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1 Introduction

Combinatorial Auctions (CA) are mechanisms where one can bid on packages of items

rather than on each item separately. Combinatorial bids become particularly interesting

when the value of a set of items for the bidder is larger than the sum of the values

of the items (De Vries and Vohra, 2003). This is the case for transportation markets

where the value of a shipment for a carrier depends on whether other shipments are

won. Past research has already well established the important cost savings achieved by

both shippers and carriers when CA are used as a trading mechanism for transportation

services procurement (Caplice and Sheffi, 2006; Karaenke et al., 2019).

Our paper addresses the so-called Bid Construction Problem (BCP) – also known as

the bid generation problem – for reverse one-sided CA for truckload (TL) transporta-

tion services procurement. We consider a CA where the shipper acts as the auctioneer

and carriers compete by submitting combinatorial bids on the shipper’s transportation

requests (referred to as contracts in the following). In each bid, the carrier specifies the

set of transportation contracts to serve and the associated ask price. If the bid is won,

all the contracts submitted in the package are allocated to the carrier, otherwise none of

the contracts is allocated.

A BCP must be solved by each carrier participating into the auction. When generating

combinatorial bids, the carrier must take into account its existing commitments, its op-

erational constraints but also other competing carriers bids. The latter are generally not

known by the carrier when solving the BCP. The carrier rather relies on its experience

and knowledge of its competitors to evaluate the clearing price associated with auctioned

contracts. Generally, contracts clearing prices cannot be known with certainty. To the

best of our knowledge only Triki et al. (2014) and more recently Hammami et al. (2021)

addressed a BCP with stochastic clearing prices.

Moreover, the majority of published papers in transportation CA propose solution ap-

proaches for the BCP so that a single combinatorial bid is generated. The BCP should
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then be run many times to generate multiple bids with no guarantee that the package

of contracts covered by these bids do not overlap. However, when determining the win-

ning carriers, the shipper solves the so-called Winner Determination Problem (WDP)

in which each auctioned contract is generally assigned to a single carrier’s bid, making

non-overlapping bids mandatory for a carrier to win multiple bids. Besides, depending on

the auction rules and the bidding language used, a bidder may be permitted to submit

either XOR bids, OR bids or a combination of OR and XOR bids (Nisan, 2010). XOR

bids imply that at most one of the submitted bids can be allocated to the carrier. On

the opposite, OR bids enable a carrier to express its preferences for different subsets of

auctioned contracts with the possibility to win all or a part of them.

The few papers assuming OR bidding consider deterministic clearing prices (Ben Othmane

et al., 2019; Hammami et al., 2019). To the best of our knowledge, the paper by Hammami

et al. (2021) is the sole to propose an exact method for a BCP with stochastic prices where

multiple non-overlapping OR bids can be generated. They determine package bids and

their associated prices so as to maximize a global expected profit assuming that all the

generated OR bids would be won and all the contracts put on the auction by the shipper

would materialize. Our paper extends this work by proposing an exact method for the

BCP with stochastic clearing prices that ensures a non-negative profit for the carrier

regardless of the OR bids effectively won, and independently of the auctioned contracts

that effectively materialize.

Since 2006, Caplice and Sheffi (2006) have already pointed out the uncertainty surrounding

auctioned contracts materialization. The authors reported that from a shipper’s perspec-

tive, there is uncertainty on the realization of auctioned contracts since it is difficult to

forecast the demand and the freight volume given that they are highly disaggregated.

They stated that the shippers have “the right but not the obligation” to use the car-

riers as determined through the auction process. Thus, the carrier may be awarded a

transportation contract at the strategic auction stage that does not materialize at the

operational stage. This may yield monetary losses for the carrier and reduce the bene-
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fits attributable to combinatorial bidding. Contracts materialization can also be affected

by sudden unexpected events: during the Coronavirus pandemic, transportation busi-

nesses in the United States faced a decline in the active business linked to the permanent

shutdown of many shopping business following the COVID-19 restrictions (Kalogiannidis,

2020; Fairlie, 2020). This market turmoil, which has a negative impact on carriers, is the

result of a simultaneous disturbance in both supply and demand Ivanov (2020).

The approach proposed in our paper enables a carrier to submit multiple combinatorialOR

bids for which the packages of covered contracts do not overlap such that the carrier has

enough capacity to serve all of them. More importantly, given that the carrier is ensured

to have a non-negative profit even if not all of its submitted OR bids are won, it can adopt

an aggressive pricing strategy by submitting large ask prices while taking into account

uncertainty on contracts clearing prices. Finally, with the proposed approach, uncertainty

on contracts materialization is also handled by ensuring a non-negative expected profit for

the carrier even if the contracts won at the auction are not allocated during operations.

To the best of our knowledge, our paper is the first to simultaneously address all these

issues while providing an exact method to handle this complex problem.

Beyond the good computational performance of the proposed exact method, our experi-

mental study evaluates the merits/drawbacks of incorporating the risks elimination feature

on the carrier expected and real profits. This is done by comparing two contexts: one

where the risks associated with bids success and contracts materialization are eliminated,

referred to as a risk-averse bidding, and another where such risks are permitted, referred

to as a risky bidding. We evaluate both contexts with two pricing strategies: a conser-

vative and an aggressive one. Unlike the conservative pricing strategy, the aggressive one

fixes bids ask prices to relatively large values with regard to bids clearing prices. Our

results show that even though at first glance a risk-averse bidding context requires larger

CPU times to generate no-risky bids and yields lower maximum expected profits when

compared to a risky bidding context, it generally results in larger real profits when differ-

ent scenarios of bids success are simulated. It is also noteworthy that the decrease in the
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maximum expected profit when changing from the risky bidding context to the risk-averse

one is observed when the same pricing strategy is adopted. These results should thus be

interpreted with some restraint since each bidding context should be combined with an

appropriate pricing strategy to illustrate more realistically a bidding behavior of a carrier.

In practice, a moderately risky behavior consists in either: (i) adopting a risky bidding

(as traditionally addressed in the literature) coupled with a conservative pricing strategy

to increase the chance of winning the submitted bids but with the risk to incur monetary

losses if the bids are not won, or (ii) using a risk-averse bidding (our new approach) with

an aggressive pricing strategy yielding substantially larger profits but with less certainty

that the price asked in the submitted bids is sufficiently low to win the submitted bids

but at the same time knowing that no monetary losses will occur if bids are not allocated.

When comparing the maximum expected profits yielded by these two alternatives, the

second one (based on our new method) yields larger maximum profits for almost all the

instances with an average relative increase of 42.57% and a maximum increase of 96.60%.

The remainder of this paper is organized as follows. Section 2 presents a literature review

on the BCP for TL transportation services procurement CA and some of the recent related

works. In Section 3, we define and mathematically model the BCP with stochastic clearing

prices. Section 4 describes our approach to handle risks on contracts materialization and

bids success. Section 5 details our exact solution method. In Section 6, we report and

analyze the results of our experimental study. Section 7 concludes the paper and offers

insights for future research.

2 Literature review

In recent years, several works studied the BCP for TL transportation services procure-

ment, but few of them addressed a stochastic context. In the following, we review the

major works addressing the BCP in a deterministic context and then in a stochastic one.

Combinatorial Bids Generation in Truckload Transportation Procurement Auctions with Uncertainty on Clearing Prices, Bids 
Success and Contracts Materialization

4 CIRRELT-2021-42



Song and Regan (2003) presented an optimization-based approximation model to help the

carrier identify the most profitable auctioned contract packages. The BCP is formulated

as a set partitioning problem where the objective is to select the set of routes minimizing

the carrier’s empty traveling costs. Later, Song and Regan (2005) addressed a BCP where

two scenarios are considered: with and without pre-existing contracts. The problem is

also formulated as a set partitioning problem then relaxed as a Set Covering Problem

(SCP) where the objective is to minimize empty traveling costs. The SCP is solved by

a commercial solver and near-optimal solutions are obtained for instances with up to 10

auctioned contracts.

Wang and Xia (2005) addressed a BCP where the objective function is to minimize the

empty traveling costs. Two heuristics are proposed. The first one is based on a fleet

assignment model which is a generic formulation for the routing and scheduling problem.

The second heuristic is based on the nearest insertion method. The two heuristics are

tested and compared on instances with up to 30 auctioned contracts.

Lee et al. (2007) proposed a quadratic formulation for the BCP that integrates routes

generation and selection where the objective function is to maximize the carrier’s profit

defined as the difference between the revenue from serving contracts minus the traveling

costs. In their model, the authors assumed that each carrier generates only one pack-

age bid. The proposed solution approach is a heuristic based on column generation and

Lagrangian relaxation. Experiments were run on instances with up to 335 auctioned con-

tracts. Reported results show a relatively large variation in the optimality gap (between

0.00% and 32.84%) for large instances accompanied with relatively large computational

times (reaching up to 120 hours).

Chang (2009) proposed a bidding advisor which helps carriers evaluate the most profitable

bid packages. The developed tool consists on converting the BCP into a synergistic

minimum cost network flow problem by estimating the average synergy values between

the auctioned contracts. According to the author, the main contribution of the proposed

approach is that it can easily determine the desirable bid packages without evaluating
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all 2n − 1 possible bid packages where n denotes the number of auctioned contracts. A

column generation method with a synergistic shortest path algorithm is proposed to solve

the problem and generate bid packages. A bid is simply formed by the auctioned contracts

served by the same vehicle.

Chen et al. (2009) proposed a method allowing carriers to implicitly consider the com-

plete set of all possible bids without evaluating their exponential number. This approach

requires that each carrier submits a Bid Generation Function (BGF) which will be em-

bedded directly into the shipper’s WDP. The BGF underlines the minimal cost to serve a

set of transportation contracts and is obtained by solving a minimum cost flow problem.

The main advantage of the proposed approach is that it allows the carrier to submit its

BGF parameters instead of computing and submitting an exponential number of bids.

However, this approach forces the carrier to share a substantial amount of information

concerning its network structure, its transportation costs and how auctioned contracts

valuation is made.

Rekik et al. (2017) proposed a route-based model for the BCP with two types of business

constraints related to CA. The first one limits the total number of contracts covered by

the generated bids. The second one limits the number of contracts submitted in each

bid. To solve the problem, they proposed a branch-price-and-cut algorithm. The exact

solution approach was tested on a set of 20 instances with up to 131 auctioned contracts.

Computational results showed that optimal solutions are obtained within 730 seconds.

Ben Othmane et al. (2019) addressed the BCP with pre-existing routes where the car-

rier’s objective is to optimize its operations by integrating profitable auctioned contracts.

The authors proposed a three-stage heuristic to solve the problem and tested it on in-

stances with up to 600 contracts. The proposed approach identifies profitable contracts

then inserts them into the predefined routes and/or build new ones for unused vehicles.

Ben Othmane et al. (2019) report feasible solutions within relatively short computational

times however these solutions were not compared to optimal solutions for most instances

given the problem size.
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Hammami et al. (2019) were the first to consider a BCP with a heterogeneous fleet where

the objective is to maximize the carrier’s profit. The authors developed two approaches

to solve the problem. The first one is a hybrid adaptive large neighborhood search heuris-

tic based on a destroy-repair principle coupled with several local search procedures and

hybridized with a set packing problem. The second one is an exact branch-and-cut which

starts from the best heuristic solution to solve an arc-based formulation of the BCP.

Computational results on different sets of small and large-scale instances with up to 500

contracts show that the proposed solution methods perform well in terms of computational

times and provide optimal or near-optimal solutions.

Only two papers address the BCP with stochastic clearing prices. In Triki et al. (2014), the

problem is formulated as a probabilistic mixed integer optimization model where chance

constraints are used to model the probability of winning bids. The model generates a

single combinatorial bid and requires enumerating all possible package bids so that chance

constraints could be formulated making it intractable to solve to optimality. To solve the

problem, the authors rather developed two heuristics and tested them on instances with

up to 400 auctioned contracts. The quality of the solutions obtained is not reported.

Recently, Hammami et al. (2021) addressed a BCP with stochastic clearing prices that

allows generating multiple non-overlapping OR bids. The problem is formulated with a

chance constraint model inspired by the work of Triki et al. (2014) without requiring an

exhaustive enumeration of all package bids. The paper of Hammami et al. (2021) is the

first to propose an exact method for solving a BCP with stochastic prices. The method is

based on an iterative process where restricted and relaxed problems are iteratively solved

to yield valid lower and upper bounds. Results for instances with up to 50 contracts show

that the exact method reported optimality for 74% of them within two hours on average.

A simulation of 704 auctions also derived insights on how the parameters of the exact

method should be tuned so that theoretical expected profits are minimally realized.

Our paper considers a BCP with stochastic clearing prices where the aim is to construct

multiple non-overlapping OR bids to maximize a global net profit while considering pre-
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existing commitments and the carrier fleet capacity. Our problem extends that of Ham-

mami et al. (2021) and differs from it at two levels. First, we aim to generate combinatorial

bids so that a non-negative profit is always ensured for the carrier in case: (i) some of

the bids submitted to the auction are not effectively won or (ii) a contract covered by a

winning bid does not eventually materialize. Second, given that non-negative profits are

certain, we consider the case where the carrier adopts what we call an aggressive pric-

ing strategy when fixing bids prices, i.e., a strategy where ask prices are relatively large

compared to competitors. In Hammami et al. (2021), the authors model uncertainty on

auctioned contracts prices by considering a chance constraint where the probability of the

bid ask price to be larger than the bid clearing price must be lower than or equal to 50%.

In our paper, we extend their methodology to all pricing strategies (more than, less than

or equal to 50%).

3 The BCP with stochastic clearing prices

The BCP with stochastic clearing prices, denoted as Stochastic BCP (SBCP), is defined

as follows. Let Ke = {1, . . . , |Ke|} and Kn = {|Ke| + 1, . . . , |Kn| + |Ke|} denote the sets

of the carrier’s pre-existing and auctioned contracts, respectively. Let K = Ke ∪Kn be

the set of all contracts. To each contract k ∈ K is associated a unique pair of origin and

destination nodes denoted (ok, dk). Given the TL context, each volume picked up at a

contract’s origin node (ok, k ∈ K) must be directly delivered to the contract’s destination

node (dk, k ∈ K). To each pre-existing contract k ∈ Ke is associated a known revenue

pk. To each contract k ∈ Kn is associated a random clearing price variable p̃k following a

normal distribution N(pk, σ
2
k).

Let O = {ok, k ∈ K} and D = {dk, k ∈ K} denote respectively the sets of contracts’

origin and destination nodes. Nodes 0 and N represent respectively the carrier’s start

and end depot. Hence, the problem is formally defined on a directed graph G = (V,A)

where V = O∪D∪{0, N} = V ∗∪{0, N} is the set of nodes and A is the set of arcs defined
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as: A = {(ok, dk), k ∈ K} ∪ {(0, i) : i ∈ O} ∪ {(i, j) : i = dk ∈ D, j = ok′ ∈ O : k, k′ ∈

K, k ̸= k′}∪{(j,N), j ∈ D}. To each arc are associated a travel cost cij and a travel time

tij. The carrier’s fleet is assumed homogeneous and is denoted by L = {1, . . . , |L|}. To

each vehicle is associated a fixed usage fee f and a maximum tour duration Tmax.

To model clearing prices uncertainty, a parameter α ∈ [0, 1] affects the probability of a

bid ask price to be larger than its clearing price. This parameter value is fixed by the

carrier and represents its aggressiveness in bidding. The larger is the value of α, the larger

are the bids ask prices are when compared to competitors and the more aggressive is the

carrier’s pricing strategy.

We define B = {1, . . . , |B|} as the set of indices of the different combinatorial non-

overlapping OR bids that could be generated by the carrier. Each bid is defined by a pair

(Kb, pb) where Kb ⊆ Kn denotes the set of auctioned contracts covered by a bid of index

b ∈ B and pb is the price asked by the carrier for serving all the contracts in Kb. Here,

it is important to mention that a first-price CA is considered implying that if the carrier

wins a bid of index b ∈ B then it must be paid a price pb to serve the set of auctioned

contracts Kb. Indeed, Kb and pb, b ∈ B are not known in advance and are determined by

solving the problem. A random variable C̃b is thus defined for each bid b ∈ B to represent

its clearing price.

3.1 Mathematical formulation

Hammami et al. (2021) propose a chance-constraint to model the SBCP above with five

sets of decision variables:
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xlij binary variables defined for each arc (i, j) ∈ A and vehicle l ∈ L; xlij = 1 if arc
(i, j) is traversed by vehicle l and zero otherwise,

zkb binary variables defined for each auctioned contract k ∈ Kn and bid of index
b ∈ B; zkb = 1 if k is part of bid of index b and zero otherwise,

wb binary variables for each bid of index b ∈ B; wb = 1 if bid of index b is selected
and zero otherwise,

Bi positive integer variables defined for each node i ∈ V indicating the order of
visiting node i,

pb positive continuous variables for each bid of index b ∈ B indicating the carrier’s
ask price for the bid of index b.

A chance-constrained mathematical model, denoted Mp, is then formulated as follows:

Mp : max
∑
k∈Ke

pk +
∑
b∈B

pbwb −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (1)

s.t. P (pbwb ≤ C̃b) ≥ 1− α ∀b ∈ B (2)∑
b∈B

zkb ≤ 1 ∀k ∈ Kn (3)

wb ≤
∑
k∈Kn

zkb ∀b ∈ B (4)

zkb ≤ wb ∀k ∈ Kn, b ∈ B (5)∑
l∈L

xlokdk =
∑
b∈B

zkb ∀k ∈ Kn (6)

wb ≤ wb−1 ∀b ∈ B \ {1} (7)

pb ≤ pb−1 ∀b ∈ B \ {1} (8)∑
l∈L

xlokdk = 1 ∀k ∈ Ke (9)

xlokdk ≤
∑
j∈O

xl0j ≤ 1 ∀l ∈ L, k ∈ K (10)

xlokdk ≤
∑
i∈D

xli,N ≤ 1 ∀l ∈ L, k ∈ K (11)

∑
j:(j,i)∈A

xlji =
∑

j:(i,j)∈A

xlij ∀l ∈ L, i ∈ V ∗ (12)
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∑
(i,j)∈A

tijx
l
ij ≤ Tmax ∀l ∈ L (13)

∑
l∈L

∑
(i,j)∈A

tijx
l
ij ≤ |L|Tmax (14)

Bi +
∑
l∈L

xlij − |V |

(
1−

∑
l∈L

xlij

)
≤ Bj ∀(i, j) ∈ A (15)

B0 = 0 (16)

xlokdk ≤
∑

k′∈K,k′≤k

x
(l−1)
ok′dk′

∀k ∈ K, l ∈ L \ {1} (17)

∑
j∈O

xl0j ≤
∑
j∈O

x
(l−1)
0j ∀l ∈ L \ {1} (18)

x1o1d1 = 1 (19)

xlij ∈ {0, 1} ∀(i, j) ∈ A, l ∈ L (20)

0 ≤ Bi ≤ |V | ∀i ∈ V (21)

zkb ∈ {0, 1} ∀b ∈ B, k ∈ Kn (22)

wb ∈ {0, 1} ∀b ∈ B (23)

pb ≥ 0 ∀b ∈ B. (24)

The objective function (1) maximizes the carrier’s net profit defined as the difference be-

tween the revenues collected from servicing the pre-existing contracts, the bidding prices,

the traveling costs and the fixed costs associated with the use of vehicles. Probabilistic

chance constraints (2) express a winning probability of (1− α) for each generated bid of

index b. Constraints (3) imply that each auctioned contract is allocated to at most one

bid. Constraints (4) and (5) link the variables wb and zkb so that a bid is generated if and

only if it covers at least one auctioned contract. Constraints (6) link routing variables xlij

to zkb variables. Constraints (7) and (8) are bids’ symmetry breaking constraints. Con-

straints (9) ensure that all pre-existing contracts are served exactly once. Constraints (10)

and (11) imply that each route starts and ends at the depot. Flow conservation is ensured

by constraints (12). Constraints (13) impose maximum route duration. Constraint (14) is
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imposed on the global duration of routes to strengthen the formulation (Bianchessi et al.,

2018; Hammami et al., 2020). Constraints (15) forbid sub-tours and impose an order for

visiting nodes. Constraint (16) implies that each route begins at the depot. Constraints

(17)–(19) are routing’s symmetry breaking constraints. Constraints (17) impose an order

for serving contracts. Constraints (18) imply that vehicle l is used if and only if vehicle

l − 1 is already used to break symmetry. Constraint (19) arbitrarily and without loss

of generality forces the first pre-existing contract to be assigned to the lowest indexed

vehicle. Finally, constraints (20)–(24) define the domain of the decision variables.

3.2 Model relaxation

Model Mp is not linear given the quadratic objective function (1) and the probabilistic

chance constraints (2). As observed by Hammami et al. (2021), linearizing the objective

function can be done by simply replacing the product pbwb by a continuous variable

ζb ≥ 0,∀b ∈ B and adding appropriate linking constraints. For chance constraints (2), like

in Triki et al. (2014) and Hammami et al. (2021), it is assumed that auctioned contracts’

prices are independent random variables and that the bid clearing price C̃b, b ∈ B can be

approximated as:

C̃b = Sb

∑
k∈Kb

p̃k = Sb

∑
k∈Kn

zkbp̃k ∀b ∈ B,

where Sb ∈ ]0, 1] denotes the estimated synergy value between the auctioned contracts

forming the bid package of index b ∈ B. The synergy factor Sb is computed so that the

lower its value, the larger is the degree of complementarity between the contracts covered

by bid b. We refer the reader to Hammami et al. (2021) for additional information on

synergy factors, how they can be estimated, and their impact on the auction outputs.

Given that auctioned contracts’ prices follow a normal distribution and using the inverse

cumulative distribution function for a standard normal distribution, denoted Φ−1, the
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probabilistic chance constraints (2) can be formulated as follows:

ζb − Sb

∑
k∈Kn

pkzkb ≤ SbΦ
−1(α)

√∑
k∈Kn

z2kbσ
2
k ∀b ∈ B. (25)

Constraints (25) are still not linear but were relaxed in Hammami et al. (2021) who

propose to bound this non-linear expression, yielding thus a relaxation of modelMp. Then,

an iterative solution method is proposed in which a relaxed and a restricted problem are

solved at each iteration to determine valid upper and lower bounds. The process iterates

until the upper and lower bounds are equal. In Hammami et al. (2021), the relaxed

constraints are valid in a context where α ≤ 1
2
and are given by:

ζb −
∑
k∈Kn

pkzkb ≤ Φ−1(α)σminwb ∀b ∈ B, (26)

where σmin = min{σk, k ∈ Kn}.

Choosing a value of α ≤ 1
2
was motivated by the fact that the carrier may incur a negative

profit if some of the bids it submitted are not won.

We propose to extend the same approach to the case where α ≥ 1
2
. In what follows, we

describe how constraints (25) can be relaxed when α ≥ 1
2
.

If α ≥ 1
2
, then Φ−1(α) ≥ 0. Given that 0 < Sb ≤ 1,∀b ∈ B, we have:

Sb

∑
k∈Kn

pkzkb ≤
∑
k∈Kn

pkzkb ∀b ∈ B

and

SbΦ
−1(α)

√∑
k∈Kn

z2kbσ
2
k ≤ Φ−1(α)

√∑
k∈Kn

z2kbσ
2
k ∀b ∈ B.
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Given constraints (22) and σk > 0,∀k ∈ Kn, we have:

∑
k∈Kn

(zkbσk)
2 ≤

(∑
k∈Kn

zkbσk

)2

∀b ∈ B.

Hence,

Φ−1(α)

√∑
k∈Kn

z2kbσ
2
k ≤ Φ−1(α)

∑
k∈Kn

zkbσk ∀b ∈ B.

Then, constraints (25) can be relaxed using the following linear constraints:

ζb ≤
∑
k∈Kn

pkzkb + Φ−1(α)
∑
k∈Kn

zkbσk ∀b ∈ B. (27)

4 Uncertainty on contracts materialization and bids

success

Model Mp enables generating multiple non-overlapping OR bids to maximize a global

expected net profit. However, there is no guarantee that a non-negative profit is obtained

if one or multiple submitted bids are not won or if the contracts submitted in a winning

bid do not materialize. This section presents the main concepts and models used by our

proposed solution approach to eliminate both risks. A formal description of the proposed

algorithm is given in Section 5.

4.1 Overview of the method to guarantee positive profit bids

When a combinatorial bid is won, all the contracts covered by the bids are generally

allocated to the carrier, if these contracts materialize. These contracts will be served

through one or multiple routes as modeled by constraints (9)–(21). Our idea is to add

constraints to model Mp that forbid generating what we call risky routes. A risky route
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is a route that is no longer profitable if any subset of its contracts is not awarded. These

constraints are referred to as Risky Routes (RR) constraints.

Considering RR constraints eliminates at the same time the risk of a negative profit when

a contract does not materialize or when a bid is not won. As will explained in Section 5,

RR constraints are dynamically added to model Mp during the solution process: at each

iteration, an extended Mp model (with additional RR constraints) is solved to optimality

and the current optimal candidate solution is evaluated. If the current solution includes

risky routes, the corresponding RR constraints are added. The process iterates until

identifying an optimal solution with no risky routes. We now explain how risky routes

are identified (Section 4.2), and how RR constraints are modeled and generated (Section

4.3).

4.2 Risky routes via stochastic constraint satisfaction

Let S = (w, p, z, ζ, x) denote a feasible solution of model Mp. Let R be the set of routes

associated with solution S. Let Kr denote the set of contracts covered by route r ∈ R,

and Ker (Knr) be the set of corresponding existing (auctioned) contracts. That is Kr =

Ker ∪Knr , where Ker = Ke ∩Kr and Knr = Kn ∩Kr. Route r ∈ R is considered as risky

if there is no sequence with a non-negative expected profit that can be generated to visit

only a subset of auctioned contracts in Knr .

To check if a given route r ∈ R is risky, we first enumerate all the different subsets of

contracts in Knr . There are 2
|Knr | such subsets in total. Let P(r) = {P1(r), . . . ,P2|Knr |

(r)

} denote the set of all these combinations. For example, if a route r serves the set of

contracts Kr = {k1, k2, k3, k4} where Ker = {k1} and Knr = {k2, k3, k4}, then, P(r) =

{∅, {k2}, {k3}, {k4}, {k2, k3}, {k2, k4}, {k3, k4}, {k2, k3, k4}}. Considering a subset Pu(r), u =

1, . . . , 2|Knr |, models the case where contracts in Knr \ Pu(r) are not awarded. Conse-

quently, if there exists u ∈ {1 . . . 2|Knr |} such that the optimal expected profit of serving

the contracts in Pu(r) is negative, then route r is risky and must be forbidden by adding

the corresponding RR constraints.
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We consider a stochastic Constraint SAtisfaction Problem (CSAP) for each subset of

P(r) associated with a route r ∈ R. The CSAP associated with subset Pu(r), u ∈

{1, . . . , 2|Knr |} checks if there exists a tour in which all the contracts in Pu(r) ∪Ker can

be served while ensuring a non-negative expected profit. This tour must be identified

on a graph Gu(r) = (V u(r), Au(r)), where the set of nodes V u(r) includes the two nodes

representing the depot, and all the origin and destination nodes in V corresponding to the

existing contracts covered by r and the auctioned contracts in Pu(r). Formally, V u(r) =

{0, N} ∪ {i : i = ok ∈ O and k ∈ Ke ∪ Pu(r)} ∪ {j : j = dk ∈ D and k ∈ Ke ∪ Pu(r)}.

The set of arcs Au(r) is the subset of arcs in A linking all the nodes in V u(r).

Uncertainty on contracts prices can be handled by generating plausible future scenarios

of contracts prices and considering the equivalent deterministic model. This is possible

since it is assumed that auctioned contracts prices are random variables and p̃k, k ∈ Kn

follows a normal distribution N(pk, σ
2
k). A scenario in this case is defined as a compound

event which is the result of the juxtaposition of random processes related to the different

contracts. Let Ω denote a set of scenarios. For a scenario ω ∈ Ω, the instance of the

auctioned contracts clearing prices is denoted pωk . We demonstrate how this can be handled

exactly without enumerating Ω.

The stochastic CSAP associated with subset u ∈ {1 . . . 2|Knr |} and scenarios in Ω is

modeled using two sets of decision variables:

χω
ij =1 if arc (i, j) ∈ Au(r) is traversed in scenario ω ∈ Ω; and χω

ij = 0; otherwise,
βω
i ≥ 0 and integer representing the order of visiting node i ∈ V u(r) for scenario

ω ∈ Ω,

and formulated with model Mu
s (r,Ω) as follows:

∑
k∈Ker

pk − f +
1

|Ω|
∑
ω∈Ω

 ∑
k∈Pu(r)

pωkχ
ω
okdk
−

∑
(i,j)∈Au(r)

cijχ
ω
ij

 ≥ 0 (28)

χω
okdk

= 1 ∀k ∈ Ker ∪ Pu(r), ω ∈ Ω (29)∑
k∈Ker∪Pu(r)

χω
0ok

= 1 ∀ω ∈ Ω (30)
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∑
k∈Ker∪Pu(r)

χω
dk,N

= 1 ∀ω ∈ Ω (31)

∑
j:(j,i)∈Au(r)

χω
ji =

∑
j:(i,j)∈Au(r)

χω
ij ∀i ∈ V u(r), ω ∈ Ω (32)

∑
(i,j)∈Au(r)

tijχ
ω
ij ≤ Tmax ∀ω ∈ Ω (33)

βω
i + χω

ij − 2(1 + |Ker ∪ Pu(r)|)(1− χω
ij) ≤ βω

j ∀(i, j) ∈ Au(r), ω ∈ Ω (34)

0 ≤ βω
i ≤ 2(1 + |Ker ∪ Pu(r)|) ∀i ∈ V u(r), ω ∈ Ω (35)

χω
ij ∈ {0, 1} ∀(i, j) ∈ Au(r), ω ∈ Ω. (36)

Constraint (28) imposes that the expected profit of the tour visiting all the contracts in

Pu(r) ∪ Ker is non-negative. Constraints (29) ensure that each contract of Ker ∪ Pu(r)

is served once. Constraints (30) and (31) ensure a route to start and end at the depot.

Flow conservation is ensured via constraints (32). Constraints (33) impose a maximum

route duration. Sub-tours are eliminated with constraints (34). Finally, constraints (35)

and (36) define the domain of decision variables.

Observe that auctioned contracts clearing prices pωk are only involved in constraints (28).

Given constraints (29), constraints (28) can be rewritten as :

∑
k∈Ker

pk − f +
∑

k∈Pu(r)

1

|Ω|
∑
ω∈Ω

pωk −
1

|Ω|
∑
ω∈Ω

∑
(i,j)∈Au(r)

cijχ
ω
ij ≥ 0.

Knowing that p̃k, k ∈ Kn follows a normal distribution N(pk, σ
2
k), we have:

∑
k∈Ker

pk − f +
∑

k∈Pu(r)

pk −
1

|Ω|
∑
ω∈Ω

∑
(i,j)∈Au(r)

cijχ
ω
ij ≥ 0.

The resulting Mu
s (r,Ω) model is then separable by scenario and all subproblems asso-

ciated with scenarios ω ∈ Ω have identical variables and constraints and thus identical

solutions. Hence to determine if the stochastic CSAP is feasible, one needs to solve a
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single deterministic model as follows:

∑
k∈Ker

pk − f +
∑

k∈Pu(r)

pk −
∑

(i,j)∈Au(r)

cijχij ≥ 0 (37)

χokdk = 1 ∀k ∈ Ker ∪ Pu(r) (38)∑
k∈Ker∪Pu(r)

χ0ok = 1 (39)

∑
k∈Ker∪Pu(r)

χdk,N = 1 (40)

∑
j:(j,i)∈Au(r)

χji =
∑

j:(i,j)∈Au(r)

χij ∀i ∈ V u(r) (41)

∑
(i,j)∈Au(r)

tijχij ≤ Tmax (42)

βi + χij − 2(1 + |Ker ∪ Pu(r)|)(1− χij) ≤ βj ∀(i, j) ∈ Au(r) (43)

0 ≤ βi ≤ 2(1 + |Ker ∪ Pu(r)|) ∀i ∈ V u(r) (44)

χij ∈ {0, 1} ∀(i, j) ∈ Au(r). (45)

4.3 Risky route constraints

If the CSAP associated with subset Pu(r), u ∈ {1, . . . , 2|Knr |} of a route r ∈ R is infeasible,

it implies that the new auctioned contracts of Pu(r) must not be visited by the same vehicle

route that serves exactly the same existing contracts as in Ker . This is ensured by adding

appropriate RR constraints to model Mp. The RR constraints associated with subset

Pu(r), u ∈ {1, . . . , 2|Knr |} of a route r ∈ R are formulated as:

∑
k∈Ker∪Pu(r)

xlokdk ≤ |Ker ∪ Pu(r)| − 1 +
∑

k∈Ke\Ker

xlokdk , l ∈ L. (46)

Observe that if
∑

k∈Ke\Ker
xlokdk = 0, constraints (46) reduce to:

∑
k∈Ker∪Pu(r)

xlokdk ≤ |Ker ∪ Pu(r)| − 1, l ∈ L,
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which avoids generating a route that serves exactly the same contracts as in Ker ∪Pu(r).

However, if
∑

k∈Ke\Ker
xlokdk ≥ 1, inequalities (46) are not binding since considering addi-

tional existing contracts requires reevaluating the route profitability.

Theorem 1. For a given route r, if |P(r)| ≥ 2 then for all u, u′ ∈ {1, . . . , 2|Knr |} such

that u ̸= u′ and Pu(r) ⊂ Pu′
(r), the RR constraint associated with Pu′

(r) is dominated by

the RR constraint associated with Pu(r).

Proof. Our proof consists in showing that if the RR constraints associated with Pu(r) are

satisfied then the RR constraints associated with Pu′
(r) are also satisfied.

The RR constraints associated with Pu(r) are given by:

∑
k∈Ker∪Pu(r)

xlokdk ≤ |Ker ∪ Pu(r)| − 1 +
∑

k∈Ke\Ker

xlokdk , l ∈ L.

Given that Pu(r) ⊂ Pu′
(r), we have:

∑
Ker∪Pu′ (r)

xlokdk ≤ |Ker ∪ Pu(r)| − 1 + |Pu′
(r) \ Pu(r)|+

∑
k∈Ke\Ker

xlokdk , l ∈ L

and

|Ker ∪ Pu(r)| − 1 + |Pu′
(r) \ Pu(r)| = |Ker ∪ Pu′

(r)| − 1.

It follows that:

∑
k∈Ker∪Pu′ (r)

xlokdk ≤ |Ker ∪ Pu′
(r)| − 1 +

∑
k∈Ke\Ker

xlokdk , l ∈ L,

which correspond to the RR constraints associated with Pu′
(r).
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5 Exact solution approach

Our solution approach extends that of Hammami et al. (2021) to eliminate risks related

to contracts materialization and bids success. We also adapt their approach to the case

where the parameter α is larger than 1
2
which would be an interesting alternative for a

carrier given a guarantee of non-negative profits independently of the auction outcomes.

In the following, we roughly recall the main steps of the exact algorithm proposed by

Hammami et al. (2021) and the way we adapt it to consider an α > 1
2
(Algorithm 1).

Then, we describe our new algorithm to handle risks (Algorithm 2).

At each iteration of Algorithm 1, valid lower and upper bounds (denoted respectively

LB and UB) are updated by solving appropriate restricted and relaxed problems. The

relaxed and restricted problems formulations are given respectively in A and B. The

process iterates until LB = UB or a time limit is met. At each iteration, a relaxed

problem (Mp(B)) is solved for which the relaxed constraints, (27) for α ≥ 1
2
and (26) for

α < 1
2
, are considered instead of chance constraints (25). For each solution of Mp(B),

denoted (w0, p0, z0, ζ0, x0), Algorithm 1 computes for each generated bid of index b ∈ B

the associated synergy value Sb as described in Hammami et al. (2021). Recall that B

represents the set of indices of different bids that could be generated, two bids being

different if they do not cover the same set of contracts. Afterwards, Algorithm 1 verifies

if the chance constraint (25) associated with the bid of index b ∈ B is violated. If so,

it generates a bid of index b covering the same auctioned contracts as the bid of index b

and updates the set of indices of partial bids B. To avoid generating the same bids (i.e.,

bids that cover the same package of contracts), no-good cuts are added to the relaxed

problems. A new restricted problem, denoted by Mp(B), is obtained by restricting the

set of bids of Mp to B (for which the covered contracts are known) and considering the

corresponding chance constraints (25).

To handle risks on contracts materialization and bids success, we adapt Algorithm 1

by modifying the relaxed and restricted problems Mp(B) and Mp(B) (lines 3 and 15

Combinatorial Bids Generation in Truckload Transportation Procurement Auctions with Uncertainty on Clearing Prices, Bids 
Success and Contracts Materialization

20 CIRRELT-2021-42



Algorithm 1 General structure of the exact solution method for the SBCP

1: B← ∅; LB ← −∞; UB ← +∞
2: while a time limit is not met and LB < UB do
3: UB ← Solve Mp(B)
4: for each feasible solution (w0, p0, z0, ζ0, x0) of Mp(B) do
5: for each generated bid of index b ∈ B deduced from (w0, p0, z0, ζ0, x0) do
6: Compute the corresponding synergy value Sb

7: if ζ0b > Sb

(∑
k∈Kn

pkz
0
kb + Φ−1(α)

√∑
k∈Kn

z0kbσ
2
k

)
then

8: Generate a new bid b such that Kb = Kb without fixing its price
9: B← B ∪ {b}

10: Add to Mp(B) no-good cuts (52) to forbid regenerating bid b
11: Add to Mp(B) the chance constraint (64) corresponding to bid b
12: end if
13: end for
14: end for
15: LB ← Solve Mp(B)
16: end while

of Algorithm 1) so that risky routes are not accepted. The proposed modification is

described in Algorithm 2. In sum, model Mp(B) is first solved by branch-and-cut. Then,

for each route r generated in its optimal solution S = (w, p, z, ζ, x), Algorithm 2 checks if

route r is risky or not as described in Section 4. If route r is risky, all the corresponding

non-dominated RR constraints (as described in Section 4.3) are added to Mp(B) and

Mp(B). RR cuts are added until all the routes generated in S are checked. If at least one

RR cut is added to model Mp(B), the resulting extended model is solved again.

Observe that ordering the set of auctioned contracts combinations in P(r) (line 21) and

updating it (line 26) enables generating non-dominated cuts as explained in Section 4.3.

Proposition 1 hereafter establishes the convergence of Algorithm 2.

Proposition 1. Algorithm 2 always identifies optimal OR bids ensuring a non-negative

profit for the carrier, independently of contracts materialization or auction outcomes,

provided that a solution exists for the carrier existing network in which all the routes

serving exclusively the existing contracts have a non-negative profit.

Proof. Adding RR constraints to the restricted model Mp(B) and to the relaxed model
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Algorithm 2 General structure of the exact solution method for the SBCP with risks
elimination

1: B← ∅; LB ← −∞; UB ← +∞
2: while a time limit is not met and LB < UB do
3: UB ← Solve Mp(B)
4: for each feasible solution (w0, p0, z0, ζ0, x0) of Mp(B) do
5: for each generated bid of index b ∈ B deduced from (w0, p0, z0, ζ0, x0) do
6: Compute the corresponding synergy value Sb

7: if ζ0b > Sb

(∑
k∈Kn

pkz
0
kb + Φ−1(α)

√∑
k∈Kn

z0kbσ
2
k

)
then

8: Generate a new bid b such that Kb = Kb without fixing its price
9: B← B ∪ {b}

10: Add to Mp(B) no-good cuts (52) to forbid regenerating bid b
11: Add to Mp(B) the chance constraint (64) corresponding to bid b
12: end if
13: end for
14: end for
15: LB ← Solve Mp(B)

16: Let S = (w, p, z, ζ, x) be its optimal solution
17: Define the set R of routes associated with S (Section 4.2)
18: for each route r ∈ R do
19: Determine the set P(r) associated with r (Section 4.2)
20: while P(r) ̸= ∅ do
21: Order the elements of P(r) in an ascending order with respect to their size
22: Let Pu(r) denote the first element of P(r)
23: Solve the CSAP associated with subset Pu(r) (Section 4.2)
24: if CSAP is infeasible then
25: Add the RR cut (46) associated with Pu(r) to modelsMp(B) andMp(B)

26: Remove from P(r) all the subsets including all elements of Pu(r)
27: end if
28: end while
29: end for
30: if at least one RR cut is added then
31: Solve the extended model Mp(B) (with RR cuts)
32: end if
33: end while

Mp(B) at each iteration forbids generating routes with a negative profit. Either these

routes cover exclusively existing contracts (when Pu(r) = ∅), or both existing and new

auctioned contracts. Assuming that an initial solution, say Se, exists for the carrier

existing network in which all the routes serving exclusively the existing contracts have a
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non-negative profit, implies that the extended modelsMp(B) andMp(B) incorporating all

non-dominated RR constraints are always feasible. Indeed, at worst, the set of generated

bids B would be empty and a solution would be Se.

6 Experimental study

Our experimental study has two main goals. First, we evaluate the performance of Al-

gorithms 1 and 2 in terms of computing time and solution quality. Second, we study

the merits/drawbacks of incorporating the risk elimination procedure on the carrier ex-

pected and real profits. This is done by comparing two contexts: one where the risks

associated with bids success and contracts materialization are eliminated, referred to as

a risk-averse bidding, and another where such risks are permitted, referred to as a risky

bidding. Observe that in a risk-averse context, bids are generated with Algorithm 2.

They are generated with Algorithm 1 in a risky context. For each context, we consider

two strategies for fixing bids prices: a conservative pricing strategy where the param-

eter α is relatively small, and an aggressive one where it is large. Combining the two

risk-behavior bidding contexts and the two pricing strategies enables considering different

carriers profiles.

Our experimental study considers 23 problem tests obtained by varying the auctioned con-

tracts (Kn), the carrier’s existing contracts (Ke), its fleet size (|L|) and the fixed vehicles’

fees (f). Contracts origins and destinations are defined from a list of existing cities from

Canada. Traveling times (tij) and costs (cij) associated with arcs (i, j) ∈ A are generated

using Google Maps features. For each problem test, the maximum route duration Tmax is

set to 1,500 (time units). The revenue associated with each existing contract k ∈ Ke and

the mean value pk of the normal distribution function associated with auctioned contracts

k ∈ Kn clearing prices are uniformly generated within the interval [1.5× cokdk , 2× cokdk ].

For each auctioned contract k ∈ Kn, the standard deviation σk is set to 15%pk. Synergy

factors Sb are computed as in Hammami et al. (2021) by considering pairwise synergies
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within [0.01, 1.00].

Each problem test is solved for two values of the parameter α: 5% and 95%. All the

instances are solved to optimality using our exact method implemented in Java. The

mathematical models of the relaxed, the restricted and the constraint satisfaction prob-

lems are solved using the branch-and-cut procedure of CPLEX 20.10. All experiments

were conducted on computers mounted in parallel and equipped with Intel(R) Xeon(TM)

Gold 6148 processors clocked at 2.40 GHz and 186 Gigabyte of RAM.

6.1 Computational performance of Algorithms 1 and 2

Table 1 describes the instances characteristics (the number of vehicles (|L|), the vehicle’s

fixed fee (f), the number of existing contracts (|Ke|) and the number of auctioned con-

tracts (|Kn|)) and reports for each instance, the total CPU time in seconds required by

each algorithm and each pricing strategy (α = 5% and 95%). Table 1 also displays the

number of RR cuts generated when Algorithm 2 is considered.

Table 1: Computing times of Algorithms 1 and 2

Pricing Conservative (α = 5%) Aggressive (α = 95%)
Instance characteristics Risky (Algorithm 1) Risk-averse (Algorithm 2) Risky (Algorithm 1) Risk-averse (Algorithm 2)
# |L| f |Ke| |Kn| CPU CPU Cuts CPU CPU Cuts
1 2 500 10 20 6671.34 9918.73 296 3697.05 5969.20 294
2 2 750 10 20 3946.16 4402.51 0 4156.01 4203.74 0
3 3 500 10 20 10046.63 10346.68 0 3169.58 3200.04 0
4 3 750 10 20 10368.60 10528.84 0 6998.35 7035.73 0
5 4 500 10 20 8924.64 9556.08 0 2766.14 2769.10 0
6 4 750 10 20 10059.79 10849.58 0 6859.02 6920.14 0
7 3 500 15 15 4.89 5.77 0 4.80 10.17 0
8 3 750 15 15 8.11 11.38 0 5.57 8.94 0
9 4 500 15 15 120.34 1027.27 424 123.24 21904.05 2744
10 4 750 15 15 42.18 5317.72 2288 164.24 113067.49 3680
11 5 500 15 15 2779.57 2967.33 0 2464.82 24218.51 1885
12 5 750 15 15 16750.25 20415.34 1025 3490.43 5413.37 2260
13 6 500 15 15 987.45 1053.46 0 808.29 2506.12 2070
14 6 750 15 15 170.66 11644.34 906 1074.34 13991.63 3042
15 4 500 15 20 2706.78 71245.00 1236 2333.56 109854.66 1864
16 4 750 15 20 3545.35 42964.93 1272 1349.18 29540.51 1444
17 5 750 20 15 332.80 1867.43 635 952.20 2926.84 675
18 6 500 20 15 128.12 259.85 0 879.93 23952.92 1254
19 4 500 15 25 75.28 266.60 32 40.90 320.07 36
20 4 750 15 25 130.38 201.01 0 52.99 447.44 0
21 5 500 20 20 103.89 367.22 25 142.10 436.48 25
22 5 750 20 20 139.73 258.43 10 110.31 571.41 30
23 6 750 25 20 16229.84 56842.39 282 5975.53 48393.96 396

Average 4098.82 11839.81 367 2070.37 18594.02 943

The results of Table 1 clearly show that ensuring a non-negative profit for the carrier
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independently of the auction outcomes and the contracts materialization (Algorithm 2)

comes at the expense of computing times yielding an increase that averages 2.15 hours

for α = 5% and 4.59 hours for α = 95% when compared to Algorithm 1. This increase is

particularly significant when the number of RR cuts is relatively large. As one can notice,

considering an aggressive pricing strategy (α = 95%) results in a larger number of RR cuts

implying that risky routes are more likely to be generated when the carrier fixes bidding

prices more aggressively. When no cuts are added, this implies that the solutions obtained

from Algorithm 1 are already “safe” and their safety is established with Algorithm 2. This

was observed for 11 instances if α = 5% and 8 instances if α = 95%. For these instances,

the increase in CPU times yielded by Algorithm 2 compared to Algorithm 1 is relatively

small: 254 seconds, respectively, 73 seconds, in average for α = 5%, respectively, α = 95%.

Table 2 displays the solutions obtained by Algorithms 1 and 2, or equivalently the risky

and the risk-averse bidding contexts, for the different pricing strategies (values of α).

It reports for each instance, each bidding context (algorithm), and each pricing strat-

egy (value of α), the maximum expected profit (under the columns Profit) that could

be obtained by the carrier if all the bids generated by the corresponding algorithm

are won. Table 2 also reports for each bidding context, the number of generated bids

(|B∗|) and the total number of auctioned contracts to bid on (|K(B∗)|). The last col-

umn (Gapp) displays the relative difference between the two maximum profit’s values(
Gapp(%) = Profit(risky)−Profit(risk−averse)

Profit(risky)

)
. It is noteworthy that the results of the in-

stances for which no RR cuts were generated are identical since both contexts give exactly

the same solutions. We display them to analyze the impact of the pricing strategy (value

of α) on the maximum expected profit.

The results of Table 2 first show that the number of generated bids, their structures and

the maximum profit they could generate vary, sometimes substantially, with the bidding

context. Given that the risk-averse context is more restrictive than the risky context, it

was predictable that the maximum profit generated by Algorithm 1 would be at least as

large as that yielded by Algorithm 2. Although the gap in profits could be relatively large
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Table 2: SBCP solutions for the different contexts and pricing strategies

Pricing Conservative (α = 5%) Aggressive (α= 95%)
Context Risky (Algorithm 1) Risk-averse (Algorithm 2) Risky (Algorithm 1) Risk-averse (Algorithm 2)
Instance Profit |B∗| |K(B∗)| Profit |B∗| |K(B∗)| Gapp Profit |B∗| |K(B∗)| Profit |B∗| |K(B∗)| Gapp

1 580 4 7 571 3 9 1.55 1130 6 8 1067 5 9 5.58
2 875 4 10 875 4 10 0.00 1447 5 8 1447 5 8 0.00
3 1078 3 8 1078 3 8 0.00 1600 5 8 1600 5 8 0.00
4 847 5 8 847 5 8 0.00 1493 7 8 1493 7 8 0.00
5 701 4 10 701 4 10 0.00 1302 5 7 1302 5 7 0.00
6 901 4 9 901 4 9 0.00 1382 6 9 1382 6 9 0.00
7 753 1 2 753 1 2 0.00 981 2 2 981 2 2 0.00
8 499 1 1 499 1 1 0.00 644 1 2 644 1 2 0.00
9 1059 3 7 961 1 1 9.25 2515 7 7 2082 6 6 17.22
10 369 1 1 136 1 1 63.14 817 5 7 514 3 5 37.09
11 1087 1 1 1087 1 1 0.00 1995 5 7 1809 4 6 9.32
12 723 1 1 723 1 1 0.00 1062 4 6 1004 1 1 5.46
13 1483 1 1 1483 1 1 0.00 2072 4 6 2072 4 6 0.00
14 783 1 1 783 1 1 0.00 1242 5 6 1064 1 1 14.33
15 1068 2 6 925 2 7 13.39 1706 3 7 1377 4 6 19.28
16 1129 3 5 968 3 6 14.26 1956 4 7 1560 5 6 20.25
17 1795 3 7 1795 3 7 0.00 2580 4 7 2580 4 7 0.00
18 1845 1 5 1845 1 5 0.00 2295 2 7 2233 3 7 2.70
19 749 2 3 488 1 3 34.85 1130 2 3 794 2 3 29.73
20 876 2 3 876 2 3 0.00 1151 3 3 1151 3 3 0.00
21 694 1 3 438 1 1 36.89 942 2 3 440 1 1 53.29
22 470 2 3 407 1 2 13.40 770 2 3 502 1 2 34.81
23 1440 3 7 1409 3 6 2.15 2217 3 7 2164 3 6 2.39

Average 948 2.30 4.74 893 2.09 4.48 8.21 1497 4.00 6.00 1359 3.52 5.17 10.93

for certain problem tests (reaching 63% for problem test 10 with α = 5%, for example),

it is relatively small (less than 3%) for eight instances in total when considering both the

conservative and aggressive pricing strategies. For four of these instances, both algorithms

yielded the same profits although RR cuts were added by Algorithm 2. This means that

Algorithm 2 rearranged the contracts selected by Algorithm 1 among routes so that a

non-negative profit is ensured even if one or multiple contracts do not materialize.

The results of Table 2 also show that adopting an aggressive pricing strategy rather than

a conservative one yields larger maximum profits with an average increase of 61.21%

when considering the bids generated in a risky context and 60.74% when considering

those generated in a risk-averse context. However, observe that it might be too risky

for a carrier to consider an aggressive pricing strategy (α = 95%) without having the

guarantee of a non-negative profit in case one or more submitted bids are not won. In

practice, a moderately risky behavior consists in either: (i) adopting a risky bidding (i.e.,

use Algorithm 1) coupled with a conservative pricing strategy (i.e., a low value of α) to

increase the chance of winning the submitted bids but with the risk to incur monetary
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losses if the bids are not won, or (ii) using a risk-averse bidding (Algorithm 2) with an

aggressive pricing strategy (i.e., a large value of α) yielding substantially larger profits

but with less guarantee that the price asked in the submitted bids would be sufficiently

low to win the submitted bids but knowing that there is no risk of monetary losses if bids

are not allocated. When comparing the maximum expected profits yielded by these two

alternatives, the second one (Algorithm 2 with α = 95%) yields larger profits for almost

all the instances (22 over 23) with an average relative increase of 42.57% and a maximum

increase of 96.60%.

When analyzing the results of Table 2, one should keep in mind that the profits reported

correspond to those that could be won by the carrier if all the generated bids are won after

the auction clears. In practice, it is not likely that the carrier wins all of its submitted

bids. In the next section we analyze the impact of a risk-averse bidding on the carrier’s

effective profit for the instances where it yields lower maximum expected profits than a

risky bidding for the same pricing strategy (instances for which Gapp > 0% in Table 2).

6.2 Effective profits for the risk-averse and the risky bidding

contexts

For each instance, we simulate all the possible scenarios of bids success and determine the

profit effectively realized by the carrier for each scenario and each bidding context. For

example, if we consider problem test 1, four combinatorial bids are generated when a risky

bidding is used (|B∗| = 4 in Table 2). In this case, 15 different scenarios for bids success

are possible: (i) none of the bis are won (in this case, the effective profit corresponds to

that of the carrier existing network), (ii) only one bid is won (four possible scenarios), (ii)

two bids are won (six possible scenarios), (iii) three bids are won (three possible scenarios),

and (iv) all the bids are won (in this case, the effective profit corresponds to the maximum

expected profit reported in Table 2 for Algorithm 1).

Table 3 summarizes the results obtained for each bidding context and each pricing strat-
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egy. Scenarios of bids success are grouped over all the problem tests with regard to the

number of bids won (column Bids won). For each line, the first three columns associ-

ated with each bidding context report the average (PAvg), minimum (PMin) and maxi-

mum (PMax) profits effectively realized by the carrier over all the scenarios and all the

problem tests. Observe that the results corresponding to the scenarios where none of

the generated bids are won are not reported since both bidding contexts yield a profit

equal to the carrier initial profit in its existing network. Table 3 also reports, under the

columns Dec, the number of times there is a decrease in the carrier’s profit with regard

to its initial profit (the profit realized when serving only the existing contracts). For the

risky bidding context, we additionally display the number of times the carrier’s profit

is negative (column Neg). Recall that this may only happen for the risky bidding con-

text and never for the risk-averse one. Finally, the last four columns of Table 3 report

the relative difference (in percentage) between the average (SAvg), minimum (SMin) and

maximum (SMax) profits when comparing the risk-averse context to the risky bidding

one
(

V alue(risk−averse)−V alue(risky)
V alue(risk−averse)

)
as well as the absolute difference (SDec) between the

number of times there is a decrease in the profit with regard to the existing network

(Dec(risk− averse)−Dec(risky)). Detailed results for each problem test are given in C

(Table 4 for α = 5% and Table 5 for α = 95%).

Table 3: Effective profits for the different scenarios of bids success obtained with Algorithms 1
and 2

Context Risky (Algorithm 1) Risk-averse (Algorithm 2) Saving/loss
Conservative pricing (α = 5%)

Bids won PAvg PMin PMax Dec Neg PAvg PMin PMax Dec SAvg SMin SMax SDec

1 440.05 -2.00 1198.00 5 1 497.00 112.00 1137.00 1 11.46 101.79 -5.36 -4
2 635.72 1.00 1424.00 3 0 709.90 199.00 1212.00 0 10.45 99.50 -17.49 -3
3 738.00 143.00 1440.00 0 0 982.67 571.00 1409.00 0 24.90 74.96 -2.20 0
4 580.00 580.00 580.00 0 0 – – – – – – – –

Aggressive pricing (α = 95%)
Bids won PAvg PMin PMax Dec Neg PAvg PMin PMax Dec SAvg SMin SMax SDec

1 492.70 -628.00 2188.00 16 10 644.55 1.00 1840.00 8 23.56 62900.00 -18.91 -8
2 521.12 -560.00 2295.00 39 15 765.32 67.00 2187.00 12 31.91 935.82 -4.94 -27
3 739.45 -385.00 2217.00 17 9 987.54 269.00 2233.00 0 25.12 243.12 0.72 -17
4 1045.42 -6.00 1956.00 1 1 1244.22 505.00 1809.00 0 15.98 101.19 -8.13 -1
5 1461.26 568.00 2100.00 0 0 1590.50 1067.00 1908.00 0 8.13 46.77 -10.06 0
6 1946.37 1130.00 2274.00 0 0 2082.00 2082.00 2082.00 0 6.51 45.73 -9.22 0
7 2515.00 2515.00 2515.00 0 0 – – – – – – –
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The results of Table 3 show that the trend is reversed in comparison to Table 2 when real

profits associated with the two bidding contexts are compared for the different scenarios

of bids success: a risk-averse bidding results in an average profit that is always larger than

that obtained with a risky one. One should notice, however, that such comparison is only

possible for the scenarios where the value of the number of bids won is possible for both

contexts (this value must be lower than or equal to the the number of bids generated

in the two contexts). Moreover, a risky bidding yielded a negative profit once when a

conservative pricing strategy is considered and 35 times when an aggressive pricing is

rather adopted. Finally, a risk-averse bidding results in a decrease in profits with regard

to the initial existing network for 21 instances in total compared to 81 instances for the

risky bidding context.

In summary, our experimental study shows that even though at first glance a risk-averse

bidding context requires larger CPU times to generate no-risky bids and yields lower

maximum expected profits when compared to a risky bidding context, it generally results

in larger real profits when different scenarios of bids success are simulated. While a risky

context may yield negative profits for 36 scenarios and monetary losses with regard to the

initial profit for 81 scenarios, a risk-averse bidding ensures a non-negative profit for all the

scenarios and yields monetary losses for only 21 scenarios. Besides, it is noteworthy that

the decrease in the maximum expected profit is observed for the same pricing strategy.

These results should thus be interpreted with some restraint since each bidding context

should be combined with an appropriate pricing strategy to illustrate more realistically

a bidding behavior of a carrier: in practice, it is unlikely that a carrier adopts a risky

bidding with an aggressive pricing thus taking a very big risk of losing its bids and

incurring monetary losses. It is also less likely that a carrier chooses a risk-averse bidding

with a conservative pricing strategy if it has the guarantee of a non-negative profit even

if its bids are not won.
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7 Conclusion

This paper addresses a new variant of the Bid Construction Problem (BCP) with stochas-

tic clearing prices for transportation services procurement in combinatorial auctions. It

extends previous works on stochastic BCP by proposing an exact method that ensures a

non-negative profit for the carrier regardless of the combinatorial OR bids effectively won

and the auctioned contracts that effectively materialize. To the best of our knowledge, our

paper is the first to address such a problem. Our experimental results show that for both

conservative and aggressive pricing strategies that could be adopted by the carrier, our

new bid construction procedure yields on average larger effective profits when different

scenarios of bids success are simulated than a procedure where risks on bids loss are not

handled.

The approach we propose is conservative in the sense that the risks of a negative profit

yielded by contracts non-materialization or loss are eliminated. An interesting research

avenue would be to conceive a less conservative approach where contracts materialization

are modeled as random variables with known probability distribution functions.
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A Relaxed problem

The relaxed model Mp(B) is given by:

Mp(B) : max
∑
k∈Ke

pk +
∑

b∈B∪B

ζb −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (47)

s.t. (4)−(5), (7)−(22) and to

ζb ≤ Sb

∑
k∈Kn

pkδkb + Φ−1(α)

√∑
k∈Kn

δkbσ2
k

 ∀b ∈ B (48)

(26) if α ≤ 1

2

(27) if α >
1

2∑
b∈B∪B

wb ≤ γ (49)

∑
b∈B

zkb +
∑
b∈B

δkbwb ≤ 1 ∀k ∈ Kn (50)

∑
l∈L

xlokdk =
∑
b∈B

zkb +
∑
b∈B

δkbwb ∀k ∈ Kn (51)

∑
k∈Kn:
δkb′=0

zkb +
∑
k∈Kn:
δkb′=1

(1− zkb) ≥ 1 ∀b ∈ B, b′ ∈ B (52)

ζb ≤Mwb ∀b ∈ B ∪B (53)

ζb ≤ pb ∀b ∈ B ∪B (54)

pb +M(wb − 1) ≤ ζb ∀b ∈ B ∪B (55)∑
b∈B

wb + ψ ≥ 1 (56)∣∣∣B∗
∣∣∣ (ψ − 1) ≤

∑
b∈B∗

wb −
∣∣∣B∗

∣∣∣ (57)

∑
b∈B∗

wb −
∣∣∣B∗

∣∣∣ ≤ (∣∣∣B∗
∣∣∣− γ) (ψ − 1) (58)

∑
b∈B\B∗

wb ≤ γ (1− ψ) (59)
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ψ ∈ {0, 1} (60)

pb ≥ 0 ∀b ∈ B ∪B (61)

ζb ≥ 0 ∀b ∈ B ∪B. (62)

Constraints (56)–(60) are accelerating constraints. Here, setB
∗
contains the indices of the

selected bids in the previous iteration of the algorithm (previous call to this model). B
∗

is initially empty. Observe that acceleration constraints (56)–(60) impose that if no bid of

index b ∈ B is selected (i.e., all wb = 0) then the bids of indices b ∈ B
∗
= {b ∈ B : w∗

b
= 1}

of the previous iteration (best solution so far) gets selected because ψ = 1 in (56).

B Restricted problem

We define a restricted problem as a CSPP for which a set of indices of partial bids,

denoted by B, is known by the auctioned contracts that form it but not the associated

price. Hence, ∀b, b′ ∈ B : b ̸= b′, Kb ̸= Kb′ where Kb denotes the set of auctioned contracts

covered by a bid of index b.

Let δkb a set of binary parameters defined for each auctioned contract k ∈ Kn and each

partial bid of index b ∈ B: δkb = 1 if contract k ∈ Kn is generated within a bid of index

b ∈ B, and δkb = 0 otherwise. As in Hammami et al. (2021), we assume that partial bids

are sorted in an ascending order and the lowest partial bid index is denoted bmin. The

restricted model, denoted by Mp, can be formulated as follows:

Mp : max
∑
k∈Ke

pk +
∑
b∈B

ζb −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (63)

s.t. (9)−(21), and to

ζb ≤ Sb

∑
k∈Kn

pkδkb + Φ−1(α)

√∑
k∈Kn

δkbσ2
k

 ∀b ∈ B (64)
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∑
b∈B

δkbwb ≤ 1 ∀k ∈ Kn (65)

wb ≤ wb−1 ∀b ∈ B \ {bmin} (66)

pb ≤ pb−1 ∀b ∈ B \ {bmin} (67)∑
l∈L

xlokdk =
∑
b∈B

δkbwb ∀k ∈ Kn (68)

ζb ≤Mwb ∀b ∈ B (69)

ζb ≤ pb ∀b ∈ B (70)

pb +M(wb − 1) ≤ ζb ∀b ∈ B (71)

wb ∈ {0, 1} ∀b ∈ B (72)

pb ≥ 0 ∀b ∈ B (73)

ζb ≥ 0 ∀b ∈ B. (74)

C Detailed simulation results

Tables 4 and 5 summarize the results obtained when the parameter α = 5% and α =

95%, respectively. For each problem test, scenarios of bids success are grouped with

regard to the number of bids won (column Bids won) and the columns corresponding to

each line and each context report the average (PAvg), minimum (PMin) and maximum

profit (Pmax) effectively realized by the carrier for these scenarios. Observe that the

results corresponding to scenarios where none of this bids are won are not reported since

both contexts yield a profit equal to the carrier initial profit in its existing network.

Tables 4 and 5 also report, under the columns Dec, the number of times, for each group

of scenarios (line), there is a decrease in the carrier’s profit with regard to its initial

profit (the profit realized when serving only the existing contracts). For Algorithm 1, we

additionally display the number of times the carrier’s profit is negative (column Neg).

Recall that this may happen for Algorithm 1 but never for Algorithm 2. Finally, the last

four columns of Tables 4 and 5 report the relative difference (in percentage) between the
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average (SAvg), minimum (SMin) and maximum (SMax) profits when comparing Algorithm

2 to Algorithm 1
(

V alue(Risk−averse)−V alue(Risky)
V alue(Risk−averse)

)
and the absolute difference (SDec) between

the number of times there is a decrease in the profit with regard to the existing network

(Dec(Risk − averse)−Dec(Risky)).

Table 4: Impact on profits for the different scenarios of bids success for α = 5%

Ins
Context Risky (Algorithm 1) Risk-averse (Algorithm 2) Saving/loss (%)
Bids won PAvg PMin PMax Dec Neg PAvg PMin PMax Dec SAvg SMin SMax SDec

1

1 161.00 -2.00 456.00 1 1 176.00 112.00 290.00 0 9.32 5700.00 -36.40 -1
2 261.33 1.00 456.00 1 0 345.33 199.00 481.00 0 32.14 19800.00 5.48 -1
3 384.50 143.00 577.00 0 0 571.00 571.00 571.00 0 48.50 299.30 -1.04 0
4 580.00 580.00 580.00 0 0 – – – – – – – 0

9
1 321.33 68.00 665.00 2 0 961.00 961.00 961.00 0 199.07 1313.24 44.51 -2
2 571.33 527.00 637.00 2 0 – – – – – – – -2
3 1059.00 1059.00 1059.00 0 0 – – – – – – – 0

10 1 369.00 369.00 369.00 0 0 136.00 136.00 136.00 0 -63.14 -63.14 -63.14 0

15
1 444.00 131.00 757.00 1 0 605.00 371.00 839.00 0 36.26 183.21 10.83 -1
2 1068.00 1068.00 1068.00 0 0 925.00 925.00 925.00 0 -13.39 -13.39 -13.39 0

16
1 548.67 398.00 641.00 0 0 484.33 339.00 607.00 0 -11.73 -14.82 -5.30 0
2 838.00 714.00 987.00 0 0 730.33 673.00 823.00 0 -12.85 -5.74 -16.62 0
3 1129.00 1129.00 1129.00 0 0 968.00 968.00 968.00 0 -14.26 -14.26 -14.26 0

19
1 386.50 340.00 433.00 0 0 488.00 488.00 488.00 0 26.26 43.53 12.70 0
2 749.00 749.00 749.00 0 0 – – – – – – – 0

21 1 694.00 694.00 694.00 0 0 438.00 438.00 438.00 0 -36.89 -36.89 -36.89 0

22
1 336.00 240.00 432.00 0 0 407.00 407.00 407.00 0 21.13 69.58 -5.79 0
2 470.00 470.00 470.00 0 0 – – – – – – – 0

23
1 863.67 542.00 1198.00 1 0 777.00 419.00 1137.00 1 -10.03 -22.69 -5.09 0
2 1120.00 820.00 1424.00 0 0 982.33 616.00 1212.00 0 -12.29 -24.88 -14.89 0
3 1440.00 1440.00 1440.00 0 0 1409.00 1409.00 1409.00 0 -2.15 -2.15 -2.15 0
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Table 5: Impact on profits for the different scenarios of bids success for α = 95%

Ins
Context Risky (Algorithm 1) Risk-averse (Algorithm 2) Saving/loss (%)
Bids won PAvg PMin PMax Dec Neg PAvg PMin PMax Dec SAvg SMin SMax SDec

1

1 233.50 43.00 627.00 0 0 265.00 111.00 627.00 0 13.49 158.14 0.00 0
2 402.33 144.00 758.00 0 0 444.70 103.00 758.00 0 10.53 -28.47 0.00 0
3 542.20 166.00 968.00 0 0 607.80 269.00 909.00 0 12.10 62.05 -6.10 0
4 714.53 332.00 1026.00 0 0 802.20 505.00 916.00 0 12.27 52.11 -10.72 0
5 880.67 568.00 1126.00 0 0 1067.00 1067.00 1067.00 0 21.16 87.85 -5.24 0
6 1130.00 1130.00 1130.00 0 0 – – – – – – – 0

9

1 578.29 50.00 1251.00 4 0 633.50 50.00 1251.00 3 9.55 0.00 0.00 -1
2 689.95 238.00 1309.00 9 0 711.33 288.00 1309.00 7 3.10 21.01 0.00 -2
3 985.71 474.00 1429.00 1 0 994.05 637.00 1429.00 0 0.85 34.39 0.00 -1
4 1313.29 898.00 1633.00 0 0 1326.87 995.00 1630.00 0 1.03 10.80 -0.18 0
5 1661.90 1321.00 2100.00 0 0 1682.83 1462.00 1908.00 0 1.26 10.67 -9.14 0
6 2063.00 1932.00 2274.00 0 0 2082.00 2082.00 2082.00 0 0.92 7.76 -8.44 0
7 2515.00 2515.00 2515.00 0 0 – – – – – – – 0

10

1 -299.00 -628.00 248.00 4 4 177.67 1.00 450.00 2 159.42 100.16 81.45 -2
2 -201.70 -560.00 230.00 9 8 80.33 67.00 105.00 3 139.83 111.96 -54.35 -6
3 50.80 -385.00 525.00 6 6 514.00 514.00 514.00 0 911.81 233.51 -2.10 -6
4 357.20 -6.00 572.00 1 1 – – – – – – – -1
5 817.00 817.00 817.00 0 0 – – – – – – – 0

11

1 801.80 41.00 1381.00 2 0 967.00 136.00 1381.00 1 20.60 231.71 0.00 -1
2 726.40 40.00 1020.00 3 0 827.67 637.00 1020.00 2 13.94 1492.50 0.00 -1
3 1097.20 549.00 1406.00 1 0 1191.75 1008.00 1313.00 0 8.62 83.61 -6.61 -1
4 1448.00 1249.00 1580.00 0 0 1809.00 1809.00 1809.00 0 24.93 44.84 14.49 0
5 1994.00 1994.00 1994.00 0 0 – – – – – – – 0

12

1 142.00 -499.00 1004.00 3 3 1004.00 1004.00 1004.00 0 607.04 301.20 0.00 -3
2 -2.90 -384.00 371.00 9 4 – – – – – – – -9
3 304.10 -208.00 722.00 6 2 – – – – – – – -6
4 578.00 425.00 772.00 0 0 – – – – – – – 0
5 1062.00 1062.00 1062.00 0 0 – – – – – – – 0

14

1 226.00 -319.00 1064.00 3 3 1064.00 1064.00 1064.00 0 370.80 433.54 0.00 -3
2 105.10 -204.00 431.00 9 3 – – – – – – – -9
3 436.10 -28.00 782.00 3 1 – – – – – – – -3
4 734.00 605.00 832.00 0 0 – – – – – – – 0
5 1242.00 1242.00 1242.00 0 0 – – – – – – – 0

15

1 694.33 531.00 782.00 0 0 497.00 189.00 954.00 1 -28.42 -64.41 21.99 1
2 1086.33 810.00 1349.00 0 0 785.50 345.00 1110.00 0 -27.69 -57.41 -17.72 0
3 1706.00 1706.00 1706.00 0 0 1052.50 608.00 1222.00 0 -38.31 -64.36 -28.37 0
4 – – – 1377.00 1377.00 1377.00 0 – – – 0

16

1 683.50 345.00 994.00 0 0 513.40 276.00 834.00 0 -24.89 -20.00 -16.10 0
2 1106.83 645.00 1567.00 0 0 772.60 426.00 1104.00 0 -30.20 -33.95 -29.55 0
3 1531.00 1188.00 1872.00 0 0 1035.40 650.00 1327.00 0 -32.37 -45.29 -29.11 0
4 1956.00 1956.00 1956.00 0 0 1298.80 1060.00 1477.00 0 -33.60 -45.81 -24.49 0
5 – – – – 1560.00 1560.00 1560.00 0 – – – 0

18
1 1532.00 876.00 2188.00 0 0 1284.67 695.00 1840.00 1 -16.14 -20.66 -15.90 1
2 2295.00 2295.00 2295.00 0 0 1714.67 1177.00 2187.00 0 -25.29 -48.71 -4.71 0
3 – – – – 2233.00 2233.00 2233.00 0 – – – 0

19
1 577.00 547.00 607.00 0 0 504.00 452.00 556.00 0 -12.65 -17.37 -8.40 0
2 1130.00 1130.00 1130.00 0 0 794.00 794.00 794.00 0 -29.73 -29.73 -29.73 0

21
1 698.00 683.00 713.00 0 0 440.00 440.00 440.00 0 -36.96 -35.58 -38.29 0
2 942.00 942.00 942.00 0 0 – – – – – – – 0

22
1 486.50 471.00 502.00 0 0 502.00 502.00 502.00 0 3.19 6.58 0.00 0
2 771.00 771.00 771.00 0 0 – – – – – – – 0

23
1 1122.67 580.00 1497.00 0 0 1028.67 678.00 1502.00 0 -8.37 16.90 0.33 0
2 1638.00 1298.00 2163.00 0 0 1485.67 1006.00 1836.00 0 -9.30 -22.50 -15.12 0
3 2217.00 2217.00 2217.00 0 0 2164.00 2164.00 2164.00 0 -2.39 -2.39 -2.39 0
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