i=1 βiMCId,t−i + εd,t if t > k,
(6)

where βi for i = 0, 1, . . . , k are the parameters to be estimated. In particular, β0 is the constant offset, while the

other coefficients represent the correlation with the last k lags, and εd,t is the error term. As one can observe,

an AR(k) autoregressive model bases its forecasts exclusively on the k previous five-minute intervals. Here, the

model is expected to implicitly capture, to a certain extent, the seasonal component.

Under these assumptions, a forecast for time interval t for t = 1, 2, . . . , 78 at day d+1 from the AR(k) model

with k ≤ 78 is then obtained by computing:

M̂CId+1,t =

 β̂0 +
∑t−1

i=1 β̂iM̂CId+1,t−i +
∑k−t

i=0 β̂t+iMCId,78−i if t ≤ k

β̂0 +
∑k

i=1 β̂iM̂CId+1,t−i if t > k,
(7)

where β̂i for i = 0, 1, . . . , k are the constant offset and the coefficients of the AR(k) model as estimated in

Equation (6). It is easy to see from the above equations that the forecasts for day d+ 1 are static forecasts in

the sense that they do not incorporate the real values from day d + 1, but only their predictions. To be more

precise, M̂CId+1,t does not depend on MCId+1,t′ for t′ < t and is computed using forecasts of the previous

five-minute intervals in the same day, i.e. M̂CId+1,t′ for t′ < t and d+ 1, or the real observed transaction costs

MCId,t for from the previous day d.

Seasonality-adjusted autoregressive SAR(k) models. In the second model variant, we first remove

the seasonal component from intraday transaction costs and then use autoregressive models to estimate and

forecast the non-seasonal component M̃CId+1,t = MCId+1,t −MCId+1,t. Specifically, we estimate the model

in Equation (6) by replacing MCId,t with M̃CId,t. We obtain the forecasts of M̃CId+1,t, denoted by
̂̃
MCId,t,

using Equation (7). The final forecasts of MCId+1,t, i.e. M̂CId+1,t, are then computed by adding back the

seasonal component to the forecasts for the non-seasonal components: M̂CId+1,t =
̂̃
MCId+1,t +MCId+1,t.

Estimation of different AR models were performed on the Cedar cluster provided by Compute Canada

(implying the parallel use of at most 10 CPUs of 2.1 Ghz and a total maximum of 20Gb of RAM), using

statsmodels (Seabold and Perktold, 2010).

3.3 Recurrent Neural Networks based Models

Long Short-Term Memory (LSTM). Long Short-Term Memory networks (Hochreiter and Schmidhuber,

1997) are an improved architecture of Recurrent Neural Networks (RNN) designed to model sequenced data such

as time series. LSTMs were proposed to overcome the difficulties of RNNs to capture long-term dependencies,

given that, for RNNs, the gradients of those dependencies tend to converge to zero, making gradient-based

optimization method struggle (Chung et al., 2014).

We use a multivariate LSTM time series with input vectors xt =
[
MCIt,1 MCIt,2 . . . MCIt,78

]T
, where t

Reducing Transaction Costs using Intraday Forecasts of Limit Order Book Slopes

14 CIRRELT-2021-36

http://www.computecanada.ca


refers to a previous day (in our experiments, we have used the previous 22 days). The long-short-term memory

cell uses three mechanisms in order to control memory at each LSTM neuron: the input gate, the forget gate

and the output gate. These gates allow the network to decide which information to retain and which to forget.

The forget gate vector ft decides which information to forget using the output vector ht−1 of the previous

LSTM neuron and the input vector xt (Equation (8)). The input gate it decides which information to update

(Equation (9)) combined with the new memory content c̃t (Equation (10)), where ◦ represents the element-wise

matrix multiplication (Hadamard product). The new memory cell ct (cell state vector) is computed as the sum

of the new memory content c̃t (cell input vector) and the existing memory cell ct−1 multiplied by ft. Finally, the

output ht (Equation (13)) is computed using the output gate vector ot (Equation (11)) to decide the amount

of memory content to share multiplied by the hyperbolic tangent of cell state ct (Equation (12)). Specifically:

ft = σ(Wfxt + Ufht−1 + bf ) (8)

it = σ(Wixt + Uiht−1 + bi) (9)

ct = ft ◦ ct−1 + it ◦ c̃t (10)

ot = σ(Woxt + Uoht−1 + bo) (11)

c̃t = tanh(Wcxt + Ucht−1 + bc) (12)

ht = ot ◦ tanh(ct), (13)

where σ is the sigmoid function, tanh is the hyperbolic tangent function, and W , U , b are the weight matrices

and bias vector, respectively, which are estimated while the model is trained.

Gated Recurrent Units (GRU). Gated Recurrent Units (Cho et al., 2014) are similar to LSTMs, but have

fewer parameters. As the LSTM, it uses input vector xt =
[
MCIt,1 MCIt,2 . . . MCIt,78

]T
, where t refers to a

previous day with 78 entries, one for each five-minute interval. GRUs use two mechanisms to control memory:

an update gate and a reset gate. The update gate vector ut decides which information is passed along the next

state using the output vector ht−1 of the previous GRU unit and the input vector xt (Equation (14)). The reset

gate vector rt decides which information should be neglected (Equation (15)). The current memory content ĥt

(output activation vector) is computed using the previous output vector ht−1 and the reset gate rt (Equation

(16)). Finally, the ouput vector ht is computed using the current memory content ĥt, the previous output vector

ht−1 and the update gate vector ut. Specifically:

ut = σ(Wuxt + Uuht−1 + bu) (14)

rt = σ(Wrxt + Urht−1 + br) (15)

ĥt = tanh(Whxt + Uh(rt ◦ ht−1) + bh) (16)

ht = (1− ut) ◦ ht−1 + ut ◦ ĥt, (17)

where, again, σ is the sigmoid function, tanh is the hyperbolic tangent function, and W , U , b are the weight

matrices and bias vector, respectively, which are estimated while the model is trained.
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Hyper-parameter selection. The design of the above LSTM and GRU networks are determined by several

hyper-parameters, which are typically tuned to the application context and data in order to ensure a stable

predictive performance. A grid search over all different combinations of such parameters is computationally

prohibitive. We therefore carried out a random search (Bergstra and Bengio, 2012) over the following hyper-

parameters (Table 3), where the final selection used in our models is indicated in bold:

Table 3: Hyper-Parameter Values

Hyper-Parameter Values

Learning Rate 0.1; 0.01; 0.001

Number of Epochs 1; 5; 10; 20; 50; 100

Batch size 1; 12; 78; 156

Hidden Layers 1; 2

Hidden Units, 12; 78; 156; 312

Activations Functions Tanh; Relu; Sigmoid; Selu

Dropout 0.0; 0.1; 0.2; 0.3; 0.4; 0.5

Time series modeling, training and model evaluation. The representation of time series may have

a major impact on the predictive performance of LSTM and GRU (Iwok and Okpe, 2016). Throughout our

experiments, we have modelled the LSTM and GRU as both a univariate time series (using information of the

previous day only) and a multivariate time series (using several previous days). We focus on the latter, given

that these models provided superior results. To be specific, we consider a total of H previous days. Each

day d is represented as an input variable MCIHd and the number H of previous days to be considered, where

MCIHd =
[
MCId−H MCId−H+1 . . . MCId

]
and MCId =

[
MCId,1 MCId,2 . . . MCId,78

]T
.

The models used in this paper have been trained using data from the 22 previous days, i.e. we set H = 22.

To evaluate the predictive performance of machine learning methods, splitting the data set into training, test

and validation sets via cross validation would typically be appropriate. However, when dealing with times series,

one has to respect the temporal order of the data and the requirement of having sequential data in each of those

sets. Therefore, other evaluation approaches such as nested cross-validation methods or rolling-origin evaluation

(Tashman, 2000) have been proposed. In the latter, the training set first contains a sequence at the beginning of

the time series, and the validation and test sets are subsequent data points. In the next iteration, the test set is

added to the training set, and the new test and validation sets are again the subsequent data points. Given that

such expanding training windows can become rather large, such methods may be computationally demanding.

We therefore adopt a sliding training window approach, in which the size of the training set remains fixed. A

graphical illustration of both approaches can be found in Figures 7 and 8 in Appendix B. All hyper-parameters

previously introduced are selected such that the performance on the validation sets is best. The final model is

then blindly applied to the test sets to evaluate the model performance. A detailed pseudo-code of the training

and prediction process of the LSTM and GRU can be found in Algorithm 1 in Appendix B. All LSTM and GRU
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models were trained on the Cedar cluster provided by Compute Canada (as described in the previous section),

using Keras (Chollet, 2015) with Tensorflow (Abadi et al., 2015).

4 Forecasting Results

In this section, we present the statistical performance of different models in forecasting intraday transaction

costs. Before discussing different statistical performance metrics, several remarks are in order regarding the es-

timation/training of different forecasting models. As previously mentioned, all models are estimated recursively

using a 22-day rolling window of intraday observations for MCIAd,t and MCIBd,t separately. Furthermore, we

update the parameter estimates and/or retrain the model at the end of each trading day. More importantly, we

do not use any data from the day we are forecasting in the sense that our forecasts are static and not dynamic.

In other words, we assume that the trader obtains her forecasts at the beginning of the trading day and does

not update these forecasts even though she observes transaction costs during the day. In turn, the static nature

of these forecasts implies that our results provide a lower bound of the forecasting ability of a trader. That is,

a trader may obtain better forecasting results if she considers dynamic forecasts and/or re-estimates/re-trains

the model throughout a given trading day as she observes transaction costs during that day.

To evaluate the statistical performance of the models, we consider two standard performance metrics, namely

RMSE and MAPE, defined as follows:

RMSEd+1 =

√∑78
t=1(MCId+1,t − M̂CId+1,t)2

78
(18)

MAPEd+1 =
1

78

78∑
t=1

∣∣∣∣∣MCId+1,t − M̂CId+1,t

MCId+1,t

∣∣∣∣∣. (19)

4.1 Results for All Stocks

Table 4 presents the summary statistics for RMSE and MAPE across all stocks and five-minute intervals

for different models in forecasting the intraday ask side transaction costs (MCIA) in panel (a) and bid side

transaction costs (MCIB) in panel (b).
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Table 4: Performance of Different Models in Forecasting MCIA and MCIB

Panel (a)

RMSE MAPE

Model Median IQR Median IQR

22-day Avg. 0.079 0.229 32.74 35.05

Adj. 22-day Avg. 0.060 0.224 28.41 28.56

AR(1) 0.059 0.253 29.23 29.91

SAR(1) 0.090 0.316 47.62 52.56

AR(78) 0.075 0.295 39.09 43.50

SAR(78) 0.072 0.257 38.09 36.61

LSTM 0.115 0.460 40.45 63.55

GRU 0.120 0.506 43.02 73.19

Panel (b)

RMSE MAPE

Model Median IQR Median IQR

22-day Avg. 0.066 0.239 33.33 36.54

Adj. 22-day Avg. 0.060 0.200 29.22 29.99

AR(1) 0.063 0.204 29.62 30.37

SAR(1) 0.089 0.280 44.98 46.87

AR(78) 0.079 0.274 40.41 44.85

SAR(78) 0.071 0.229 37.25 33.90

LSTM 0.069 0.245 33.82 34.13

GRU 0.071 0.256 35.92 42.12

Note: This table presents summary statistics for Root Mean Square Error (RMSE) and Mean Absolute Percentage Error

(MAPE) of different models in forecasting MCIA in panel (a) and MCIB in panel (b). The IQR is the interquartile range

computed as the difference between the 75% and 25% quantiles of the distribution of RMSE or MAPE. The summary

statistics are computed over all stock-day pairs in our sample between January 2002 and December 2012.

The forecast based on the averages over the last 22 days, which is our benchmark model, performs relatively

well for such a simple model. To be more precise, it has a median MAPE of 33.33% for MCIB and 32.74% for

MCIA suggesting that it explains 70% of the variation in intraday transaction costs. As mentioned above, this

relatively good performance of a simple model suggests the seasonal component plays an important role in the

intraday time variation of transaction costs.

More importantly, the proposed adjustment to this simple benchmark to capture daily time variation in

intraday seasonality performs better than all other models considered. Specifically, the RMSE and MAPE of

the model not only have the lowest median but are also much less dispersed as measured by their standard

deviations. The MAPE of this model has a median of 29.22% showing that more than 70% of the absolute
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variation in intraday transaction costs is captured by this model.

The AR(1) model is a close second best with RMSE and MAPE close to the best model, i.e the Adj. 22-day

Avg. It has a median MAPE of 29.62% compared to a MAPE of 29.22% for the Adj. 22-day Avg. However,

its RMSE and MAPE have higher standard deviations, suggesting that its performance exhibits much more

variation across stocks, five-minute intervals and trading days. On the other hand, the SAR(1) model, which

models the seasonal component separately, performs worse than the AR(1) model itself. The difference in their

performances is not negligible. For example, the SAR(1) model has a median MAPE of around 45% compared

to 30% for the AR(1) model.

Increasing the number of lags in the AR model makes the performance worse for the simple AR models.

To be more precise, AR(78) performs much worse than AR(1). This is mostly due to the fact that forecasts

from the AR(78) model depend closely on the transaction costs from the day before and there is too much

variation in the daily transaction costs. On the other hand, the static forecasts from the AR(1) model converge

to its mean relatively quickly and behave like the forecasts from the 22-day Avg. The SAR(78) model performs

relatively better than the AR(78) model.

Finally, the two advanced machine learning models, LSTM and GRU, perform relatively poorly. When

predicting MCIA, the median RMSE of these two models are higher than all other models considered. Their

performance improves when we consider predicting MCIB . For example, their median MAPEs are respectively

33.82% and 35.92% which are better than SAR(1), AR(78) and SAR(78) and not much worse than other

competing models. These results suggest that advanced machine learning models can be useful in forecasting

the bid side transaction costs. That said, the advanced machine learning models exhibit much larger standard

deviation when predicting both MCIA and MCIB suggesting that they are less consistent in terms of their

performances compared to simple models such as averages or AR(1) model. The poor performance of these

more advanced models is due to the large number of parameters to be estimated and our choice of using the

same number of trading days (i.e., 22 days) as other models to train these machine learning models.

4.2 Results for Stocks with Different Market Capitalizations

Our conclusions of the performances of different models so far are based on averages over all stocks and trading

days in our sample. Transaction costs exhibit significant variation not only over time (see Figure 2), but also over

stocks. In this subsection, we analyze the performance of different models in forecasting intraday transaction

costs when we distinguish between stocks with different market capitalizations.

As it is well known, market capitalization is closely related to the liquidity of a stock and the transaction costs

faced by a trader trading this stock. Large cap stocks tend to be more liquid and thus cheaper to trade while

small-cap stocks are less liquid and more expensive to trade. To this end, we group the stocks in our sample into

five categories based on their market capitalizations. To be more precise, we compute the market capitalization

of each stock in our sample for a given day d − 1. We sort stocks based on their market capitalizations and

group them into five quintiles from stocks with smallest 20% market capitalizations to the largest 20%. We then

compute the distribution of intraday transaction costs over all trading days and stocks in that group. Figure 6

presents the distribution of MCIA and MCIB for different market capitalization, respectively. The results are

in line with the findings of the previous literature on the liquidity of stocks with different market capitalizations.

Reducing Transaction Costs using Intraday Forecasts of Limit Order Book Slopes

CIRRELT-2021-36 19



Specifically, both MCIA and MCIB have the lowest mean for largest stocks and decrease monotonically with

decreasing market capitalization. Furthermore, the distribution of MCIA and MCIB have the lowest dispersion

for largest stocks while their dispersion increases as we consider stocks with smaller market capitalizations.

Figure 6: Distribution of MCIA and MCIB for Stocks with Different Market Capitalizations

Panel (a)

Panel (b)

Note: This figure shows the distribution of MCIA in panel (a) and MCIB in panel (b) for different size quintiles. We

group the stocks in our sample into five categories based on their market capitalization at day d− 1. Quintile 1 includes

the smallest stocks, quintile 5 the largest. The x-axis shows the values of MCI and y-axis shows the corresponding

density.

Overall, these findings suggest that the distributions of MCIA and MCIB change significantly with market

capitalizations. Hence, different forecasting models might have different performances for stocks with different

market capitalizations. To investigate the impact of market capitalization on model performance, we compute
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the summary statistics for different performance measures across quintiles of market size. Table 5 summarizes

these results for both performance measures. The overall tendency of predictive performance among the models

is similar regardless of the market capitalization category considered and similar to our main sets of results

in Table 4. To be more precise, we find that the adjusted 22-day average is the best performing model for

both MCIA and MCIB and for most market capitalization quintiles. The only exception to this is when we

predict MCIA for stocks with largest market capitalization, where AR(1) slightly outperforms the adjusted

22-day average based on median MAPE. AR(1) is also very close second best for all other size quintiles and for

both MCIA and MCIB . The benchmark model, namely the simple 22-day average, also performs relatively

well, although always beaten by both the adjusted 22-day average and AR(1) models. All other more advanced

time series or machine learning models perform much worse than the two best performing models. This in

turn suggests that these models do not provide much value in terms of statistical power for forecasting intraday

transaction costs, even when we focus on stocks with different capitalizations.

The results in Table 5 also show that the median MAPEs for largest stocks are almost always lower than

those for the small stocks regardless of the forecasting model. For example, the median MAPE for the 22-day

Avg. model decreases monotonically with market capitalization. For other models, the median MAPE exhibits

more like a smirk shape, where it is high for small stocks, low for mid cap stocks and then slightly increases for

large stocks. These results, in turn, suggest that it is easier to forecast transaction costs for mid cap and large

cap stocks than for small cap stocks.
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Table 5: MAPE of Different Models in forecasting MCIA and MCIB for Stocks with Different Market Capi-
talizations

Panel (a)

Model Small Cap Quintile 2 Quintile 3 Quintile 4 Large Cap

22-day Avg. 36.84 33.93 33.58 31.32 31.67

Adj. 22-day Avg. 31.09 28.60 28.61 27.24 28.20

AR(1) 32.36 29.65 29.43 27.86 29.01

SAR(1) 45.47 44.37 47.02 47.69 49.93

AR(78) 43.61 39.41 39.33 37.22 38.64

SAR(78) 36.81 36.02 37.49 37.65 39.97

LSTM 43.77 40.8 41.69 38.88 39.63

GRU 45.43 43.27 43.52 42.06 42.48

Panel (b)

Model Small Cap Quintile 2 Quintile 3 Quintile 4 Large Cap

22-day Avg. 38.24 34.62 33.76 31.48 32.56

Adj. 22-day Avg. 31.62 29.33 29.04 27.80 29.56

AR(1) 32.68 29.88 29.45 28.10 29.79

SAR(1) 44.95 43.23 44.37 44.04 46.64

AR(78) 45.25 40.99 40.23 38.25 40.44

SAR(78) 36.97 35.68 36.29 36.33 39.23

LSTM 45.11 41.76 40.65 38.32 40.69

GRU 46.92 44.31 43.07 41.62 45.08

Note: This table presents the median MAPE for different models in forecasting MCIA in panel (a) and MCIB in

panel (b). Small Cap is the stocks with lowest 20% market capitalizations on the day the forecasts are obtained. Other

quintiles are defined similarly.

5 Best Order Execution

Having shown that we can predict intraday transaction costs especially well when accounting for its seasonality,

we now turn our attention to the economic value of these predictions for traders of large positions. We have

in mind a trader who needs to trade a significant dollar amount of a given stock in a given trading day. This

problem is faced by traders on a daily basis to fulfill the buy or sell requests of their investors by the end of the

trading day. Predicting intraday transaction costs can have value to traders because it enables them to reduce

transaction costs by trading more at times when trading is less expensive.

In this paper, we break down the trading day into five-minute intervals. We assume that the trader’s

performance is measured based only on how well she minimizes her expected total transaction costs and not

based on any other objective such as minimizing her tracking error. Thus, the trader needs to minimize her
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expected total transaction costs by choosing the amount to trade every five minutes so that she trades a total

dollar amount of A by the end of the trading day. This problem can be expressed as follows:

min
D1,...,D78

E0[
78∑
t=1

MCId,tDt
2] =

78∑
t=1

E0[MCId,t]Dt
2 (8)

s.t.
78∑
t=1

Dt = A (9)

Dt ≥ 0, (10)

where E0[·] denotes the expectations at time 0, i.e. the beginning of the trading day before observing any

transaction costs of day d. A trader who needs to sell would have to use intraday buy side transaction costs,

i.e. MCIB , in the above optimization problem while a trader who needs to buy would have to use intraday ask

side transaction costs, i.e. MCIA.

By replacing the expectation of transaction costs E0[MCId,t] with the forecasts from a given model, i.e.

M̂CId,t, we show in Appendix A that the optimal trading amount for each five-minute interval t is given as

follows:

D∗t = A× 1/M̂CId,t∑78
t=1 1/M̂CId,t

. (11)

The intuitive way to think about this solution is as follows: The trader would trade an amount during the

five-minute interval with the lowest transaction cost until the marginal cost of trading an additional dollar in

that five-minute interval is equal to the marginal cost of trading an additional dollar in the five-minute interval

with second-lowest transaction costs. Proceeding in this fashion, it is easy to see that the trader will allocate

the amount to be traded to each five-minute interval such that the marginal costs of trading an additional dollar

in each five-minute interval is equal. This gives the solution in Equation (11), where the optimal amount to

trade is, not surprisingly, inversely proportional to the transaction costs.

Given a set of forecasts for intraday transaction costs, the trader chooses a set of dollar amounts to trade every

five minutes throughout the trading day based on the Equation (11). We then compute the total transaction

costs faced by the trader based on her optimal allocation decisions as follows:

Cost =
78∑
t=1

MCId,tD
∗
t
2, (12)

where MCId,t is, as before, the realized (observed) transaction cost for the tth five minute interval for t =

1, 2, . . . , 78 in trading day d. Note that trading costs increase quadratically with the amount traded. For

instance, trading $100M instead of $10M will increase transaction costs 100 folds.

In the following, we compare the economic value, i.e., the reduction in trading costs, of a forecasting model

based on this out-of-sample realized transaction cost. We therefore argue that the forecasting model which

delivers the minimum total transaction cost is the most appropriate model to use. In addition to the Avg.

22-day forecast, we consider another benchmark model for this trading exercise. Specifically, we assume that

the trader does not have information about the intraday transaction cost and allocates the same amount to

trade in each five-minute interval, i.e. Dt = A/78 for s = 1, 2, . . . , 78. This is a rather simple benchmark,

but still a realistic one since some traders might not have the time or tools to perform an analysis of intraday
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transaction costs for each stock they trade. We refer to this approach as the naive approach (Naive App.). We

also compute the transaction costs assuming that the trader has perfect information about the upcoming day’s

transaction costs ex-ante, which we refer to as Perfect Knowledge Case (Perfect Know.). While this case is

obviously unrealistic, it provides a lower bound on the possible level of total trading cost.

We define the total amount to be traded within a day in two ways. First, we simply use a fixed amount of

100 M$ for all stock-days. This allows us to analyze how each model performs when the same amount is traded

for each stock-day pair. Of course, in relative terms, 100 M$ represents a large trading volume for a small stock

with low liquidity but a small trading volume for a large stock with high liquidity.

To overcome this issue, we also use an amount that accounts for variations in trading volume across stock-

days. We observe that across all stock-days in our sample, the median ratio of trading volume to market

capitalization equals 0.639%. In other words, 0.639% of a stocks market capitalization is traded on a typical

day. We compute the second amount to be traded on a given stock-day as 0.639% multiplied by the market

capitalization of that stock at the end of the previous day.

Table 6 presents the summary statistics for the total trading costs in million dollars based on different

forecasting models for a trader who needs to buy (i.e. facing the ask side transaction costs MCIA) in panel (a)

and a trader who needs to sell (i.e. facing the ask side transaction costs MCIB). The numbers in the columns

titled “Fixed Amount” can also be interpreted as percentage transaction costs because they represent the total

transaction costs in million dollars for $100M traded. For instance, a trading cost of $1.24M represents 1.24%

of $100M.
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Table 6: Summary Statistics for Different Order Placement Strategies under Alternative Scenarios

Panel (a)

Fixed Amount Proportional Amount

Median IQR Median IQR

Perfect Know. 1.24 3.91 5.64 17.02

Näıve App. 1.60 5.20 7.12 23.43

22-day Avg. 1.38 4.56 6.26 19.56

Adj. 22-day Avg. 1.77 5.35 6.52 21.39

AR(1) 1.44 5.15 6.71 22.72

SAR(1) 1.81 6.33 8.17 28.67

AR(78) 2.13 11.78 9.86 58.09

SAR(78) 1.60 6.44 7.60 29.53

LSTM 1.90 5.84 8.81 27.56

GRU 1.93 6.04 8.99 28.42

Panel (b)

Fixed Amount Proportional Amount

Median IQR Median IQR

Perfect Know. 1.41 4.79 6.37 17.72

Näıve App. 1.76 5.99 7.93 23.67

22-day Avg. 1.59 5.33 7.18 20.92

Adj. 22-day Avg. 1.64 5.46 7.41 21.94

AR(1) 1.68 5.52 7.76 24.33

SAR(1) 2.00 6.66 9.07 27.85

AR(78) 2.68 7.42 71.10 67.06

SAR(78) 1.88 6.08 31.90 28.62

LSTM 1.74 5.86 7.97 24.24

GRU 1.80 6.09 8.21 25.47

Note: This table presents summary statistics in million dollars (M $) for order placement strategies based on different

forecasting models for buying (i.e. facing the transaction costs on the ask side MCIA) in panel (a) and selling (i.e.

facing the transaction costs on the bid side MCIB). Numbers under “Fixed Amount” represent total transaction costs

for trading a fixed amount of 100 M$ worth of a stock. These numbers can e interpreted as percentage transaction

costs because they represent total transaction costs in million dollars for 100 M$traded. Numbers under “Proportional

Amount” represent total transaction costs for trading an amount proportional to the market capitalization of a stock.

The proportional amount to be traded is computed on a given stock-day as 0.639% multiplied by the market capitalization

of that stock at the end of the previous day. IQR is the interquartile range computed as the difference between the 75%

and 25% quantiles of the distribution.
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We start our discussion with results in panel (a). The median lower bound for the costs of buying a fixed

or a proportional amount based on the Perfect Knowledge Case are $1.24M and $5.64M, respectively. These

numbers are a theoretical lower boundary and total buying costs based on other models will be at least as

high by definition. We will use the theoretical minimum as a reference point and discuss how much higher the

trading costs of each model are with respect to this unattainable benchmark.

The naive approach of buying the same amount every five minutes results in total buying costs with a

median of $1.60M and an interquantile range (IQR) of $5.2 M. These numbers are respectively 29% and 33%

higher than the unattainable perfect knowledge case. These results are important since it provides a benchmark

against which to measure the performance of other models. In other words, if we ignore intraday seasonality

and potential predictability of transaction costs, one can do only about 30% worse than the perfect knowledge

case. Among all the other models considered, the simple model of 22-day Avg. yields the best forecasts in

terms of median total buying costs for both fixed and proportional amounts. Specifically, the median total cost

of buying a fixed amount of $100M worth a stock and an amount proportional to the market capitalization

of a stock based on the forecast from the model of 22-day Avg. are respectively $1.38M and $6.26M. These

numbers are only about 11% higher than the corresponding median buying costs based on the unattainable

perfect knowledge case. More importantly, they represent a significant improvement compared to the naive

approach. Furthermore, 22-day Avg. also has the lowest dispersion in terms of total buying costs for both fixed

and proportional amounts. This is turn signifies that this model provides not only lower median total trading

costs but also does so more consistently than any other forecasting model.

AR(1) is the second best-performing model based on median total buying cost of $1.44M (16% higher than

the Perfect Knowledge Case) for a fixed amount $6.71M (19% higher than the Perfect Knowledge Case) for a

proportional amount. Both of these numbers are lower than the corresponding total buying costs based on the

naive approach. Furthermore, it also delivers lower dispersion in total trading costs than the naive approach.

More importantly, it is the only other model that performs better than the naive approach for both fixed and

proportional amounts.

All other models result in median total buying costs that are higher than the naive approach for either the

fixed or proportional amount or both. Among these other models, one model’s performance requires further

attention. Specifically, the adjusted 22-day average, which is among the best-performing models in terms of

predictive accuracy, here performs worse than not only the simple 22-day average, but also the naive approach

when we consider trading a fixed amount. It performs better than the naive approach only when we consider

buying an amount proportional to a stock’s market capitalization.

This relatively poor economic performance of a statistically well-performing model is a well-known issue in

the forecasting literature and is due to the differences in loss functions. In the statistical exercise, we evaluate

performance based on the RMSE loss function, which is an increasing function of the forecast error made

forecasting MCI. In the trading exercise considered in this section, we evaluate performance based on the

total buying cost which is an increasing function of the forecast error made in forecasting the reciprocal MCI,

i.e. 1/MCI. In other words, a model may have a high predictive accuracy on average. However, if the time

intervals with low transaction costs are not correctly identified (or if time intervals with high transaction costs

are falsely predicted to have low transaction costs), such model may not perform well in our trading exercise.
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The results for total selling costs presented in panel (b) are very similar to the results for buying presented

in panel (a), with only few differences. The total selling costs are slightly higher than the corresponding buying

costs. This is due to the fact that the MCIB faced by a trader who wants to sell is, on average, higher than

MCIA faced by a trader who wants to buy in our sample. The 22-day Avg. model is still the model that

delivers the lowest median trading costs for both fixed and proportional amounts. In contrast to the results in

panel (a), the Adj. 22-day Avg. model performs better than AR(1) when we consider selling instead of buying.

That said, AR(1) still performs better than the naive approach. Among all the other models, there is no model

that performs better than the naive approach for both fixed and proportional amounts.1

Table 7 provides insights about how the economic value of forecasting varies in the cross-section. It shows

the trading costs for the various forecasting approaches by size quintile. Panel (a) shows ask side costs (the cost

of buying) in million dollars. The columns on the left labelled “Fixed Amount” show the cost of trading $100M.

Not surprisingly, transaction costs decrease drastically in size. In the benchmark case of “perfect knowledge”

buying this amount implies extremely high median trading costs of 23.3% for the smallest stocks, 2.57% for

mid-sized firms and 0.33% for the largest firms. The benefits of forecasting intraday trading costs accurately

are accordingly largest for the smallest firms. Trading costs of the worst performing model (AR(78)) of 38.71%

are 12.91% or $12.91M higher than those of the forecasting model yielding the lowest cost of buying (22-day

Avg.), which equal 25.90%. For the largest firms, that difference amounts to a mere 0.11%, or $110,000.

Panel (b) shows these results for the bid side of the limit order book. While trading costs tend to be lower

on the bid side than on the ask side, all of the cross-sectional patterns described previously can also be observed

on the bid side.

1The LSTM model provides a median selling cost lower than the naive approach only when we consider selling a fixed amount
of $100M worth of a stock.
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Table 7: Summary Statistics for Different Order Placement Strategies under Alternative Scenarios for Stocks
with Different Market Capitalizations

Panel (a)

Fixed Amount Proportional Amount

Small Cap Quintile 2 Quintile 3 Quintile 4 Large Cap Small Cap Quintile 2 Quintile 3 Quintile 4 Large Cap

Perfect Know. 23.30 6.45 2.57 1.14 0.33 1.25 2.35 4.02 7.97 45.35

Näıve App. 27.60 7.91 3.23 1.45 0.42 1.48 2.87 5.03 10.04 59.95

22-day Avg. 25.90 7.18 2.84 1.25 0.36 1.38 2.60 4.44 8.69 47.74

Adj. 22-day Avg. 26.92 7.40 2.91 1.27 0.37 1.43 2.67 4.55 8.85 51.81

AR(1) 27.92 8.13 3.22 1.37 0.38 1.49 2.82 4.77 8.96 49.58

SAR(1) 31.75 9.68 3.95 1.72 0.47 1.68 3.33 5.87 11.11 64.84

AR(78) 38.71 10.66 4.10 1.70 0.47 1.99 3.60 6.09 10.96 69.98

SAR(78) 29.83 8.91 3.57 1.53 0.42 1.57 3.06 5.31 9.98 57.52

LSTM 28.15 7.89 3.12 1.35 0.40 1.52 2.83 4.88 9.35 56.75

GRU 28.65 8.00 3.17 1.37 0.40 1.55 2.88 4.93 9.49 57.47

Panel (b)

Fixed Amount Proportional Amount

Small Cap Quintile 2 Quintile 3 Quintile 4 Large Cap Small Cap Quintile 2 Quintile 3 Quintile 4 Large Cap

Perfect Know. 22.41 5.98 2.36 1.02 0.30 1.22 2.17 3.69 7.16 41.24

Näıve App. 26.37 7.18 2.87 1.26 0.38 1.42 2.60 4.49 8.74 52.71

22-day Avg. 24.88 6.68 2.61 1.12 0.34 1.34 2.41 4.09 7.85 46.42

Adj. 22-day Avg. 25.84 6.88 2.68 1.15 0.34 1.41 2.48 4.20 8.01 47.86

AR(1) 27.34 7.14 2.74 1.17 0.35 1.47 2.57 4.30 8.11 48.56

SAR(1) 30.37 8.29 3.27 1.42 0.42 1.62 2.98 5.13 9.78 59.85

AR(78) 41.24 9.83 3.63 1.49 0.45 2.07 3.46 5.68 10.26 73.63

SAR(78) 28.82 7.67 2.99 1.28 0.38 1.53 2.75 4.68 8.88 54.89

LSTM 27.16 7.23 2.83 1.23 0.37 1.48 2.60 4.41 8.52 52.35

GRU 27.82 7.43 2.91 1.25 0.38 1.51 2.66 4.54 8.71 54.07

Note: This table presents median total buying costs (i.e. facing MCIA as transaction costs) in panel (a) and median

total selling costs (i.e. facing MCIB as transaction costs) in panel (b) in million dollars (M $) for each size quintile. The

columns under the heading ”Fixed Columns” present the results for trading a fixed amount of 100 M$. The columns

under the heading ”Proportional Amount” present the results for trading an amount proportional to the total turnover

of a given stock. Small Cap is the stocks with lowest 20% market capitalizations on the day the forecasts are obtained.

Other quintiles are defined similarly.

6 Conclusion

How to trade a large amount of a given stock over a given period of time is an important issue for traders

in today’s financial markets. The costs associated with executing large orders over a certain period of time

can be substantial, especially for stocks and/or periods with limited supply of liquidity. This so-called best

execution problem has attracted the attention of academics and practitioners alike as it has become clear that

the standard approach of splitting large orders into equal-sized trades is often suboptimal. Most existing papers

analyze the best execution problem theoretically. This theoretical literature needs to make assumptions about

liquidity supply and its dynamics.
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In this paper, we approach the best execution problem from a forecasting perspective. Specifically, we obtain

the optimal amount to trade every five minutes during a trading day by minimizing the expected total transaction

costs at the beginning of this day based on forecasts of transaction costs. To quantify the economic importance

of this approach, we measure intraday transaction costs based on ultra high frequency limit order book data

for NYSE stocks between 2002 and 2012. We document that intraday transaction costs exhibit significant

seasonalities not only within a given day but also over the quarterly earnings cycle. We find that a simple

moving average model and its adjusted version can forecast intraday transaction costs better than advanced

autoregressive and machine learning models. More importantly, these simple models deliver significantly lower

total transaction costs than advanced autoregressive and machine learning models as well as the naive approach

of splitting the total order into equal-sized orders. More precisely, the median total cost of buying (selling)

$100M of a stock based on our forecast from the moving average model is $1.38M ($1.59M). These numbers are

only 11% and 13% higher than the median buying and selling costs from the unattainable perfect knowledge

case where the trader has perfect foresight of intraday transaction costs. They also represent a significant

improvement over the naive approach which results in total buying and selling costs that are respectively 29%

and 25% percent higher than the unattainable perfect knowledge case. Finally, we report that the cost of

trading a fixed dollar amount decrease dramatically in market capitalization and document how the benefits of

forecasting accurately vary with size.

In our approach, we make some simplifying assumptions. For example, we assume that the trader obtains

her forecasts at the beginning of the trading day and do not update her forecasts as she observes transaction

costs during the day. She can, of course, obtain better forecasts if she considers updating her forecasts and

parameters as she observes data throughout the trading day. Furthermore, we restrict our analysis to the

performance of the models that can be obtained exclusively using information on transaction costs and the

corresponding time stamps. Some of the approaches may potentially benefit from accounting for exogenous

variables (such as trading price and volume). These assumptions imply that our results provide a lower bound

for the economic benefits of our approach. One can, of course, relax these assumptions to obtain better forecasts

and decrease transaction costs further. We leave this to future research.
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A Proof of the Optimal Trading Quantities

One replace E0[MCId,t] in the optimization problem described by Equations 8-10 with its corresponding static

forecast M̂CId,t from a given model. The optimization problem in Equations 8-10 can thus be rewritten as

follows:

min
D1,...,D78

78∑
t=1

M̂CId,tDt
2

s.t.
78∑
t=1

Dt = A

Dt ≥ 0

The Lagrangian of this optimization problem is given as follows:

L(D, λ) =
78∑
t=1

M̂CId,tDt
2 − λ(

78∑
t=1

Dt −A)

where D = [D1, D2, . . . , D78]T is the vector of quantities to be traded.

Taking the derivative of the Lagrangian with respect to Dt and setting it equal to zero yields:

D∗t =
λ

2M̂CId,t
(20)

for t = 1, 2, . . . , 78. Plugging in the optimal quantities D∗t in the equality constraint in Equation 9 yields:

λ =
A∑78

t=1 1/2M̂CId,t

Finally, plugging in the solution for λ in Equation 20 yields the optimal quantity in Equation 11.
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B Implementation details for LSTM and GRU models

The pseudo-code below describes the training and prediction process for the Long-Short-Term-Memory and

Gated Recurrent Unit models.

Algorithm 1: Rolling Multivariate LSTM and GRU

Input: MCIA and MCIB for all stocks from 2002 to 2012
1 Scale the dataset between 0 and 1
2 Reshape dataset as a matrix R78×N

3 for S in Stocks do
4 for i in [H:N] do
5 Train set ← Dataset[][i:H+i-1]
6 for j in [0:H-1] do
7 input(Train set)← Train set[][j-H:j]
8 output(Train set)← Train set[][j+1]
9 end

10 Validation set← Dataset[][H+i]
11 Test set← Dataset[][H+i+1]
12 Perform the Random search on the Validation set using hyperparameters from table 5
13 Define BestModel as the Best Model found on the Random search
14 Compute the prediction based on Validation set using BestModel
15 for p in [0:78] do
16 if Predictions[p]< min Train set[p][] then
17 Predictions[p]← min Train set[p][]
18 end
19 end
20 Rescale the predictions
21 Compute the RMSE and MAPE
22 end
23 end

Output: Predictions, RMSE and MAPE

Figure 7: Nested Cross-validation

Test setTrain set Validation set

Figure 8: Sliding window Cross-validation

Test setTrain set Validation set
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