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Abstract. In this article we propose a two-step solution algorithm to solve a vehicle routing 
problem for the distribution of multiple highly perishable commodities. Inspired by an 
application in healthcare services, the biomedical sample transportation problem, numerous 
commodities with short lifespan presume multiple transportation requests at the same 
facility in a day and restrict the maximum time to reach destination. These two 
characteristics create an interdependency between the routing and the pickup decisions in 
time that is highly complex. To address these timing issues, we model this problem as a 
service network-design problem over a time-expanded network. Our solution method 
aggregates the network at two levels. First, the commodities are aggregated and artificially 
consolidated, reducing the symmetry arising when multiple transportation requests are 
solicited within a short period of time. Second, the space-time nodes in the network are 
constructed dynamically, thus reducing the size of the mathematical model to be solved at 
each iteration. Our algorithm proves to be efficient to solve a set of real-life instances from 
the Quebec laboratory network under the management of the Ministère de la Santé et des 
Services sociaux (Ministry of Health and Social Services). 
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1 Introduction

In logistics operations, transportation is a main component of the total cost of products and services and it plays
a significant role in the efficiency of the supply chain. The planing and optimization of distribution systems have
been subject of study for over 60 years including many features relevant in practice to account for the multiple
challenges faced by various industries (see Lahyani et al. (2015) and Coelho et al. (2016) for recent reviews).
Either limits on the trucks’ capacities, loading constraints, product compatibility, time restrictions, time windows,
service or frequency requirements, are all features that entail different challenges in the mathematical modeling
and decision making to optimize operations on real settings (Vidal et al., 2020). Moreover, transportation models
are only useful if they admit efficient optimization algorithms to cope with the complexity of large-size problems
arising in practice. In the specific case of products of high perishability, an important challenge is time limits
(Liang et al., 2020). Planning a centralized distribution of the different products while respecting their respective
(individual) life span becomes a critical aspect for the efficiency of the entire network.

We study an optimization problem motivated by the challenge of transporting biomedical samples –highly
perishable products according to the classification provided by Amorim et al. (2013)– in a healthcare network.
The biomedical samples transportation problem (BSTP) introduced by Anaya-Arenas et al. (2016) and extended
later in Anaya-Arenas et al. (2021) deals with the problem of collecting multiple biomedical samples at health
care centers (i.e. local clinics, retirement homes or long-term care centers) of short life span in a centralized
manner, and to deliver them to a regional laboratory for analysis. The rapid physical deterioration of the product
(samples) is controlled by a tight and fixed life span set by authorities and managers. There is hence a short
life span for each sample, between its collection from the patient and its analysis at the laboratory, that needs
to be respected. After the life span is passed the product is considered as lost. However, there is a constant
customer value inside the life span, giving managers a small flexibility to batch samples and plan coordinated
pickups allowing economies of scale. The entire planning process is done for a short time horizon (one day),
with multiple transportation requests from each collection center, which links the samples’ life span to the routes’
length. Besides biomedical samples, some food or prepared meals can enter in this category of products and we
believe our algorithm can be applied to other related transportation problems.

This article’s contribution is twofold. First, it proposes a novel mathematical formulation for the BSTP that
includes, in a detailed matter, many of the relevant features encountered in practice. Second, it derives an efficient
algorithm to handle real-life instances from a healthcare service network. Although many of the studies in the
literature of perishable products focus on the management of production and inventory (e.g. Alvarez et al., 2020),
perishable products have an important influence in the distribution decisions. It has been shown that including
quality, freshness or life span of the products in the routing decisions explicitly, leads to transportation plans
that differ substantially from those that are purely cost-driven (Amorim et al. (2013); Amorim & Almada-Lobo
(2014); Anaya-Arenas et al. (2021)). The need of imposing restrictions on travel or service times, makes the
delivery problem harder and entails an increase in the transportation costs. This may be necessary to avoid the
cost of lost inventory or bad service quality .

The remainder of this article is organized as follows. In Section 2 we describe the BSTP considered in our
study, and provide details of all the relevant features required for a proper modeling of the system. In Section 3
we present a detailed literature review focused on distribution problems that include one or more of the relevant
features of the BSTP. In Section 4 we present a mathematical model for the problem. In Section 5 we introduce
a dynamic discretization discovery algorithm for the BSTP. In Section 6 we present a detailed computational
campaign aiming at assessing: 1) the quality of the new formulation; 2) the computational capabilities and limits
of the proposed algorithm; and 3) the problem sensitivity to some important attributes, namely to the life span
of products, and to the number and frequency at which commodities are generated. Finally, Section 7 concludes
this manuscript and provides several avenues for future research.

2 Problem statement

We now present more details of the BSTP to highlight the challenges it raises in logistics and distribution planing.
Inspired by a case study of the laboratory network in the Province of Quebec (Canada), we analyze a regional
health care cluster, where the Ministère de la Santé et des Services sociaux (Ministry of Health and Social
Services - MSSS) appoints one regional hospital as central laboratory (Lab) to perform the analysis of all the
samples collected in the assigned Specimen Collection Centers (SCCs). Each SCC has a collection period, during
which patients are serviced and the samples are collected. Although the samples are generated in an almost
continuous way during the collection period, and each sample has a fixed life span, a SCC can generate a given
number of transportation requests discretely. A transportation request is a group of samples that are ready to
be transported to the Lab. According to the desired level of service, a SCC generates one or more transportation
requests during its workday. The level of service is defined in agreement between the Ministry and the SCC, in
proportion to its size, the number and the type of samples collected. A transportation request, made by a SCC,
is associated with a specific moment in time where it is generated and, due to the life span of the samples, is also
associated with a due time to indicate the latest time at which it can arrive to the Lab without compromising its
integrity. The greater the level of service and the detail of the samples’ information are, the larger is the number
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of transportation requests stated by the SCC. Fixing the time limit at the arrival at the Lab is a simplification
made by the Ministry, where the operation of pre-analysis inside the Lab is ignored. Finally, note that the samples
are grouped and transported in small coolers and a standard vehicle has the capacity for a very large number of
them, therefore, no vehicle’s capacity constraints are required.

This vehicle routing problem (VRP) aims at deciding which vehicle handles which transportation request and
in which order, so that no sample perishes, while minimizing the transportation cost. In this article, we consider
a pure routing cost, incurred every time that a vehicle decides to travel from one physical location to a different
one. The action of waiting at any SCC may be convenient if that allows for a vehicle to collect more samples,
and hence it is permitted in our problem definition. This waiting is not penalized under the cost structure, but is
only considered to assure that the time restrictions are respected. The transportation of perishable commodities
with a short life span, like biomedical samples, has three characteristics that make this transportation problem
quite difficult to model and to solve. First, as the samples’ life span is usually shorter than a SCC’s collection
period, it is necessary to visit each SCC more than once in a day. Second, the samples’ life span are with respect
to the time of generation, which affects the maximum ride-time depending on the time of pickup. Hence, the
pickup decision restricts both the time to go back to the Lab (route’s length) and the maximum time at which
a next transportation request needs to be done. This creates a strong interdependency between the routing and
the pickup timing decisions, and needs to be optimized. Third, the length of a vehicle route is restricted by the
most urgent sample (he one that perishes first) in the vehicle and is hence solution dependent.

Let us present this interdependency in the timing decisions via an example. We present in Figure 1 the
timeline of several transportation requests for a given SCC v that starts its collection period at 6:00 and ends at
14:00. During this time frame, we assume that the SCC v take samples from many patients in a continuous matter
and states a transportation request every 15 minutes (the approximated time of collecting one single biomedical
sample). SCC v makes a first transportation request at 6:15. We consider here the same life span for every
sample, so each transportation request has a maximum of five hours to be picked up from the SCC and to arrive
to the Lab. As all the samples have the same life span, the most urgent transportation request is the first request
generated after the opening of the SCC or right after a pickup has been performed. In the upper part of Figure 1,
part (a), there is a feasible solution for the SCC v with three pickpus. As the most urgent request is generated
at 6:15, these samples need to be picked up and taken to the lab before 11:15 (life span of 5 hours). As there is
no capacity limits in the vehicles, when a pickup is performed at SCC v, all the requests accumulated up to that
point are taken. Let us say that in solution (a), route R1 starts by performing a pickup p1 at v at 8:20, then
R1 can continue to visit other SCCs, but has a maximal route length of 2:55 hours. After this pickup, the next
request is generated at 8:30 and it needs to arrive to the lab by 13:30. Then, route R2 performs a second pickup
p2 at 11:40 and has a maximum length of 1:50 hours (arriving to the lab by 13:30). Therefore, a third pickup has
to be performed to get the requests from 11:45 to the closing of the center at 14:00. This pickup p3 is performed
by R3 at 14:15 and has a maximum of 2:30 hours to arrive at the lab. The lower part of Figure 1, part (b),
presents another solution where modifying the pickup decisions allows managers to have only two pickups at SCC
v but with more restricted routes. In this case the pickup p1 is performed at 10:05, grouping more transportation
requests and forcing R1 to arrive at the lab in 1:10 hours at the latest. Then, the most urgent request is generated
at 10:15 and will have to arrive by 15:15 to the lab. A second pickup p2 performed after closing (at 14:15) allow
R2 to take all the request generated between 10:15 and 14:00 and still have 1:00 to visit other centers and respect
samples life span.

Figure 1 illustrates how the highly perishable aspect of the transportation requests and the decision on the
moment at which to perform a pickup influence directly the number of total pickups and the time restrictions for
the route planning. This complexity is illustrated for a single SCC and the real-size instances on our case study
can have over 15 SCCs with these characteristics. Therefore, it is crucial for managers to select the right moment
to visit the SCCs (pickup decision) considering the transportation problem as a whole. Considering the number
of pickups to perform as a decision of the model is an interesting feature that is rarely covered in the literature. It
certainly makes the problem more complex, but can also help managers make well informed and better decisions.

3 Literature review

From a vehicle routing perspective, the BSTP is related to several classes of routing problems. We will then
present in this section contributions that tackle at least one of our two key features: either the perishability of
commodities or the interdependency of visits. Finally, we will present contributions specifically in the health care
sector with two main applications: blood transportation or home health care planning.

There has been an important number of contributions dealing with the perishability of products in the last
decade. Initially focused on the inventory management aspect of the problem (see Janssen et al., 2016, for a
recent review), the contributions now extent to production and distribution planning. Amorim et al. (2013)
defined in their literature review an unified framework in the definition of perishability, and they were one of
the first to review contributions that embedded this complexity in a supply chain perspective. At that moment,
among the more of 30 contributions analyzing perishable goods in production and/or in distribution planning,
there were only two papers that considered explicitly the impact of perishability in the route planning. Moreover,
the perishability of the products is usually modeled via the imposition of time windows in a single commodity
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Figure 1: Feasible solution with three pickups (a) and two pickups (b).

setting. For instance, Hsu et al. (2007) and Osvald & Stirn (2008) solved routing problems heuristically, for a
product with decreasing customer value, achieving a significant reduction in the percentage of perished goods.
Later, Amorim et al. (2014) presented a contribution for a food company in Portugal modeling the problem as a
VRP with multiple and fixed time windows, and proposed an adaptive large neighbourhood search to tackle it.
Their context allows for split deliveries, so customers can be visited more than once in a day, but only in one of
the time windows. These are treated as two separate decisions with no linking between the pickup decisions. On
their side, Amorim & Almada-Lobo (2014) proposed a VRP with single time windows, but including freshness in
the objective function. A similar modeling is adopted by Rabbani et al. (2015) who formulate it as a nonlinear
optiization problem. Song & Ko (2016) considers a multi-commodity vehicle routing problem with perishable
products and a nonlinear objective, which they tackle by means of a heuristic. A recent contribution by Liang
et al. (2020) includes temperature and humidity attributes, for up to 30 groups of commodities. Although all
these contributions include explicitly the perishable aspect of products in the route planning, the life span of
the products is longer than a single period and there is no interdependency between the routing and the pickup
decisions at the customers. Moreover, the time of the visits is fixed in time windows with typically a single
commodity.

On the other hand, some researchers have tackled the perishable conditions of the products through an
integrated planning of inventory and routing (inventory-routing problem - IRP). In this case, one seeks to minimize
a combination of transportation and inventory costs, deciding on when and how much of each product deliver
to customers in (generally) a multiperiod setting (see for instance Le et al., 2013; Diabat et al., 2016; Alvarez et
al., 2020; Coelho & Laporte, 2014; Crama et al., 2018). The IRP is similar to our problem in the sense that the
BSTP also requires the management of the inventory at the SCC, but in an indirect way. In the IRP the planning
horizon is usually several days and customers can be visited more than once in the horizon, but only once every
period. Meanwhile, all the BSTP decisions are purely operational. In all the IRP contributions, the perishability
aspect of the problem influences the frequency of visits in the time horizon, but do not create interdependencies
in the detailed scheduled of the routes nor in their length.

The time interdependency of the BSTP is also related to the pickup and delivery problem with time windows
(PDPTW, see for instance Parragh et al., 2008; Berbeglia et al., 2007, 2010). In the PDPTW, precedence
constraints bind customer nodes in pairs (pickup, delivery) to be serviced by the same route, in a way that
the goods that are collected at the pickup node are then delivered to the delivery node, by typically respecting
an additional ride-time constraint. In the BSTP, all SCC can be seen as pickup nodes, while the Lab plays
the role of the delivery node. This type of distribution system is also known as many-to-one in the scientific
literature, in particular with respect to the classification of Berbeglia et al. (2007). The visit to a SCC sets up a
hard constraint on when the next visit to the same node must occur (i.e. strong time dependency as presented
by Dohn et al., 2011) and also imposes a maximum ride time constraint on the route that picks up samples
at a SCC, as they must be delivered to the Lab before they perish. Precedence constraints are also related to
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synchronization constraints. The word synchronization, in a broad sense, can have multiple meanings. One may
require vehicles to meet at certain points, or to be bind by a form of precedence constraint, or the synchronization
may make reference not to vehicles but to the products themselves. Drexl (2012) reviews the literature in vehicle
routing problems with synchronization constraints. In the recent years, there have been attempts at incorporating
synchronization features in urban freight transportation. In these problems, freight must typically be consolidated
at intermediate facilities. Synchronizing freight at those facilities may help reduce the handling operations, and
therefore make the whole operation more efficient (Grangier et al., 2016; Anderluh et al., 2021; Mirhedayatian et
al., 2021). The synchronization features, always entail complex timing considerations and make the algorithmic
of handling these problems far more complex than in the absence of synchronization (e.g. Hojabri et al., 2018;
Tilk et al., 2019).

In the specific context of optimizing health care services, the BSTP is related and relevant to different appli-
cations, mainly the blood transportation and the Home Health Care services (HCC). Route planning problems in
the presence of multiple attributes, synchronization and time dependencies are common in the context of Home
Health Care (HCC) operations. Here, nurses and other medical or support staff are scheduled and routed to
perform various services at patients’ homes (see Fikar & Hirsch, 2017, for a review in this topic). This application
generally considers the construction of routes with multiple time windows, skills of nurses and synchronization
of activities (like the PDPTW and VRP with time dependency). However, the tasks related to the HHC can
easily lead to a routing problem with high perishability and it is worth to investigate more on this topic. For
instance, Liu et al. (2013) presented a PDPTW but forcing a single visit per patient and, even if samples could
be collected at a patient’s home, the time limit was extended to last more than the shift length. Moreover, Fikar
& Hirsch (2015) and Mankowska et al. (2014) included resource synchronization and maximum shift times and
maximum ride times for the nurses, but no high perishability is included. Kergosien et al. (2014) is, to the best of
our knowledge, the only HHC problem that considers perishability to (implicitly) influence the routing decisions.
They proposed a travelling salesman problem for nurses and included drop off nodes in the routes to respect the
time limit of the samples. All these complex problems are solved with heuristics.

The reality of the short life span of the samples is usually included in several studies of blood samples trans-
portation. Recently, Osorio et al. (2015), Baş et al. (2016) and Pirabán et al. (2019) present comprehensive reviews
on blood supply chain management. The main echelons of the blood supply chain are: collection, production,
inventory and distribution. The biomedical sample transportation is an essential part of the collection and distri-
bution echelons. However, many contributions can consider the transportation of samples after a pre-treatement
is performed or after blood products are collected, which provides maximum transportation times of more than
a day (e.g. Zahiri et al., 2015; Hemmelmayr et al., 2009). There are a few contributions that include the life
span of samples in the objective function by either maximizing processed samples (e.g. Şahinyazan et al., 2015;
Yücel et al., 2013) or by minimizing perished samples (Elalouf et al., 2018). Closer to our problem, we can find
Anaya-Arenas et al. (2016), who introduced the BSTP, by setting several fixed and independent time windows
for each sample collection center and a ride time constraint. Later, Naji-Azimi et al. (2016) presented a variant
of the BSTP, seaking to desynchronize truck’s arrival to the Lab. However, those versions of the BSTP assumed
that samples’ deterioration begins when the samples leave the SCC, therefore, the available transportation time
is fixed and not dependent of the times at which pickups are scheduled.

To the best of our knowledge, only Doerner et al. (2008), Doerner & Hartl (2008) and Anaya-Arenas et al.
(2021) consider that the samples’ deterioration begins once it is collected from the patients and include explicitly
any perishability constraints. Therefore the available transportation time (or ride time) depends on the moment
in which the visits are performed linking pickup and routing decisions. Doerner et al. (2008); Doerner & Hartl
(2008) defined a blood collection problem as VRP with multiple and interdependent time windows. Assuming
a continues production and fixed deterioration times, the authors defined a minimum number of pickups, where
the time of a pickup at a given customer determines the maximum time available for the subsequent pickup at
the same customer. Anaya-Arenas et al. (2021) in addition to the interdependence between pickups defines the
collection centers’ opening hours. Even if their context is similar to ours, in their cases, the minimum number of
pickups of each SCC is previously defined. Contrarily, in our case, we seek to define the number of pickups for each
SCCs according to the desired level of service in a way that minimizes the transportation costs, by considering
each sample as an unique, distinguishable commodity. Therefore, we can conclude that none of the previous works
attempt to simultaneously (1) define the optimum number of pickups; (2) set the pickup and routing decisions
according to the high perishability of the samples while admitting its interdependency; and (3) do all this by
considering each sample as an unique commodity.

4 Mathematical formulation

This section formalizes the problem described in Section 2 as a mathematical program over a time-expanded
network. Each instance in the BSTP has m vehicles available to transport the biomedical samples between n
SCCs (indexed from 1 to n) and one Lab (indexed as node 0). We denote V = {v0, . . . , vn} the set of physical
nodes in the network. Sometimes we will refer to the Lab as the node l, which we assume corresponds to node
v0. Let τ(u, v) be the traveling distance from node u ∈ V to v ∈ V , with τ(u, u) = 0 for every u ∈ V . These
travel times include the time of loading and unloading at the tail node of the arc. We define a time-expanded
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network GE = (V E , AH ∪ AD) constructed as follows. Le us assume that the planning horizon is divided in θ
time periods, where T = {t0, t1, t2, · · · , tθ}, with t0 = 0. We define ∆t as the common length of the periods (i.e.
∆t = ti− ti−1). We define the set of expanded nodes as V E = V ×T , where each node (v, t) ∈ V E represents the
physical node v ∈ V at time t ∈ T . For a given node i = (v, t) ∈ V E , we define v(i), t(i) the physical and temporal
components associated with node i. The arc set AH contains arcs of the form (i, j) for all i ∈ V E , j ∈ V E , where
v(i) = v(j) and t(j) = t(i) + ∆t. That is, the horizontal arcs of the time-expanded network, i.e. arcs that only
represent waiting times at a given location. The arc set AD contains arcs of the form (i, j) for all i ∈ V E , j ∈ V E ,
where v(i) 6= v(j) and t(j)− t(i) = τ(v(i), v(j)). In other words, the arc set AD contains the diagonal arcs of the
expanded network. To expand the network, the travel times have to be rounded up to multiples of ∆t, so that any
feasible solution on the time-expanded network can be converted to a feasible solution on the flat network. Let
AE = AH ∪AD be the set of expanded arcs of the form (i, j) with i, j ∈ V E . Let K be the set of transportation
requests, where each k ∈ K is associated with an origin node ok ∈ V E where it is generated, and a destination
node dk ∈ V E with v(dk) = v0, t(dk) > t(ok) representing the moment at which it must have arrived to the lab
before it perished (i.e. the life span of the sample)

We model the BSTP using two types of decision variables, namely design variables y, and flow variables x.
The decision variable yij , represents the number of vehicles that travel from node i ∈ V E to node j ∈ V E . A
routing cost cij equal to τ(v(i), v(j)) is incurred each time that a vehicle travels using an arc (i, j) ∈ AD. The
flow variable xkij represents whether a transportation request k ∈ K travels from i ∈ V E to j ∈ V E . The following
additional conventions are used to present the model compactly. Let l0 ∈ V E represent the Lab (v(l0) = v0) at
time 0 (t(l0) = 0), and let lθ ∈ V E represent the Lab (v(lθ) = v0) at time t(lθ) = tθ. Let δ+(i) be the set of arcs
(j, i) ∈ AE that arrive to node i ∈ V E , and δ−(i) the set of arcs (i, j) ∈ AE that leave the node i ∈ V E . For
a set of arcs B ⊆ AE we denote y(B) =

∑
{yij : (i, j) ∈ B}, and for an additional commodity index k we let

xk(B) =
∑
{xkij : (i, j) ∈ B}. The following mathematical model provides an optimal solution for the BSTP:

Minimize
∑

(i,j)∈AD

cij · yij (1)

Subject to:

y(δ−(l0)) ≤ m (2)

y(δ+(i))− y(δ−(i)) = 0 ∀i ∈ V E\{l0, lθ} (3)

xk(δ−(ok)) = 1 ∀k ∈ K (4)

xk(δ+(dk)) = 1 ∀k ∈ K (5)

xk(δ+(i))− xk(δ−(i)) = 0 ∀k ∈ K, i ∈ V E\{ok, dk} (6)

xkij ≤ yij ∀(i, j) ∈ AD (7)

yij ∈ N ∀(i, j) ∈ AE (8)

0 ≤ xkij ≤ 1 ∀(i, j) ∈ AE ,∀k ∈ K (9)

The objective function (1) minimizes the total routing cost. Constraint (2) ensures that at most m vehicles
are used. Constraints (3) ensure that the vehicles’ flow conservation is satisfied at all nodes, so all vehicles that
leave l0 ultimately arrive to lθ. Constraints (4) state that the transportation request k becomes available at node
ok. Constraints (5) ensure that the transportation request k arrives at node dk, before it perishes. Constraints
(6) are the transportation requests’ flow conservation constraint, so the transportation request k does not stay in
a node different to dk. These constraints avoid that a transportation request stays in another place different to
the Lab at time dk. Constraints (7) ensure that a transportation request can only leave a physical node v ∈ V in
a vehicle. These link the design and the flow variables. Constraints (8) and (9) define the nature of the decision
variables. Variables xkij are not required to be defined as binary even if splits are not allowed, given the total
unimodularity of the set of constraints (4)-(7) for an integer vector y.

This problem formulation simplifies the time constraints and the pickups interdependency by making them
explicit in the model, i.e. the commodity flows may only exist between the time of generation at a SCC and its
due time of arrival at the Lab. Furthermore, the model indirectly optimizes the number of pickups at each SCC
according to the level of service desired. This is a modeling improvement over the model introduced in Anaya-
Arenas et al. (2021) in which the number of pickups at every SCC must be provided as an input. Nonetheless, the
size of the model (number of variables and constraints) depends linearly on the granularity of the time expansion
and on the number of commodities and, consequently, may become intractable for too fine time granularity and/or
too many commodities.

5 Solution methods

The time-expanded model introduced in this article has the great disadvantage of having its size depend linearly on
the granularity of the time expansion (i.e. ∆t) and on the number of commodities that are generated. This issue
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becomes apparent for large time horizons with very fine time granularity and for commodities that are generated
at very short time intervals. To reduce the impact of the time expansion and of the number of commodities, we
propose two different approaches. The first approach is a smart network expansion. In this case, we exploit some
characteristics of the problem to reduce the number of expanded nodes, expanded arcs and variables associated
with them without compromising the optimality of the solution. We refer to this as a preprocessing for the full
time-expanded network. The second approach is a dynamic network construction and transportation request
grouping. In this approach, we iteratively construct smaller networks, each of which has a reduced number of
time periods and commodities, and that provide dual bounds for the problem. Each network is a tightening of
the previous one, and the method is assured to converge to an optimal solution. Our approach can be seen as
an extension of Boland et al. (2017) in which, in addition to the aggregation of time periods, we allow for the
aggregation of transportation requests to reduce the problem size even further.

5.1 Full time-expanded network preprocessing

The proposed preprocessing is a two step procedure, where the first step reduces the number of nodes in the
expanded network, and the second step limits the number of xkij model variables.

The first part of the preprocessing exploits the fact that all the routes must start and end in the Lab (whose
physical location is denoted as l = v0). Therefore in the time-expanded network, the earliest arrival of a vehicle
to a node v ∈ V is at time t = τ(l, v). Then a node i = (v, t) ∈ V E with t < τ(l, v) will not be part of a feasible
solution. On the other hand, if all the routes end in the Lab, all the vehicles must be in the Lab at the end of
the time horizon, and the latest moment that a vehicle can be in node v ∈ V is at time t = tθ − τ(v, l). Thus a
node i = (v, t) ∈ V E with t > tθ − τ(v, l) will not be part of a feasible solution, because no vehicle is allowed to
reach the Lab after tθ. All nodes that are found to be unreachable using this procedure are thus ignored and do
not make part of the expanded network.

The second step reduces the number of variables xkij , as follows. The flow of a commodity k can only exist
between its origin o(k) and its destination d(k). One can therefore execute an enumeration procedure starting at
o(k), to find all nodes V fk ⊆ V E and arcs Afk ⊆ AE that are reachable from o(k). The same argument can be
used to find all nodes V bk ⊆ V E and arcs Abk ⊆ AE from which one can reach d(k). For that commodity, one
can hence restrict the network to the nodes V ′k = V fk ∩ V bk and to the arcs A′k = Afk ∩Abk, thus ignoring the
flow variables xkij for all nodes and arcs in the network that cannot make part of a feasible o(k)-d(k)-path.

5.2 Dynamic network construction and transportation request grouping

We propose a solution approach that solves auxiliary problems in an iterative fashion by reducing the problem
size at two levels: (1) by considering a reduced subset of time periods; and (2) by grouping some commodities.
These two procedures are performed in such a way that the resulting problem provides a valid dual bound of the
original problem, although perhaps not a feasible solution. This is complemented by an ad-hoc heuristic that
aims at finding a feasible solution (therefore a primal bound) that lies not too far from the dual bound in terms of
cost. Finally, we propose a recovery procedure that tightens the relaxed problem from one iteration to the next,
in an incremental fashion.

5.2.1 Initial commodity grouping and expanded network

We first initialize the commodity groupings. A grouping is always restricted to commodities generated consecu-
tively at the same SCC. We perform an iterative procedure to generate these initial groupings, as follows. First,
all the commodities generated at the same SCC are grouped together. For each such grouping, that we denote
S, we let w0(S) be the latest generation time among all commodities in S. We also let wf (S) be the earliest due
time or all those commodities. If w0(S)+τ(s, l) > wf (S) (with s denoting the SCC and l the lab), we declare this
grouping as being infeasible, since serving all the commodities in S simultaneously is not possible. We then split
S into two balanced groupings S1, S2, by leaving the first (in terms of time generation) b|S|/2c commodities to
form S1, and the rest to form S2. This verification and splitting procedure is repeated until all groupings become
feasible. For each grouping S at the end of this procedure, we assume that its generation time t0(S) coincides
with the earliest generation time among all commodities in S, and its due time tf (S) coincides with the latest
due time. This assures that a feasible path in the full expanded network that serves at least one customer in S
can be mapped to a feasible path in the reduced network where all commodities in S are grouped together.

Each grouping S constructed using the procedure above can be seen as an unique and unsplittable commodity
generated at time t0(S) that needs to be delivered at the lab by time tf (S). For each SCC v, we consider one
node (v, 0) at the beginning of the time horizon, and one pair of nodes (v, t0(S)), (v, tf (S)) at the generation and
due times for each grouping S generated at the SCC. For every node i = (v, t) constructed in this way, we let
next(i) be the next instant in time for which there exists an expanded node at u ∈ V . For the creation of the
expanded nodes at the lab we proceed as follows. We first create two nodes (l, 0), (l, tθ) at the beginning and
the end of the time horizon, and for every expanded node i associated with a SCC v ∈ V , we create two nodes
(l, t(i)− τ(l, v(i))) and (l, t(i) + τ(v(i), l)).
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To construct the arc set AEr in the reduced network, we proceed as follows. Let V Er be the set of nodes in the
reduced network. For every node u ∈ V and for every time 0 ≤ t ≤ tθ we let β(u, t) = max{s : (u, s) ∈ V Er, s ≤ t}
be the largest time s ≤ t for which there exists a node in V Er. First, we create horizontal arcs from every node
in the reduced network, to the next node in time. These arcs are used to represent waits at the SCCs and the
lab. For a node i = (u, t) ∈ V Er, we also consider arcs to other physical nodes, as follows. For every other node
w ∈ V \ {u}, we let s = β(u, t + τ(u,w)) and create an arc with tail in i and head in (w, s). The routing cost
between two nodes i, j ∈ V Er such that v(i) 6= v(j) is set to τ(v(i), v(j)), as it was defined in the original full
expanded network.

The following proposition assures that the model represented by the reduced expanded network (V Er, AEr)
provides a valid lower bound of the problem.

Proposition 1. The optimal value z∗rof a solution to the model induced by the reduced expanded network (V Er, AEr)
is such that z∗r ≤ z∗, where z∗ is the optimal value of the full expanded model.

Proof. The proof works by showing that, for any feasible vehicle route R in the full expanded model of cost c(R),
it exists a vehicle route Rr that is feasible w.r.t. the reduced expanded model that delivers the same commodities
(or more) of cost cr(Rr), such that cr(Rr) ≤ c(R), where c, cr represent the cost structures of the full and of the
reduced expanded model, respectively.

Let R = (vi = (ui, qi))
p+1
i=0 be such a route in the full expanded network. Without loss of generality we can

assume that ui 6= l for every 1 ≤ i ≤ p, since a full route can be composed as a concatenation of these simpler
pieces. On each visit to a SCC ui, one can assume that the vehicle collects all the commodities that are generated
by (or before) qi and that are due at the lab at time qn or later. We denote by κi the total set of commodities
that are collected upon a visit to ui. This can be defined recursively as κ0 = ∅, κi = κi−1 ∪ {k ∈ {1 . . .K} :
o(k) = ui, t(ok) ≤ qi, t(dk) ≥ qn} for every i ∈ {1 . . . p}. We construct a route Rr in an iterative process that goes
according to the pseudocode depicted in Algorithm 1.

Algorithm 1 Construction of a feasible route Rr for the relaxed expanded network from a route R
feasible for the full expanded network

Require: Route R = (vi = (ui, qi))
p+1
i=0

Ensure: Route Rr = (vri = (uri , q
r
i ))p

′+1
i=0

1: Let i, j ← 0, γ ← ∅
2: Let vr0 ← (ur0, q

r
0) = (u0, β(u0, q0))

3: repeat
4: j ← j + 1
5: if γ ⊂ κi then . Need to wait to collect more commodities
6: vrj ← (urj−1, next(v

r
j−1))

7: else . The route can leave to the next node
8: i← i+ 1
9: vrj ← (ui, β(ui, q

r
j−1 + τ(ui−1, ui)))

10: end if
11: T ← {S ∈ all groupings : v(S) = urj , t(oS) ≤ qrj , t(dS) ≥ β(l, qn)}
12: γ ← γ ∪ {k : k ∈ S, S ∈ T } . Update the commodities collected
13: until urj = l

The logic behind this algorithm is the following. We build the route Rr by trying to replicate the same
vehicle movements as those of R. In that way, the routing costs of both routes must necessarily coincide. The
problem is, because the arrivals may not occur at the same time, it may happen that the vehicle in the reduced
expanded network cannot collect all the same commodities because its arrival happened too early. In this case,
we add waiting times at the node, so as to make sure that the commodities collected by R up to that point are
also collected by Rr. Only then, the vehicle is allowed to leave the node. It is clear from the construction of the
route Rr, that its routing cost is equal to that of R. We will now prove that this route is feasible in the reduced
expanded network.

The algorithm above allows to establish a mapping of the nodes visited by R to some of the nodes visited
by Rr, which happens at line 7 of the algorithm when the route is allowed to leave a node carrying all the
commodities also picked up by R (and probably more). If the mapping of the p-th node in R corresponds to node
p′ in Rr, we will prove that qrp′ ≤ qp. This is certainly true for the node at index 0 in Rr, since by definition
qr0 = β(u0, q0) ≤ q0. Let us assume by induction that our hypothesis holds for the p-th node in R, which is
mapped to the p′-th node in Rr. Route R then leaves to node vp+1 while route Rr to node vrp′+1. But this last
node does not necessarily correspond to the mapping of node vp+1 since it may have arrived earlier to the next
node, potentially picking up less commodities. If this is the case, one must add waiting arcs in Rr as specified in
line 6. But remember that the groupings are defined in such a way that their availability is earlier (or at most at
the same time) than that of each commodity in it. The waiting time will only then be added until seeing these
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commodities become available, at a time that is necessarily lower than or equal to the real time of generation
of each commodity in the grouping. Also, remember that the due time of a grouping equals the latest due time
among all commodities in it, meaning that the arrival of route Rr back to the lab must necessarily be feasible.

5.2.2 Feasibility check

The next step in the process is to perform a feasibility check to assess whether the solution to the reduced problem
can be mapped to a solution of the original problem at the same cost, and identify infeasible arcs/groupings if
deemed necessary.

As for the feasibility of the network expansion, our method simply checks if that, for all the routing arcs
(i, j) in the optimal solution on the reduced expanded network, the length t(j)− t(i) equals τ(v(i), v(j)). Every
arc that does not satisfy this condition is deemed infeasible. We denote by AI the set of arcs that are deemed
infeasible according to this criterion.

With respect to the feasibility of the groupings, we check if the pickup and delivery times for the ungrouped
commodities are satisfied, i.e. if the pickup time t of a group S is such that t(ok) ≤ t for every k ∈ S, and if
the delivery time s of the group is such that t(dk) ≥ s for every k ∈ S. The groupings that are deemed as being
infeasible with respect to this criterion are added to a set KI .

If at the end of this procedure, AI = KI = ∅, we have indeed identified a feasible solution of the problem of
the same cost as the dual bound. The method ends and returns this solution.

5.2.3 Computation of an upper bound

After the solution of a MIP to obtain a dual bound, we execute the following procedure aiming at finding a feasible
solution of the exact same value. To this end, we create an auxiliary network with the smallest granularity, as
follows. For each grouping S, we create a commodity having as generation time the latest possible generation time
among all commodities in S, and due time the earliest due time among them (which is a real feasible grouping).
For each arc (i, j) ∈ AEr that appears in the optimal solution to the reduced MIP, we consider all possible arcs
linking v(i) and v(j) in the auxiliary network. We also consider all possible waiting arcs linking any two nodes
consecutive in time. This network contains much fewer arcs than the original full expanded network, and the
generation and due times for the commodities have been constructed in such a way that the auxiliary MIP model
searches for a feasible way of delivering the commodities by respecting the predefined groupings. This problem,
if feasible, necessarily admits an optimal solution that uses the same routing arcs as that of the MIP, but maybe
in different numbers (remember that the design variables in our model are integral, and not necessarily binary).

5.2.4 Network expansion

If the feasibility check and the upper bounding procedures fail, we proceed with expanding the network at two
levels, using the arcs in AI and the groupings in KI .

First, all arcs in AI are used to expand the network by creating new nodes and several other arcs, and by
removing all the arcs that are found to be inconsistent with the new expanded network. An arc (i, j) in the
expanded network is said to be consistent if t(j) = β(v(j), v(i)+τ(v(i), v(j)))). For each arc (i, j) ∈ AI , we create
nodes i′ = (v(i), t(j)− τ(v(i), v(j))) and j′ = (v(j), t(i) + τ(v(i), v(j))). We update the horizontal arcs at nodes
v(i), v(j) to assure that only the arcs between nodes that are consecutive in time are kept. We also add nodes at
the lab at times t(i′)− τ(l, v(i)), t(i′) + τ(l, v(i)), t(j′)− τ(l, v(j)) and t(j′) + τ(l, v(j)). New arcs are added to the
new expanded network following the same reasoning used to build the initial expanded network. In addition, we
remove all arcs that are found to be inconsistent with the new network.

Second, for every grouping S ∈ KI , we compute the maximum difference between the generation time of every
commodity in S and the pickup time in the reduced network. We also compute the maximum difference between
the delivery time of S at the lab, and the due time of every commodity in S. The infeasibility of a grouping S
is computed as the maximum of these two values. From the grouping attaining the maximum infeasibility, we
create two smaller groupings by halving S, thus creating S1 containing the first b|S|/2c commodities (according
to their time of generation) and the rest to form S2. We replace S then from the set of groupings by S1, S2. We
follow the same reasoning used for the initialization of the expanded network to add these two new commodities
to it, thus creating more nodes at the associated SCC and at the lab, and new arcs. All the old arcs that are
deemed inconsistent in the new expanded network are removed from it.

Please note that we have been careful to construct, using these two procedures, an enlarged expanded network
that satisfies the same hypothesis necessary for the validity of Proposition 1, therefore the same arguments can
be applied to assure that the new model, on the new expanded network, provides a dual bound of the the original
problem. This dual bound is necessarily non-decreasing as the new network is an expansion of the previous one.

5.2.5 High-level description of the algorithm

We now present a high-level description of our iterative algorithm. Roughly speaking, our method begins with
an initial network as described in Section 5.2.1. Then, it iterates between the computation of a dual bound,
a feasibility check and a network expansion. Upper bounds are also used to speedup the overall computing
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times. The algorithm can be summarized in the pseudocode described in Algorithm 2. This pseudocode can be
trivially modified to replace the stopping condition by a less restrictive one in case where optimality may become
challenging.

Algorithm 2 High-level description of the iterative algorithm

Require: Weighted network G = (V,A, c)
Ensure: Dual bound zD, primal bound zP , feasible solution S
1: Initialize the reduced weighted network Gr = (V r, Ar, cr) . Section 5.2.1
2: Let zD ← −∞, zP ←∞,S ← ∅
3: while zD < zP do
4: Solve the reduced problem on Gr, and let zD,S ′ be the optimal value and solution
5: if S ′ is feasible then . Section 5.2.2
6: Update zP ← zD and return zD, zP ,S ′
7: else
8: Use S ′ to compute a primal bound zP and a solution S . Section 5.2.3
9: Expand the network to update Gr . Section 5.2.4

10: end if
11: end while
12: return zD, zP ,S

6 Computational experiments

This section presents and discusses the results of the experiments conducted to test the quality and the behavior of
the time-expanded formulation, and the computational capabilities and limits of the proposed algorithm. These
experiments are realized over a set of instances inspired from a real-life application regarding the distribution
management of biomedical samples from a laboratory network under the management of the MSSS. In the first
section, we provide the description of the instances used, in terms of the number of transportation requests, and
the geographical and temporal sparsity. Next, we present and analyze the results obtained.

6.1 Instances

To know the transportation needs of each service area, the MSSS conducted a detailed survey spanning from
June to August 2013 to the SCCs and Labs in each service area. In the survey, each SCC and Lab was required
to provide, for each day of the week, information such as opening and closing hours, number and type of samples,
and kind of tests needed. Interested readers can consult Anaya-Arenas et al. (2016) for a detailed description
of the survey. The differences between the days of the week lead to a different types of instances. For instance,
weekends were found to be regularly less busy than weekdays, resulting on fewer SCCs being open those days.
Furthermore, days with more demand lead to instances with more transportation requests. Other factors that
influence the characteristics of an instance are the geographical and demographic data of each administrative
region. According to that, two types of instances could be distinguished:

• Rural instances: Correspond to service areas that cover a large territory, with large distances between
the nodes of the network and in consequence large traveling times as well.

• Urban instances: Correspond to service areas close to main the main cities. They typically have a bigger
demographic density, usually with a large number of SCCs and short traveling times.

The type of instance can also have an impact on the topology of the solutions each problem admits. On rural
instances, the larger traveling times make it necessary to have vehicle routes servicing a small number of SCCs
before they need to get back to the Lab. On the other hand, urban instances usually admit solutions with a much
larger number of SCCs between two stops at the Lab, typically increasing the routing complexity.

Anaya-Arenas et al. (2021) tested a set of 38 instances for a variant of the problem in which the number
of pickups and the total collection period at each SCC were given as an input by the MSSS. The perishability
requirements were only partially captured then, as the instances included a maximum time to keep samples inside
the SCC and a maximum routing time, assuming that the sum of these two time limits is less than the sample’s
life span. We have then modified the instances by adapting them to our problem setting. The main difference is
related to the fact that a transportation request is not directly associated to a pickup in our modeling. Therefore,
the number of pickups at every SCC will be decided as an output of the optimization process. Moreover, we
propose a much more realistic modeling for the perishability constraints by explicitly capturing the life span of
each commodity in the time-expanded network since the time of its generation. To adapt the instances to our
problem, we have proceeded as follows. For each instance we need to explicitly define the moment t(ok) at which
each transportation requests is generated at every SCC v ∈ V . First, we define a parameter ∆k, that indicates

A Dynamic Discretization Discovery Algorithm for the Routing of Multiple and Highly Perishable Commodities: An Application to 
the Transportation of Biomedical Samples

CIRRELT-2021-38 9



the frequency at which the transportation requests are generated. Thus, the number of transportation requests
for each center is the ratio between the collection period at the SCC and ∆k. The time of generation t(ok) for
every such commodity is uniformly spreaded in time. For example, if we associate a total of 3 transportation
requests to a given SCC v ∈ V , they will be generated at times 1/3Ov, 2/3Ov and Ov, where Ov is the collection
period of the SCC v ∈ V . Figure 2 illustrates the distribution of the transportation requests for a SCC v ∈ V
with one, two, three, and up to k transportation requests. The due time t(dk) of each commodity is set according
to the following criterion. For a ∆k of 15 minutes, we establish the due time to be 5 hours after the generation of
each sample. For a ∆k of three hours, we only allow for a life span of three hours, in an attempt to capture the
fact that the larger value of ∆k means that samples are consolidated and grouped for up to three hours before
a pickup, hence the shorter life span aims at ensuring that the sample that was generated the earliest in that
group will still be able to reach the lab before it perishes. We let the maximum number of vehicles m be equal to
the number of transportation requests on each instance. But because this is only given as an upper bound, our
optimization model always finds solutions that use a much lower number of vehicles. In Tables 1-2 we provide
aggregated data about the number of SCCs and transportation requests associated with the instances generated
for the cases where ∆t = 5,∆k = 180, and ∆t = 1,∆k = 15. Under column SCC we report the number of SCC
associated with the instance. Columns total, min, max, avg are used to report the total number of transportation
requests of the problem (all SCC aggregated) as well as the the minimum, maximum and average number of
transportation requests per SCC.

Figure 2: Time distribution of the transportation requests

6.2 Computational results

In this section we present and analyze our modeling approach and the sensitivity of our algorithm to a series
of factors. To this end we consider two experiments. The first experiment aims at assessing the quality of our
modeling framework and of our time-expanded formulation, by comparing it —both from a computational and
from a modeling perspective— to the model of Anaya-Arenas et al. (2021). Our second experiment assesses
the performance of our method by comparing it against two variants of it and to the direct solution of the full
time-expanded model boosted with the acceleration strategies presented at Section 5.1.
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∆t = 5,∆k = 180 ∆t = 1,∆k = 15
Instance SCC total min max avg total min max avg

01 2 7 1 6 3.5 69 7 62 34.5
02 2 8 3 5 4.0 80 25 55 40.0
03 2 6 1 5 3.0 57 7 50 28.5
04 3 3 1 1 1.0 21 7 7 7.0
05 3 5 1 3 1.7 42 7 28 14.0
06 3 11 3 5 3.7 113 33 55 37.7
07 4 6 1 3 1.5 57 7 36 14.3
08 4 11 1 8 2.8 110 7 89 27.5
09 4 8 1 3 2.0 66 7 25 16.5
10 4 20 6 8 5.0 277 63 88 69.3
11 4 13 3 4 3.3 114 25 39 28.5
12 4 11 2 4 2.8 107 15 44 26.8
13 4 10 1 4 2.5 101 9 44 25.3
14 5 11 1 7 2.2 108 7 80 21.6
15 5 11 1 7 2.2 108 7 80 21.6
16 5 12 1 7 2.4 125 7 80 25.0
17 5 9 1 3 1.8 73 7 25 14.6
18 5 9 1 5 1.8 80 7 52 16.0
19 6 10 1 5 1.7 90 7 55 15.0
20 6 15 1 4 2.5 143 45 7 23.8

Table 1: Small problem instances

∆t = 5,∆k = 180 ∆t = 1,∆k = 15
Instance SCC total min max avg total min max avg

21 9 18 1 5 2.0 167 7 53 18.5
22 8 21 1 5 2.6 200 7 53 25.0
23 7 17 1 4 2.4 173 7 47 24.7
24 9 19 1 4 2.1 187 7 47 20.7
25 9 36 1 7 4.0 373 7 74 41.4
26 12 20 1 4 1.6 182 7 47 15.1
27 11 40 1 7 3.6 416 7 74 37.8
28 17 27 1 4 1.5 227 6 46 13.3
29 10 36 1 5 3.6 373 7 53 37.3
30 11 38 1 5 3.4 388 7 53 35.2
31 12 40 1 5 3.3 396 6 52 33.0
32 17 37 1 5 2.1 356 4 50 20.9
33 13 42 1 5 3.2 417 6 52 32.0
34 18 46 1 8 2.5 467 6 88 25.9
35 19 41 1 5 2.1 406 6 50 21.3
36 19 41 1 5 2.1 407 6 50 21.4
37 19 44 1 5 2.3 445 6 50 23.4
38 17 50 1 5 2.9 502 6 52 29.5

Table 2: Large problem instances
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6.2.1 Quality of our modeling framework and mathematical model

Our first experiment aims at assessing the quality of our modeling framework and of our mathematical model. To
that end, we have executed our method on 38 problem instances, with a ∆t of 5 minutes and ∆k of three hours.
These instances are the closest in terms of data generation to those of Anaya-Arenas et al. (2021) as they roughly
consider the same amount of samples’ consolidation at the SCC with a number of transportation requests that is
equal to (or increases at most in two) the values provided as an input by the MSSS. The traveling times in this
network are rounded up to the closest integer multiple of 5 (leaving 5 minutes as the shortest possible traveling
time in this network). Unfortunately, the commercial solver can solve the proposed formulation for a ∆t of one
minute and a ∆k of 15 minutes for only 14 of the first 20 instances (see 5 for details). In Table 3 we report,
for the eleven most difficult problems, a comparison between the results reported in Anaya-Arenas et al. (2021)
and our model. In this table, ILS P denotes the total number of pickups provided as an input of the problem
by the MSSS, ILS gap the optimality gap reported after 10 hours of computational time of the solver solving
the mathematical model of Anaya-Arenas et al. (2021), Pickups the number of pickups found as an output of
our mathematical model, gap the optimality gap of our model after a maximum of one hour of computation, and
CPU time the total CPU time (in seconds) spent by the solver.

The first observation that we would like to make is regarding the efficiency of the solution in terms of the
number of pickups required to serve the demand. Our method is capable of identifying solutions with about 10%
less pickups on average, when compared against the data provided by the MSSS as an input. Second, in terms of
computing efficiency, we observe that our time-expanded model provides much better optimality guarantees, with
solutions that lie no further than a 13% from the optimal, as compared to the poor optimality gaps reported in
Anaya-Arenas et al. (2021), and this is in much shorter computing times. This is a very encouraging result from
the health care management perspective. This new formulation allow managers to find the optimal number of
pickups at each SCC, while reducing transportation costs and respecting the actual perishability of the samples.

Instance ILS P ILS gap ILS time Pickups gap CPU time
28 24 47.0 36000 20 0.0 126
29 30 100.0 36000 25 0.0 2032
30 32 100.0 36000 22 1.9 3699
31 34 100.0 36000 31 0.1 3724
32 35 76.0 36000 28 1.6 4065
33 36 100.0 36000 35 0.0 2357
34 39 86.0 36000 33 3.4 4169
35 40 76.0 36000 31 2.3 4140
36 40 79.0 36000 49 13.0 4009
37 41 81.0 36000 41 4.4 4113
38 50 100.0 36000 45 10.6 3969

Table 3: Comparison between our new mathematical model and that of Anaya-Arenas et al. (2021)

6.2.2 Performance of the proposed method

In this section we present an experiment aiming at assessing the computational capabilities of the proposed
method. To this end, we consider the 20 first problems from our testbed, but with time granularities of ∆t equal
to one, and with commodities generated every ∆k of 15 minutes. This produces problems that are far more
difficult than those considered in our previous experiment. For that reason, we had to omit the results for the
larger problems as all the methods struggled to provide meaningful results within a time limit of six hours. In
Figure 3 we report the number of aggregated transportation requests in the last iteration of our proposed method
(|Kr|), as the ratio against the original number of transportation requests (|K|). We omit this ratio for problems
10 and 20 that timed out in the maximum allowed time of six hours. For the rest, we observe that our iterative
algorithm is capable of reducing in more than a 40% the number of transportation requests, with a maximum
reduction of almost a 80%. Not only this reduction affects the size of the mathematical models solved, but also
helps at reducing the symmetries involved when handling many transportation requests that in the end could
have been seen as one.

We have performed a second experiment aimed at assessing the computational capabilities of our method, and
the benefit associated with the development of two of the core ingredients, namely the commodity grouping, and
our primal heuristic. In Figure 4 we report a profile curve of the computing times associated with three variants
of our method, and of the solution of the full time-expanded model boosted with the addition of the reduction
techniques introduced in Section 5.1. For our iterative method, we consider the following three variants: 1) the
proposed method, including both the commodity grouping and the primal heuristic; 2) the proposed method
without the commodity grouping; and 3) the proposed method without the primal heuristic. Figure 4 reports,
for every 0 ≤ y ≤ 21600, the number of problems x that are solved within that limit. The results show a clear
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Figure 3: Ratio between |Kr| at the end of the method and |K|

advantage for our method as compared to the direct solution of the full time-expanded model, as it allows to
reduce the CPU times by a factor of 10 and solve five more problems. When comparing the three variants of our
method, we observe the benefit of performing the commodity grouping and the primal heuristic, as they allow for
the solution of more problems in typically shorter computing times for the more difficult problems.
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Figure 4: Number of problems solved to proven optimality by each algorithm variant

The algorithm has been proved to be efficient to solve to optimality BSTP instances with more than 200
commodities tracked individually, with high interdependency (an average of 40 transportation requests per SCC)
and this in less than 1000 seconds on average. The detail of the computational results on the 20 instances tested
is presented in the Appendix A.

7 Concluding remarks

We have presented a novel and efficient formulation for the biomedical samples transportation problem (BSTP) —
an optimization problem aiming at deciding the routes’ schedules required to move highly perishable commodities
on a health care network— and an efficient solution algorithm with optimality guarantees.

Our model presents a great advantage with respect to previous models for this problem: it optimizes the
number and the timing of the pickup decisions, while respecting the life span of the samples. Moreover, samples’
life spans are defined between the time at which they are generated at each SCC (collected from patients) and
their arrival time at the Lab for analysis. This detailed consideration of the perishability of the samples, and its
individual tracking, causes a strong and difficult interdependency between the pickup times at each centre and
the global routing plan. This highly complex reality has been modeled as a service network design problem on
a time-expanded network, which allowed us to remove precedence and synchronization constraints by explicitly
setting the life span of the samples in the origin and destination of each transportation request. In addition,
we have introduced a dynamic discretization discovery algorithm with optimality guarantees to alleviate the
computational complexity of the problem. The strength of the algorithm is in reducing the full problem to a
series of easier problems on smaller networks with a lesser number of nodes and a smart group of commodities.

Our computational campaign shows that the new formulation is useful to provide non-trivial dual and primal
bounds, as compared to a recent mathematical model from the literature, while being richer and capable to
capture more features from the real application that inspires our study. Indeed, the new mathematical program
allows us to solve with a commercial solver a much harder problem, as the detail of the perishability of each
transportation request is tracked individually and the optimal number of pickups is part of the optimization
output. A state-of-the-art commercial solver is able to find solutions for our formulation with less than 13%
gap in less than an hour (on average). Therefore, our model could allow managers of a health care network to
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decide the optimal number of visits that will need to be performed at each SCC, the optimal routes (timing and
sequence) for a given fleet, and the optimal size of said fleet (optimal numbers of vehicles), all of it with the
certainty that the samples’ life spans will be respected.

Finally, the proposed algorithm also proves efficient at solving larger problems in moderate computing times.
It is able to solve to optimality 18 of the 20 instances tested, with a time granularity of one minute and with a
total of more than 200 transportation requests.

As an avenue of future research, we believe that our iterative framework may be combined with decomposition
methods to cope with the complex attributes of the network design structure this problem raises, and to potentially
scale and solve larger instances. Also, a capacitated variant of the problem may be relevant in cases where the
products use a significant portion of the trucks’ capacities.
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A Detailed computational results

In this appendix we report detailed computational results for the mathematical model and the different algorithm
variants introduced in this article. In all these tables, the columns are the same and reflect the following data.
Column Instance reports the problem name. Column Routes is used to report the total number of vehicles used in
the best feasible solution. Column Pickups is used to report the total number of pickups performed at the different
SCCs. Columns Upper Bound and Lower Bound are used to report the primal and dual bounds at the end of the
optimization. Column gap reports the relative gap between these two values, computed as (UB−LB)/UB ∗ 100.
Finally, column time is used to report the total elapsed time. When the solver is unable to find a feasible solution
of reasonable quality, we leave some boxes blank as the values reported by the solver are not representative of an
optimal or a near-optimal solution.

Instance Routes Pickups Upper Bound Lower Bound gap time
01 4 5 510 510 0.00 68
02 4 6 612 612 0.00 135
03 4 4 396 396 0.00 117
04 1 3 168 168 0.00 52
05 3 3 311 311 0.00 58
06 4 9 672 672 0.00 2286
07 3 5 283 283 0.00 185
08 6 8 784 784 0.00 943
09 3 6 270 270 0.00 445
10 19 20 2847 2005 29.57 22344
11 3 9 289 289 0.00 1808
12 3 9 311 311 0.00 4764
13 3 8 270 270 0.00 426
14 6 9 771 771 0.00 4515
15 6 8 780 780 0.00 11692
16 6 10 789 789 0.00 10492
17 3 7 312 312 0.00 703
18 3 8 405 405 0.00 1137
19 4 9 447 447 0.00 1566
20 5 14 679 453 33.28 2169

Average 4.65 8 3.14 3295

Table 4: Proposed method on problems with ∆k = 15 and ∆t = 1
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Instance Routes Pickups Upper Bound Lower Bound gap time
01 4 1 510 510 0.00 130
02 4 1 612 612 0.00 136
03 4 1 396 396 0.00 334
04 1 1 168 168 0.00 87
05 3 1 311 311 0.00 168
06 4 1 672 672 0.00 19344
07 3 1 283 283 0.00 1081
08 6 2 784 784 0.00 1012
09 3 2 270 270 0.00 6324
10 0 100.00 23140
11 4763 0 100.00 23732
12 2401 0 100.00 23240
13 3 1 270 270 0.00 15427
14 6 2 711 711 0.00 11745
15 6 2 780 780 0.00 12050
16 6702 789 88.23 22811
17 3 2 312 312 0.00 21700
18 3 2 405 405 0.00 11018
19 6424 0 100.00 23499
20 7099 0 100.00 24700

Average 3.79 6.36 29.41 12084

Table 5: Time expanded formulation on problems with ∆k = 15 and ∆t = 1
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Instance Routes Pickups Upper Bound Lower Bound gap time
01 6 7 760 760 0.00 22
02 5 7 783 783 0.00 22
03 6 6 610 610 0.00 22
04 2 3 195 195 0.00 22
05 4 5 372 372 0.00 23
06 5 11 855 855 0.00 23
07 3 6 283 283 0.00 23
08 8 10 945 945 0.00 28
09 4 8 270 270 0.00 22
10 9 25 2940 2940 0.00 30
11 4 13 340 340 0.00 24
12 5 9 395 395 0.00 25
13 4 9 345 345 0.00 23
14 7 11 984 984 0.00 32
15 7 11 990 990 0.00 32
16 7 12 1000 1000 0.00 32
17 4 9 325 325 0.00 23
18 5 9 535 535 0.00 26
19 5 10 565 565 0.00 31
20 5 15 635 635 0.00 31
21 6 14 1355 1355 0.00 33
22 5 15 680 674 0.00 78
24 6 14 590 590 0.00 80
25 6 15 1555 1555 0.00 46
26 6 16 2350 2343 0.00 112
27 7 25 1060 1060 0.00 2032
28 10 21 3590 3590 0.00 128
29 7 22 1110 1089 1.89 3699
30 7 14 1645 1645 0.00 74
31 7 31 1190 1167 1.93 3724
32 7 35 1170 1163 0.00 2357
34 9 20 2330 2330 0.00 126
35 10 28 1985 1953 1.61 4065
36 42 45 1250 1118 10.56 3969
37 10 33 2145 2072 3.40 4169
38 11 31 2125 2076 2.31 4140
39 11 49 2405 2093 12.97 4009
40 13 41 2520 2410 4.37 4113

Average 7.50 17.50 1.03 986

Table 6: Time expanded formulation on problems with ∆k = 180 and ∆t = 5
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Instance Routes Pickups Upper Bound Lower Bound gap time
01 4 5 510 510 0.00 68
02 4 6 612 612 0.00 135
03 4 4 396 396 0.00 117
04 1 3 168 168 0.00 52
05 3 3 311 311 0.00 58
06 4 9 672 672 0.00 2286
07 3 5 283 283 0.00 185
08 6 8 784 784 0.00 943
09 3 6 270 270 0.00 445
10 2005 100.00 22277
11 3 9 289 289 0.00 1808
12 3 9 311 311 0.00 4764
13 3 8 270 270 0.00 426
14 6 9 771 771 0.00 4515
15 6 8 780 780 0.00 11692
16 6 10 789 789 0.00 10492
17 3 7 312 312 0.00 703
18 3 8 405 405 0.00 1137
19 4 9 447 447 0.00 1566
20 493 100.00 23240

Average 3.83 7 10.00 4345

Table 7: Proposed model without the upper bound heuristic on problems with ∆k = 15 and ∆t = 1

Instance Routes Pickups Upper Bound Lower Bound gap time
01 4 5 510 510 0.00 199
02 4 6 612 612 0.00 161
03 4 4 396 396 0.00 260
04 1 3 168 168 0.00 67
05 3 3 311 311 0.00 133
06 4 9 672 672 0.00 410
07 3 5 283 283 0.00 198
08 6 8 784 784 0.00 385
09 3 6 270 270 0.00 159
10 30 20 6179 0 100.00 22277
11 3 9 289 289 0.00 9570
12 3 9 311 311 0.00 10036
13 3 8 270 270 0.00 3363
14 6 9 771 771 0.00 3992
15 6 8 780 780 0.00 6643
16 6 10 789 789 0.00 4912
17 3 7 312 312 0.00 649
18 3 8 405 405 0.00 1496
19 4 9 447 447 0.00 9520
20 24 14 2352 463 80.31 22277

Average 6.15 8 9.02 48.35

Table 8: Proposed model without the commodity grouping on problems with ∆k = 15 and ∆t = 1
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