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Abstract. E-commerce continues to grow throughout the world due to people's preference 
to stay at home rather than going to a brick-and-mortar retail store. COVID-19 has 
exacerbated this trend. Concurrently, crowd-shipping has been gaining in popularity due to 
both the increase in e-commerce and the current pressures due to COVID-19. We consider 
a setting where a crowd-shipping platform can fulfill heterogeneous delivery requests from 
a central depot with a fleet of professional vehicles and a pool of capacitated occasional 
drivers. We divide delivery requests into sectors to represent different neighborhoods in a 
city. Occasional drivers have unknown destinations that can be any-where inside the 
sectors. Route duration constraints are modeled to motivate participation and increase the 
probability of route-acceptance by keeping routes short. We assume that occasional drivers 
will choose routes that are better compensated and that the probability of route-acceptance 
is dependent on other routes being offered. We propose a two-stage stochastic model to 
formulate the problem. We use a branch-and-price algorithm capable of solving 50-
customer instances, and develop a heuristic that can solve larger 100-customer instances 
quickly. An upper bound for the total number of occasional drivers is used to reduce the 
number of constraints in the master problem and reduce the complexity of the pricing 
problems. We show that occasional drivers with destinations far from the depot reduce the 
cost by over 30%, while occasional drivers with destinations that are near the depot reduce 
the cost by 20%. We show that route duration constraints and capacity constraints can 
restrict the occasional driver routes and both need to simultaneously increase in order to 
have cost reductions. This setting of crowd-shipping is a viable option for last-mile 
deliveries.  
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1 Introduction

E-commerce continues to grow throughout the world due to people’s preference to stay at home

rather than going to a brick-and-mortar retail store. COVID-19 and the increasing risk of global

pandemics has exacerbated this tendency Bhatti et al. (2020); Gao et al. (2020). People would

rather stay at home to minimize the risk of infection. At the same time, jobs are being lost at

previously busy restaurants and public stores Sanchez et al. (2020). The jobs that are lost, according

to Sanchez et al. (2020), tend to be low paid and less secure, and are usually held by young, poorly

educated workers and migrants. Fortunately and concurrently, crowd-shipping has been gaining

in popularity due to e-commerce and COVID-19. Platforms like Amazon Flex and Uber-Eats

have increasing market participation. Raj et al. (2020) show that restaurants have increased sales

through Uber-Eats, a food delivery service provided by Uber. Crowd-shipping has the potential to

alleviate the unstable predicament of workers by providing a means to add an additional income.

The idea of crowd-shipping is to utilize the vehicles that are already on the road (e.g., personal

vehicles), to deliver packages. In a recent survey by Sampaio et al. (2019), the challenges and

opportunities of crowd-shipping are emphasized. Retailers, e.g., Amazon, have traditionally owned

their fleet of professional vehicles (PV) to perform delivery requests. With crowd-shipping they

can now depend as well on a fleet of crowd-drivers or occasional drivers (OD) that can fulfill some

delivery requests. ODs are individuals with a personal vehicle that have a planned trip with a

destination and are willing to perform delivery tasks.

The challenge is the unknown preferences and characteristics of ODs. For instance, ODs have

different models of vehicles of heterogeneous sizes, thus, the capacity of OD-vehicles varies and the

retailer would not know how many packages an OD can deliver a priori. In addition, ODs can

accept or reject routes. Thus, the probability that a route will be accepted by ODs is dependent

on other routes that could be less or more attractive to ODs. OD-destinations can be different and

change from day to day, and overall OD-participation from day to day is uncertain.

The most successful crowd-shipping platform (CSP) is Amazon Flex that now operates in the

US and Canada, and in over 100 cities AmazonFlex (2021). Amazon has solved some of the

challenges by creating a program where individuals can sign up a priori only if they meet some

basic requirements. Participants must pass security checks and complete basic workshops to qualify.

Walmart recently started its own CSP called Walmart Spark Delivery. For a review of the different

CSPs and the scientific literature on crowd-shipping, see Alnaggar et al. (2021). They noticed that

most of the real-world CSP have capacitated crowd-drivers that perform deliveries from a central

depot, while most of the scientific literature on crowd-shipping considers that ODs can perform

only one delivery regardless of the capacity and considers multiple pickup locations. Few stochastic

variants are identified.

In this paper, we consider a setting where a CSP has a set of delivery requests that can be

fulfilled by a fleet of PVs or a pool of capacitated ODs who have previously registered to the
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platform. Deliveries must be fulfilled from a central depot. The products sold are heterogeneous,

e.g., microwave ovens, books, pencils, frozen foods. Some items have to be delivered within a time

window. ODs are capacitated and have different random destinations that change from day to day.

ODs can choose routes, thus, the probability that ODs accept a route is dependent on the other

routes that are offered to them. Additionally, cities are generally divided by neighborhoods and

natural geographic barriers, e.g., rivers, mountains, road networks and parks. In practice, customers

are generally clustered in different areas or sectors in a city. Thus, we assume that delivery requests

can be clustered into sectors and that OD-destinations are in a city sector. Furthermore, ODs do

not want to deviate too far from their trajectory.

We assume that historical information exits on OD-destinations for each sector, which allows

the creation of a discrete probability function that can predict the supply of ODs with destinations

that end in the sector. The setting is suitable for large data-rich organizations that can gather such

information over the course of their operations, e.g., Amazon. In this manner, each sector has a

discrete probability function that predicts the number of ODs that will end their trip in the sector.

In addition, the probability of route rejection is dependent on the other routes offered to ODs.

The main contributions of this paper are the following:

• We introduce a new variant for crowd-shipping: Open VRP with stochastic destinations.

• In order to increase participation, we propose a route duration constraint for OD-routes, so

that the routes built for ODs do not exceed a certain length. In this manner, ODs that

participate in the CSP know in advance that their route will not exceed a certain value.

• We extend the set covering formulation presented by Torres et al. (2020), by adapting the

optimization model for this new variant.

• We strengthen the upper bounds on the total number of ODs used in a solution proposed by

Torres et al. (2020). Specifically, we use the route duration constraint and information about

the shortest route to strengthen the upper bound.

• We develop a column generation heuristic to provide solutions to larger instances.

• Finally, we provide extensive computational experiments that show valuable insights to the

VRP with stochastic destinations.

The remainder of this paper is organized as follows: In Section 2, we review the related literature.

In Section 3, we describe the problem and we present a set covering formulation. In Section 4, we

describe the solution approach utilized to solve the problem. In Section 5, we perform extensive

computational experiments and provide valuable insights about the characteristics of the problem.

Finally, in Section 6, we conclude and provide interesting future research directions.

3

Crowdshipping: An Open VRP Variant with Stochastic Destinations

CIRRELT-2021-46



2 Related work

After crowd-shipping was conceptualized by Amazon and other companies, an initial quantitative

study of crowd-shipping was presented by Archetti et al. (2016). The authors introduce the Vehicle

Routing Problem with Occasional Drivers (VRPOD). They formulate a deterministic and static

model where a set of delivery requests have to be fulfilled from a central depot by a mixed fleet

of unlimited PVs that complete closed routes, and a set of ODs that are willing to deliver some

packages while they travel towards their specific destination. The compensation of in-store cus-

tomers could be based on different strategies. Two different compensation schemes are considered,

the first independent and the second dependent of the OD-destination. An mixed integer program

(MIP) is introduced to solve small instances, and a multi-start heuristic is proposed to provide

solutions to larger instances. It is shown that significant cost reductions are achieved by employing

the static-deterministic ODs compared to conventional vehicle routing delivery plans.

A main question that arises from Archetti et al. (2016) is how can ODs be applied in a dynamic

and/or stochastic setting? In practice, the flow of information is going to occur in stages. ODs

could arrive dynamically throughout the day; the total number of ODs is unknown until late in

the day. Furthermore, OD could reject or accept routes. In Gdowska et al. (2018), the authors

consider the possible rejection of delivery tasks by ODs. The probability of rejecting a delivery

request by an OD is viewed as independent from other delivery requests. They extend the MIP

presented in Archetti et al. (2016) to a stochastic setting by determining beforehand the set of

customers that will be proposed to ODs based on an expected cost function. Initially, the set of

delivery requests is separated into two sets by a heuristic method; the first set of delivery requests is

fulfilled by PVs and the second set is satisfied by ODs. However, ODs can decline routes, resulting

in a penalty per delivery request contained in the OD-set and not fulfilled due to OD rejection.

Recall that ODs in this setting can only visit one customer, therefore, OD routes contain a single

customer. Every delivery request has a probability of being accepted by an OD. Thus, the expected

cost function determines the expected cost of the OD-customer set based on a fixed compensation

and the expected penalty if a customer is not served. The remaining PV-customer set is solved

optimally with the model proposed by Archetti et al. (2016) and a commercial solver. Due to the

complexity of the VRP, only small instances with 15 delivery requests were solved. Even though the

resulting VRP is solved optimally, it is important to note that this method is not exact. However,

an important contribution of this study was to present the idea of separating the set of delivery

requests into two sets and accounting for the possibility of route rejection. This can be useful

in practice since PVs can start some long routes at the beginning of the planning horizon before

knowing the number of ODs that will be available or that will not reject routes.

In a similar work, Torres et al. (2020) presented a two-stage stochastic framework that we extend

in this paper. They consider a setting where a crowd-shipping platform delivers heterogeneous

packages from a central depot. A fleet of unlimited PVs and a pool of ODs are used to fulfill
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the delivery requests. The ODs are capacitated and can deliver multiple packages, hence planning

routes for ODs is required. Failed delivery attempts are possible in the setting, and thus, ODs must

return to the depot if they have undelivered packages. Hence, ODs do not have a fixed destination

and are willing to return to the depot. Similar to Gdowska et al. (2018), in the first-stage delivery

requests are separated into two sets: one set of delivery requests is assigned to the PV-fleet, and

the other is assigned to be visited by ODs. Route rejection is considered by a discrete probability

function that predicts the participation of ODs or acceptance of OD routes. However, different from

Gdowska et al. (2018), the set separation step is done through the following two-stage stochastic

set-partitioning formulation of the VRP:

min
∑

r∈Ω∪Ω′

crλr + Q(λ) (1)

s.t.
∑

r∈Ω∪Ω′

ariλ
r = 1 ∀i ∈ N (2)∑

r∈Ω′

λr ≤M (3)

λr ∈ {0, 1} ∀r ∈ Ω ∪ Ω′

The set Ω is the set of all feasible routes for PVs and Ω′ is the set of all feasible routes for ODs.

Both sets contain an exponential number of routes. Binary variables λr denote if route r ∈ Ω ∪ Ω′

is used in a solution. Parameters cr are the cost of route r ∈ Ω ∪Ω′ and parameter M is an upper

bound on the total number of ODs that can be used, e.g, the total number of ODs registered in

the platform. The parameter ari is equal to one if and only if customer i ∈ N is visited in route r,

where N is the set of customers. The first-stage solution gives a natural separation of the delivery

requests that are to be fulfilled by PVs and ODs based on routes. The second-stage cost, i.e., Q(λ),

is the expected cost incurred by applying recourse actions and penalties for the first-stage subset

of delivery requests that is assigned to ODs. The probability of a route being rejected is dependent

on other routes. ODs might reject routes or simply not participate; in which case, the recourse

actions consist in having larger PVs complete the OD-routes that are not fulfilled. The PVs that

must be used in the recourse action to fulfill OD-routes are considered to be more expensive, i.e.,

a parameter α > 1 multiplies the regular cost of a PV.

The model is then linearized by adding more binary variables to the model. A branch-and-price

algorithm is used to solve some large 100-customer instances; a column generation heuristic is also

shown to perform faster. Computational experiments show the value of the stochastic solution for

this model to be over 20% for some cases. However, this study does not address the problem when

ODs have planned trips with a desired destination. In some settings, requiring ODs to return to

the depot can be limiting and/or increase the cost of the operation. In this paper, we extend the
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framework of Torres et al. (2020) to a case where ODs have unknown destinations. The resulting

problem is an Open VRP variant with stochastic destinations.

Dayarian and Savelsbergh (2017) introduce a highly dynamic, same-day delivery environment,

where both ODs and delivery requests arrive dynamically throughout the planning horizon. A

program is created that requires ODs to describe some of their characteristics with the intention of

reducing the uncertainty. More specifically, the willingness of ODs to deliver to online customers is

represented by a coverage area that describes the location of customers that will be accepted by the

OD. It is assumed that ODs will accept delivery tasks as long as all delivery locations are inside the

coverage area and that the regular fleet of vehicles has an unlimited capacity. A sample scenario

planning approach is developed and the routing problem is solved using a tabu search heuristic.

When ODs have a set of routes to choose from, the probability that a route will be accepted

or rejected depends on the other routes available. Some routes might be more attractive for ODs

that others.

Table 1 shows the summary of the stochastic variants that were identified in the literature.

Study OD-Destination OD-Capacity Probability Recourse

Dayarian and Savelsbergh (2017) YES NO Independent NO

Gdowska et al. (2018) YES NO Independent NO

Torres et al. (2020) NO YES Dependent YES

Dahle et al. (2017) YES NO Independent NO

This paper YES YES Dependent YES

Table 1: Summary of stochastic variants

As noted by Alnaggar et al. (2021), the capacity of ODs is rarely considered in the literature

except by a few papers, e.g., Archetti et al. (2021). In addition, stochastic variants in VRPs

generally present a recourse action in the case the routing plan fails, e.g., see Gendreau et al.

(2014). In practice, when an unexpected event occurs an action needs to be taken to mitigate the

losses. To the best of our knowledge, only one stochastic variant proposed a recourse action for

ODs, i.e., Torres et al. (2020).

For additional interesting dynamic variants, see Dahle et al. (2017), Arslan et al. (2019) and

Archetti et al. (2021). For static-deterministic variants, see Macrina et al. (2020), Macrina and

Guerriero (2018) and Dahle et al. (2019).

3 Problem Description and Formulation

In this section, we describe and formulate the problem. In Section 3.1, we describe the way we

group customers into sectors and describe the characteristics of each sector. In Section 3.2, we

delineate the routes that will be offered to ODs. In Section 3.3, we describe the CSP, the flow of

information and the cost structure. Finally, in Section 3.4, we formulate the problem.
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3.1 Sectors

Cities are generally divided by natural barriers, e.g., rivers, mountains, or by large parks; cities are

also divided by industrial areas, neighborhoods and the road network. Thus, we assume that a set

of delivery requests can be easily clustered to represent different sectors within a city. In figure 1,

we can see a description of an instance of the problem.

Figure 1: Example of instance with stochastic destinations

• Customers. The set of customers in a sector represents delivery requests that must be

fulfilled by the platform on a given day. Each customer has a set of coordinates describing

her location, a demand to represent the volume of the parcel, and an earliest and latest arrival

time, i.e., a time window.

• Average customer. The average customer is the average location of all delivery requests

in the sector. This average customer represents the center of a sector in a city so that all

the other customers in the sector are at a reasonable distance from this center. It facilitates

estimations of route duration constraints as well as the compensation.
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• Distance to sector. Distance from the depot to the average customer, i.e., Du for each

sector u ∈ U , where U is the set of sectors.

3.2 OD-routes

A description of the routes that will be offered to ODs is presented in this section. Figure 2 shows

an example of 3 OD-routes.

Figure 2: Example of OD-routes

3.2.1 Total load

We assume that OD-vehicles have a capacity of at least Q′. While ODs may have vehicles with a

larger capacity, the total load of OD-routes cannot exceed the capacity Q′. In this way, all routes

created are feasible for ODs to complete. However, they can be rejected by ODs, see section 3.2.3.

The fleet of PVs is assumed to have a PV-capacity of Q, that is strictly larger than Q′.

3.2.2 Route duration constraint

We assume that ODs are not willing to deviate too far from their trajectory as they go to their

destination. Route duration constraints ensure that routes created for each sector are not too long,
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thus, increasing participation and route acceptance. The total distance traveled in the route from

the depot to the average customer in the sector cannot exceed a value of D̄u for u ∈ U . The value

D̄u is the route duration for the sector that contains the planned destination of the OD and it is

defined as follows:

D̄u = φDu + τ. (4)

Parameter φ is the acceptable deviation from the OD-trajectory as an additional percentage of Du

for each sector u ∈ U . Parameter τ is an additional value added to Du. The two parameters, i.e.,

φ and τ , give the platform flexibility to create routes that can be acceptable to ODs that have a

destination near or far from the depot. Some ODs that have a destination in close proximity to

the depot and have extra time, might prefer a higher value of τ to increase their income.

3.2.3 Probability of OD-route acceptance

In a recent study Asdecker and Zirkelbach (2020), it is shown that crowd delivery drivers are

primarily motivated by compensation. In addition, Torres et al. (2020) show that, in their setting,

there is no difference in assigning the most expensive routes to ODs first or expecting ODs to choose

these routes based on compensation given the cost structure proposed in their model. Thus, in

this paper, we assume that all ODs prefer higher compensated routes and we assume that higher

compensated routes are also more expensive for the CSP. The probability that a route has of being

accepted by the pool of ODs depends on the other routes that are offered to ODs. For instance, let

r1, . . . , rs be OD-routes listed by higher to lower compensation. The first ODs to arrive will prefer

route r1 since it has the highest compensation. The second ODs will not be able to choose route

r1 and will have to choose r2, i.e., the highest compensated route available. If we have any list

of routes ordered from highest compensated to lowest, the highest compensated will have a higher

probability of been chosen by ODs since it is their first choice. This implies that for any set of OD-

routes given, we must order them first from highest to lowest compensated to know the probability

of acceptance of each route. Each sector has a discrete probability distribution describing the

probability of the supply of ODs, i.e., Pu(ξu > s) where ξu is the expected supply of ODs that

will have a destination in sector u ∈ U and s is the OD-preference of the route w.r.t. the other

routes in the sector. In this way, any list of OD-routes has to be ordered by compensation first and

then we can calculate the probability of acceptance. This list of ordered preferences is commonly

referred to as a preference ordering in economics Debreu (1954); Mrkela and Stanimirović (2021).

Historical data on OD-destinations can be used to create the discrete probability function. ODs

can reject routes or accept them; the historical data can show how many ODs have accepted routes

on any given day for each sector.
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3.2.4 Multiple sector visits

OD-routes can visit customers in multiple sectors u ∈ U as long as the last customer of the route is

in the sector of the OD-destination. This takes into account that ODs would prefer to be in close

proximity to their final destination once they finish their routes. Figure 2 shows an example of 3

OD-routes. Two OD-routes visit customers that are in different sectors while the last one visits

customers only in a single sector.

3.3 Crowd-shipping platform (CSP)

The CSP is a platform that requires ODs to register first in order to participate. If they meet certain

requirements, e.g., security checks or attending workshops, then ODs can download an application

and start delivering packages when they have time. These requirements can reduce uncertainty

by standardizing the pool of ODs. Since the CSP creates the requirements, it can filter out ODs

with small vehicles or ODs that are not interested in the type of delivery requests that they offer.

Moreover, it allows ODs to understand how they will be compensated and what type of routes they

are expected to perform. It is important to recall that, even if they are registered in the CSP, ODs

are not forced to participate and can choose freely when they work and their destination from day

to day. We assume ODs are rational agents that will choose the highest compensated routes, see

section 3.2.3.

3.3.1 First stage

We consider a two-stage stochastic modelling framework. In the first stage, PV-routes and OD-

routes have to be planned without exact knowledge of the supply of ODs that will arrive throughout

the operations time span for each sector. PVs have to depart early to visit customers and perform

long routes. This leaves a set of customers that need to be visited by ODs. The OD-routes are then

offered to ODs in the CSP-app and they are expected to choose the highest compensated routes

first, see section 3.2.3.

3.3.2 Second stage

The second stage begins at some point in time when the CSP cannot wait any longer for additional

ODs to arrive to perform the remaining routes. At this point, recourse actions need to be taken

to guarantee that the deliveries to all customers are made on time. Recourse actions consist of

sending a PV to complete the OD-routes that were rejected by ODs.

3.3.3 Cost structure

Torres et al. (2020) consider a fixed compensation, i.e., F ′ and a variable compensation, i.e., β′ < 1

for ODs. PVs also get paid a fixed cost, i.e., F and a variable cost that is set to 1. Variable costs
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are proportional to the distance traveled in the route. A cost per delivery is also considered for each

route, i.e., wr, for both PV and ODs. An additional recourse cost is incurred when OD-routes are

not fulfilled by ODs and must be performed by PVs. The cost to use a PV to complete OD-routes

is the regular cost of a PV times a penalty α > 1. Let r∗ be an OD-route that has been rejected

and let dr∗ be the distance of this OD-route; the cost of a recourse action is α(F + dr∗ + wr∗).

Thus, the additional cost incurred by performing a recourse action for the rejected OD-route r∗ is

the following:

ẑr∗ = α(F + dr∗ + wr∗)− (F ′ + β′dr∗ + wr∗)

However, if a route “r” is not rejected by ODs the compensation paid to an OD is equal to:

ĉr = (F ′ + β′dr +wr). Here, both ODs and PVs are compensated to return to the depot if parcels

are not delivered and a compensation per delivery is paid to both PVs and ODs. It should be

noted that the compensation for the return trip is always paid, regardless of whether it is required

or not. The expected cost of any given OD-route, including the cost associated with the risk of

being rejected, is equal to the following:

ĉrs = ĉr + ẑrP (ξ < s) (5)

Here, the probability function (i.e., P (ξ < s)), returns the probability that a route will be rejected;

ξ is the supply of ODs and the index s represents the priority, i.e., the order in which the CSP

assigns routes to ODs based on the cost. As noted previously, there is little difference between

expensive routes and better compensated routes.

In this paper, the priority is viewed as the preference of ODs (see Section 3.2.3). We consider

the following additional cost incurred by a recourse action for a rejected OD-route r∗:

zr∗ = α(F + dr∗ + d0
r∗)− (F ′ + β′dr∗) (6)

A return trip to the depot is only expected for PVs, thus, the additional term d0
r∗ is the distance

from the last customer of the rejected route r∗ back to the depot. However, we do not consider any

compensation per delivery. The compensation given to an OD if the route is accepted is defined as

cr = (F ′ + β′dr); thus, the expected cost for any OD-route is:

crus = cr + zrPu(ξu < s) ∀u ∈ U, (7)

where Pu(ξu < s) is the probability that route r will be rejected by ODs if it has a preference of “s”

in the preference ordering of all OD-routes in sector u ∈ U . See Section 3.2.3 for an explanation of

the probability function and the preference ordering of ODs.
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3.4 Problem Formulation

We extend the model presented by Torres et al. (2020); where the model described in section 2,

i.e.,(1)-(3), is linearized. Let λrs be binary variables that are equal to one if route r is used in the

solution with priority s. For simplicity, variables λr0 represent PV-routes.

M̂P = min
∑
r∈Ω

ĉr0λ
r
0 +

M∑
s=1

∑
r∈Ω′

ĉrsλ
r
s (8)

s.t.

M∑
s=0

∑
r∈Ω∪Ω′

airλ
r
s ≥ 1 ∀i ∈ N (9)∑

r∈Ω′

λrs ≤ 1 ∀s ∈ {1, . . . ,M} (10)

λrs ∈ {0, 1} ∀s ∈ {0, . . . ,M}, r ∈ Ω ∪ Ω′

The second-stage cost in model (1)-(3) is replaced by the sum of the binary variables λrs times

the cost (7). Constraints (9) make sure all delivery requests are covered by routes. Constraints (10)

guarantee that there is only one route assigned to each priority. Interestingly, the order of routes

from more expensive to cheapest is done automatically by the model; since this is a minimization

problem, the model assigns routes to the best possible priority; for proof see Torres et al. (2020).

In this paper, we extend model (8)-(10); let λrus be binary variables that are equal to one if

route r is used in the solution with OD-preference s in sector u ∈ U . Then we define the master

problem as follows:

MP = min
∑
r∈Ω

cr0λ
r
0 +

∑
u∈U

Mu∑
s=1

∑
r∈Ωl

crusλ
r
us (11)

s.t.
∑
u∈U

Mu∑
s=0

∑
r∈Ω∪Ωu

airλ
r
us ≥ 1 ∀i ∈ N (12)

∑
r∈Ωu

λrus ≤ 1 ∀s ∈ {1, . . . ,Mu}, u ∈ U (13)

λ ∈ {0, 1}

The objective function (11) is to minimize the total cost of routing, including the expected

recourse actions that will need to be taken. Set covering constraints (12) guarantee that all cus-

tomers will be visited at least once. The set of constraints (13) allow only a single route to have an

OD-preference of s ∈Mu per sector u ∈ U . The value Mu is an upper bound on the total number

of OD-routes allowed in a sector; it can be equal to the total number of ODs registered to the CSP.
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4 Solution Approach

Set covering formulations for VRP variants are usually solved by branch-and-price algorithms Poggi

and Uchoa (2014); Costa et al. (2019). In this section, we present the approach used to solve our

problem.

In Section 4.1, we propose a technique to determine the upper bound on the total number of

ODs per sector in model (11)-(13), which is obtained by extending the one proposed by Torres

et al. (2020). In Section 4.2 we describe the branch-and-price algorithm that is used to provide

solutions to our problem. In Section 4.4, we present a column generation heuristic that is applied

to quickly generate solutions.

4.1 Upper bound

Constraints (13) lead to a large number of constraints. In an effort to make the master problem

smaller and more manageable, we derive an upper bound for Mu.

Let r be an OD-route with an expected cost crus defined in equation (7), and let cru0 be the cost

of deploying a PV to perform the OD-route in the first stage, i.e., without offering the route to

ODs. If the expected cost for an OD is higher that the cost of employing a PV for the same route,

i.e., if crus > cru0, then it should not be offered to ODs. The expected cost of an OD-route increases

as the preference of the OD-route is lowered so that it is less likely to be accepted, i.e., crus < crus+1.

A threshold probability of rejection for which an OD-route is less expensive for a PV is derived by

Torres et al. (2020) as follows:

P̂ =
α− 1

α− F ′+β′dr
F+dr

(14)

Let the function P−1(.) be the quantile function of the discrete probability function of the

supply of ODs. With the probability threshold in (14), we can estimate the maximum number of

ODs in the model:

M̂ = P−1

(
α− 1

α− F ′+β′dr
F+dr

)

By considering the limits of the distance traveled in route r, i.e., dr → ∞ and dr → 0, the

following upper bound for the total number of ODs used in a solution is obtained:

M̂ = max

[
P−1

(
α− 1

α− β′

)
, P−1

(
α− 1

α− F ′

F

)]
The first ratio is the threshold if the distance tends to infinity, i.e., dr →∞. The second ratio gives

the threshold if the distance tends to zero, i.e., dr → 0. The least restrictive of the two is used as
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an upper bound. In the problem setting that is considered in this paper, we have knowledge of the

minimum and maximum distance of a route. The compensation structure is also slightly different.

We adjust and improve the upper bound with this additional information. The route duration

constraint value, i.e., D̄u, is the upper bound for the length of all OD-routes, and the distance from

the depot to the closest customer in a sector, i.e., du, is the shortest distance for all OD-routes in

sector u ∈ U . We improve the bound as follows:

M̄u = max

[
P−1
u

(
α− 1

α− F ′+β′D̄u

F+D̄u+du

)
, P−1

u

(
α− 1

α− F ′+β′du
F+2du

)]
∀u ∈ U (15)

We calculate the threshold probability for each sector as shown in (15) the least restrictive

threshold probability gives us an upper bound on the total number of ODs that are feasible in that

sector, i.e., Mu.

4.2 Branch-and-Price (B&P)

The master problem (11)-(13) has an exponential number of variables. We consider a restricted

version of the master problem called the restricted master problem that only has a few routes. We

then generate the routes that are needed by solving pricing problems. For more information about

B&P methods, see Wolsey (2020), Poggi and Uchoa (2014), Costa et al. (2019).

4.2.1 Pricing

The solution to the restricted master problem is not optimal since more columns could reduce the

cost. Pricing is necessary to find all negative reduced cost columns, and if none can be found,

to guarantee that columns with a negative reduced cost do not exist at the current iteration, and

thus, proving that the solution for the restricted master problem is the same solution for the master

problem. Let µus be the dual variables for constraints (13); let πi be dual variables for constraints

(12). In order to find the variable with the lowest reduced cost to add to the restricted master

problem, the following problem has to be solved.

min
r,u,s

ĉ = {crus −
∑

ariπi + µus : r ∈ Ω ∪ Ω′, s ∈ M̄u, u ∈ U} (16)

Equation (16) describes a series of elementary shortest path problems with resource constraints

(ESPPRC), which are NP-hard problems. The total number of ESPPRCs that need to be solved is

equal to
∑U

u M̄u. However, we can solve all of them in a single problem by using the cohesive pricing

algorithm proposed by Torres et al. (2020) that can solve all problems in a single one. Route dura-

tion constraints are added as an additional resource in the algorithm and the destinations of ODs

can be derived by the last extension of each route in the algorithm. Labeling algorithms have been
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used successfully for the ESPPRC with ng-routes and decremental state space relaxations (DSSR).

The ng-routes relaxation consists of allowing non-necessarily elementary paths to be formed, i.e.,

customers can be visited more than once, as long as repeated customers are not contained on a

specified set of nearest neighbors. In this way, only cycles that exit the neighborhood of nearest

neighbors are allowed, these cycles tend to be more expensive since distant customers are visited,i.e.,

not nearest neighbors, and provide a better bound. DSSR gradually increases the customers in the

ng-set of nearest neighbors from the empty set to a specified set cardinality, see Righini and Salani

(2008). For further information about labeling algorithms and ng-routes relaxations, see Baldacci

et al. (2011).

Let Lp = (ip, lp, tp, dp, π̄p,Vp) be a label for a path p than ends at customer ip, has a total load

of lp, a total time traveled of tp, a total distance of dp, cumulative dual variables equal to π̄p, and

the set of unreachable customers equal to Vp. We iterate over all possible loads lp from 0 to the

largest capacity, i.e., Q. Labels are extended from their current customer, i.e., ip, to a reachable

customer not contained in Vp. Time window constraints for each customer must also be checked

before an extension.

Dominance rules are then applied to eliminate labels that are not promising. For instance, let

L1 and L2 be two different labels with the same current customer, i.e., i1 = i2, and the same total

load, i.e., l1 = l2. The following dominance rules are applied while lp ≤ Q′:

Dominance rules 4.1. Label L1 dominates label L2 if the following rules are true:

1. t1 ≤ t2

2. d1 ≤ d2

3. π̄1 ≥ π̄2

4. V1 ⊆ V2

Once the total load of labels exceeds the OD-capacity, i.e., Q′, then the paths described by the

labels must be done by PVs. Route duration constraints are no longer necessary. The dominance

rules applied once lp > Q′ are the following:

Dominance rules 4.2. Label L1 dominates label L2 if the following rules are true:

1. t1 ≤ t2

2. d1 − π̄1 ≤ d2 − π̄2

3. V1 ⊆ V2

To add variables with the lowest reduced cost to the restricted master problem, we first look

at labels that have a total load of less than or equal to the OD-capacity, i.e., lp ≤ Q′. The current
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customer of path p, i.e., ip, belongs to a sector up, see Section 3.1. The paths that satisfy the route

duration constraint for sector up are added to the restricted master problem only if they have a

negative reduced cost. Paths that have a total load of more than the OD-capacity are added as

PV-routes by extending back to the depot only if they have a negative reduced cost. Recall that

the negative reduced cost of variables can be derived from (16).

4.2.2 Branching

We select the node of the tree with the best bound, then explore the problem. If the solution is

fractional, we branch using the following order of importance:

1. Total number of vehicles, both PVs and ODs;

2. Total number of ODs;

3. Total number of ODs in each sector;

4. Finally, we branch on the flow between two customers.

4.3 Heuristic pricing

When solving the ESPPRC to find negative-reduced-cost columns, it is not necessary to find an

optimal solution of the problem at each iteration; rather, any solution with a negative objective

function value can be added to the restricted master problem. The difficulty of the exact pricing

algorithm is caused by dominance rules 4.1.4 and 4.2.3. We drop these rules, and we maintain

elementarity of all paths through feasibility checks. These two changes reduce the time complexity

from exponential to pseudo-polynomial time. However, the guarantee of finding an exact solution

is lost. Algorithm 1 is the procedure used to find columns and add them to the restricted master

problem.
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Algorithm 1: Heuristic pricing

j ←0;

found ← True;

while found do
found ← False;

Dominance rules(j), see Algorithm 2;

Run labeling algorithm with feasible extensions;

found ← Negative column found?;

if found then
Update the restricted master problem;

j ← 0;

else if j ≤ 1 then
j ← j + 1;

found ← True;

The procedure Dominance rules, described in Algorithm 2, sets the dominance rules to be used

in Heuristic pricing. When j = 0, the total distance is sufficient to eliminate labels. This leads to a

fast algorithm that runs in polynomial time since only one label can be present for each customer

at each iteration. However, the strictness of dominance rules is gradually increased as columns

become harder to find. This scheme is generally used to find columns quickly and stabilize the dual

variables. Once dual variables stabilize stronger heuristics are used, see Desaulniers et al. (2006).

When the labeling algorithm fails to find a negative-reduced-cost column with j = 0, we increase

j by one, i.e., j = 1. Now, the labeling algorithm uses dominance rules based on distance and

time, set by Algorithm 2. If this fails to find a negative-reduced-cost column, we use dual variable

costs based on whether the total load exceeds a the OD-vehicle capacity, as shown in algorithm 2.

Finally, if Heuristic pricing fails, we use the exact pricing algorithm with ng-routes relaxations and

DSSR.
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Algorithm 2: Dominance rules

Input: j,L1,L2

if j = 0 then
Set the following dominance rules:

d1 ≤ d2

else if j = 1 then
Set the following dominance rules:

t1 ≤ t2
d1 ≤ d2

else
Set the following dominance rules:

t1 ≤ t2
d1 ≤ d2

if l1 ≤ Q′ then
π̄1 ≥ π̄2

else
d1 − π̄1 ≤ d2 − π̄2

4.4 Column Generation Heuristic

Commercial solvers, e.g, CPLEX, are efficient at solving set covering problems. The column gener-

ation heuristic consists in adding variables to the restricted master problem until no more variables

can be found, and then, solving the resulting MIP with a commercial solver, i.e., without generating

more columns.

Using the B&P framework, we can explore nodes in the branch-and-bound tree without pro-

viding exact solutions for the pricing problem. Heuristic pricing generates all the columns used

and the exact pricing method is not employed. Once no more columns are generated, we branch

following the criteria in section 4.2.2. When we have explored H ∈ N nodes of the tree, we send

the MIP to a commercial solver. The solver provides a best solution given the set of routes in the

restricted master problem. Algorithm 3 describes Col-Gen-H.

Algorithm 3: Col-Gen-H

Input: H

k ←0;

while k ≤ H do
k ← k + 1;

Select node with best bound;

Heuristic pricing;

Branch, see section 4.2.2;

Solve restricted master problem MIP.
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5 Computational results

In this section, we perform extensive computational experiments to evaluate the solution approach

and provide valuable insights into the properties of crowd-shipping. All algorithms were imple-

mented in Java SE 1.8.0 and executed in a Linux-CentOS 7 system with an Intel core E5-2683 at

2.1GHz, and 16GB of ram. The commercial solver CPLEX 12.9 provided by IBM was used to solve

the restricted master problem.

In Section 5.1, we explain how we generate the instances that are used for the computational

experiments. In Section 5.2, we look at the performance of the proposed heuristics compared with

the exact B&P algorithm. In Section 5.3, we examine the changes that occur in the solution when

the capacity of ODs is reduced or increased. In Section 5.4, we look at how changes to the route

duration constraints affect the results, and finally, in Section 5.5, we perform a sensitivity analysis

on the cost structure of the problem and gain valuable insights about the destination of ODs.

5.1 Instance generation

The set of instances is created by modifying the well-known Solomon instances C1 with 25, 50

and 100 customers. The C1 set of instances with 100 customers has 10 clusters that we use to

represent the sectors in a city u ∈ U , i.e., |U | = 10 when we consider all 100 customers. The

discrete probability function used for all instances is the binomial distribution ξu ∼ Bu(pu,Mu) for

each sector u ∈ U , where pu is the probability of success of each trial and Mu is the total size of

the pool of ODs. The main set of instances are a base case C1-B, in which the probability pu is

the same for all sectors.

Parameters Description Value

Q Capacity of PV 200

Q′ Capacity of OD 50

F PV fixed cost 100

F ′ OD fixed cost 25

α Second stage penalty 2.0

β′ OD variable cost 0.25

pu Probability of success in binomial distribution 0.04

Mu Size of the pool of ODs 100

pu ×Mu Average number of ODs 4

τ Fixed route duration value 30

φ Variable route duration w.r.t. distance 1.5

Table 2: Parameters for the base case (C1-B)

Table 2 shows the values for the parameters in the base case C1-B. PVs have the capacity that is

provided in the Solomon instances, i.e., Q = 200, with an additional fixed cost of 100 and a variable

cost that equals the distance. We consider that Mu equals 100 for all sectors and instances, and

consider an average value of 4 vehicles for each sector. ODs’ vehicles are considerably smaller than
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PVs. Hence, to keep the costs consistent and proportional with the capacity, the fixed and variable

costs for ODs are one fourth of the costs of PVs, i.e., F ′ = 25, β′ = 0.25, and the capacity of ODs

is 50 instead of 200.

(a) Far sectors (C1-F)

(b) Near sectors (C1-N)

Figure 3: Instances C1-F and C1-N
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In addition to the base case instance C1-B, described in table 2, we create two other instances

C1-F and C1-N. Figure 3a shows the five sectors that are furthest from the depot, while figure 3b

shows the five sectors that are nearest to the depot. In instances C1-F, ODs only have destinations

in sectors that are far from the depot as shown in 3a, while in instances C1-N ODs only have

destinations is sectors that are near the depot, as shown in 3b. Notice that ODs are free to

perform visits to customers that are in different sectors regardless of their destination so long as

the constraints are satisfied, i.e., capacity, time window, and route duration constraints. However,

C1-B instances have higher participation since both near and far destinations are considered. In

an effort to adjust the imbalance we increase the participation by increasing the probability of the

binomial distribution for instances C1-F and C1-N, i.e., in the probability function, Bu(pu,Mu),

we set pu = 0.05 for Near and Far instances, instead of pu = 0.04 for the Base instance. Since

the probability pu can be interpreted as the participation rate, a higher value indicates that the

likelihood of having participation of ODs increases.

5.2 Performance

Table 3 shows the performance of the exact branch-and-price algorithm and the three heuristics

that where implemented for all instances with 25, 50 and 100 customers. In the B&P column, we

report the total instances that were solved by B&P, we use bold font when all instances were solved.

The two following columns report the lower bound and the time in seconds it took the algorithm to

stop. B&P was allowed to run for a maximum of 5 hours; we stop B&P once a feasible solution is

found with a gap of less than 1%. B&P was able to solve all instances with 25 customers and most

instances with 50 customers, however, no instance with 100 customers was solved. The following

columns of table 3 report the results for heuristics C-Gen-1, C-Gen-10 and C-Gen-100. The first

column is the upper bound obtained, next is the time in seconds, followed by the gap with respect

to the lower bound obtained by B&P.

C-Gen-1 is the fastest heuristic: it takes only 2 seconds on small instances and less than a

minute on larger instances. However, the average gap is higher than 3% even for small 25-customer

instances. We can see in table 3 that the gaps consistently improve as we explore more nodes of

the branch-and-bound tree. C-Gen-10 explores 10 nodes of the tree, and thus, we can see major

improvements in the gaps while the time it takes to terminate remains competitive with C-Gen-1

and does not increase by much. C-Gen-100 explores 100 nodes of the branch-and-bound tree and has

the best results with the lowest gaps: less than 1% for small instances and around 3% for large 100-

customer instances. The time for C-Gen-100, however, is visibly higher than C-Gen-10, although

still reasonable for a heuristic. The difference in gaps between large instances and small instances

is mostly due to the not-optimal lower bound obtained by B&P for 100-customer instances. Since

all 25-customers instances were solved by B&P with a gap of at most 1%, it is expected that the

lower bounds will be stronger than for instances where B&P fails to terminate, i.e., 100-customer
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instances. Therefore, we conclude that C-Gen-100 provides good results in reasonable times. For

the remaining computational experiments presented in this section, we will only use C-Gen-100

and large instances with 100 customers.

Table 3: Column generation performance

B&P C-Gen-1 C-Gen-10 C-Gen-100

Ins N S LB T(s) UB T(s) G(%) UB T(s) G(%) UB T(s) G(%)

C1-B

25 9 428.06 623 442.77 2 3.44 430.33 3 0.53 429.6 13 0.36

50 7 787.26 1187 819.52 13 4.1 801.40 29 1.8 796.48 111 1.17

100 0 1683.19 18000 1770.16 62 5.17 1747.96 54 3.85 1728.4 139 2.69

C1-F

25 9 432.09 104 450.86 2 4.34 434.99 3 0.68 433.51 9 0.33

50 7 795.62 6122 812.78 9 2.16 807.41 18 1.48 802.6 65 0.88

100 0 1678.96 18000 1778.6 49 5.93 1748.71 53 4.16 1734.92 145 3.33

C1-N

25 9 418.99 801 446.48 2 4.92 436 4 2.47 429.24 16 0.89

50 9 773.74 6306 799.49 14 3.33 791.49 23 2.29 782.18 126 1.09

100 0 1694.61 18000 1749.85 37 3.29 1739.98 54 2.71 1726.88 135 1.94
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Figure 4: Performance

5.3 Capacity

Previously, the capacity for ODs was set at 50, 1/4 of the capacity for PVs, i.e., 1/4 of 200. In this

section, we look at different values for the capacity of ODs, increasing and decreasing the capacity

to observe changes in the solution. Table 4 shows the results for all 100-customer instances with
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C-Gen-100. The rows with bold font, represent the base case where the capacity of ODs is equal

to 50. We compare the other rows of table 4 with this base case row. The second column shows

the capacity of ODs with values of 25, 50, 75 and 100. Under the column vehicles, we show the

average number of ODs, PV, and the total average number of vehicles over all instances. Under

costs, the first column shows the total average cost for all instances, next is the standard deviation

of the cost, followed by the difference and the percentage with respect to the base case row, i.e.,

the row where Q′ is equal to 50.

Table 4: Capacity

Ins

Vehicles Costs

Q′ OD PV Total Cost σ ∆ %

C1-B

25 0.12 9.88 10.0 1826.04 8.34 97.6 5.65

50 9.33 7.0 16.33 1728.4 12.36 0 0

75 13.55 4.66 18.21 1591.56 21.1 -136.84 -7.92

100 19.44 0.0 19.44 1002.65 20.4 -725.75 -41.99

C1-F

25 0.12 9.88 10.0 1826.01 8.46 91.08 5.25

50 10.44 6.66 17.11 1734.93 14.82 0 0

75 12.33 5.0 17.33 1556.78 14.76 -178.14 -10.27

100 12.11 3.55 15.66 1201.7 40.4 -533.23 -30.73

C1-N

25 0.12 9.88 10.0 1825.17 10.97 98.28 5.69

50 12.11 6.22 18.33 1726.88 11.85 0 0

75 12 5.0 17.0 1561.09 15.83 -165.79 -9.60

100 9.33 5.0 14.33 1392.27 9.54 -334.61 -19.38

When the capacity of ODs increases, we expect to have longer OD-routes that can visit more

customers, decreasing the total cost and reducing the number of PVs needed in the solution. Figure

5 shows that the use of ODs in the solution only increases for C1-B instances for the values of Q′

from 25 to 100. In fact, the use of ODs decreases for C1-F and C1-N instances when the capacity

increases. Figure 6 shows that the total average number of PVs is reduced for instances C1-B and

C1-F, but not for C1-N instances.

The fleet of PVs is entirely replaced by ODs for C1-B when Q′ = 100. This is due to the

greater availability of ODs for this instance and the greater number of potential destinations for

ODs. In addition, the increase in OD-capacity enables a more significant portion of the demand to

be satisfied by ODs. The cost is reduced significantly when the capacity increases.

In instances C1-F, we can see that the total number of ODs starts to decline when the OD-

capacity changes from 75 to 100. The total average number of PV continues to decrease in the

same range. The cost reduction for C1-F is less than for C1-B, yet larger than the cost reduction

for C1-N.

In instances C1-N, we can see that the decrease in ODs starts happening when going from 50

to 75, and the decrease accelerates from 75 to 100, while the PVs are not reduced any further for

the range 75 to 100. This finding implies that if the objective is to minimize the use of PVs, then
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a further increase of OD-capacity is not always guaranteed to reduce the use of PVs.

The cost is reduced for all instances when OD-capacity is increased. The findings in this section

show that the use of ODs can be reduced by increasing the OD-capacity, while PV-routes are not

necessarily reduced. Under some circumstances, logistic companies might find it useful to reduce

the number of PVs used or increase the participation of crowd-shippers to guarantee a larger fleet

of ODs. By increasing OD-capacity, we are excluding all crowd-drivers that lack the OD-capacity

required, reducing the flexibility and participation in the platform. However, targeting only ODs

with large vehicles reduces the cost and reduces the use of the professional fleet in most cases. The

platform needs to evaluate if an increase in OD-capacity will indeed result in a reduction of PVs

e.g., increasing the OD-capacity from 75 to 100 in instances C1-N does not reduce the use of PVs.

The framework provided here can be useful to make such decisions and assess their impact.
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Figure 5: Participation vs capacity of ODs
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Figure 6: PV employment vs capacity of ODs

5.4 Route duration constraints

Route duration constraints are defined with respect to two different parameters, i.e., φ and τ . Table

5 follows the same structure as Table 4 with the addition of the route duration parameters. While

φ is proportional to the expected trajectory of OD, τ is a value added to the expected trajectory.

The difference between the two might seem inconsequential, however, table 5 shows that they have

a different impact on instances, particularly C1-F and C1-N. Increasing the value of φ leads to cost

reductions for all instances; however, the impact on C1-F and C1-B instances is more noticeable

than increasing τ . On the other hand, increasing the value of τ leads to a more important reduction

of the cost in instances C1-N.

When OD-capacity is equal to 50, the route duration constraint is not a big factor in the cost.

The cost increases by at most 5% when the route duration constraint is more restrictive. However,

when the capacity is increased to 100 the route duration constraint plays a more important role.

The OD-capacity and the route duration constraint are thus connected. If the CSP increases

the OD-capacity without increasing the route duration constraint, little savings can be achieved.

However, by increasing both to appropriate levels, the cost can be reduced by a significant amount.

CSPs can find the best combination of these parameters by utilizing the framework provided in

this paper.
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Table 5: Route duration constraint

Ins

Parameters Vehicles Costs

φ τ Q′ OD PV Total Cost σ ∆ %

C1-B

1.5 20 50 9.33 7.0 16.33 1728.4 12.36 0 0

1.0 5 50 9.0 2.77 11.77 1811.28 25.6 82.88 4.80

1.0 10 50 7.66 7.44 15.11 1770.53 25.48 42.13 2.44

1.0 20 50 9.44 6.88 16.33 1737.34 17.92 8.94 0.52

1.25 0 50 3.0 8.88 11.88 1802.43 30.90 70.03 4.28

1.5 0 50 8.66 7.11 15.77 1745.71 21.95 17.04 1.00

2.0 0 50 9.0 7.0 16.0 1735.1 13.42 6.69 0.39

1.5 20 100 19.44 0.0 19.44 1002.64 20.40 0 0

1.0 5 100 4.33 8.11 12.44 1756.93 86.21 754.28 75.23

1.0 10 100 10.33 5.33 15.66 1568.53 99.92 565.88 56.44

1.0 20 100 20.0 0.0 20.0 1099.56 43.88 96.9 9.67

1.25 0 100 6.66 6.77 13.44 1656.73 114.91 654.07 65.24

1.5 0 100 15.77 2.33 18.11 1301.33 77.77 298.68 29.79

2.0 0 100 19.44 0.11 19.55 1054.55 32.12 51.9 5.18

C1-F

1.5 20 50 10.44 6.66 17.11 1734.93 14.82 0 0

1.0 5 50 3.33 9.11 11.55 1813.03 29.12 78.10 4.5

1.0 10 50 3.44 8.77 12.22 1793.93 33.57 59.0 3.04

1.0 20 50 7.22 7.55 14.77 1744.96 15.23 10.03 0.58

1.25 0 50 4.77 8.33 13.11 1794.27 38.33 59.34 3.42

1.5 0 50 7.22 7.55 14.77 1743.47 15.77 8.54 0.49

2.0 0 50 7.66 7.44 15.11 1742.1 14.94 7.16 0.41

1.5 20 100 12.11 3.55 15.66 1201.70 40.34 0 0

1.0 5 100 3.33 8.44 11.77 1757.86 85.16 556.16 46.28

1.0 10 100 8.22 6.0 14.22 1601.87 97.50 400.17 33.30

1.0 20 100 12.11 3.66 15.77 1257.42 63.08 55.62 4.64

1.25 0 100 8.88 5.66 14.55 1609.45 112.23 407.75 33.93

1.5 0 100 12.11 3.66 15.77 1253.53 66.27 51.83 4.31

2.0 0 100 12.55 3.33 15.88 1209.65 44.05 7.95 0.66

C1-N

1.5 20 50 12.11 6.22 18.33 1726.88 11.85 0 0

1.0 5 50 2.55 9.11 11.66 1824.15 12.82 97.26 5.63

1.0 10 50 3.88 8.55 12.44 1785.47 26.63 58.58 3.39

1.0 20 50 9.0 7.0 16 1746.03 14.07 19.14 1.11

1.25 0 50 0.44 9.77 10.22 1823.71 10.13 96.82 5.61

1.5 0 50 3.0 8.88 11.88 1801.0 28.19 74.12 4.29

2.0 0 50 7.66 7.44 15.11 1755.92 21.37 29.03 1.68

1.5 20 100 9.33 5.0 14.33 1392.27 9.54 0 0

1.0 5 100 1.11 9.44 10.55 1814.2 23.44 421.92 30.30

1.0 10 100 6.77 7.22 14 1722.09 54.58 329.81 23.69

1.0 20 100 5.0 9.66 14.66 1399.9 11.45 7.63 0.55

1.25 0 100 1.44 9.33 10.77 1813.97 23.08 421.69 30.29

1.5 0 100 7.33 7.0 14.33 1736.17 62.78 343.89 24.70

2.0 0 100 10.0 5.0 15.0 1441.32 30.43 49.04 3.52

27

Crowdshipping: An Open VRP Variant with Stochastic Destinations

CIRRELT-2021-46



1.0-0.25

2.0-0.25

3.0-0.25

1.0-0.50

2.0-0.50

3.0-0.50

1.0-1.0
2.0-1.0

3.0-1.0

800

1,000

1,200

1,400

1,600

C1-B
C1-F
C1-N

Figure 7: Cost for values of (α-β′) for Q′ = 100

5.5 Cost structure

In this section, we examine the impact of changing the values of parameters α, i.e., the penalty for

recourse actions, and β′, i.e., the variable cost of ODs. We find that when ODs have destinations

that are far from the depot, the cost is reduced the most. However, the cost is more sensitive to

an increase of variable cost, i.e., β′. Table 6 follows the same structure as table 4.

The increase in the variable cost makes ODs with destinations near the depot a slightly better

option than ODs with destinations far from the depot. In all other cases, ODs with a destination

located far from the depot are a better option to reduce the cost. This is more noticeable in

instances with an OD-capacity of 100. Longer routes are more expensive with the increase of the

variable cost. Interestingly, closer destinations are also less affected when we increase the penalty

for the recourse action. This result is due to the return trip that PVs must make to fulfill delivery

requests that have been rejected by ODs. Destinations that are far from the depot imply a longer

trip back for the PV that is used to mitigate the route rejection. C1-B instances are the most

affected by increases in the recourse cost due to the lower value of probability of participation per

sector, i.e., pu = 0.04, while in both other instances pu = 0.05 for all sectors. This property can

be important in settings where the recourse actions are expensive; in this case, OD-destinations

that are near the depot would be more desired. Figure 7 shows the increase of total expected cost

of all three instances when the recourse penalty and the variable cost is increased. It shows that

C1-N instances are more stable when variable costs are increased, while C1-F instances are the

most sensitive to the change in variable cost.
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In addition, the proportion of PVs and ODs used in the solution is more stable for C1-N

instances. The CSP could keep a stable fleet of PVs at the depot and manage the variable cost of

ODs based on demand, without much changes to the fleet.

Table 6: Cost structure

Ins
Parameters Vehicles Costs

α β′ Q′ OD PV Total Cost σ ∆ %

C1-B

1.0 0.25 50 16.55 5.11 21.66 1676.86 11.17 -51.53 -2.98
2.0 0.25 50 9.33 7.0 16.33 1728.4 12.36 0 0
3.0 0.25 50 8.87 7.13 16.0 1753.78 17.22 25.38 1.47
1.0 0.50 50 9.88 6.77 16.66 1778.32 16.70 49.91 2.89
2.0 0.50 50 5.22 8.11 13.33 1798.12 23.04 69.72 4.03
3.0 0.50 50 3.44 8.66 12.11 1806.54 22.79 78.14 4.52
1.0 1.00 50 0.77 9.55 10.33 1819.73 12.50 91.33 5.28
2.0 1.00 50 0.55 9.66 10.22 1823.47 10.13 95.07 5.5
3.0 1.00 50 0.33 9.77 10.11 1825.76 8.17 97.36 5.63

1.0 0.25 100 19.55 0.0 19.55 837.94 18.35 -164.71 -16.43
2.0 0.25 100 19.44 0.0 19.44 1002.64 20.40 0 0
3.0 0.25 100 19.33 0.11 19.44 1187.54 20.44 184.89 18.44
1.0 0.50 100 19.44 0.0 19.44 1028.61 17.9 25.96 2.59
2.0 0.50 100 19.44 0.0 19.44 1198.19 16.18 195.53 19.50
3.0 0.50 100 18.77 0.22 19.0 1365.59 22.30 362.94 36.20
1.0 1.00 100 19.0 0.0 19.0 1404.64 18.28 402 40.09
2.0 1.00 100 18.77 0.11 18.88 1518.15 21.45 577.49 57.60
3.0 1.00 100 10.33 4.33 14.66 1695.17 26.96 692.52 69.07

C1-F

1.0 0.25 50 10.77 6.55 17.33 1688.43 12.59 -46.49 -2.68
2.0 0.25 50 10.44 6.66 17.11 1734.93 14.82 0 0
3.0 0.25 50 5.44 8.0 13.44 1769.51 18.44 34.59 1.99
1.0 0.50 50 5.66 8.0 13.66 1778.45 13.58 43.52 2.51
2.0 0.50 50 3.44 8.66 12.11 1809.49 16.47 74.56 4.30
3.0 0.50 50 1.55 9.33 10.88 1814.72 17.76 79.79 4.60
1.0 1.00 50 0.12 9.88 10.0 1827.33 4.52 92.39 5.33
2.0 1.00 50 0.12 9.88 10.0 1827.58 3.75 92.65 5.34
3.0 1.00 50 0.12 9.88 10.0 1827.57 3.77 92.64 5.34

1.0 0.25 100 14.66 2.44 17.11 1104.05 89.25 -97.65 -8.13
2.0 0.25 100 12.11 3.55 15.66 1201.70 40.34 0 0
3.0 0.25 100 10.77 4.22 15.0 1267.85 20.56 66.15 5.50
1.0 0.50 100 13.66 2.77 16.44 1258.83 60.75 57.13 4.75
2.0 0.50 100 11.44 3.88 15.33 1344.98 27.15 143.29 11.92
3.0 0.50 100 10.55 4.33 14.88 1404.99 16.19 203.29 16.92
1.0 1.00 100 11.0 4.12 15.12 1559.95 24.80 358.24 29.81
2.0 1.00 100 10.44 4.44 14.88 1618.95 15.92 417.25 34.72
3.0 1.00 100 9.22 5.0 14.22 1662.12 11.40 460.42 38.31

C1-N

1.0 0.25 50 13.0 6.0 19.0 1686.05 16.83 -30.83 -1.79
2.0 0.25 50 12.11 6.22 18.33 1726.88 11.85 0 0
3.0 0.25 50 7.55 7.44 15.0 1763.12 18.56 36.23 2.10
1.0 0.50 50 8.22 7.22 15.44 1771.11 14.10 44.22 2.56
2.0 0.50 50 5.22 8.11 13.33 1788.9 20.54 62.01 3.59
3.0 0.50 50 8.33 4.44 12.77 1800.88 21.59 74.0 4.29
1.0 1.00 50 0.88 9.55 10.43 1817.16 15.77 90.27 5.23
2.0 1.00 50 0.88 9.55 10.44 1820.51 11.90 93.62 5.42
3.0 1.00 50 0.88 9.55 10.43 1821.96 9.65 95.07 5.51

1.0 0.25 100 9.22 5.0 14.22 1364.22 9.04 -28.04 -2.01
2.0 0.25 100 9.33 5.0 14.33 1392.27 9.54 0 0
3.0 0.25 100 9.11 5.0 14.11 1420.07 11.40 27.80 2.0
1.0 0.50 100 9.33 5.0 14.33 1441.29 9.23 49.01 3.52
2.0 0.50 100 9.33 5.0 14.33 1471.24 12.76 78.96 5.67
3.0 0.50 100 9.11 5.0 14.11 1495.59 11.22 103.32 7.42
1.0 1.00 100 9.22 5.0 14.22 1588.13 16.85 195.86 14.07
2.0 1.00 100 9.22 5.0 14.22 1616.73 19.28 224.46 16.12
3.0 1.00 100 9.0 5.0 14.0 1643.05 18.02 250.77 18.01
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6 Conclusions and future research

In this paper, we extended the framework proposed by Torres et al. (2020) to a setting where OD-

destinations are uncertain. We adapted and strengthened the upper bound on the total number of

ODs used. We extended the model to this new setting where the specific destination of the supplies

of ODs are explicitly considered. Furthermore, a route duration constraint was introduced that

promotes participation by keeping routes short. A heuristic was derived from the B&P method

that can solve large instances quickly.

Through the numerical experiments conducted, we showed how the use of ODs increases and

then starts declining when the OD-capacity is increased. When OD-capacity is high, the total

cost decreases, however, the number of ODs needed is reduced. If maintaining a high level of OD-

participation is imperative, then a CSP could reduce the required OD-capacity to increase OD-

participation. Furthermore, we show how route duration constraints need to be set in relationship

with the capacity constraint. If we increase the route duration without increasing the capacity,

little cost reductions are obtained. We also found that route duration constraints that consider a

proportion of the length of the OD-trajectory are better suited for OD-destinations that are far

from the depot. Conversely, route duration constraints that consider a value added to the length

of the OD-trajectory have a larger impact on OD-destinations that are near the depot.

In addition, we showed how the geographic location of OD-destinations can affect the total

cost. ODs with destinations located further away from the depot have a potential to reduce the

cost more than ODs with destinations near the depot. However, this can change in a setting where

failed deliveries occur and a return trip to the depot or another action is required (e.g., drones

could be used to retrieve undelivered packages). ODs with destinations near the depot will be

less inconvenienced by a return trip since their destination is in near proximity to the depot. The

literature on stochastic variants largely ignores the possibility of failed deliveries except for Torres

et al. (2020). Future research along this line could lead to interesting studies and variants.

Future research that extends this model to other variants is necessary. In general, stochastic

variants of crowd-shipping are scarce, albeit, the uncertainty of ODs is an important aspect of

the problem. More research that considers the relevant uncertainty is needed, e.g, failed delivery

attempts, availability of drivers, or different criteria for accepting routes. In the survey of Alnaggar

et al. (2021), the discrepancies between real-world crowd-shipping platforms and the scientific

literature are remarked. Specifically, crowd-shipping platforms deliver heterogeneous packages from

a central depot with capacitated crowd-drivers. However, few crowd-shipping variants exist in the

scientific literature that consider capacitated crowd-drivers and deliveries from a central depot.

Studies that consider these important aspects would be good areas of future research.
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