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Abstract. Network design refers to a family of combinatorial optimization problems that are 
concerned with selecting a subset of typically capacitated arcs such that commodities can be routed 
from their origin to their destination nodes at minimal costs. Such planning problems are at the heart 
of several applications in domains such as transportation, telecommunication, energy and natural 
resources. While single-period models tailor the network to a single set of origin-destination 
demands, multi-period models aim at preparing the network for varying demand along time. In 
several applications, this implies adjusting arc capacities along time to better respond to demand 
changes. Some works therefore proposed models that allow for the expansion of arc capacities 
along the planning horizon. However, the reduction of existing capacity has mostly been ignored, 
even though it may be a viable and cost-beneficial option in several application contexts. This paper 
proposes a new multi-period network design problem variant, in which modular capacities can be 
added or reduced along the planning horizon in order to adapt to demand changes. The problem 
further allows to represent economies of scales in function of the total arc capacity, a detail that has 
typically been overlooked in the literature. This paper particularly emphasizes the different 
alternatives to formulate the problem. We propose three different mixed-integer programming 
formulations and analyze further modeling alternatives. We theoretically compare the strength of all 
formulations and evaluate their computational performance in extensive experiments. The results 
suggest that a recent modeling technique using more precise decision variables yields the strongest 
formulation, which also results in significantly faster solution times. 
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1 Introduction

Network Design (ND) problems generally aim at selecting a subset of arcs such that a set of pre-defined
commodities can be routed from their origin to their destination nodes. Typically, the objective is to
minimize the total costs resulting from the selection of arcs and from commodity routing. Network Design
problems have been found to be the underlying modeling foundation for many applications, such as the
design of road networks (see, e.g. Yang and Bell, 1998), railway networks (see, e.g. Hooghiemstra et al.,
1999), telecommunication networks (see, e.g. Kubat et al., 2001), energy networks and natural resource
distribution networks (see, e.g. Borraz-Sánchez et al., 2016). As a consequence, they are among the most
studied combinatorial optimization problems. Most of the literature in this domain assumes that the network
has to be designed once, while routing can be performed either once or repeatedly on the same network,
optimized for the demand of a specific moment in time. The corresponding optimization models therefore
contain a single time period, referring to the moment when the network is established and the flow satisfies
demands.

In most circumstances, however, demand fluctuates over time. These requirements gave rise to Multi-
Period Network Design (MPND) problems, in which a set of different demands may be defined for each
time period. In particular, the initially designed network does not necessarily have to remain the same
throughout the entire planning horizon, but may be modified to better adapt to changing demand. For
example, a highway transportation network may be gradually expanded over time when initial budget is
limited, gas distribution networks may be gradually expanded to better adapt to new city demographics, and
telecommunication networks may be repeatedly modified to respond to constantly changing user demands,
server locations and evolving hardware.

In most of such applications, the maximum throughput of commodity flow is limited by the arc capacities.
While in some applications those arc capacities may be fixed and difficult to alter, several applications
(particularly in telecommunications and energy) allow to modify arc capacities: expand capacity when
demand tends to increase and reduce capacity when it tends to be idle in the future (e.g., in order to eliminate
maintenance costs of rarely used equipment). Several models in the literature consider the expansion of arc
capacities along time. However, the reduction of arc capacities has not received much attention.

This paper considers a problem variant of multi-period multi-commodity network design which allows
to choose arc capacities from a discrete set of predefined options and to modify those capacities throughout
the planning horizon in order to adapt to demand changes. In contrast to continuous capacity sizes, such
predefined capacity sizes are a natural choice, given that, in practice, arcs are typically not available in any
arbitrary capacity size, but only in the most common standard sizes (e.g., number of lanes on a high-way,
diameter of pipes in gas distribution networks, data throughput in telecommunication networks). We will
refer to those capacity options as modular capacity levels. In practice, decision-makers may then have the
possibility of adjusting these capacities along time to better react to demand that changes over time and
location.

We propose three different mixed-integer programming (MIP) formulations for this problem variant. In
particular, two models are based on decision variables that consider the current capacity level at each time
period, which we will refer to as the Single Capacity-Index (SCI) formulations. The third model is based
on a more recent modeling technique that has been proposed by Jena et al. (2015) in the context of facil-
ity location, where decision variables explicitly model capacity level changes between two subsequent time
periods; this formulation is also referred to as the Generalized Modular Capacity (GMC) formulation, and
allows for modeling a large variety of problem variants with capacity adjustments. Extensive computational
experiments on instances generated based on benchmarks from the literature indicate that the GMC formu-
lation for the here proposed Multi-period Network Design Problem provides significantly lower integrality
gaps than the two formulations based on traditional techniques. Even though modern general-purpose MIP
solvers are nowadays capable of dynamically adding cuts to strengthen formulations with higher integrality
gaps, for most of the instances, the advantage stemming from the strength of the GMC formulation is signifi-
cantly preserved throughout the optimization process, enabling the solver to prove optimality in significantly
shorter computing times than for the SCI formulations.

Our contributions can therefore be summarized as follows. First, we introduce a new MPND problem
variant, in which arc capacity can be expanded or reduced in modular quantities along time. To the best of
our knowledge, this is the first MPND problem variant that explicitly considers the reduction/contraction of
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installed capacity. Furthermore, our problem allows for the representation of economies of scale in function
of the total capacity installed, which has also received less attention in the literature. Second, we propose
three mathematical formulations for this problem and theoretically compare their strength of the linear
programming (LP) relaxation bounds. We also consider the use of different commodity-flow variables, and
prove that the resulting formulations provide weaker LP relaxation bounds. Third, we empirically compare
the formulations in extensive computational experiments.

2 Related Literature

Network design generally refers to the study of how to structure a network of arcs (or edges) such that
demand can be routed from their origin to their destination nodes. These planning problems are suitable
for a variety of applications, such as the design and configuration of telecommunication networks (Kubat
et al., 2001), road and railway transportation networks (Hooghiemstra et al., 1999), and gas distribution
networks (Borraz-Sánchez et al., 2016). While most of the planning problems focus on the decisions linked
to the actual network, in certain applications, the interaction of the designed network with other operational
decisions is complex. Researchers have therefore proposed more complex problem variants, such as service
network design for freight transportation (see, e.g., Crainic, 2000), which may take into consideration further
aspects such as freight consolidation, frequency of shipments or handling decisions at the terminal nodes.

Most of the literature focuses on the case with a single time period (see, e.g., Magnanti and Wong, 1984;
Minoux, 1989; Crainic, 2000, and the references therein), i.e., the planning assumes that the network is
optimized once for a set of specific node demands, and afterwards used without further modification. Given
that, in most of the applications, the maximum throughput on the arcs is limited by a given capacity, a vast
majority of the literature imposes arc capacities. Classical variants, such as the Capacitated Fixed-charge
(multi-commodity) Network Design problem (see, e.g., Crainic et al., 2020), are among the most studied
combinatorial optimization problems. Such problems are typically modeled as MIPs, known to be NP-hard
and therefore difficult to solve.

When compared to single-period problem variants with fixed arc capacities, significantly less work has
been done for network design problems that either consider different demands over multiple time periods or
those that require to select the arc capacities from a discrete set of possible capacity expansions (which enables
the representation of economies of scale). Such features add considerable complexity to the mathematical
models. To the best of our knowledge, our work is the first to tackle both features at the same time. In the
following, we will therefore separately review works related to either of these two features. Also note that, in
order to remain within the scope of our paper, we will mostly restrict our review to (linear and non-linear)
MIP models.

2.1 Multi-period capacitated network design problems

Single-period ND problems have received major attention in the literature, including those where capacity
modules of different sizes can be installed on the arcs (see, e.g., Melián et al., 2004), allowing for the repre-
sentation of economies of scale. In contrast, research on multi-period ND problems is rather recent, which
may stem from the fact that those problems tend to be harder to solve than other network-based problems,
such as facility location problems. In contrast to facility location problems, where capacity decisions typically
concern the production level of the facilities, network design problems may consider capacities either at the
nodes or at the arcs. The former may represent service stations in a transportation network (see, e.g., Kubat
et al., 2001; Maŕın and Jaramillo, 2008). The latter may refer to traffic on roads, water or oil throughput in
pipelines or data throughput in telecommunication networks. We will here focus on arc capacities, and will
classify the related works into multi-period network design models that only select the arcs (with predefined
fixed capacities), and those that additionally select the capacity level for each arc.

Multi-period models with predefined arc capacities. A work closely related to our problem is the
one of Fragkos et al. (2021), who extend the classical fixed-charge multi-commodity network design problem
to multiple time periods. Demands are independently defined for different commodities and may change over
the different time periods. Arcs (with predefined fixed capacities) may be selected at any time period and
once installed, they will be available until the end of the planning horizon. The authors propose a Benders
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decomposition method to solve larger instances. Our problem additionally allows to choose the arc capacities
from a set of capacity levels and to expand or reduce those along the planning horizon.

A more specific model has been proposed by Papadimitriou and Fortz (2014), in which fixed-capacity
arcs may be installed to route flow to meet the demand that independently occurs at different time periods.
Tailored to an application in telecommunications, once established flow routes cannot be changed in later
time periods in order to avoid changes in the so-called routing table. In order to avoid maintenance costs of
unused arcs, the usage of such arcs can be ceased. However, the presented model does not allow to impose
costs for such capacity closure, which is one of the key-features in our problem.

Multi-period models with different arc capacity levels. In contrast to fixed arc-capacities, several
works consider the capacity levels of the installed arcs to be part of the decisions. We now review such
works and pay particular attention to the ability of representing economies of scale in function of the total
arc capacity installed. Lai and Shih (2013) consider a stochastic railway network problem with uncertain
demand. Arc capacity can be installed only once on each arc throughout the planning horizon and will be
available in subsequent time periods. Economies of scale in the total arc capacity on each arc are therefore
easily accountable for. Balakrishnan and Magnanti (1995) present a model for telecommunication, allowing
for modular capacity expansion. Their model allows for the representation of economies of scale in function
of the total arc capacity. However, the model is tailored to tree structures instead of general networks.

Several other works allow for the installation of multiple capacity modules on the same arc over time.
While this may enable the model to represent economies of scale in function of the capacity added at each time
period, it does not automatically allow for representing economies of scale in function of the total capacity on
that arc accumulated over time. Works in this category include the one of Lardeux et al. (2007), who focus on
a MPND problem with incremental routing requirements, in which several capacity modules can be installed
on arcs over time. Ukkusuri et al. (2009) present a taxonomy for network flexibility in transportation
networks and propose a general model for the flexible network design problem, also expanding total arc
capacity by adding modules over time. Barmann et al. (2017) handle a multi-period rail-network planning
problem with similar features. Yet another stream of models assume that capacity quantities that may be
added are continuous (see, e.g., Ordóñez and Jiamin, 2007; Chang and Gavish, 1993, 1995). Naturally, those
models do not capture any economies of scale in function of the chosen capacity.

While the works above are closely related to the problem considered in this paper, we conclude that
economies of scale in function of the total arc capacity is rarely considered, and none of them considered
capacity reduction or arc closure. However, some of the models above constitute excellent starting points to
model the MPND problem here considered.

Finally, while all works discussed above assume that the discretization of time is predefined in the
planning problem, it is worth noting that this may limit a realistic representation of the planning in certain
applications. In this context, Boland et al. (2017) propose to model a service network design problem in a
continuous planning horizon, and show how to solve those models using an iterative algorithm. Their model,
however, assumes that the flow of the same commodity has to take the same path, i.e., it cannot be split
among different paths from its origin to its destination node, which is different from the MPND.

2.2 Capacity decisions in other multi-period network problems

The literature on selecting and modifying capacities in planning problems defined on graph networks is
mainly rooted in the planning of production facilities (see, e.g., Luss, 1982). The literature on capacitated
facility location problems is particularly rich. Alamur et al. (2012) introduce a generalized model for the
multi-period reverse logistics network design problem, allowing for modular production capacities at the
facilities. Similarly, Alamur et al. (2016) consider a multi-period hub location problem in which modular
capacities can be added on the hubs throughout the time horizon.

Jena et al. (2015) introduce a multi-period facility location problem, in which modular capacities can
be expanded or reduced along time. They propose a modeling technique using decision variables that ex-
plicitly capture the capacity changes between two subsequent time periods. The authors show how such
models provide significantly lower integrality gaps when compared to classical models. The formulation is
particularly appealing to represent complex cost structures in terms of economies of scale, allowing not only
to represent those economies in function of the capacity expansion or reduction, but also depending on the
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current capacity level. Jena et al. (2016) then use this technique to solve an application in the forestry sector,
where facilities may expand or reduce capacities along time, or even be temporarily closed while not in use.
Again, the modeling technique used has the advantage of yielding tighter formulations, but also allowing to
represent economies of scale on several layers of the cost structure. Due to these advantages, this modeling
technique will serve as a building block for one of the formulations used to model the problem here considered.

Unsplittable flows. We conclude this section by noting that most of the works in network design
optimization has assumed that the commodity flow can be split over several arcs, i.e., the commodity flow
may take different paths from their origin to their destination nodes. In practice, this may not always be
desirable. For example, data packages in telecommunication networks may have to be routed on the same
path (see, e.g., Papadimitriou and Fortz, 2014) or transportation fleets may have to travel together. In such
cases, it has to be ensured that commodity flow is not split, which, as this requires additional constraints,
cannot result in a cheaper planning solution. One possibility to implement such constraints is to change the
commodity flow variables from continuous to binary variables. The resulting models are acknowledged to be
harder to solve (see, e.g., Atamtürk et al., 2002; Benhamiche et al., 2016; Yaghini and Kazemzadeh, 2012).
While we will focus, in this paper, on the problem variant that allows for splitting commodity flows, we will
still explore the ability of the proposed formulations to handle the problem variant with unsplittable flows.

3 Problem Definition and Mathematical Formulations

This section defines the planning problem and proposes three MIP formulations. Section 3.1 formally defines
the problem and introduces the related notation. Sections 3.2 and 3.3 introduce the two formulations based
on decision variables with a single index related to the capacity levels. Section 3.4 introduces the third
formulation, based on decision variables using two indices related to the capacity levels. Finally, we discuss
the use of less precise flow variables in Section 3.5. Throughout these sections, we also elaborate on the
theoretical strength of the respective formulations.

3.1 Problem definition and input parameters

We consider a network of N nodes defined by setN = {1, . . . , N}, as well as a set A of directed arcs (i, j) ∈ A,
which may be constructed in order to connect node i ∈ N to node j ∈ N . As in classical multi-commodity
network design, we require to route P commodities defined on set K = {1, . . . , P}, where each commodity
k ∈ K has a predefined origin o(k) ∈ N and destination d(k) ∈ N . The planning horizon spans over T time
periods, given by set T = {1, . . . , T}. The demand of each commodity k ∈ K that has to be routed from
o(k) to d(k) at time period t ∈ T is given by dkt.

All models presented in this paper formulate the commodity routing as network flows, as it is typical
for network design problems (see, e.g., Chouman et al., 2017). In order to account for flow supply at origin
nodes o(k) and flow demand at destination nodes d(k), we define the residual bki at each node i ∈ N as:

bki =


1 i = o(k),

−1 i = d(k),

0 otherwise.

In order to route the commodities from their origin to their destination nodes at each of the time periods,
directed arcs (i, j) ∈ A may be constructed at one of the q capacity levels ` predefined in set L = {0, 1, . . . , q},
making available an arc capacity that allows to route up to U `ij commodity units on arc (i, j) per time period.

A capacity level ` = 0 with U0
ij = 0 indicates that arc (i, j) is not constructed at all, while a capacity level

` ≥ 1 indicates that the arc is available with a total capacity of U `ij > 0. The costs of routing one unit of

commodity k ∈ K through arc (i, j) ∈ A, open at capacity level ` ∈ L, is given by Ck`ij .
Once an arc has been constructed, maintenance cost occurs at each time period the arc is available at a

capacity level greater than 0. Specifically, the costs of maintaining an arc (i, j) ∈ A open at capacity level `
throughout one time period is given by F `ij . Throughout the planning horizon, the capacity level at each arc
may be adjusted by either increasing or by reducing the current capacity level. Increasing the capacity at an
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arc (i, j) by ` capacity levels implies a cost of f
`

ij , while reducing its capacity by ` capacity levels costs f `
ij

.

The construction of an arc at capacity level ` is hence represented by an increase of capacity from level 0 to
level `, whereas the complete shut-down of an arc formerly at capacity level ` is represented by a capacity
decrease from level ` to level 0.

Note that, for the sake of clarity and without loss of generality, we assume that the network will be
designed from scratch. If one requires to optimize on an existing network, the existing arcs with their
respective capacity levels can be easily integrated in the models.

We will refer this problem to Multi-period Network Design with Modular Capacity Adjustments (MPND-
CA). As discussed in Section 2, this optimization problem has not yet been addressed in the literature. Its
additional capacity adjustment decisions allow for modeling in more detail the flexibility available in several
applications. However, this comes at the price of more complex optimization models, which are generally
hard to solve. The choice of the mathematical formulation to represent the problem may have a strong
impact on the difficulty of solving the problem. In the following, we propose three MIP formulations for this
problem.

3.2 Single Capacity-Index (SCI) Formulation

The first formulation here proposed is an extension of the formulation proposed by Fragkos et al. (2021)
for the multi-period capacitated network design problem. This problem allows to select the time period at
which an arc is constructed. Arcs have predefined capacities, and, once constructed, they are assumed to
remain open until the end of the planning horizon.

Our problem is more flexible, providing different capacity levels to choose from, and allowing for increasing
or decreasing capacity along time. We use three sets of binary variables. Binary variables y`tij take value
1 if arc (i, j) ∈ A is open (i.e., available to route commodities) at capacity level ` ∈ L during time period
t ∈ T , and 0 otherwise. Binary variables s`tij take value 1, if the capacity at arc (i, j) ∈ A is expanded by `

capacity levels at the beginning of time period t ∈ T , and 0 otherwise. Binary variables w`tij take value 1,
if the capacity at arc (i, j) ∈ A is reduced by ` capacity levels at the beginning of time period t ∈ T , and
0 otherwise. Note that such capacity level adjustments are only possible, if the resulting capacity level is
defined in L.

Finally, continuous flow variables xk`tij ∈ [0, 1] define the fraction of demand of commodity k that is
directed through arc (i, j) at capacity level ` and at time period t. If the routing costs does not depend on
the capacity level, one may use less precise flow variables xktij . However, we here choose to not use these less
precise variables, as their use comes at the expense of a weaker model, which is discussed in Section 3.5.

Given that the here used y`tij variables have a single capacity-index `, we refer this formulation to as the
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single capacity-index formulation (SCI), given by:

(SCI) min
∑

(i,j)∈A

∑
k∈K

∑
`∈L

∑
t∈T

Ck`ij d
ktxk`tij +

∑
(i,j)∈A

∑
`∈L

∑
t∈T

F `ijy
`t
ij+∑

(i,j)∈A

∑
`∈L

∑
t∈T

f
`

ijs
`t
ij +

∑
(i,j)∈A

∑
`∈L

∑
t∈T

f `
ij
w`tij (1)

s.t.
∑

j:(i,j)∈A

∑
`∈L

xk`tij −
∑

j:(j,i)∈A

∑
`∈L

xk`tji = bki ∀i ∈ N , ∀k ∈ K, ∀t ∈ T (2)

∑
k∈K

dktxk`tij ≤ U `ijy`tij ∀(i, j) ∈ A, ∀` ∈ L, ∀t ∈ T (3)∑
`∈L

`y`tij =
∑
`∈L

`y
`(t−1)
ij +

∑
`∈L

`s`tij −
∑
`∈L

`w`tij ∀(i, j) ∈ A, ∀t ∈ T \{1} (4)∑
`∈L

`y`tij =
∑
`∈L

`s`tij ∀(i, j) ∈ A, t = 1 (5)∑
`∈L

y`tij = 1 ∀(i, j) ∈ A, ∀t ∈ T (6)∑
`∈L

s`tij = 1 ∀(i, j) ∈ A, ∀t ∈ T (7)∑
`∈L

w`tij = 1 ∀(i, j) ∈ A, ∀t ∈ T (8)

0 ≤ xk`tij ≤ 1 ∀(i, j) ∈ A, ∀k ∈ K, ∀` ∈ L, ∀t ∈ T
y`tij , s

`t
ij , w

`t
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀` ∈ L, ∀t ∈ T .

The objective function (1) minimizes the total costs that account for commodity routing, maintaining
open arcs, as well as capacity expansions and reductions. Constraints (2) are the commodity flow conservation
constraints that assure that commodities are routed from their origins to their destinations. Constraints (3)
are capacity constraints, ensuring that the routed commodity flow does not exceed the capacity available at
the arc. Constraints (4) and (5) are the (capacity) flow conservation constraints that describe the capacity
available at each arc and time period. In particular, constraints (5) ensure that the initial capacity flow at the
first time period must be added by means of a capacity expansion, while constraints (4) for the subsequent
time periods ensure that the available capacity level takes into consideration the capacity expansions and
reductions performed at the beginning of the corresponding time period. Constraints (6), (7) and (8) make
sure that, at each arc, exactly one capacity level is selected, and that not more than one capacity expansion
and reduction is performed at each time period. Note, again, that 0 is part of L, the set of possible capacity
levels.

In order to strengthen the formulation above, we may also adapt the well-known strong linking constraints
(see, e.g., Chouman et al., 2017) as follows:

xk`tij ≤ y`tij ∀(i, j) ∈ A, ∀k ∈ K, ∀` ∈ L, ∀t ∈ T . (9)

These inequalities are redundant to the MIP formulation (1)-(8), but are generally acknowledged to signif-
icantly strengthen network-flow based formulations, such as those for facility location and network design
problems.

3.3 Second Single Capacity-Index (SCI2) Formulation

Constraints (4) in the formulation above define the capacity level of an arc at a given time period in func-
tion of the the capacity level of the previous time period and the current capacity expansion or reduction.
Alternatively, the new capacity level at the current time period can also be computed as the sum of all expan-
sions and reductions conducted since the beginning of the planning horizon. The corresponding constraints,
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replacing constraints (4), can be written as:

∑
`∈L

`y`tij =
∑
`∈L

t′=t∑
t′=1

`s`t
′

ij −
∑
`∈L

t′=t∑
t′=1

`w`t
′

ij ∀(i, j) ∈ A, ∀t ∈ T \{1} (10)

Given the potential theoretical and practical implications of using constraints (10) instead of constraints
(4), we treat the resulting formulation as a new model. Therefore, we define the second single capacity-index
(SCI2) formulation as (1)-(3), (5)-(8) and (10), and may also include the strong linking constraints (9). Even
though the SCI and SCI2 formulations use different constraint sets to describe the capacity flow conservation,
it can be shown that both formulations provide the same LP relaxation bound as stated in the following
theorem.

Theorem 1 (Equivalence relationship) Let SCI be the LP relaxation of formulation SCI, and SCI2 be
the LP relaxation of formulation SCI2. Let v(SCI) and v(SCI2) be the optimal values of the LP relaxations
of SCI and SCI2, respectively. It holds that v(SCI) = v(SCI2), i.e., both formulations provide the same LP
relaxation bounds.

Proof. See Appendix A.

3.4 Generalized Modular Capacities (GMC) Formulation

We now present a more general formulation, inspired by a modeling technique proposed by Jena et al. (2015)
for multi-period facility location problems. In contrast to the SCI formulation, which uses one y variable
for each capacity level `, this technique uses more complex binary variables that explicitly model the change
of capacity level between two subsequent time periods. Specifically, we use binary variables y`1`2tij that take
value 1, if arc (i, j) ∈ A changes its capacity level from level `1 ∈ L to `2 ∈ L at the beginning of time period
t ∈ T . We further use the continuous commodity routing variables xk`tij as previously defined for the SCI
formulation.

For each of the y`1`2tij variables, the corresponding costs f `1`2tij to be considered in the objective function
are composed of the costs to expand capacity, reduce capacity and to maintain the arc at the current capacity
level `2. These costs are computed as:

f `1`2tij =


F `2ij + f

(`2−`1)
ij if `2 − `1 > 0, i.e., the capacity is expanded,

F `2ij + f (`1−`2)
ij

if `2 − `1 < 0, i.e., the capacity is reduced,

F `2ij if `2 = `1, i.e., the capacity remains the same.

The MIP formulation, referred to as the Generalized Modular Capacity (GMC) formulation, is given by:

(GMC) min
∑

(i,j)∈A

∑
k∈K

∑
`∈L

∑
t∈T

Ck`ij d
ktxk`tij +

∑
(i,j)∈A

∑
`1∈L

∑
`2∈L

∑
t∈T

f `1`2tij y`1`2tij (11)

s.t.
∑

j:(i,j)∈A

∑
`∈L

xk`tij −
∑

j:(j,i)∈A

∑
`∈L

xk`tji = bki ∀i ∈ N , ∀k ∈ K, ∀t ∈ T (12)

∑
k∈K

dktxk`tij ≤
∑
`1∈L

U `ijy
`1`t
ij ∀(i, j) ∈ A, ∀` ∈ L, ∀t ∈ T (13)

∑
`1∈L

y
`1`(t−1)
ij =

∑
`2∈L

yl`2tij ∀(i, j) ∈ A, ∀` ∈ L, ∀t ∈ T \{1} (14)

∑
`2∈L

y0`2tij = 1, ∀(i, j) ∈ A, t = 1 (15)

∑
`2∈L

∑
`1∈L

y`1`2tij = 1 ∀(i, j) ∈ A, t = 1 (16)

0 ≤ xk`tij ≤ 1 ∀(i, j) ∈ A, ∀k ∈ K, ∀` ∈ L, ∀t ∈ T

y`1`2tij ∈ {0, 1} ∀(i, j) ∈ A, ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T .
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The objective function (11) minimizes the total costs that account for commodity routing and main-
taining open arcs, as well as capacity expansions and reductions. Constraints (12) are the commodity flow
conservation constraints. Constraints (13) are the capacity constraints. Constraints (14) are the capacity
flow conservation constraints. Finally, constraints (15) impose that all facilities are at capacity level 0 at the
beginning of the planning horizon, while constraints (16) ensure that only one capacity level is selected at
the beginning of the planning.

We further adapt the previous strong linking constraints (9) to the GMC formulation as follows:

xk`tij ≤
∑
`1∈L

y`1`tij ∀(i, j) ∈ A, ∀k ∈ K, ∀` ∈ L, ∀t ∈ T . (17)

The GMC formulation is more general than the SCI formulations. In particular, the GMC formulation
naturally allows to model different problems than here considered, for example, a problem variant in which
arcs may be constructed and then temporarily closed and reopened (for details, see Jena et al., 2015). In
addition, the GMC formulation also allows to explicitly represent more complicated cost structures for the
capacity changes, e.g., it would allow to represent the fact that expanding the capacity from level 1 to level 3
does not imply the same costs as expanding from level 2 to level 4, even though, in both cases, the capacity
has been expanded by a total of 2 levels. Such a cost structure cannot be represented by the SCI formulation.
Interestingly, even though the GMC formulation is more general than the SCI formulation, it provides, in
fact, a stronger LP relaxation bound, which is stated in the following theorem.

Theorem 2 (Dominance relationship) Let SCI be the LP relaxation of formulation SCI, and GMC be
the LP relaxation of formulation GMC. Let v(SCI) and v(GMC) be the optimal values of the LP relaxations
of SCI and GMC, respectively. It holds that v(GMC) ≥ v(SCI), i.e., the GMC formulation is stronger
(strictly stronger for some instances) than the SCI formulation.

Proof. See Appendix B.

The strength of the GMC formulation comes from constraints (14), using one constraint for each capacity
level. This is different in the corresponding capacity flow constraints (4) in the SCI formulation, which do
not allow for such a separation by capacity level.

3.5 A note on alternative formulations

In our problem definition, the operational costs Ck`ij to route the commodities through the network may

be dependant on the current capacity level `. This requires commodity flow variables xk`tij that explicitly
depend on `.

In many practical applications, however, the operational costs may remain the same, no matter the
underlying arc capacity. In such cases, one may use flow variables xktij , without an index `, and therefore
less decision variables. Such alternative formulations can be found in Appendix C. Nevertheless, it may
still be beneficial to use the more detailed variables xk`tij given that they allow us to use (a) one capacity
constraint per capacity level as presented in constraints (3) and (13), and (b) one strong linking constraint
per capacity level as presented in constraints (9) and (17). The combination of these two sets of more precise
constraints make the GMC, SCI and SCI2 formulations tighter than their respective alternative formulations
with variables xktij (here called GMC-A, SCI-A and SCI2-A, presented in Appendix C). The following theorem
formalizes their relationship in terms of their LP relaxation strengths.

Theorem 3 (Dominance relationship over alternative formulations) Let FML be the LP relaxation
of formulation FML. Let also v(FML) be the optimal value of the LP relaxation of formulation FML. The
following dominance relationships between the main and the alternative formulations hold:

(A) v(SCI) ≥ v(SCI-A), i.e., the SCI formulation with its respective strong linking constraints is stronger
(strictly stronger for some instances) than the SCI-A formulation with its respective strong linking
constraints;
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(B) v(SCI2) ≥ v(SCI2-A), i.e., the SCI2 formulation with its respective strong linking constraints is
stronger (strictly stronger for some instances) than the SCI2-A formulation with its respective strong
linking constraints;

(C) v(GMC) ≥ v(GMC-A), i.e., the GMC formulation with its respective strong linking constraints is
stronger (strictly stronger for some instances) than the GMC-A formulation with its respective strong
linking constraints.

Proof. See Appendix D.

Even though the GMC, SCI and SCI2 formulations are stronger than their alternative formulations, the
presence of index ` in the flow variables xk`tij increases considerably the number of decision variables of the
problem, particularly for larger values of capacity levels. Empirically, however, experiments showed that
the main formulations provide a considerably smaller integrality gap than the alternative formulations. In
particular, the GMC formulation provided an integrality gap about eight times smaller than the GMC-A
formulation, on average, which, overall, resulted in much faster solution times.

A note on unsplittable commodity flows. We conclude this section by noting that the above
formulations assume that commodity flow can be split over several arcs. As mentioned before, specific
applications may require that flow is not split, i.e., the commodity flow associated to an origin-destination
pair for a given time-period follows a single path. In this case, the three formulations above can easily be
adapted by changing the variable domain of flow variables xk`tij from continuous [0, 1] to binary {0, 1}. As we
discuss the results of our computational results in the next section, we will also briefly report on the results
of the problem variants with unsplittable flows. Detailed results can be found in Appendix F.

4 Computational experiments

In this section, we will computationally assess the strength of the GMC, SCI and SCI2 formulations, as well as
the difficulty of solving them. We first elaborate on the problem instances used to evaluate the formulations,
as well as on the computing environment in Section 4.1. We then analyze the solution difficulty of the LP
relaxations, as well as the integrality gaps of the formulations in Section 4.2. Note that, for the sake of
brevity, we focus on a planning horizon with 10 time periods. Section 4.3 presents the comparison of the
three formulations when optimizing on the original MIP formulations. In particular, Section 4.3.1 assumes
that CPLEX default settings are used. Such advanced commercial solvers may not always be accessible in
practice. We therefore also emulate a basic solver and compare the formulations in a basic branch-and-cut
environment in Section 4.3.2. Finally, we explore the impact of different lengths of the planning horizon on
the difficulty of solving the formulations in Section 4.4.

4.1 Problem Instances and Computing Environment

Problem instances. Due to the lack of instances containing all parameters relevant for the MPND-CA,
we extend existing benchmark instances from similar problems. In particular, following the proposal of
Fragkos et al. (2021), we have used instances from Pazour et al. (2010), studying a real-world rail network
for freight distribution. Those instances are then extended following methodologies proposed in the network
design literature. In particular, we consider Crainic et al. (2001) to generate different levels of fixed costs
and arc capacities, as well as Fragkos et al. (2021) to account, among others, for multiple time periods. In
order to use those instances for the MPND-CA, we then extend those instances to multiple capacity levels.
The detailed procedure generating our problem instances can be found in Appendix E.

We consider four sizes of the planning horizon T , comprising 5, 10, 15, or 20 time periods. For each
size T of the planning horizon, we have a total of 384 problem instances, with the following combinations of
characteristics:

• Network: we consider three different networks from Pazour et al. (2010): the JBH50red network has
50 nodes, 198 arcs, and 626 commodities; the USC30red network has 30 nodes, 126 arcs, and 87
commodities; finally, the USC53red network has 53 nodes, 278 arcs, and 245 commodities.
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• Fixed costs: arc construction fixed costs can be either low or high relative to the routing costs.

• Capacities: arc capacities can be loose or tight when compared to the total commodity routing demand.

• Routing costs: the commodity per-unit routing costs on arcs can be either random or based on the
Euclidean distance between the corresponding nodes.

• Demand evolution: commodity demand may either be random or increase throughout the planning
horizon.

• Number of capacity levels q: arcs may have either 3 or 5 capacity levels (not including level 0).

• Capacity adjustment costs: the costs to expand one capacity level are either set to exactly 100% of the
costs of maintaining capacity for one time-period (PEC = 1) or 5 times higher (PEC = 5). The costs to
reduce one capacity level is set to 10% of the costs to expand one capacity level.

• Economies of scale: the costs to maintain capacity at level ` ≥ 2, or to reduce or expand capacity
by ` ≥ 2 levels are computed based on the corresponding costs at the previous level ` − 1 and reflect
economies of scale of two types: positive economies of scale, where maintenance, capacity reduction
and expansion is 15% cheaper than at the previous level; and negative economies of scale, where
maintenance is 15% more expensive than at the previous level, while capacity reduction and expansion
is 15% cheaper.

Computing environment. All formulations have been implemented in Python version 3.8, using
the general-purpose MIP solver CPLEX version 12.9. The CPLEX solver has been constrained in all exe-
cutions to a single thread (i.e., parameters.threads = 1) in order to avoid bias related to computational
resources. Each problem instance has been separately executed on the Beluga cluster1 on the Compute
Canada network with a memory limitation of 24Gb of RAM and a limit of 12 hours of computing time
(parameters.timelimit = 43200). Each node of the server contains 2 CPUs (Intel Gold 6148 Skylake, 2.4
GHz).

4.2 Linear Programming Relaxation and Integrality Gaps

We now empirically compare the strength of the three formulations, as well as their difficulty to be solved by
an MIP solver (specifically, CPLEX with standard parameters). We here focus on the 384 problem instances
with 10 time periods

Description GMC SCI SCI2
Avg. LPR Avg. Avg. LPR Avg. Avg. LPR Avg.

Attribute Value # time (min.) int. gap time (min.) int. gap time (min.) int. gap
Network JBH50red 81 12.8 0.01% 9.6 0.39% 7.6 0.39%

USC30red 97 0.2 0.06% 0.1 0.55% 0.1 0.55%
USC53red 76 9.5 0.07% 9.4 0.62% 4.9 0.62%

T 10 254 7.0 0.04% 5.9 0.52% 3.9 0.52%
q 3 133 8.5 0.05% 7.3 0.42% 4.8 0.42%

5 121 5.3 0.04% 4.4 0.63% 2.9 0.63%
Fixed
costs

Low 173 1.6 0.04% 1.0 0.24% 1.0 0.24%
High 81 18.5 0.06% 16.4 1.10% 10.3 1.10%

Capacities
Loose 176 9.0 0.02% 8.0 0.59% 5.2 0.59%
Tight 78 2.4 0.09% 1.4 0.35% 1.2 0.35%

Routing
costs

Euclidean 125 9.0 0.02% 6.3 0.47% 4.6 0.47%
Random 129 5.0 0.07% 5.6 0.57% 3.3 0.57%

Demand
behavior

Increasing 126 9.4 0.04% 7.8 0.51% 4.7 0.51%
Random 128 4.6 0.05% 4.1 0.53% 3.2 0.53%

PC
E 1 122 4.9 0.03% 3.8 0.22% 3.4 0.22%

5 132 8.9 0.06% 7.9 0.79% 4.4 0.79%
Economies
of scale

Inverse 124 6.6 0.04% 5.7 0.52% 4.2 0.52%
Positive 130 7.3 0.05% 6.2 0.52% 3.7 0.52%

All 254 7.0 0.04% 5.9 0.52% 3.9 0.52%

Table 1: Average LPR solution time and integrality gaps of the formulations for instances for which the
optimal integer solution is known.

1More information about the Beluga cluster in https://docs.computecanada.ca/wiki/Beluga/en.
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Table 1 summarizes the computing time required to solve the linear programming relaxations (LPR) of
the three formulations, as well as their integrality gaps2 for problem instances for which the optimal integer
solution (which is required to compute the integrality gap) is known (in total 254 out of 384 instances). The
results are separated by the different attributes of the problem instances and averaged over the respective
subset of instances. As per Theorem 1, the SCI and SCI2 formulations provide the same integrality gaps.
However, the SCI2 formulation is solved in substantially shorter computing times, and that consistently for
all instance attributes.

Theorem 2 suggests that the GMC formulation may theoretically provide stronger LP relaxation bounds
than the two other formulations. On our problem instances, the dominance of the GMC formulation is
clearly pronounced, providing an integrality that is about 13 times smaller, on average, than those of the
other two formulations (0.04% vs 0.52%). The GMC formulation takes about 17% more time, on average, to
solve the corresponding LP relaxation. This is not surprising, given that this formulation has significantly
more y variables. However, given the significantly lower integrality gaps provided by this formulation, this
additional computational time may be well invested, as the strength of the formulation may speed up the
solution time of the original MIP.

Throughout all three formulations, some problem instance characteristics induce higher integrality gaps
than others. In particular, instances with tight capacities, random routing costs, and high capacity expansion
costs (PCE = 5) present higher integrality gaps, and can be expected to be more difficult to solve. The same
holds true for networks USC30red and USC53red, which have generally higher integrality gaps than JBH50red
networks. This may be due to the fact that the first two networks include fewer commodities (87 and 245,
respectively) than the latter (626).

4.3 CPLEX Optimization

We will now explore the difficulty of solving the different formulations by means of a general purpose MIP
solver.

Description GMC SCI SCI2
Avg. MIP Avg. MIP Avg. MIP

Attribute Value # time (min.) time (min.) time (min.)
Network JBH50red 77 26.3 43.1 39.5

USC30red 87 4.1 19.7 26.6
USC53red 69 41.2 75.7 69.3

T 10 233 22.4 44.0 43.5
q 3 125 21.9 42.6 44.8

5 108 23.1 45.6 42.0
Fixed
costs

Low 155 19.1 38.6 41.9
High 78 29.1 54.6 46.7

Capacities
Loose 174 14.0 25.6 22.0
Tight 59 47.2 98.3 107.0

Routing
costs

Euclidean 121 22.8 40.9 38.5
Random 112 22.0 47.3 48.9

Demand
behavior

Increasing 113 24.9 54.3 46.5
Random 120 20.1 34.3 40.7

PC
E 1 114 21.7 38.9 35.6

5 119 23.1 48.9 51.1
Economies
of scale

Inverse 114 20.7 36.6 40.6
Positive 119 24.1 51.1 46.2

All 233 22.4 44.0 43.5

Table 2: Average MIP solution time (CPLEX default settings) for instances that have been solved by all
three formulations.

4.3.1 Optimization with CPLEX Default Settings

We now explore the difficulty of solving the different formulations, i.e., finding the optimal integer solutions
and proving optimality, by means of CPLEX with default settings. Table 2 presents the average MIP solution
times of the three formulations as reported by CPLEX. To ensure a fair comparison among the different
problem instances, the results are averaged only over instances that have been solved by all three formulations

2The integrality gap of a formulation for a given problem instance is defined as v∗−vLP
v∗ , where vLP is the objective function

of the optimal LP relaxation solution and v∗ is the optimal integer solution.
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within the given time limit (a total 233 instances). As suspected, the small integrality gaps of the GMC
formulations significantly accelerate the solution of the problem. On average, problems are solved within
22 minutes using the GMC formulation, while it takes about twice the time with either the SCI or SCI2
formulation. This improvement is remarkably preserved throughout the different problem characteristics,
which suggests that the GMC formulation is preferable in practice. Even though the LP relaxation of the
SCI2 formulation was solved much faster than the one of the SCI formulation, both formulations solve the
original problem in about the same time on average (44 minutes). Instance characteristics seem, however,
to play a role: depending on the network, as well as the different attributes for fixed costs, capacities and
routing costs, one formulation seems to be faster for one attribute value, while the other is faster for the
other attribute value.

Description GMC SCI SCI2
# opt # # # opt # # # opt # #

Attribute Value # nfs gap os nos nfs gap os nos nfs gap os nos
Network JBH50red 51 43 0.03% 4 4 37 0.03% 0 14 39 0.03% 3 9

USC30red 41 0 0.38% 10 31 0 0.55% 1 40 3 0.60% 0 38
USC53red 59 21 5.17% 7 31 30 0.50% 0 29 30 0.56% 3 26

T 10 151 64 2.44% 21 66 67 0.45% 1 83 72 0.50% 6 73
q 3 67 23 3.16% 8 36 30 0.55% 0 37 30 0.58% 5 32

5 84 41 1.69% 13 30 37 0.37% 1 46 42 0.43% 1 41
Fixed
costs

Low 37 11 0.02% 18 8 5 0.03% 1 31 7 0.03% 4 26
High 114 53 3.47% 3 58 62 0.71% 0 52 65 0.79% 2 47

Capacities
Loose 18 0 0.36% 2 16 1 0.32% 0 17 0 0.79% 2 16
Tight 133 64 2.98% 19 50 66 0.48% 1 66 72 0.41% 4 57

Routing
costs

Euclidean 71 37 4.02% 4 30 36 0.53% 0 35 39 0.85% 1 31
Random 80 27 1.42% 17 36 31 0.39% 1 48 33 0.26% 5 42

Demand
behavior

Increasing 79 32 3.02% 13 34 36 0.36% 0 43 38 0.48% 4 37
Random 72 32 1.75% 8 32 31 0.54% 1 40 34 0.52% 2 36

PC
E 1 78 33 2.90% 8 37 34 0.45% 1 43 38 0.50% 1 39

5 73 31 1.94% 13 29 33 0.45% 0 40 34 0.50% 5 34
Economies
of scale

Inverse 78 33 0.37% 10 35 33 0.43% 0 45 34 0.35% 3 41
Positive 73 31 4.66% 11 31 34 0.47% 1 38 38 0.69% 3 32

All 151 64 2.44% 21 66 67 0.45% 1 83 72 0.50% 6 73

Table 3: Number of instances without feasible solution, with optimal solution and non-optimal solution,
as well as average optimality gap (CPLEX default settings) for instances which have not been solved to
optimality by at least one of the formulations.

We now analyze the 151 (out of 384) problem instances that have not been solved by all three formulations
within the given time limit. Table 3 presents, for each of the three formulations, the number of instances for
which no feasible solution has been found within the given time limit (# nfs), either due to hitting the time
limit or by exceeding the available memory. Among those instances for which the respective formulation has
found a feasible solution, the table reports the average optimality gap reported by CPLEX (opt gap), the
number of instances which have been solved to optimality (# os) and the number of instances which have
not been solved to optimality (# nos).

The summary results in this table have to be interpreted carefully, however, due to several reasons.
First, column “# nfs” may count instances that run out of memory, even though they have already found
instances of high quality. For example, we further analyzed the results of instances in network JBH50red,
which reported more instances in this column for the GMC formulation than it did for the SCI formulations.
Here, for several instances, the solver had already found instances with optimality gaps around 0.05%;
however, the solver later ran out of memory. Second, the average optimality gap over all instances has been
reported as 2.44% for the GMC formulation, compared to 0.45% and 0.50% for the two other formulations.
The average for the GMC formulation does, however, consider 3 more instances than the average for the
SCI formulation (and 8 more instances than for the SCI2 formulation), which do not at all find feasible
solutions for these problem instances. Excluding the 3 instances from the GMC average reduces the average
optimality gap to 0.39%, which quickly changes the conclusions in favor of the GMC formulation.

In conclusion, based on the results presented in the previous three tables, the GMC formulation seems
to have substantial advantages in practice when compared to the other two formulations, most likely due to
its strong LP relaxation bound.

Mathematical Formulations for Multi-Period Network Design with Modular Capacity Adjustments

12 CIRRELT-2021-43



4.3.2 Optimization in a basic branch-and-cut environment

The previous experiments have used CPLEX (with default parameters) to solve the problem to opti-
mality. The commercial solver is acknowledged to be among the most powerful ones, embedding pre-
processing techniques, heuristics to find upper bounds and elaborate cut generation. We now compare
the formulations’ abilities to be solved in a branch-and-cut environment, but assuming that only a ba-
sic branch-and-cut solver is available (e.g., due to budget limitations). To emulate such a solver, we use
CPLEX, but turn off all advanced preprocessing (parameters.preprocessing.presolve = 0), heuristics
(parameters.mip.strategy.heuristicfreq = -1) and cut generation (parameters.mip.limits.cutpasses
= -1). Since we solely focus on the formulations’ impact on the enumeration tree in the branch-and-cut envi-
ronment, we further pass to the solver (as cut-off value) the optimal upper bound for the respective instance
(i.e., its optimal integer solution value). These experiments therefore only consider the 254 instances with
10 time periods for which the optimal integer solution is known. Note that the availability of the cut-off
value does not guarantee that the solver will actually find the corresponding optimal solution.

Description GMC SCI SCI2
# # opt time # # opt time # # opt time

Attribute Value # nfs os gap (min.) nfs os gap (min.) nfs os gap (min.)
Network JBH50red 81 6 75 0.00% 128.0 70 3 0.05% 677.5 75 3 0.06% 686.5

USC30red 97 20 77 0.00% 17.7 36 59 0.01% 56.5 38 58 0.01% 49.7
USC53red 76 18 58 0.00% 56.2 70 2 0.11% 585.3 71 0 0.07% 720.0

T 10 254 44 210 0.00% 67.7 176 64 0.03% 184.8 184 61 0.02% 152.1
q 3 133 18 115 0.00% 83.7 85 37 0.03% 216.6 89 35 0.02% 197.0

5 121 26 95 0.00% 48.3 91 27 0.02% 133.9 95 26 0.01% 76.2

Fixed
costs

Low 173 36 137 0.00% 38.4 126 36 0.03% 205.1 131 35 0.02% 168.5
High 81 8 73 0.00% 122.8 50 28 0.03% 154.1 53 26 0.02% 127.6

Capacities
Loose 176 7 169 0.00% 54.1 99 64 0.03% 177.8 107 61 0.02% 143.9
Tight 78 37 41 0.01% 123.9 77 0 0.07% 720.0 77 0 0.03% 720.0

Routing
costs

Euclidean 125 15 110 0.00% 75.6 88 31 0.03% 157.0 91 31 0.01% 128.1
Random 129 29 100 0.00% 59.1 88 33 0.02% 209.9 93 30 0.02% 174.8

Demand
behavior

Increasing 126 25 101 0.00% 60.6 94 28 0.02% 102.6 95 28 0.01% 96.5
Random 128 19 109 0.00% 74.3 82 36 0.03% 242.0 89 33 0.02% 196.4

PC
E 1 122 23 99 0.00% 71.2 76 37 0.02% 200.7 79 35 0.02% 201.3

5 132 21 111 0.00% 64.6 100 27 0.04% 161.9 105 26 0.02% 73.8
Economies

of scale
Inverse 124 23 101 0.00% 65.4 84 34 0.02% 190.8 90 31 0.01% 131.0
Positive 130 21 109 0.00% 69.9 92 30 0.03% 178.4 94 30 0.02% 172.1

All 254 44 210 0.00% 67.7 176 64 0.03% 184.8 184 61 0.02% 152.1

Table 4: Number of instances without feasible solution and with optimal solution, as well as average opti-
mality gap and solution time (basic branch-and-cut environment).

Table 4 presents, for each of the three formulations, the number of instances for which no feasible solution
has been found (# nfs), the number of instances which have been solved to optimality (# os), the average
optimality gap among the instances for which a feasible solution has been found (opt gap) and the average
computing time as reported by CPLEX.

These experiments, emulating a basic branch-and-cut solver, highlight the advantage of using GMC
formulation over the other two formulations. The GMC formulation does not find a feasible solution for
44 of the 254 instances, while the SCI and SCI2 formulations do not provide a feasible solution for about
four times more instances. All other 210 instances are solved to optimality by the GMC formulation within
the given time limit. In contrast, the other two formulations do not solve to optimality the majority of the
instances. The strong performance of the GMC formulation is also in line with the lower computing times it
requires to find solutions and to prove optimality, which is significantly lower than for the SCI formulations.

These results suggest that, for our problem instances, the GMC formulation remains preferable over the
other two formulations. Note, however, that the dominance of the GMC formulation may not necessarily be
preserved on other problem instances. For example, if the number of capacity levels is much higher than 5,
the quadratic number of y decision variables may result in a prohibitively large optimization model. More
than 5 capacity levels, however, appear to be rarely the case in practice.

Results for the Problem Variant with Unsplittable Commodity Flows. As previously men-

Mathematical Formulations for Multi-Period Network Design with Modular Capacity Adjustments

CIRRELT-2021-43 13



tioned, we have also explored the problem variant that does not allow for splitting the commodity flows of
origin-destination pairs within the same time-period. The resulting formulations simply use binary instead
of continuous flow variables. In summary, the general tendencies remain the same. The performance dif-
ference among the formulation is, however, less pronounced. The integrality gap of the GMC formulation
is, on average, 0.45%, while it is 1.0% for the other two formulations. Intuitively, this would suggest that
the corresponding mixed-integer formulations are harder to solve. Solving the mixed-integer formulations to
optimality takes about 23 minutes with the GMC (i.e., about the same amount of time as for the splittable
variant) vs. 32 minutes with the other two formulations when using CPLEX default parameters (which is
less than expected). We suspect that CPLEX generates a variety of cuts to strengthen the SCI formula-
tions, which ultimately speeds up the solution process. This suspicion is also in line with the results for the
experiments when emulating the basic branch-and-cut solver. Here, the SCI formulations do not find any
feasible solution for over 200 of the remaining 267 instances, while the GMC formulation does not find a
feasible solution only for 82 instances. The original strength of the formulation therefore seems to make a
major difference in solving the original problem. Detailed results can be found in Appendix F.

4.4 Impact of Planning Horizon Length

All previous experiments have been carried on problem instances with a planning horizon comprising 10
time periods. Intuitively, larger lengths of the planning horizon should increase the difficulty of the problem.
To this end, we now study the performance of the three formulations with varying lengths of the planning
horizon. Specifically, we will consider problem instances from the USC30red network with 5, 10, 15, and 20
time periods.

Description GMC SCI SCI2
Avg. LPR Avg. Avg. LPR Avg. Avg. LPR Avg.

Attribute Value # time (min.) int. gap time (min.) int. gap time (min.) int. gap
Network USC30red 391 0.2 0.07% 0.1 0.57% 0.1 0.57%

T 5 96 0.1 0.10% 0.1 1.18% 0.0 1.18%
10 97 0.2 0.06% 0.1 0.55% 0.1 0.55%
15 99 0.2 0.06% 0.1 0.33% 0.1 0.33%
20 99 0.3 0.05% 0.2 0.24% 0.2 0.24%

Table 5: Average LPR solution time and integrality gaps (CPLEX default settings) for USC30red network
instances with different lengths of the planning horizon for which the optimal integer solution is known.

As in the previous sections, Table 5 summarizes the results of the LPR solution, as well as the integrality
gaps of the formulations, but separated for the different lengths of the planning horizon. For all three
formulations, the average time required to solve the LP relaxation increases as the planning horizon contains
more time periods. In contrast, the integrality gap tends to reduce with large planning horizons. This is
most likely linked to the fact that the relative importance of each commodity demand diminishes as the
number of time periods, and therefore the number of commodity demands increases. Comparing the three
formulations, the GMC formulation offers the lowest integrality gaps, no matter the size of the planning
horizon.

Description GMC SCI SCI2
Avg. MIP Avg. MIP Avg. MIP

Attribute Value # time (min.) time (min.) time (min.)
Network USC30red 352 3.3 19.8 21.7

T 5 92 3.4 21.8 19.4
10 87 4.1 19.7 26.6
15 87 2.4 12.3 9.6
20 86 3.2 25.4 31.2

Table 6: Average MIP solution time (CPLEX default settings) for USC30red network instances with
different lengths of the planning horizon that have been solved by all three formulations.

Table 6 summarizes the optimization results (using CPLEX default parameters) for problem instances
which have been solved to optimality by all three formulations within the given time limit. Surprisingly, the
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length of the planning horizon does not seem to impact much the difficulty of solving the problem, and that
throughout all three formulations. We suspect, however, that this would change once the number of time
periods considered in the planning horizon is sufficiently large.

Description GMC SCI SCI2
# opt # # # opt # # # opt # #

Attribute Value # nfs gap os nos nfs gap os nos nfs gap os nos
Network USC30red 160 1 0.42% 39 120 4 0.66% 4 152 26 0.87% 3 131

T 5 36 0 0.69% 4 32 1 0.65% 0 35 0 0.74% 0 36
10 41 0 0.38% 10 31 0 0.55% 1 40 3 0.60% 0 38
15 41 1 0.31% 12 28 0 0.70% 3 38 10 0.85% 3 28
20 42 0 0.32% 13 29 3 0.75% 0 39 13 1.42% 0 29

Table 7: Number of instances without feasible solution, with optimal solution and non-optimal solution,
as well as average optimality gap (CPLEX default settings) for USC30red network instances with different
lengths of the planning horizon which have not been solved to optimality by at least one of the formulations.

Finally, Table 7 focuses on the remaining problem instances, that have not been solved for at least one
of the formulations. Considering the number of instances for which no feasible solutions have been found, in
particular for the SCI and SCI2 formulations, it appears that the problem becomes more difficult to solve
(given its size) as it comprises more time periods. Among the three formulations, the last two tables confirm
the advantage of using the GMC formulation as opposed to the SCI and SCI2 formulations. No matter
the length of the planning horizon, the GMC formulation solves the same instances in significantly shorter
computing times (approximately 2-4 minutes vs. approximately 12-31 minutes), finds feasible solutions for
all but one problem instance, and presents lower optimality gaps for the remaining instances.

5 Conclusions

We have introduced a new multi-period multi-commodity network design problem, in which arc capacities
can be gradually increased or decreased along the planning horizon. With respect to the existing literature,
our problem additionally allows for the possibility of choosing the arc capacity from a set of modular capacity
instead of imposing a predefined arc capacity, as well as for the reduction of arc capacity (which has not
been considered before). Arc capacities can therefore be adjusted as the demand changes over time, which
is particularly important in domains such as telecommunications.

We have proposed three mixed-integer programming formulations for this problem: two formulations
based on classical modeling techniques, using one decision variable for each capacity level; the third formu-
lation (called the GMC formulation) stems from the recent facility location literature, using more precise
decision variables to represent the exact capacity changes performed at each time period. We have shown
that the latter formulation theoretically provides stronger LP relaxation bounds, while the former two for-
mulations are equally strong. We have also discussed the use of alternative, simpler flow variables, and have
shown how the resulting models provide weaker LP relaxation bounds.

To empricially compare the formulations, computational experiments have then been carried out on
problem instances that extend benchmark instances from the literature. The results generally indicate that
the GMC formulation outperforms the other two formulations in all relevant criteria: first, it provides
integrality gaps that are, on average, 13 time smaller; second, using CPLEX default parameters, it enables
the solver to solve the problem instances, on average, twice as fast; and, third, emulating a more basic
branch-and-cut environment, it proves optimality 2-3 times faster than the other formulations. Further
experiments have shown that the number of time periods used in the planning horizon does, surprisingly,
not seem to have a strong impact on the difficulty of solving the problem. Finally, experiments on a different
problem variant, in which the commodity flow cannot be split over several arcs, have shown tendencies
similar to those described above, even though the performance difference of the different formulations is less
pronounced.

While our results may guide practitioners to select the most beneficial formulation for their respective
application, they also offer a good starting point to develop more advanced solution methods to solve large-
scale problem instances of this problem. In either of those cases, our results suggest the GMC formulation
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to be the formulation of choice.
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A Proof of Theorem 1: Equivalence Relationship

We here prove Theorem 1, i.e., the equivalence relationship between the SCI and SCI2 formulations. Since
both formulations only differ on how to write the capacity flow conservation constraints, we will prove more
specifically that equations (4)-(5) and (10) are equivalent.

To show how an equation (4) for a given time period t is transformed into an equivalent equation (10)

for the same time period, we can recursively substitute the term
∑
`∈L y

`(t−1)
ij in the RHS of constraint (4)

by the entire RHS of the same constraint at t−1. Recursively replacing the occurrences of
∑
`∈L y

`(t−1)
ij will

result in the following series of equations:∑
`∈L

`y`tij =
∑
`∈L

`y
`(t−1)
ij +

∑
`∈L

`s`tij −
∑
`∈L

`w`tij =

=
∑
`∈L

`y
`(t−2)
ij +

∑
`∈L

`s
`(t−1)
ij −

∑
`∈L

`w
`(t−1)
ij +

∑
`∈L

`s`tij −
∑
`∈L

`w`tij =

. . .

=
∑
`∈L

`y`1ij +
∑
`∈L

t′=t∑
t′=2

`s`t
′

ij −
∑
`∈L

t′=t∑
t′=2

`w`t
′

ij ∀(i, j) ∈ A.

In the above, we may now use equation (5) to substitute the term
∑
`∈L `y

`1
ij by

∑
`∈L `s

`1
ij −

∑
`∈L `w

`1
ij ,

which leads to the following equation, equivalent to equation (10):

∑
`∈L

`y`tij =
∑
`∈L

t′=t∑
t′=1

`s`t
′

ij −
∑
`∈L

t′=t∑
t′=1

`w`t
′

ij ∀(i, j) ∈ A.

In order to show how an equation (10) for a given time period t is transformed into an equivalent equation
(4) for the same time period, we can reverse the procedure used above. It follows that both constraints, and
therefore both formulations are equivalent. As a consequence, both formulations also provide the same LP
relaxation bound.

B Proof of Theorem 2: Dominance Relationship

We prove here Theorem 2, i.e., the dominance relationship between the GMC and SCI formulations. To be
precise, we will prove that GMC formulation is stronger (strictly stronger for some instances) than the SCI
formulations. The proof consists of two main steps. In the first step, we prove that the GMC formulation is
at least as strong as the SCI formulation by showing that from any solution {xk`tij , y

`1`2t
ij } feasible in GMC

(i.e., the LP relaxation of GMC), we can construct a solution {xk`tij , y`tij , s`tij , w`tij} that is feasible in SCI (i.e.,
the LP relaxation of SCI) and has the same objective function value. Given that any solution found for
the GMC can also be found for SCI, the solution space of the latter is potentially larger and may include
solutions with lower objective function values (i.e., therefore providing bounds of inferior quality). In the
second step, we show that for a specific problem instance, the optimal solution provided by GMC is strictly
superior to the one provided by SCI. This proves that the GMC formulation is strictly stronger than the
SCI formulation. Since the SCI formulations are equivalent by Theorem 1, it also proves that the GMC
formulation is strictly stronger than the SCI2 formulation.

(a) Construction of feasible SCI solution from a GMC solution

Let {xk`tij , y
`1`2t
ij } be any solution feasible in GMC. We now construct an equivalent solution {xk`tij , y`tij , s`tij , w`tij}

that is feasible in SCI (i.e., it satisfies all of its constraints) and has the same objective function value.
We first set its variables y`tij , s

`t
ij and w`tij in function of the GMC variables as follows:

y`tij =
∑
`1∈L

y`1`tij ∀(i, j) ∈ A,∀` ∈ L,∀t ∈ T (18)
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s`tij =
∑
`1∈L

y
`1(`1+`)t
ij ∀(i, j) ∈ A,∀` ∈ L,∀t ∈ T (19)

w`tij =
∑
`1∈L

y
`1(`1−`)t
ij ∀(i, j) ∈ A,∀` ∈ L,∀t ∈ T (20)

For any time period t ∈ T and arc (i, j) ∈ A, all y`1`2tij variables from the GMC solution sum to 1. This

has two implications. First, the variables y`tij , s
`t
ij and w`tij (as defined above) will take values between 0 and

1 (therefore, their domain constraints are satisfied). Second, for any time period t ∈ T and arc (i, j) ∈ A,∑
`∈L y

`t
ij = 1,

∑
`∈L s

`t
ij = 1 and

∑
`∈L w

`t
ij = 1. Constraints (6), (7) and (8) are therefore satisfied.

We then set the xk`tij variables in the SCI solution to take the same values as the xk`tij variables in the

GMC formulation. Given that the flow conservation constraints (12) are satisfied in the GMC formulation,
the equivalent constraints (2) therefore also hold.

Replacing the y`tij variables in constraints (3) in the SCI formulation using equations (18) yields the

corresponding constraints (13) in the GMC formulation. Both constraints are therefore equivalent. Therefore,
constraints (3) are satisfied.

We now show that constraints (4) and (5) in the SCI formulation hold. Using the equations (18), (19)
and (20) to replace variable y`tij , s

`t
ij and w`tij , respectively, in constraints (4) yields the following equation

(note that the term corresponding to the w variables has been brought to the LHS of the equation), for all
t ∈ T \{1} and (i, j) ∈ A:∑

`∈L

∑
`1∈L

`y`1`tij +
∑
`∈L

∑
`1∈L

`y
`1(`1−`)t
ij =

∑
`∈L

∑
`1∈L

`y
`1`(t−1)
ij +

∑
`∈L

∑
`1∈L

`y
`1(`1+`)t
ij

Using constraints (14), we can replace the occurrences of the terms
∑
`∈L

∑
`1∈L `y

`1`(t−1)
ij with the terms∑

`∈L
∑
`2∈L `y

``2t
ij in the previous equations, obtaining the following equations:

∑
`∈L

∑
`1∈L

`y`1`tij +
∑
`∈L

∑
`1∈L

`y
`1(`1−`)t
ij =

∑
`∈L

∑
`2∈L

`y``2tij +
∑
`∈L

∑
`1∈L

`y
`1(`1+`)t
ij (21)

We will now show that this equation holds for all values of q ∈ N, q ≥ 1, hence proving that constraints
(4) are also satisfied. Note that these equations are given for all t ∈ T \{1} and (i, j) ∈ A. For the sake
of clarity, we therefore omit the variable indices i, j and t in the following developments, leading to the
following equation:∑

`∈L

∑
`1∈L

`y`1` +
∑
`∈L

∑
`1∈L

`y`1(`1−`) =
∑
`∈L

∑
`2∈L

`y``2 +
∑
`∈L

∑
`1∈L

`y`1(`1+`) (22)
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Proposition: Equation (22) is true for all sizes of L = {0, 1, 2, . . . , q}, i.e. for any
q ≥ 1, q ∈ N.

Proof via induction

Basic step: Equation (22) holds for q = 1, i.e. L = {0, 1}.

LHS: ∑
`∈L

∑
`1∈L

`y`1` +
∑
`∈L

∑
`1∈L

`y`1(`1−`) = y01 + y11 + y0,−1 + y10

RHS: ∑
`∈L

∑
`2∈L

`y``2 +
∑
`∈L

∑
`1∈L

`y`1(`1+`) = y10 + y11 + y01 + y12

Note that the variables y0,−1 and y12 indicated in bold above do not exist for
L = {0, 1}. They are therefore omitted. Both the LHS and RHS of the equation
are therefore equal, which proves that equation (22) holds for q = 1.

Induction step: Assuming equation (22) holds for a specific L = {0, 1, 2, . . . , q},
q ≥ 1, we now show that equation (22) also holds for L = {0, 1, 2, . . . , q + 1} with
q + 1 capacity levels.

Equation (22) for q+ 1 capacity levels has the same terms as with q capacity levels.
In addition, it contains the following terms on the LHS and RHS.
LHS:

q∑
`1=0

(q + 1)y`1(q+1) +

q+1∑
`=0

`y(q+1)` +

q+1∑
`2=0

`y(q+1)(q+1−`)

RHS:

q∑
`2=0

(q + 1)y(q+1)`2 +

q+1∑
`=0

`y`(q+1) +

q∑
`1=0

(q + 1)y`1(`1+q+1) +

q∑
`1=1

(q + 1− `1)y`1(q+1)

Variables that corresponds to invalid transitions (i.e., those that are not part
of L = {0, 1, 2, ...q, q + 1}) have been omitted in the terms above. Note that
the first two terms in LHS stem from the first term of the left-hand-side of
equation (22), while the third term in LHS stem from the second term of the
left-hand-side of equation (22). Further, the first two terms in RHS stem from
the first term of the right-hand-side of equation (22), while the third term
in RHS stems from the second term of the right-hand-side of equation (22).
Finally, that same term also yields the the last term in RHS represents the terms
where both indices `1 ≤ q and `2 ≤ q, but its sum yields (q+1). By opening
both equations’ remaining terms, one can easily see that both sides are equal.
Therefore, equation (22) holds for q+1 and by induction is true for any q ≥ 1, q ∈ N.

Constraints (5) are also satisfied, which can be validated by replacing its variables with the corresponding
GMC variables using (18) and (19). Both sides of the resulting equation are equivalent once observed that
the constraint is given only for t = 1, and `1 = 0 at t = 1 (as implied by constraints (15)).

Finally, it is easily verified that strong linking constraints (9) are also satisfied, given that they are
equivalent to the corresponding strong linking constraints (17) once the variables are replaced using equaitions
(18).
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To finalize the first step of the proof, we now show that both solutions have the same objective function
value. All xk`tij variables have the same coefficients and therefore equally contribute to their respective

objective function. Furthermore, based on the definition of f `1`2tij (see Section 3.4), the objective function

coefficients of the y`1`2tij variables, it can be verified that the contribution of those variables to the objective

function is the same as those of variable y`tij , s
`t
ij and w`tij . Both solutions therefore have the same objective

function, which concludes the proof that any solution feasible in GMC may be written as an equivalent
solution feasible in SCI with the same objective function value.

(b) Example of problem instance where GMC is strictly stronger than SCI

As a consequence of the the previous step, the solution space of SCI is at least as large as the solution space
of GMC. GMC is therefore at least as strong as SCI. However, for certain problem instances, SCI may
therefore find solutions that are not part of the GMC solution space, and have a lower objective function
value than any of the feasible GMC solutions, therefore providing bounds that are less tight in relation to
the optimal integer solution of the problem. We now provide such a problem instance, which proves that
the bound provided by GMC is strictly stronger than the bound provided by SCI.

Consider a problem instance with a single time period t1 and a single commodity k1. The network has
two nodes n1 and n2 and a single arc (n1, n2), on which 10 units of commodity k1 must be routed from n1
to n2. The arc has two capacity levels, i.e., therefore L = {0, 1, 2}.

Capacity levels 1 and 2 have capacities of U1
ij = 10 and U2

ij = 20, respectively. The expansion costs to

construct such capacities are f
`=1

n1n2
=10$ and f

`=2

n1n2
=15$ for capacity levels 1 and 2, respectively. They

therefore follow typical economies of scale. The maintenance costs to operate the arc throughout the time
period are F 1

n1n2
=10$ and F 2

n1n2
=30$, respectively, for the two capacity levels. They therefore involve

inverse economies scales (i.e., the maintenance cost per unit is larger as the capacity level increases). Routing
costs and reduction costs are all set to 0.

For this problem instance, the optimal solution of SCI partially constructs the arc on capacity level 2
(s`=2t1
n1n2

= 0.5 and s`=0,t1
n1n2

= 0.5), but maintains on capacity level 1 (y`=1,t1
n1n2

= 1.0). The flow is routed via
xk1,`=1,t1
n1n2

= 1.0. Constructing on one capacity level and maintaining on another allows the formulation to
find a solution of low objective function value 17.50$.

In contrast, the optimal solution of GMC is forced to both construct and maintain on the same capacity
level. It chooses capacity level 1 (y`1=0,`2=1,t1

n1n2
= 1.0) and also routes via xk1,`=1,t1

n1n2
= 1.0. Its associated

objective function value is 20.00$, which is also equivalent to the optimal integer solution.
The two steps (a) and (b) above prove Theorem 2, validating that the GMC formulation dominates the

SCI formulation in terms of LP relaxation strength. Since the SCI formulations are equivalent by Theorem 1,
it also proves that the GMC formulation dominates the SCI2 formulation in terms of LP relaxation strength.

C Alternative formulations

This appendix presents the alternative SCI, SCI2 and GMC formulations, which we will refer to SCI-A,
SCI2-A and GMC-A, respectively.

C.1 SCI-A: Alternative SCI formulation

Binary variables y`tij , s
`t
ij , and w`tij are defined as in Section 3.2, whereas now continuous variables xktij ∈ [0, 1]

define the fraction of demand of commodity k that is directed through arc (i, j) at time period t. Note
that here index ` has been removed from the original continuous variables xk`tij . The new SCI-A formulation
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writes as follows:

(SCI-A) min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

Ckijd
ktxktij +

∑
(i,j)∈A

∑
`∈L

∑
t∈T

F `ijy
`t
ij+∑

(i,j)∈A

∑
`∈L

∑
t∈T

f
`

ijs
`t
ij +

∑
(i,j)∈A

∑
`∈L

∑
t∈T

f `
ij
w`tij (23)

s.t.
∑

j:(i,j)∈A

xktij −
∑

j:(j,i)∈A

xktji = bki ∀i ∈ N , ∀k ∈ K, ∀t ∈ T (24)

∑
k∈K

dktxktij ≤
∑
`∈L

U `ijy
`t
ij ∀(i, j) ∈ A, ∀t ∈ T (25)∑

`∈L

`y`tij =
∑
`∈L

`y
`(t−1)
ij +

∑
`∈L

`s`tij −
∑
`∈L

`w`tij ∀(i, j) ∈ A, ∀t ∈ T \{1} (26)∑
`∈L

`y`tij =
∑
`∈L

`s`tij ∀(i, j) ∈ A, t = 1 (27)∑
`∈L

y`tij = 1 ∀(i, j) ∈ A, ∀t ∈ T (28)∑
`∈L

s`tij = 1 ∀(i, j) ∈ A, ∀t ∈ T (29)∑
`∈L

w`tij = 1 ∀(i, j) ∈ A, ∀t ∈ T (30)

0 ≤ xktij ≤ 1 ∀(i, j) ∈ A, ∀k ∈ K, ∀t ∈ T
y`tij , s

`t
ij , w

`t
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀` ∈ L, ∀t ∈ T .

The strong linking constraints compatible with the SCI-A formulation are as follows:

xktij ≤
∑

`∈L\{0}
y`tij ∀(i, j) ∈ A, ∀k ∈ K, ∀t ∈ T . (31)

Note that we explicitly keep out y variables for maintaining an arc at capacity level 0 from the strong
linking constraints because a commodity flow can never be routed through this arc.

C.2 SCI2-A: Alternative SCI2 formulation

The SCI2 formulation differs from the SCI formulation only by equations (10), which does not contain the
original continuous variables xk`tij . The SCI2-A formulation is therefore given by (23)-(25), (27)-(30) and
(10). Note that the strong linking constraints (31) from the SCI-A formulation can also be applied to the
SCI2-A formulation.
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C.3 GMC-A: Alternative GMC formulation

Binary variables y`1`tij are defined as in Section 3.4, whereas continuous variables xktij are now defined as for
the SCI-A formulation in Appendix C.1. The GMC-A formulation therefore writes as follows:

(GMC-A) min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

Ckijd
ktxktij +

∑
(i,j)∈A

∑
`1∈L

∑
`2∈L

∑
t∈T

f `1`2tij y`1`2tij (32)

s.t.
∑

j:(i,j)∈A

xktij −
∑

j:(j,i)∈A

xktji = bki ∀i ∈ N , ∀k ∈ K, ∀t ∈ T (33)

∑
k∈K

dktxktij ≤
∑
`∈L

∑
`1∈L

U `ijy
`1`t
ij ∀(i, j) ∈ A, ∀t ∈ T (34)

∑
`1∈L

y
`1`(t−1)
ij =

∑
`2∈L

yl`2tij ∀(i, j) ∈ A, ∀` ∈ L, ∀t ∈ T \{1} (35)

∑
`2∈L

y0`2tij = 1, ∀(i, j) ∈ A, t = 1 (36)

∑
`2∈L

∑
`1∈L

y`1`2tij = 1 ∀(i, j) ∈ A, t = 1 (37)

0 ≤ xktij ≤ 1 ∀(i, j) ∈ A, ∀k ∈ K, ∀t ∈ T

y`1`2tij ∈ {0, 1} ∀(i, j) ∈ A, ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T .

The corresponding strong linking constraints for the GMC-A formulation can be written as:

xktij ≤
∑
`1∈L

∑
`2∈L\{0}

y`1`2tij ∀(i, j) ∈ A, ∀k ∈ K, ∀t ∈ T . (38)

Note that we explicitly keep out y variables for reducing an arc to capacity level 0 from the strong linking
constraints because a commodity flow can never be routed through this arc.

D Proof of Theorem 3: Dominance over alternative formulations

We here prove Theorem 3, i.e., the dominance of the main formulations over the alternative formulations. To
be precise, we will prove the following three statements: (A) the SCI formulation (including strong linking
constraints (9)) is stronger (strictly stronger for some instances) than the SCI-A formulation (including strong
linking constraints (31)), (B) the SCI2 formulation (including strong linking constraints (9)) is stronger
(strictly stronger for some instances) than the SCI2-A formulation (including strong linking constraints
(31)), and (C) the GMC formulation (including strong linking constraints (17)) is stronger (strictly stronger
for some instances) than the GMC-A formulation (including strong linking constraints (38)). To prove each
statement, we will use the same technique as used for the dominance proof in Appendix B.

D.1 Proof of statement (A)

In the first step, we prove that the SCI formulation is at least as strong as the SCI-A formulation with
inequalities (31) by showing that from any solution {xk`tij , y`tij , s`tij , w`tij} feasible in SCI (i.e., the LP relaxation

of SCI), we can construct a solution {xktij , y`tij , s`tij , w`tij} that is feasible in SCI-A (i.e., the LP relaxation of
SCI-A) and has the same objective function value. In the second step, we show that for a specific problem
instance, the optimal solution provided by SCI is strictly superior to the one provided by SCI-A.

(a) Construction of feasible SCI-A solution from a SCI solution

Let {xk`tij , y`tij , s`tij , w`tij} be any solution feasible in SCI. We now construct an equivalent solution {xktij , y`tij , s`tij , w`tij}
that is feasible in SCI-A (i.e., it satisfies all of its constraints) and has the same objective function value.

We first set the y`tij , s
`t
ij , w

`t
ij variables in the SCI-A solution to take, respectively, the same values as

the y`tij , s
`t
ij , w

`t
ij variables in the SCI formulation. Given that constraints (4)-(8) are satisfied in the SCI
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formulation, the equivalent constraints (26)-(30) hold in the SCI-A formulation. The domain constraints for
the y`tij , s

`t
ij , w

`t
ij variables also hold in the SCI-A formulation.

We then set the values of the xktij variables based on the values of the SCI variables as follows:

xktij =
∑
`∈L

xk`tij ∀(i, j) ∈ A,∀k ∈ K,∀t ∈ T . (39)

Summing the strong linking constraints (9) over the capacity level set L and taking into consideration
constraints (6) and equations (39) gives the following inequality:

0 ≤ xktij =
∑
`∈L

xk`tij ≤
∑
`∈L

y`tij = 1 ∀(i, j) ∈ A, ∀k ∈ K, ∀t ∈ T . (40)

Inequality (40) guarantees that variables xktij respect the lower bound of 0 and the upper bound of 1 in

the domain constraints of the SCI-A formulation. Since constraints (2) of the SCI formulation hold for the
SCI solution, it follows that constraints (24) of the SCI-A formulation also hold after replacing

∑
`∈L x

k`t
ij

by xktij according to equations (39).
Summing over constraints (3) over the capacity level set L and taking into consideration equations (39)

gives inequality (41), demonstrating that constraints (25) of the SCI-A formulation are satisfied:∑
k∈K

dktxktij =
∑
k∈K

dkt
∑
`∈L

xk`tij ≤
∑
`∈L

U `ijy
`t
ij ∀(i, j) ∈ A, ∀t ∈ T . (41)

Inequality (41) is also key to show that the strong linking constraints (31) are satisfied. Note that, for

all feasible values of y`=0,t
ij , inequality (41) forces xktij to be zero, as the capacity at capacity level ` = 0 U `ij

is always zero. Thus, y`=0,t
ij can be omitted from the rightmost side of inequality (40) to match the strong

linking constraints (31), and it follows that the strong linking constraints (31) are satisfied.
Finally, it is straightforward to see that the value of objective function (23) of the SCI-A formulation is

equal to the value of objective function (1) of the SCI formulation after replacing xktij according to equations

(39). Recall that the routing cost Ck`ij is assumed to not vary among the different capacity levels ` (i.e.,

Ck`ij = Ckij ∀` ∈ L). This concludes the proof that any solution feasible in SCI may be written as an equivalent

solution feasible in SCI-A with the same objective function value.

(b) Example of problem instance where SCI is strictly stronger than SCI-A

As a consequence of the the previous step, the solution space of SCI-A is at least as large as the solution
space of SCI. SCI is therefore at least as strong as SCI-A. However, for certain problem instances, SCI-A
may therefore find solutions that are not part of the SCI solution space, and have a lower objective function
value than any of the feasible SCI solutions, therefore providing bounds that are less tight in relation to the
optimal integer solution of the problem. We now provide such a problem instance, which proves that the
bound provided by SCI is strictly stronger than the bound provided by SCI-A.

Consider a problem instance similar to the one presented in Appendix B. Specifically, the problem instance
has a single time period t1, a single commodity k1, two nodes n1 and n2 and a single arc (n1, n2), on which
15 units of commodity k1 must be routed from n1 to n2. The arc has two capacity levels, i.e., therefore
L = {0, 1, 2}. Capacity levels 1 and 2 have capacities of U1

ij = 10 and U2
ij = 20, respectively. The expansion

costs to construct such capacities are f
`=1

n1n2
=10$ and f

`=2

n1n2
=15$ for capacity levels 1 and 2, respectively.

The maintenance costs to operate the arc throughout the time period are F 1
n1n2

=10$ and F 2
n1n2

=20$,
respectively, for the two capacity levels. Routing costs and reduction costs are all set to 0.

For this problem instance, the optimal solution of SCI-A partially constructs the arc on capacity level
2 (s`=0,t1

n1n2
= 0.25 and s`=2t1

n1n2
= 0.75), which is the most economical decision for construction, and maintains

capacity open half on capacity level 1 and half on capacity level 2 (y`=1,t1
n1n2

= 0.5 and y`=2,t1
n1n2

= 0.5), which is
the most economical decision for maintenance while having enough capacity to route the flow and respecting
the strong linking constraints (31) of the SCI-A formulation. The flow is routed via xk1,t1n1n2

= 1.0. Constructing
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partially on one capacity level and maintaining partially on two capacity levels allows the formulation to
find a solution of low objective function value 26.25$.

In contrast, the optimal solution of SCI constructs and maintains at capacity level 2 (s`=2,t1
n1n2

= 1.0 and
y`=2,t1
n1n2

= 1.0), routing the flow completely through capacity level 2 with xk1,`=2,t1
n1n2

= 1.0. This solution has
an objective function value of 35.00$, which is also equivalent to the optimal integer solution.

Note that the dominance of the SCI formulation over the SCI-A formulation does neither exclusively
rely on the capacity constraints separated by level (3) nor exclusively on the strong linking constraints (9),
but rather the combination of both. In other words, the capacity constraints separated by level (3) and
the strong linking constraints (9) impose a tighter relationship between the xk`tij and y`tij variables. In the

following, we will give an intuition why this is the case. The SCI formulation for this problem instance has
the following form after (I) removing variables that must be equal to zero or have trivial values, as well as
redundant constraints, and (II) omitting the i, j, k, and t indexes of the xk`tij , y`tij , and s`tij variables as there
is only one arc (n1, n2), one commodity k1, and one time period t1:

min 10s1 + 15s2 + 10y1 + 20y2

s.t. x0 + x1 + x2 = 1

15x0 ≤ 0y0

15x1 ≤ 10y1

15x2 ≤ 20y2

y0 + y1 + y2 = 1

s0 + s1 + s2 = 1

y1 + 2y2 = s1 + 2s2

x0 ≤ y0

x1 ≤ y1

x2 ≤ y2

0 ≤ x` ≤ 1 ∀` ∈ L
0 ≤ y` ≤ 1 ∀` ∈ L
0 ≤ s` ≤ 1 ∀` ∈ L.

Given that variables s1, s2, y1 and y2 have a positive coefficient in the objective function and this is a
minimization problem, the optimal solution takes the lowest values for variables s1, s2, y1 and y2 in the
feasible region. The lower bound of variable y1 is 3

2x
1, which comes from the capacity constraint, whereas

the lower bound of variable y2 is 1x2, which comes from the strong linking constraint. On the other hand,
the values of variables s1 and s2 are regulated by the equality constraints. Note that variable x0 must be
equal to zero due to constraint 15x0 ≤ 0y0.

Since the pair of variables (x0, y0), (x1, y1) (x2, y2) only interact with each other in the feasible region
with the exception of four equality constraints, it is possible to partially rewrite the feasible region of the
SCI formulation as a system of equations, taking into consideration that variables y1 and y2 must be at their
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lower bound as previously explained:


x0 + x1 + x2 = 1

y0 + y1 + y2 = 1

s0 + s1 + s2 = 1

y1 + 2y2 − s1 − 2s2 = 0

→


x1 + x2 = 1

y0 + 3
2x

1 + x2 = 1

s0 + s1 + s2 = 1
3
2x

1 + 2x2 − s1 − 2s2 = 0

→



y0 = −2 + α+ 2β

x1 = 4− 2α− 4β

x2 = −3 + 2α+ 4β

s0 = 1− α− β
s1 = α

s2 = β

→



y0 = −2 + α+ 2β

y1 = 3
2 (4− 2α− 4β)

y2 = −3 + 2α+ 4β

s0 = 1− α− β
s1 = α

s2 = β

Only α = 0 and β = 1 provides feasible values for variables s0 = 0, s1 = 0, s2 = 1, y0 = 0, y1 = 0 and
y2 = 1 in terms of domain constraints, which results in the solution presented earlier.

The two steps (a) and (b) above prove statement (A) of Theorem 3, validating that the SCI formulation
dominates the SCI-A formulation in terms of LP relaxation strength.

D.2 Proof of statement (B)

In the first step, we prove that the SCI2 formulation is at least as strong as the SCI2-A formulation by
showing that from any solution {xk`tij , y`tij , s`tij , w`tij} feasible in SCI2 (i.e., the LP relaxation of SCI2), we can

construct a solution {xktij , y`tij , s`tij , w`tij} that is feasible in SCI2-A (i.e., the LP relaxation of SCI2-A) and has
the same objective function value. In the second step, we show that for a specific problem instance, the
optimal solution provided by SCI2 is strictly superior to the one provided by SCI2-A.

The SCI2 formulation differs from the SCI formulation only by one constraint that does not contain flow
variables. Therefore, the first step to prove statement (B) follows trivially from step (a) to prove statement
(A). For the same problem instance presented for the proof of statement (A), the optimal solution of the
SCI2 formulation is the same as the solution of the SCI formulation, and the optimal solution of the SCI2-A
formulation is the same as the solution of the SCI-A formulation. Therefore, the second step to prove
statement (B) also follows trivially from step (b) to prove statement (A). Thus, statement (B) of Theorem
3 holds, validating that the SCI2 formulation dominates the SCI2-A formulation in terms of LP relaxation
strength.

D.3 Proof of statement (C)

In the first step, we prove that the GMC formulation is at least as strong as the GMC-A formulation by
showing that from any solution {xk`tij , y

`1`2t
ij } feasible in GMC (i.e., the LP relaxation of GMC), we can

construct a solution {xktij , y
`1`2t
ij } that is feasible in GMC-A (i.e., the LP relaxation of GMC-A) and has the

same objective function value. In the second step, we show that for a specific problem instance, the optimal
solution provided by GMC is strictly superior to the one provided by GMC-A.

(a) Construction of feasible GMC-A solution from a GMC solution

Let {xk`tij , y
`1`2t
ij } be any solution feasible in GMC. We now construct an equivalent solution {xktij , y

`1`2t
ij }

that is feasible in GMC-A (i.e., it satisfies all of its constraints) and has the same objective function value.
We first set the y`1`2tij variables in the GMC-A solution to take the same values as the y`1`2tij variables in

the GMC formulation. Given that constraints (14)-(16) are satisfied in the GMC formulation, the equivalent
constraints (35)-(37) hold in the GMC-A formulation. By construction, the domain constraints for the y`1`2tij

variables also hold in the GMC-A formulation.
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We then set the values of the xktij variables based on the values of the GMC variables as follows:

xktij =
∑
`∈L

xk`tij ∀(i, j) ∈ A,∀k ∈ K,∀t ∈ T . (42)

Summing over the strong linking constraints (17) over the capacity level set L and taking into consider-
ation constraints (14)-(16) and equations (42) gives the following inequality:

0 ≤ xktij =
∑
`∈L

xk`tij ≤
∑
`∈L

∑
`1∈L

y`1`tij = 1 ∀(i, j) ∈ A, ∀k ∈ K, ∀t ∈ T . (43)

Inequality (43) guarantees that variables xktij respect the lower bound of 0 and the upper bound of 1 in

the domain constraints of the GMC-A formulation. Since constraints (12) of the GMC formulation hold
for the GMC solution, it follows that constraints (33) of the GMC-A formulation also hold after replacing∑
`∈L x

k`t
ij by xktij according to equations (42).

Summing over constraints (13) over the capacity level set L, which can be done because xk`tij ≥ 0,

y`1`tij ≥ 0, U `ij ≥ 0 and dkt ≥ 0 in the GMC formulation, and taking into consideration equations (42) gives

inequality (44), proving that constraints (34) of the GMC-A are satisfied:∑
k∈K

dktxktij =
∑
k∈K

dkt
∑
`∈L

xk`tij ≤
∑
`∈L

∑
`1∈L

U `ijy
`1`t
ij ∀(i, j) ∈ A, ∀t ∈ T . (44)

Again, inequality (44) is also key to show that the strong linking constraints (38) are satisfied. Note that,

for all feasible values of y`1,`=0,t
ij ∀`1 ∈ L, inequality (44) forces xktij to be zero, as the capacity at capacity

level ` = 0 U `ij is always zero. Thus, y`1,`=0,t
ij ∀`1 ∈ L can be omitted from the rightmost side of inequality

(43) to match the strong linking constraints (38), and it follows that the strong linking constraints (38) are
satisfied.

Finally, it is straightforward to see that the objective function (32) of the GMC-A formulation is equal to
the objective function (11) of the GMC formulation after replacing xktij according to equations (42). Recall

that the routing cost Ck`ij is assumed to not vary among the different capacity levels ` (i.e., Ck`ij = Ckij ∀` ∈ L).

This concludes the proof that any solution feasible in GMC may be written as an equivalent solution feasible
in GMC-A with the same objective function value.

(b) Example of problem instance where GMC is strictly stronger than GMC-A

As a consequence of the the previous step, the solution space of GMC-A is at least as large as the solution
space of GMC. GMC is therefore at least as strong as GMC-A. However, for certain problem instances,
GMC-A may therefore find solutions that are not part of the GMC solution space, and have a lower objective
function value than any of the feasible GMC solutions, therefore providing bounds that are less tight in
relation to the optimal integer solution of the problem. We now provide such a problem instance, which
proves that the bound provided by GMC is stronger than the bound provided by GMC-A.

Consider the same problem instance presented for the proof of statement (A). For this problem instance,
the optimal solution of GMC-A constructs the arc half on capacity level 1 and half on capacity level 2
(y`1=0,`2=1,t1
n1n2

= 0.5 and y`1=0,`2=2,t1
n1n2

= 0.5), which is the most economical decision for construction and
maintenance while providing enough capacity to route the flow and respecting the strong linking constraints
(38) of the GMC-A formulation. The flow is routed via xk1,t1n1n2

= 1.0. Constructing and maintaining partially
on two capacity levels allow the formulation to find a solution of low objective function value 27.50$.

In contrast, the optimal solution of GMC constructs and maintains the arc at capacity level 2 (y`1=0,`2=2,t1
n1n2

=
1.0), routing the flow completely through capacity level 2 with xk1,`=2,t1

n1n2
= 1.0. This solution has an objec-

tive function value of 35.00$, which is also equivalent to the optimal integer solution. As it was the case for
the SCI and SCI-A formulations, the dominance of the GMC formulation over the GMC-A formulation does
neither exclusively rely on the capacity constraints separated by level (13) nor exclusively on the strong link-
ing constraints (17), but the combination of both. In other words, the combination of capacity constraints
separated by level (13) and the strong linking constraints (17) impose a tighter relationship between the xk`tij
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and y`1`2tij variables. In the following, we provide an intuition why this is the case. The GMC formulation
for this problem instance has the following form after (I) removing variables that must be equal to zero and
redundant constraints, and (II) omitting the i, j, k, and t indexes of the xk`tij and y`1`2tij variables as there is
only one arc (n1, n2), one commodity k1, and one time period t1:

min 20y01 + 35y02

s.t. x0 + x1 + x2 = 1

15x0 ≤ 0y00

15x1 ≤ 10y01

15x2 ≤ 20y02

y00 + y01 + y02 = 1

x0 ≤ y00

x1 ≤ y01

x2 ≤ y02

0 ≤ x` ≤ 1 ∀` ∈ L
0 ≤ y0` ≤ 1 ∀` ∈ L

Given that variables y01 and y02 have a positive coefficient in the objective function and this is a mini-
mization problem, the optimal solution takes the lowest values for variables y01 and y02 in the feasible region.
The lower bound of variable y01 is 3

2x
1, which comes from the capacity constraint, whereas the lower bound

of variable y02 is 1x2, which comes from the strong linking constraint. Note that variable x0 must be equal
to zero due to constraint 15x0 ≤ 0y00.

Since the pair of variables (x0, y00), (x1, y01) (x2, y02) only interact with each other in the feasible region
with the exception of two equality constraints, it is possible to partially rewrite the feasible region of the
GMC formulation as a system of equations, taking into consideration that variables y01 and y02 must be at
their lower bound as previously explained:

{
x0 + x1 + x2 = 1

y00 + y01 + y02 = 1
→

{
x1 + x2 = 1

y00 + 3
2x

1 + x2 = 1
→


y00 = − 1

2 + 1
2λ

x1 = 1− λ
x2 = λ

→


y00 = − 1

2 + 1
2λ

y01 = 3
2 (1− λ)

y02 = λ

Trivially, only λ = 1 provides feasible values for variables y00 = 0, y01 = 0 and y02 = 1 in terms of
domain constraints, which results in the solution presented above.

The two steps (a) and (b) above prove statement (C) of Theorem 3, validating that the GMC formulation
dominates the GMC-A formulation in terms of LP relaxation strength.

E Generation of Problem Instances

This appendix presents the instance generation procedure employed to adapt real-world networks from
Pazour et al. (2010) to a multi-period setting with problem-specific features. This instance generation
procedure is similar to the one used in Fragkos et al. (2021), which has been inspired by the one presented
in Crainic et al. (2001).

Pazour et al. (2010) generate problem instances representing continental high-speed networks for freight
transportation. They generate four networks. The JBH50 and JBH98 networks are based on data provided
by the largest truckload carrier in the USA, J.B. Hunt Transport Services Inc., whereas the USC30 and
USC53 networks are based on data from the 2002 Commodity Flow Survey. The resulting networks are
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reported in the appendix of Pazour (2008). Details on how the original data is transformed into the final
networks can be found in Pazour (2008) and Pazour et al. (2010).

Each network is composed of a set of arcs and a set of commodities. Each arc has an origin node, a
destination node, and an euclidean distance. Each commodity has an origin node, a destination node, and
the commodity demand value (in number of units to be sent). Following the instance generation procedure
proposed by Fragkos et al. (2021), we only consider networks JBH50, USC30 and USC53. In the same spirit,
we also decrease the size of the three networks by considering only a subset of commodities per network. The
subset of commodities per network has been chosen by selecting commodities with largest demand values
until reaching a certain percentage of the original total demand. The reduced networks therefore have a
smaller number of commodities, but they still account for most of the demand in the original networks. Also
note that the USC30 network has five redundant arcs, which have been manually removed from the network.
The resulting reduced networks are referred to with a “red”-suffix added to their name. The JBH50red
network has a subset of commodities representing 79% of the original total demand, the USC30red network
has a subset of commodities representing 85% of the original total demand, and the USC53red networks has
a subset of commodities representing 80% of the original total demand.

We use the resulting JBH50red, USC30red, and USC53red networks to generate the problem instances
for our experiments. The instance generation procedure has three main steps: the adaptation of real-world
networks to generate single-period instances (Appendix E.1), the expansion of single-period instances to a
multi-period setting (Appendix E.2) and, finally, the adjustments to generate features that are specific to
the MPND-CA (Appendix E.3).

E.1 Single-period adaptation

This section presents the adaptation of the real-world networks to generate single-period instances. In its
original format, the JBH50red, USC30red, and USC53red networks have the following input data. Each arc
(i, j) ∈ A has an euclidean distance wij , and each commodity k ∈ K has an origin node o(k), a destination
node d(k) and a demand value dk (in number of demand units). The instance generation procedure is given
by the following steps for each of the three networks:

Step 1 Store origin i, destination j and distance wij of each arc (i, j) ∈ A.

Step 2 Calculate a routing cost cij for each arc (i, j) ∈ A by multiplying distance wij by a cost per mile
constant (0.3665$/mile 3) that can change according to the application.

Step 3 Store origin o(k), destination d(k), and demand value dk of each commodity k ∈ K.

Step 4 Calculate a total demand indicator D =
∑
k∈K dk based on the demand values.

Step 5 Set loose or tight capacity values for each arc (i, j) ∈ A by drawing a capacity value uij from a random
distribution U [0.5 ·D/C, 1.5 ·D/C], where C ∈ {1, 8} represents respectively loose or tight capacities
and D is the total demand indicator.

Step 6 Set low or high fixed costs for each arc (i, j) ∈ A by drawing a fixed cost fij from a random distribution
U [0.5 · F ·D · cij , 1.5 · F ·D · cij ], where F ∈ {0.01, 0.1} represents, respectively, low or high fixed costs
and cij and D are as defined above.

Step 7 Update the previously calculated routing cost cij and the previously drawn fixed cost fij for each
arc (i, j) ∈ A following two different approaches: in the first approach (Euclidean), the previously
calculated routing cost cij and the previously drawn fixed cost fij for each arc (i, j) ∈ A are maintained
and therefore consider the Euclidean distance between origin and destination; in the second approach
(random), previously calculated routing costs and previously drawn fixed costs are randomly shuffled
among arcs to decouple distances from transportation costs.

Step 8 Update the previously drawn fixed costs to force a negative correlation between fixed costs and routing
costs. If the correlation between fixed costs and routing costs is greater than −0.5, the arc (i, j) with
the n-th highest fixed cost fij receives the fixed cost of the arc with the n-th lowest routing cost

3The cost per mile has been obtained from http://www.rtsfinancial.com/guides/trucking-calculations-formulas.
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cij . Then, the fixed costs are shuffled among a subset of arcs to avoid having a too strong negative
correlation. This subset of arcs is randomly chosen among all arcs, and has size 0.10 · |A| for instances
with Euclidean routing costs and 0.33 · |A| for instances with random routing costs.

The methodology to build loose or tight capacity values, as well as low or high fixed costs, comes from
Crainic et al. (2001). Note that the extensions described in this section are identical to those proposed by
Fragkos et al. (2021). The latter, however, additionally consider medium capacity values, medium fixed
costs, mixed routing costs and random correlation (i.e., no forced negative correlation between fixed and
routing costs) for the generation of single-period instances. For the generation of problem instances specific
to the MPND-CA, we did not consider those four additional attribute values in order to have a set of problem
instances of reasonable size. Given the two types of capacity values, two types of fixed costs, and two types
of routing costs, each real-world network generates 8 different single-period instances, resulting in a total of
3 · 8 = 24 single-period instances.

E.2 Multi-period extension

This section presents the extension of single-period instances to a multi-period setting. The extension to
multiple time periods involves defining demand values dkt of a commodity k for the different time periods t,
based on the demand value dk of commodity k in the single-period instance.

We consider two different demand patterns. The first demand pattern is an increasing demand over the
planning horizon with small perturbations and is identical to the demand pattern proposed by Fragkos et
al. (2021). Here, the generalized logistic function (Richards, 1959) is used to obtain demand values for all
time periods. The demand values dkt are calculated as follows:

dkt = (1 + rkt)

(
λ+

µ− λ
(1 + e−β(t−

T
2 ))

1
v

)
dk,∀k ∈ K, t ∈ T ,

where rkt is a perturbation coefficient, λ is the minimum asymptotic demand, µ is the maximum asymptotic
demand, β is the growth rate, and v is a location parameter. Fragkos et al. (2021) randomly draw rkt from
the uniform distribution U [−0.1, 0.1], fix µ = 0.3, β = 0.4, and v = 1, and choose different values of λ for
each size T of the planning horizon such that the average demand value over all time periods is close to the
demand value dk used in the single-period instance. Specifically, Fragkos et al. (2021) select λ = 1.583 for
T = 5, λ = 1.601 for T = 10, λ = 1.621 for T = 15, and λ = 1.636 for T = 20.

The second demand pattern is a random demand evolution over time. To this end, we draw, for each
commodity k ∈ K and time period t ∈ T , a demand value dkt from the normal distribution N(dk, 0.5 · dk),
where dk is the demand value in the single-period instance.

Given the two types of demand expansion, each single-period instance generates 2 multi-period instances
with different demand patterns. Therefore, there are a total of 2 · 24 = 48 multi-period instances for each
length T of the planning horizon. Note that, with the exception of the demand value, all other data from the
single-period instances are used without further modifications in the different time periods of the multi-period
instances.

E.3 Problem-specific adjustments

This section presents the adjustments of the previously defined multi-period instances to obtain all features
required for the MPND-CA. Specifically, we extend the multi-period instances by generating (a) capacity
values for each capacity level based on the previously stored capacity value uij for each arc (i, j) ∈ A, and
(b) costs for routing, maintenance, capacity expansion, and capacity reduction at different capacity levels
based on the previously stored routing cost cij and the previously stored fixed cost fij for each arc (i, j) ∈ A.

We first define the capacity values for the different capacity levels. The capacity value of level 0 is zero:

U0
ij = 0 ∀(i, j) ∈ A.

Let q be the number of capacity levels. Each next capacity level adds gij units of additional capacity,
defined as:

gij =
uij
q
∀(i, j) ∈ A.
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The capacity value U `ij ∈ {1, . . . , q} of an arc (i, j) ∈ A open at capacity level ` is therefore:

U `ij = ` · gij .

We next generate the costs for routing, maintenance, capacity expansion and capacity reduction at the
different capacity levels based on routing costs cij , and fixed costs fij .

We define the routing cost Ck`ij for commodity k on arc (i, j) at level ` as the same as routing cost cij
of arc (i, j), i.e., the routing cost Ck`ij does not vary among commodities or capacity levels. Note that the
presented formulations can easily accommodate routing costs that depend on time period t. This may be
the case for seasonal variations of the costs.

We set the costs to maintain an arc at capacity level 0, as well as the costs to expand or reduce capacity
by 0 levels, to zero:

F 0
ij = f

0

ij = f0
ij

= 0 ∀(i, j) ∈ A.

We now define the costs to maintain an arc capacity at level 1 and the costs to expand and to reduce
capacity by one capacity level. Let Aij = 1.9 · fij be an auxiliary cost defined for each arc (i.j) ∈ A,
representing the cost of opening arc (i, j) in the first time period and maintaining it open until the end of
the planning horizon (as defined by Fragkos et al., 2021). We split the auxiliary cost Aij into two different
cost parameters (maintenance and expansion costs) and distribute them over the planning horizon. Let
PEC be a scale factor that represents the costs of expanding one capacity level in respect to the costs of
maintaining one capacity level. The costs to maintain an arc (i, j) open at capacity level ` = 1 for one time
period is then computed as:

F 1
ij =

Aij
|T |+ PEC

· 1

q
∀(i, j) ∈ A.

As an example, consider the setting with a single capacity level greater than zero (i.e., q = 1), such as
it is the case in Fragkos et al. (2021). Isolating Aij on the left-hand side gives Aij = PEC · F 1

ij + |T | · F 1
ij ,

which highlights how the auxiliary cost comprises both the costs to construct arc (i, j) (i.e., PEC · F 1
ij) and

the maintenance cost throughout the entire planning horizon (i.e., |T | · F 1
ij).

The cost to expand the capacity of an arc (i, j) by one capacity level is given as:

f
1

ij = PEC · F 1
ij ∀(i, j) ∈ A.

Next, we define the capacity reduction costs as a fraction of the capacity expansion costs. Thus, let PRC
be the scale factor that represents the costs of reducing one capacity level in respect to the costs of expanding
one capacity level. The costs to reduce the capacity of an arc by one capacity level is:

f1
ij

= PRC · f
1

ij ∀(i, j) ∈ A.

Finally, we compute the costs to maintain arc capacity at a level greater than 1, and the costs to expand
or reduce capacity by more than one capacity level based on the corresponding costs for capacity level ` = 1.
In order to enable the representation of economies of scale, we define PMES , PEES and PRES as the scale factors
that represent the economies of scale when operating on higher levels for capacity maintenance, capacity
expansion and capacity reduction. The costs to maintain an arc open at a capacity level ` ∈ {2, · · · , q} and
to increase or reduce the capacity at an arc by ` capacity levels, where ` ∈ {2, · · · , q}, are given by:

F `ij = F
(`−1)
ij + PMES · (F

(`−1)
ij − F (`−2)

ij ) ∀` ∈ {2, · · · , q} ∀(i, j) ∈ A,

f
`

ij = f
(`−1)
ij + PEES · (f

(`−1)
ij − f (`−2)ij ) ∀` ∈ {2, · · · , q} ∀(i, j) ∈ A,

and
f `
ij

= f (`−1)
ij

+ PRES · (f
(`−1)
ij

− f (`−2)
ij

) ∀` ∈ {2, · · · , q} ∀(i, j) ∈ A.

The problem-specific parameters here used have the following values. Parameter PRC = 0.1 (i.e., reducing
capacity is much cheaper than expanding capacity) has been fixed for all problem instances. We consider
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two different numbers of capacity levels q ∈ {3, 5} and two different correlations between maintenance and
expansion costs PEC ∈ {1.0, 5.0}, i.e., the cost to expand capacity is, respectively, the same or five times
as expensive as maintaining a capacity open during one time period. We also consider two settings for
economies of scale within maintenance, expansion and reduction costs: positive economies of scale (PMES =
0.85, PEES = 0.85, PRES = 0.85) and inverse economies of scale (PMES = 1.15, PEES = 0.85 and PRES = 0.85).

We consider all possible combinations of the values for the parameters described above. Therefore, each
multi-period instance as defined in the previous section can be equipped with 8 different sets of problem-
specific parameter values. For the MPND-CA, we therefore have a total of 8 · 48 = 384 problem instances
for each size T of the planning horizon, which have been used in the computational experiments.

F Computational Results for the Problem Variant with Unsplit-
table Flows

This appendix presents the detailed results for the problem variant with unsplittable commodity flows, i.e.,
the flow to route a commodity from its origin to its destination has to be routed on the same path. This
path may be different in each time period.

Tables 8-11 present the results for the same experiments previously explored for the problem variant
with splittable flows. Specifically, Table 8 indicates that the integrality gaps for this problem variant tend
to be significantly higher, which suggests that the corresponding mixed-integer programming formulations
are more difficult to solve. Table 9, however, shows that the computing times to solve the models remain
relatively unchanged, and are actually slightly faster than before for the two SCI formulations. These
conclusions are supported by the results in Table 10, where all three formulations have a similar number of
instances for which no feasible solution has been found, and similar optimality gaps. It therefore appears
that, under CPLEX default settings, the solver has effective resources (i.e., heuristics and cut generation) to
compensate for the difficulty of the problem during the optimization process. Finally, this suspicion seems to
be confirmed by the results based on an emulated basic branch-and-cut environment in Table 11. Without
pre-processing, heuristics and cut-generation, the SCI formulation cannot find feasible solutions for more
than 200 of the 267 instances, and require much more computing time to solve the problem. This suggests,
once again, that the strength of the GMC formulation may be an important consideration when using less
advanced general purpose MIP solvers.

Description GMC SCI SCI2
Avg. LPR Avg. Avg. LPR Avg. Avg. LPR Avg.

Attribute Value # time (min.) int. gap time (min.) int. gap time (min.) int. gap
Network JBH50red 71 13.0 0.00% 10.2 0.42% 8.0 0.42%

USC30red 116 0.4 0.97% 0.2 1.61% 0.2 1.61%
USC53red 80 9.3 0.09% 9.0 0.63% 4.8 0.63%

T 10 267 6.4 0.45% 5.5 1.00% 3.7 1.00%
q 3 133 7.8 0.44% 7.1 0.87% 4.7 0.87%

5 134 5.1 0.47% 4.0 1.13% 2.7 1.13%

Fixed
costs

Low 167 1.1 0.27% 0.8 0.48% 0.8 0.48%
High 100 15.3 0.75% 13.4 1.86% 8.5 1.86%

Capacities
Loose 176 9.0 0.02% 8.0 0.60% 5.2 0.60%
Tight 91 1.5 1.28% 0.8 1.78% 0.8 1.78%

Routing
costs

Euclidean 135 8.2 0.58% 5.7 1.14% 4.2 1.14%
Random 132 4.6 0.32% 5.3 0.86% 3.2 0.86%

Demand
behavior

Increasing 128 8.8 0.35% 7.5 0.88% 4.5 0.88%
Random 139 4.3 0.54% 3.7 1.11% 2.9 1.11%

PC
E 1 128 4.5 0.41% 3.5 0.64% 3.2 0.64%

5 139 8.2 0.49% 7.4 1.33% 4.1 1.33%
Economies

of scale
Inverse 132 5.9 0.49% 5.3 1.05% 3.9 1.05%
Positive 135 6.9 0.41% 5.8 0.95% 3.4 0.95%

All 267 6.4 0.45% 5.5 1.00% 3.7 1.00%

Table 8: Average LPR solution time and integrality gaps of the formulations for instances for which the
optimal integer solution is known (problem variant with unsplittable flows).
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Description GMC SCI SCI2
Avg. MIP Avg. MIP Avg. MIP

Attribute Value # time (min.) time (min.) time (min.)
Network JBH50red 66 23.4 30.6 24.2

USC30red 115 20.9 28.5 28.4
USC53red 73 27.6 44.6 41.9

T 10 254 23.5 33.7 31.2
q 3 127 18.4 24.3 20.6

5 127 28.6 43.0 41.7

Fixed
costs

Low 164 16.9 19.2 20.5
High 90 35.5 60.0 50.5

Capacities
Loose 167 8.8 17.6 12.8
Tight 87 51.6 64.5 66.5

Routing
costs

Euclidean 131 22.4 29.9 25.2
Random 123 24.7 37.7 37.5

Demand
behavior

Increasing 121 23.6 33.5 26.6
Random 133 23.4 33.8 35.3

PC
E 1 125 22.5 24.7 29.7

5 129 24.5 42.4 32.5
Economies

of scale
Inverse 125 29.1 39.1 33.1
Positive 129 18.1 28.4 29.3

All 254 23.5 33.7 31.2

Table 9: Average MIP solution time (CPLEX default settings) for instances that have been solved by all
three formulations (problem variant with unsplittable flows).

Description GMC SCI SCI2
# opt # # # opt # # # opt # #

Attribute Value # nfs gap os nos nfs gap os nos nfs gap os nos
Network JBH50red 62 58 0.02% 1 3 54 0.07% 4 4 55 0.01% 4 3

USC30red 13 0 0.09% 1 12 0 0.14% 0 13 0 0.13% 0 13
USC53red 55 27 0.47% 7 21 30 0.68% 2 23 30 0.67% 1 24

T 10 130 85 0.32% 9 36 84 0.42% 6 40 85 0.41% 5 40
q 3 65 34 0.43% 5 26 38 0.64% 1 26 37 0.61% 1 27

5 65 51 0.06% 4 10 46 0.10% 5 14 48 0.08% 4 13

Fixed
costs

Low 28 23 0.02% 2 3 22 0.09% 1 5 23 0.01% 2 3
High 102 62 0.36% 7 33 62 0.47% 5 35 62 0.46% 3 37

Capacities
Loose 25 3 0.25% 6 16 1 0.42% 5 19 1 0.37% 3 21
Tight 105 82 0.38% 3 20 83 0.42% 1 21 84 0.45% 2 19

Routing
costs

Euclidean 61 42 0.29% 4 15 45 0.46% 2 14 43 0.28% 0 18
Random 69 43 0.34% 5 21 39 0.40% 4 26 42 0.49% 5 22

Demand
behavior

Increasing 71 48 0.17% 4 19 45 0.23% 3 23 47 0.22% 3 21
Random 59 37 0.47% 5 17 39 0.66% 3 17 38 0.62% 2 19

PC
E 1 67 43 0.38% 1 23 46 0.47% 2 19 43 0.53% 2 22

5 63 42 0.25% 8 13 38 0.37% 4 21 42 0.26% 3 18
Economies

of scale
Inverse 67 44 0.27% 5 18 42 0.50% 3 22 44 0.34% 3 20
Positive 63 41 0.37% 4 18 42 0.31% 3 18 41 0.48% 2 20

All 130 85 0.32% 9 36 84 0.42% 6 40 85 0.41% 5 40

Table 10: Number of instances without feasible solution, with optimal solution and non-optimal solution,
as well as average optimality gap (CPLEX default settings) for instances which have not been solved to
optimality by at least one of the formulations (problem variant with unsplittable flows).
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Description GMC SCI SCI2
# # opt time # # opt time # # opt time

Attribute Value # nfs os gap (min.) nfs os gap (min.) nfs os gap (min.)
Network JBH50red 71 7 64 0.00% 10.4 66 2 0.03% 594.9 70 1 0.01% 600.0

USC30red 116 42 74 0.00% 20.5 59 57 0.01% 23.3 59 56 0.01% 35.7
USC53red 80 33 46 0.00% 61.1 76 1 0.06% 636.3 75 0 0.10% 720.0

T 10 267 82 184 0.00% 27.3 201 60 0.01% 103.7 204 57 0.02% 99.0
q 3 133 38 95 0.00% 17.9 92 35 0.02% 138.9 96 33 0.02% 101.2

5 134 44 89 0.00% 37.2 109 25 0.01% 46.0 108 24 0.02% 95.8

Fixed
costs

Low 167 53 114 0.00% 18.5 126 35 0.02% 136.6 129 33 0.02% 112.8
High 100 29 70 0.00% 41.5 75 25 0.01% 49.9 75 24 0.01% 78.1

Capacities
Loose 176 9 166 0.00% 18.9 110 60 0.01% 103.7 113 57 0.02% 99.0
Tight 91 73 18 0.01% 105.5 91 0 - - 91 0 - -

Routing
costs

Euclidean 135 35 99 0.00% 33.0 103 30 0.01% 92.3 105 29 0.01% 65.3
Random 132 47 85 0.00% 20.7 98 30 0.02% 114.5 99 28 0.02% 129.7

Demand
behavior

Increasing 128 33 94 0.00% 38.3 100 28 0.01% 20.6 100 28 0.01% 36.3
Random 139 49 90 0.00% 15.7 101 32 0.02% 165.0 104 29 0.03% 149.1

PC
E 1 128 37 91 0.00% 22.9 89 35 0.01% 120.0 92 33 0.01% 106.0

5 139 45 93 0.00% 31.6 112 25 0.02% 80.2 112 24 0.03% 89.7
Economies

of scale
Inverse 132 40 91 0.00% 37.3 99 32 0.01% 83.5 100 29 0.02% 105.6
Positive 135 42 93 0.00% 17.5 102 28 0.02% 124.0 104 28 0.02% 92.2

All 267 82 184 0.00% 27.3 201 60 0.01% 103.7 204 57 0.02% 99.0

Table 11: Number of instances without feasible solution and with optimal solution, as well as average
optimality gap and solution time (basic branch-and-cut environment for problem variant with unsplittable
flows).
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