

 CIRRELT-2021-49

A Branch-and-Price Algorithm for the Multiple
Knapsack Problem

 Olivier Lalonde
 Jean-François Côté
 Bernard Gendron

December 2021

Document de travail également publié par la Faculté des
sciences de l’administration de l’Université Laval, sous le
numéro FSA-2021-015

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

Olivier Lalonde1,2, Jean-François Côté1,3,*, Bernard Gendron1,2

1. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT)
2. Department of Computer Science and Operations Research, Université de Montréal
3. Department of Operations and Decision Systems, Université Laval, Québec, Canada

Abstract. The Multiple Knapsack Problem is a well-studied combinatorial optimization
problem with several practical and theoretical applications. It consists of packing some
subset of n items into m knapsacks such that the total profit of the chosen items is maximum.
A novel Lagrangian relaxation based on a reformulation of the problem is presented, and it
is proven that it dominates all commonly used relaxations for this problem. A branch-and-
price algorithm is then derived from it, which takes advantage of the fact that the novel
Lagrangian relaxation makes it possible to effectively control whether an item is included in
some knapsack or not. An improved algorithm for solving the resulting packing subproblems
is also introduced. Computational experiments then show that the new approach achieves
state-of-the-art results.

Keywords: Multiple Knapsack Problem, branch-and-price, Lagrangian relaxation.

Acknowledgements. Financial support for this work was provided by the Natural Sciences
and Engineering Council of Canada (NSERC) under grants 2017-06054 and 2021-04037.
This support is gratefully acknowledged. We also thank CIRRELT for providing access to
their computing facilities.

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Jean-Francois.Cote@cirrelt.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
Bibliothèque et Archives Canada, 2021

© Lalonde, Côté, Gendron and CIRRELT, 2021

1 Introduction

Given n items, each with a weight wj ∈ Z+ and a profit pj ∈ Z+, and m knapsacks, each with a
capacity ci ∈ Z+, the Multiple Knapsack Problem (MKP) consists in finding an assignment of a
subset of items to the knapsacks such that the total profit of the assigned items is maximal. This
problem may be modeled using the following binary integer programming model:

(MKP) max

m∑
i=1

n∑
j=1

pjxij (1)

s.t.
n∑
j=1

wjxij ≤ ci for i = 1, ...,m (2)

m∑
i=1

xij ≤ 1 for j = 1, ..., n (3)

xij ∈ {0, 1} for i = 1, ...,m j = 1, ..., n (4)

Here, the binary decision variable xij corresponds to whether or not item j is assigned to knap-
sack i. The objective (1) is to maximize the total profit of the selected items. The first set of
constraints (2) enforces that the total weight of all items associated to a given knapsack i may not
exceed its capacity, and the second set of constraints (3) ensures that every item may be assigned
to at most one knapsack.

Several heuristic and exact algorithms for the MKP have been proposed. Heuristic algorithms
were proposed by Hung and Fisk (1979), Laaloui and M’Hallah (2016), Laaloui (2013), Lalami et al.
(2012) and Martello and Toth (1981b). In terms of exact algorithms, which is what this paper is
concerned with, the problem was first tackled in Ingargiola and Korsh (1975), in which an enumera-
tive algorithm was presented. Basic branch-and-bound algorithms, which select an item and branch
on the knapsack to which it is assigned as well as it being excluded from the solution, were proposed
in Hung and Fisk (1978) and Hung and Fisk (1979). In Martello and Toth (1981a), a new branch-
and-bound framework was suggested, which only assigns items to the knapsack of least remaining
capacity, and a mechanism, called bound-and-bound, is used, in which a heuristic algorithm is used
to produce good partial solutions in the aim of reducing the size of the search tree. The resulting
algorithm, called MTM, turned out to be much more efficient than the previous algorithms. Later
on, Pisinger (1999) suggested an improved version of MTM, MULKNAP, which includes a basic
item reduction procedure, capacity lifting as well as a splitting heuristic, which made it possible
for the first time to solve instances with large n

m ratios to optimality. Fukunaga and Korf (2005)
and Fukunaga (2011) improved on MULKNAP by using a different branching scheme, in which the
algorithm branches directly on assignments to the knapsack of smallest remaining capacity instead
of branching on whether a given item is included in it or excluded from it. A dominance criterion
for eliminating assignments and various symmetry-breaking procedures are used to reduce the size

1

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

of the search tree, leading to an algorithm called 2D/PS+B that outperformed MULKNAP on
instances with a small n

m ratio.

More recently, in Dell’Amico et al. (2019), various reformulations of the problem based on an arc-
flow reformulation of Valério de Carvalho (1999) are explored, and two decomposition algorithms,
the so-called Knapsack-based decomposition and Reflect-based decomposition, were presented. The
general idea is to solve a relaxation of the MKP that selects a set of promising items as master
problem, and then solve a subproblem to verify if it is possible to assign the selected items to the
bins. If a feasible assignment is possible, then the problem is solved, otherwise, the master problem is
solved again with an additional constraint that excludes the set of items that was previously selected.
The master problem of the Knapsack-based decomposition is basically a classical knapsack problem
where the capacity is equal to the sum of all the bin capacities. The Reflect-based decomposition
uses a more sophisticated formulation to select promising items. As for subproblems, they are solved
using an arc-flow model. These algorithms turned out to be much more efficient than all previously
known methods for large-size instances, being the first to solve problems with a large number of
knapsacks and with a small n

m ratio.
While being considerably more effective than all previously known algorithms on large instances,

the decomposition algorithms of Dell’Amico et al. (2019) nevertheless have the flaw that they often
need to solve many packing problems until they can find a set of items that can feasibly be packed
into the bins, which tend to be very hard to solve for large instances. In this paper, we suggest an
alternative approach that also aims to reduce the size of the search space by having the decision
variables to control whether or not an item is included in any knapsack. This approach mostly relies
on enumeration rather than solving packing problems to identify the subset of items that is part of
the optimal solution. This new approach is based on a novel Lagrangian relaxation for the MKP,
which not only turns out to yield tighter bounds than all other known relaxations for the MKP but
also allows one to effectively control whether a given item is included in any knapsack, as opposed
to only being able to effectively control whether an item is included in some specific knapsack
or not, as all previous enumerative algorithms based their branching procedure upon. This novel
Lagrangian relaxation is then integrated in a branch-and-price algorithm. As this approach also
requires solving packing subproblems, which we refer to as variable-sized bin packing satisfiability
problems (VSBPP-SAT), a new algorithm to tackle these subproblems is also presented.

The remainder of the paper is organized as follows. In Section 2, we discuss the most common
relaxations for the MKP, we present a novel Lagrangian relaxation and we show the domination
relations among these relaxation. Section 3 describes a branch-and-price algorithm, called BP-
MKP, to solve the MKP. Our algorithm to solve the VSBPP-SAT subproblems are presented in 4.
The results of computational experiments on benchmark instance sets are presented in Section 5.
They show that the new approach achieves state-of-the-art results.

2

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

2 Relaxations for the MKP

In this section, we first present the two relaxations that have been used for the MKP, namely the
surrogate relaxation (SMKP) and the Lagrangian relaxation (L1), which both dominate the linear
relaxation (see Martello and Toth, 1990). We then present our improved Lagrangian relaxation (L2)
and show that it dominates both the surrogate relaxation and the usual Lagrangian relaxation L1.

2.1 Surrogate relaxation

Given a vector of multipliers π ∈ Rm+ , the surrogate relaxation SMKP (π) of the MKP, with optimal
value zSMKP (π), is defined to be the result of aggregating them knapsack constraints, each weighted
with the multiplier πi. The resulting model is the following:

(SMKP(π)) max

m∑
i=1

n∑
j=1

pjxij (5)

s.t.
m∑
i=1

πi

n∑
j=1

wjxij ≤
m∑
i=1

πici (6)

m∑
i=1

xij ≤ 1 for j = 1, ..., n (7)

xij ∈ {0, 1} for i = 1, ...,m j = 1, ..., n (8)

In Martello and Toth (1981a), the authors proved that the choice multipliers that provides the
tightest upper bound is πi = k for some positive constant k. This reduces to solving a single
knapsack problem on the n items whereby the capacity of the single knapsack is set to be the sum
of the capacities of the original knapsacks:

(SMKP) max

n∑
j=1

pjtj (9)

s.t.
n∑
j=1

wjtj ≤
m∑
i=1

ci (10)

tj ∈ {0, 1} for j = 1, ..., n (11)

This is what will be referred to from now on as the surrogate relaxation SMKP of the MKP, with
optimal value zSMKP .
While the knapsack problem is NP-hard, it can be solved very efficiently in practice using algorithms
such as combo from Martello et al. (1999), which is why it was usually preferred to the Lagrangian
relaxation L1 in the literature when designing branch-and-bound algorithms for the MKP. Another
advantage of this relaxation is the possibility of attempting to split the items in the solution of
the SMKP into the m knapsacks, thereby producing a feasible solution to the initial problem, as
was first suggested by Pisinger (1999). In the context of a branch-and-and-bound algorithm, this

3

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

makes it possible to find good lower bounds on the optimal value quickly, and thus to prune larger
parts of the search tree. Furthermore, it is known that if n

m is large (say, 10 or greater), it almost
always holds that the bound given by the surrogate relaxation is compact, and it is very often
possible to assign all the items chosen into the m knapsacks at the root node, and thus to find the
optimal solution without performing any search, making such problems very easy. This technique
was integrated in many successful algorithms for the MKP, most notably MULKNAP Pisinger
(1999) and 2D/PS+B Fukunaga (2011). The model (SMKP) is also the MIP that is used in the
knapsack-based decomposition of Dell’Amico et al. (2019).

2.2 Lagrangian relaxation (L1)

Given a vector λ ∈ Rn+, whose elements are referred to as Lagrange multipliers, the Lagrangian
relaxation L1(λ) of the MKP, with optimal value zL1(λ), is obtained by relaxing constraints (3) in
a Lagrangian way:

(L1(λ)) max

n∑
j=1

(
(pj − λj)

m∑
i=1

xij

)
+

n∑
j=1

λj (12)

s.t. (2) and (4)

The Lagrangian relaxation L1, with optimal value zL1 , is defined to be min{zL1(λ)|λ ≥ 0}. For
a given choice of λ, computing zL1(λ) reduces to computing m individual knapsack problems.

In contrast to the surrogate relaxation, there is no known analytical expression for the optimal
choice of multipliers λj . This relaxation has been rarely used in state-of-the-art algorithms because
of the very high computational cost associated to it: while solving the surrogate relaxation requires
solving only one knapsack problem, typical methods for solving Lagrangian relaxations, such as sub-
gradient optimization or column generation, might require solving thousands of knapsack problems,
and are therefore much more computationally expensive. The Lagrangian relaxation L1 was most
notably used in the algorithms of Hung and Fisk (1979) and Martello and Toth (1980), although
no attempt was made to solve it to optimality in either of these algorithms. Furthermore, there is
no dominance relation between the Lagrangian relaxation L1 and the surrogate relaxation SMKP,
although L1 does seem to provide tighter bounds on average, as shown in Section 5.1.

4

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

2.3 Improved Lagrangian relaxation (L2)

The new Lagrangian relaxation which we are proposing is based on the following reformulation of
the problem:

max

n∑
j=1

pjtj (13)

s.t.
n∑
j=1

wjxij ≤ ci for i = 1, ...,m (14)

tj ≤
m∑
i=1

xij for j = 1, ..., n (15)

n∑
j=1

wjtj ≤
m∑
i=1

ci (16)

tj ∈ {0, 1} for j = 1, ..., n (17)

xij ∈ {0, 1} for i = 1, ...,m j = 1, ..., n (18)

Here, the binary variable xij once again corresponds to whether or not item j is assigned to knapsack
i, and the binary variable tj equals one if item j is assigned to some knapsack and zero otherwise. As
in model (1)-(4), the objective function (13) represents the total profit of the chosen items, which is
to be maximized. Constraints (14) impose that the sum of the weights of the items that are assigned
to knapsack i to be less than the capacity of that knapsack. Constraints (15) ensure that the binary
variable tj can be equal to one only if one of the corresponding xij for i ∈ {1, ...,m} is one. Note
that we no longer require that an item must be assigned to at most one knapsack, since the xij are
not part of the objective function. Constraint (16) follows from aggregating the m constraints (14)
and replacing

∑m
i=1 xij with tj for every j, which is valid on account of constraints (15) . Constraint

(16) is redundant in model (13)-(18), but it will not be in the Lagrangian subproblem that we now
introduce.

For a vector µ of n nonnegative Lagrangian multipliers, the Lagrangian relaxation L2, with opti-
mal value zL2(µ), is then obtained from model (13)-(18) by relaxing constraints (15) in a Lagrangian
way:

(L2(µ)) max

n∑
j=1

(pj − µj)tj +

n∑
j=1

µj

(
m∑
i=1

xij

)
(19)

s.t. (14), (16)− (18)

Once again, the Lagrangian relaxation L2 with optimal value zL2 is defined to be min{zL2(µ)|µ ≥ 0}.
For a given choice of µ, computing zL2(µ) reduces to computing m+1 individual knapsack problems,
one for every knapsack as well as one for the tj .

5

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

2.4 Dominance relations

While there exists no dominance relation between the surrogate relaxation SMKP and the La-
grangian relaxation L1, the Lagrangian relaxation L2 dominates them both. Proving this for the
surrogate relaxation is straightforward:

Proposition 2.1. zL2 ≤ zSMKP , with equality if and only if µj = 0 is an optimal choice of
multipliers for L2.

Proof. L2(0) reduces to the surrogate relaxation. Since zL2 is defined to be min{zL2(µ)|µ ≥ 0}, the
statement of the proposition follows.

In order to prove that L2 dominates L1, the following lemma is required:

Lemma 2.2. Let λ be an optimal choice of multipliers for L1. Then, for all j, λj ≤ pj.

Proof. We prove the contrapositive. Let λ be any choice of nonnegative multipliers such that, for
some k, λk > pk. Let λ̄ be defined as:

λ̄j =

λj j 6= k

pj j = k

In the case of L1(λ), we have that xik = 0 in the optimal solution for bin i = 1, ...,m, because their
contribution in the objective value is negative, and thus they may be removed from the problem. In
the case of L1(λ̄), the xik do not contribute to the objective, and thus they may be removed from
the problem as well. Then, we have that:

zL1(λ̄) = zL1(λ) − λk + pk < zL1(λ)

In other words, λ was not an optimal choice of multipliers for L1.

We are now in a position to show the following:

Proposition 2.3. zL2 ≤ zL1 . Furthermore, if, for some choice of optimal multipliers λ for L1, it
holds that

∑n
j=1 δjwj >

∑m
i=1 ci, where δj is defined to be 1 if λj > 0 and 0 otherwise, then this

inequality is strict.

Proof. Let λ be an optimal choice of multipliers for L1. Define µ by:

µj = pj − λj ≥ 0

Then, L2(µ) is the following problem:

max
n∑
j=1

λjtj +
n∑
j=1

(pj − λj)
m∑
i=1

xij (20)

s.t. (14), (16)− (18)

6

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

By dropping the constraint on the tj , we get back L1(λ), which shows that:

zL2 ≤ zL2(µ) ≤ zL1(λ) = zL1

Moreover, the equality zL1 = zL2 can only hold if the second inequality is an equality, which can
only happen if the optimal value of the following problem equals

∑n
j=1 λj :

max
n∑
j=1

λjtj (21)

(16) and (18)

This can only happen if it is possible to set tj to one for all j’s such that λj > 0. The statement of
the theorem follows.

The proof of the previous proposition also shows why L2 provides much tighter bounds than L1

in practice. Even if µ as defined in the proof of the theorem were an optimal choice of multipliers
for L2, if most λ’s are nonnegative and large enough, the gap between

∑n
j=1 λj and the optimal

value of problem (21) could turn out to be quite large as well.
The extent to which the bounds provided by the new relaxation L2 are tighter than those provided
by the surrogate relaxation, the Lagrangian relaxation L1 and some other possible relaxations for
the MKP will be discussed in Section 5.1, where empirical results on benchmark instances will be
supplied.

3 The Branch-and-Price algorithm

In this section, we present how the MKP is solved by a branch-and-price algorithm using the
improved Lagrangian relaxation L2.

3.1 Dantzig-Wolfe reformulation

Our algorithm uses the Lagrangian relaxation (L2) to solve the MKP to optimality by using a
column generation procedure. We begin by applying Dantzig-Wolfe decomposition to the model
(13)-(18), where constraints (14) and (15) are part of the subproblems and constraints (16) are kept
in the master problem. In this context, a pattern of items a (also referred to as a column) is an
element of {0, 1}n, where aj equals one if item j is part of the pattern and zero otherwise. To the
i’th constraint (15) is associated a class of patterns P i ⊆ {0, 1}n which encodes the subset of items
that may be assigned to the i’th knapsack without violating the corresponding capacity constraint:

P i = {a ∈ {0, 1}n|
n∑
j=1

wjaj ≤ ci} (22)

7

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

Additionally, there is a class of patterns associated with the aggregated capacity constraint (16),
denoted P 0, which encodes a subset of items that may be selected in a solution without violating
the aggregated capacity constraint (16):

P 0 = {a ∈ {0, 1}n|
n∑
j=1

wjaj ≤
m∑
i=1

ci} (23)

To each pattern a is then associated a binary variable ya, which encodes whether the pattern is
chosen or not. Rewriting model (13)-(18) according to the correspondence xij ≡

∑
a∈P i ajya and

tj ≡
∑

a∈P 0 ajya and adding the constraint that exactly one pattern must be chosen for every class
of patterns gives the following equivalent model:

max

n∑
j=1

pj

∑
a∈P 0

ajya

 (24)

s.t.
∑
a∈P 0

ajya ≤
m∑
i=1

∑
a∈P i

ajya

 for j = 1, ..., n (25)

∑
a∈P i

ya = 1 for i = 0, ...,m (26)

ya ∈ {0, 1} for a ∈ P i, for i ∈ 0, ...,m (27)

The objective function (24) maximizes the profits obtained from the items in patterns P 0.
Constraints (25) are the item constraints, which correspond to the constraints (15) in the model
(13)-(18). Constraints (26) ensure that there is at most one pattern selected for each bin and the
aggregated bin capacity constraint.

When dropping the integrality constraints (27) on the ya, requiring only that they be nonneg-
ative, we thereby obtain a linear programming model whose optimal value is equal to zL2 , by the
theory of Lagrangian duality.

3.2 Solution approach

Our approach to solve the MKP shares several characteristics with many classical branch-and-bound
methods for the Knapsack Problem(Martello and Toth, 1990). These methods solve a relaxation
of the KP at each node of the tree. If the solution of the relaxation has at least one fractional t∗j
variable, then one fractional t∗j is selected and two new problems are created and solved recursively:
one where the item is taken (tj = 1) and one where it is excluded (tj = 0). On the contrary, if all t∗j
variables are integer, then, a feasible solution was found. Once all nodes are explored, the feasible
solution having the highest total profits is the optimal solution.

For the MKP, we explore a branch-and-bound tree as well, but it works differently. At each node,
we solve the linear relaxation of the model (13)-(18). This helps in finding promising items that

8

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

should be part of the optimal solution. If at least one t∗j variable is fractional (t
∗
j =

∑
a∈P 0 ajy

∗
a), we

branch on one of them. We do not branch on the pattern variables ya, nor on the bin assignation xij
variables (x∗ij =

∑
a∈P i ajy

∗
a). If the t∗j variables are integer, we check if the bin assignation variables

x∗ij are integer, and if they are, we found a feasible solution of the MKP and the best solution is
updated accordingly. In the other case, if only the t∗j variables are integer, we solve the VSBPP-SAT
subproblem to find a feasible assignment of the items with t∗j = 1 into the m knapsacks. If a feasible
assignment is found, then we have a feasible solution of the MKP, and we update the best known
solution. In that case, there is no need to pursue the enumeration of that branch and we fathom the
node. In the other case, we have proved that no feasible assignment can be found and a constraint
is added to the model (13)-(18) to forbid the set of items with t∗j = 1 to be selected by the model.
Let S = {j|t∗j = 1} be the set of items that were selected by the relaxation. Then, to prevent the
set S of items from being selected again, we add the following constraint:

∑
j∈S

∑
a∈P 0

ajya ≤ |S| − 1. (28)

The constraint states that at most |S|−1 items of S can be present in any solution of (13)-(18).
This type of constraints are also known as no-good cuts. Let S be the set of all infeasible S that were
found so far. The set is empty at the root node of the tree and each time a new infeasible S is found, a
no-good cut (28) is added to the model and S is added to S. This constraint is similar to the classical
cover inequality constraints for the knapsack problem and it can be strengthen easily by considering
the extension of E(S) = S ∪ {l = 1, ..., n|l 6∈ S and wl ≥ wmax} where wmax = maxj∈S{wj}. The
following is an improved no-good cut:

∑
j∈E(S)

∑
a∈P 0

ajya ≤ |S| − 1. (29)

Once a constraint (29) is added, the relaxation is solved again and the resolution process con-
tinues.

We thereafter define as master problem the model (13)-(18) with possibly some constraints (29).
Column generation is employed to solve its linear relaxation. Each step of the column generation
consists in solving pricing subproblems to identify columns of positive reduced cost. If some can be
found, they are added to the master problem, and it is solved again. Otherwise, the VSBPP-SAT
subproblem is solved if the t∗j are integer, or a branching operation occurs if some t∗j are fractional.

The next sections detail each step of our solution approach. Section 3.3 presents how the column
generation is performed and how the pricing subproblems are solved. Next, Section 3.4 describes
an alternative method to generate columns that reduces convergence problems happening for some
instances. Section 3.5 presents the outline of the branch-and-price algorithm. Section 3.6 details
how variables are selected for branching and Section 3.7 shows how variable filtering is used to

9

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

reduce the size of the search tree. The last details of our approach are found in Section 4 that is
devoted to the solution of the VSBPP-SAT subproblem.

3.3 Column generation

We rely on column generation to solve the master problem as the sets P i for i = 0, ...,m are too
large to be enumerated. At the root node, we solve a restricted master problem that includes only
a tractable subset of the patterns P i for i = 0, ...,m. Once the linear relaxation of the restricted
master problem is solved, we search for patterns that were not included in the tractable subset and
that have a positive reduced cost. Let µj ≥ 0 be the dual variable associated with the constraint
(25) for item j, πi be dual variable associated with the constraint (26) for bin i, and θS ≥ 0 the dual
variables associated with the no-good cuts (29) of the set S. Then, the reduced cost ζia of pattern
a ∈ P i for bin i = 1, ...,m is computed as:

ζia =

n∑
j=1

µjaj − πi (30)

For bin i = 0, let θj =
∑

S∈S,j∈S θS , and the reduced cost ζ0
a of pattern a ∈ P 0 is be computed

as:

ζ0
a =

n∑
j=1

(pj − θj − µj)aj − π0 (31)

To find patterns with a positive reduced cost, we solve a knapsack problem for each bin capacity,
and one for the aggregated bin capacity constraint. Let zj be a binary variable equal to 1 if item j

is being part of a pattern. Then, the pricing subproblem for bin i = 1, ...,m is the following:

max
n∑
j=1

µjzj − πi (32)

s.t.
n∑
j=1

wjzj ≤ ci (33)

zj ∈ {0, 1} for j = 1, ..., n (34)

The objective function (32) maximizes the reduced cost of the pattern. Constraints (33) ensure
the capacity of the bin i is respected. The pricing subproblem for bin 0 uses the same binary
variables zj and is as follows:

10

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

max
n∑
j=1

(pj − θj − µj)zj − π0 (35)

s.t.
n∑
j=1

wjzj ≤
m∑
i=1

ci (36)

zj ∈ {0, 1} for j = 1, ..., n (37)

The objective function (35) maximizes the reduced cost of the pattern, and constraints (36)
ensure that the aggregated bin capacity is respected.

If at least one of the above problem could find a pattern with a positive reduced cost, we add
those patterns to the master problem and the column generation procedure is repeated, otherwise,
it is stopped. We also compute the dual bound to stop it earlier. Let ζi be the reduced cost of the
pattern found when solving the knapsack problem of bin i = 0, ...,m. Then, the dual bound z̄ can
be computed as follows:

z̄ =

m∑
i=0

(ζi + πi) +
∑
S∈S

(|S| − 1)θS (38)

Let z be the current value of the master problem and LB a global lower bound on the MKP.
Then, if bz̄c ≤ LB or if bzc ≤ z̄ < dze, terminate the column generation procedure.

3.4 Subgradient optimization

For many large size instances, we encounter poor convergence for solving the master problem to
optimality using standard column generation. Instead, following from Klose and Görtz (2007), we
generate new patterns by solving L2 using subgradient optimization at different stages of column
generation to mitigate the convergence problems. We use the subgradient optimization procedure
described in Görtz and Klose (2012):

1. At the root node: Perform 500 subgradient steps to generate the initial patterns that are
feeded to the restricted master problem. The Lagrangian multipliers are initialized as µj = 0

for all j’s, which corresponds to the surrogate relaxation of the MKP.

2. At subsequent nodes: Perform 50 subgradient steps to initiate the restricted master problem.
Use the patterns from the parent node as well.

3. During column generation: If more than 5 iterations of column generation have been per-
formed, run 10 subgradient steps with initial multipliers µj equal to the value of the dual
variables associated with constraints (25).

11

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

4. When solving the Lagrangian subproblems: Solve the Lagrangian subproblem, with optimal
value L2(µ) and with optimal solution t∗, x∗. If L2(µ) ≤ LB, stop and fathom the node.

5. When adding patterns to the restricted master model : If the subgradient steps are performed
at the root node, for every i ∈ {1, ...,m}, add a pattern in the P i’th class of the restricted
master problem composed of the items for which x∗ij = 1, and add a pattern in the P 0’th class
of the restricted master problem composed of the items for which t∗j = 1. If the subgradient
procedure is being performed at the other nodes, add only the patterns with positive reduced
cost.

6. Updating µ: Set gj =
∑n

i=1 xij
∗ − t∗j and µj = µj − θgj , where θ, which denotes the step

length, is given by the following formula:

θ = α
(L2(µ)− LB)

||g||2

7. Stopping criteria: 1) stop if 10 iterations were performed, or 2) let α = 2 and each time the
dual bound L2(µ) is not smaller than those obtained in the last 5 iterations, divide α by 2,
and stop if α ≤ 10−5. The second criterion is helpful at reducing the number of subgradient
steps performed at the root node (500 iterations) or at each subsequent node (50 iterations).
These stopping criteria differs slightly from those proposed by Görtz and Klose (2012).

3.5 Outline of the algorithm

This section presents the outline of the branch-and-price algorithm.

1. Perform the initialization phase of Section 3.8. A lower and an upper bound are computed,
and if they are equal, the algorithm stops. Otherwise, perform a preprocessing to reduce the
size of the instance.

2. Solve the root node by performing the steps 5.a to 5.e. Create a list L of active nodes and
add the root node to it.

3. Remove the node in L with the highest upper bound and let t∗j and x
∗
ij be its optimal solution.

If L is empty, stop.

4. Select a fractional t∗j to branch on according to the branching strategy of Section 3.6, and
create two child nodes where we set tj = 0 in one and tj = 1 in the other.

5. Perform the following for each node:

(a) Solve the node using column generation and subgradient optimization.

(b) If its solution value is not better than LB, go back to Step 3.

(c) If the t∗j and x∗ij variables are integer, update the global lower bound LB. Remove all
nodes in L with a worse value than LB.

12

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

(d) If only the t∗j variables are integer, solve the packing subproblem. If it is feasible, update
the global lower bound LB, and remove all nodes in L with a worse value than LB.
Otherwise, it is infeasible, add a no-good cut (29) and go back to Step 5.a.

(e) Add the node to L if the t∗j are fractional.

6. Go back to Step 3.

3.6 Branching strategy

As is done in Klose and Görtz (2007), the branching variable is chosen among a candidate set
C = {j ∈ {1, ..., n} : tj is free and l ≤ t∗j ≤ u}, where l = 0.75max{t∗j |0 < t∗j ≤ 0.5} and where
u = 0.75max{t∗j |0.5 ≤ t∗j < 1}. If there are no j’s such that 0 < t∗j ≤ 0.5, l is set to 0.5, and if there
are no j’s such that 0.5 ≤ t∗j < 1, u is set to 0.5. The following branching rules were tested:

1. Branch on the j ∈ C with the largest value of pj
wj

.

2. Branch on the j ∈ C with the smallest value of L2(µ) with tj forced to 1− bt∗j + 0.5c.

3. Branch on the j ∈ C such that setting tj = 1 − bt∗j + 0.5c maximizes the number of patterns
from P 0 with associated ya > 0 that become infeasible.

Branching rule 3 is inspired by the fifth branching rule that is mentioned in Klose and Görtz (2007).
While it would appear that branching rule 1 is the most efficient one for small-sized problems, its
performance is rather poor for larger problems. Branching rule 2 aims to branch on the variable
that is most "important", i.e., so that the two resulting subtrees will be as balanced as possible.
Branching rules 2 and 3 are much more resilient to size increase and appear to have a comparable
performance, although preliminary tests have shown branching rule 3 to be more efficient, and is
therefore the one that is used in the branch-and-price algorithm.

3.7 Filtering

We perform the following two variable filtering at each node of the branch-and-node tree:
Item dominance: It was proposed by Dell’Amico et al. (2019) for the MKP. Given two items j1

and j2, j1 is said to dominate j2 if wj1 ≤ wj2 and pj1 > pj2 . If, at any point in the search, j1 is
excluded from the solution, i.e., tj1 is forced to 0, then j2 may also be excluded from the solution,
for any solution that contains j2 and does not contain j1, a better solution may be obtained by
replacing j2 with j1. Similarly, if, at any point in the search, j2 is included in the solution, i.e. tj2
is forced to 1, then j1 may be included in the solution as well.

More precisely, for every item j, we associate two sets of items, namely the dominated set D1j ,
which contains all items dominated by j, and the dominating set D2j , which contains all items
which dominate j:

D1j = {k|wj ≤ wk and pj > pk}

D2j = {k|wj ≥ wk and pj < pk}

13

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

Whenever j is included in the solution, all k ∈ D2j are included in the solution as well, and
whenever j is excluded from the solution, all k ∈ D1j are excluded as well.

Lagrangian probing : A basic Lagrangian probing, as described in Görtz and Klose (2012), is
applied at each node after the column generation ran to reduce the number of free tj . For every j
such that tj is free, tj is tentatively set to 1− bt∗j + 0.5c, and the optimal value of the Lagrangian
relaxation L2(µ) is computed. If this value is smaller than the global lower bound LB, then tj may
be set to bt∗j + 0.5c.

3.8 Initialization

We perform the following two steps before running the branch-and-price algorithm. First, we run the
MULKNAP algorithm for one second to compute an initial lower and upper bound. If they are equal,
the problem is solved and we stop. Next, we perform the following instance reduction algorithm that
was proposed by Dell’Amico et al. (2019). Let I be a subset of bins and J = {j|wj ≤ maxi∈I{ci}}
be the set of items that can be packed inside I. If a feasible packing of J inside the bins I can be
found, then we remove both I and J from the instance. We start with I = 1 and iteratively add the
next smallest bin to I. For each I, we try to solve the VSBPP-SAT with a time limit of 10 seconds
if
∑

j∈J wj ≤
∑

i∈I ci.

4 Solving the packing subproblems

This section decribes how to solve the variable-sized bin packing satisfiability problem (VSBPP-
SAT). In the following, we consider that bins and items can be duplicated, meaning that some items
might have the same weight and some bins might have the same capacity. Let I = {1, ...,m′} be
the set of bins, where di is the number of bins of capacity ci. Similarly, let J = {1, ..., n′} be the
set of items, wi its weight and bi the number of duplicates. The objective problem is to determine
whether there exists a feasible packing of the items J inside the bins. This problem is similar to a
satisfiability variant of the variable-sized bin packing problem (VSBPP) where bins have a usage cost
and availabilities. The VSBPP has been extensively studied in the literature by numerous authors.
The most efficient methods for solving the VSBPP include branch-and-price algorithms from Belov
and Scheithauer (2002) and Alves and Valério de Carvalho (2008), and also pseudo-polynomial MIP
formulations, also known as arc-flow formulations, from Valério de Carvalho (2002) and Delorme
and Iori (2020).

The problem is transformed into a VSBPP where the cost of bins is 0. The objective of VSBPP-
SAT is to decide if a feasible solution exists or not. To solve it, we developed a solver with three
methods, namely a heuristic, a set-packing based procedure, and an arc-flow based procedure. Each
method is called in order until a feasible packing is found, or it is proven that none exists, or a
timeout has occurred. It should be noted that only the last method can prove infeasibility.

14

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

4.1 Heuristic

The problem is first tackled using a quick heuristic that performs a two-stage approach in which
the first stage is a greedy heuristic and the second is an improvement procedure based on simulated
annealing that calls the greedy heuristic. First, items are sorted by non-increasing weight and bins
by non-decreasing capacity. Then, items are stored in an array where the sequence is important.
The heuristic starts with the first bin and at each iteration it searches for the first item in the array
with a weight equal to the residual capacity of the bin. If there is one, it adds the item to the bin
and removes the item from the array. If there is none, it adds the first item in the array that fits
inside the residual capacity. If there are no items that fits inside the bin, the heuristic moves to the
next bin. The heuristic iterates until all items have been added, and in such case, it returns 0. If
there are no bins left, it returns the sum of the weights of the items that are left.

The simulated annealing is executed for at most 2500 iterations to keep the computation time
low. At each iteration, it selects two items randomly in the array, swaps them, and calls the greedy
heuristic. The new sequence is accepted if the returned value is lower than the one of the previous
sequence or it passes the classical simulated annealing criterion. If the sequence is rejected, the
algorithm reverts to the previous sequence.

4.2 Set packing formulation

Experiments have shown that if the problem is feasible, the number of items per bin in the optimal
solution is very often between 1 and 5. Also, many sets J coming from the master problem have a
near perfect fit, meaning that the sum of weights of the items in J is very close to the sum of the
capacities of the bins. Our second method exploits these observations by solving the VSBPP-SAT
using a formulation similar to the classical formulation of the set packing problem with a reduced
subset of patterns. Let f =

∑m′

i=1 dici −
∑n′

j=1 bjwj be the free space. Our method tries to find a
feasible solution of the VSBPP-SAT by generating patterns, where each pattern has at most f free
space and at most α items.

If a feasible solution is found, the procedure is terminated: otherwise, we reiterate with α = α+1

or until an upper value is reached. Experiments have shown that this method works best with an
initial value of α = 3 and iterating up to α = 5 (as larger values of α create millions of patterns
that the MIP solver cannot handle).

At each iteration, the patterns of each bin i are defined as P̄ iα = {a ∈ Zn′ |ci− f ≤
∑n′

j=1 ajwj ≤
ci,
∑n′

j=1 aj ≤ α and aj ≤ bj , j = 1, ..., n′}. Each pattern is required to have at most f of free space,
it has to respect the bin capacity, and the maximum number of items allowed at the iteration. The
model contains binary variables ȳa indicating if pattern a is chosen or not. The formulation is as

15

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

follows :

max

m′∑
j=1

∑
a∈P̄ iα

n′∑
i=1

aj ȳa (39)

s.t.
∑
a∈P̄ iα

ȳa ≤ di i = 1, ...,m′ (40)

n′∑
i=1

∑
a∈P̄ iα

aj ȳa ≤ bj j = 1, ..., n′ (41)

ȳa ∈ {0, 1} a ∈ P̄ iα, i = 1, ...,m′ (42)

Objective function (39) maximizes the number of taken items. Constraints (40) and (41) ensure
that at most one pattern is chosen per bin and per item. Finally, constraints (42) define the nature
and domain of the variables. If the optimal value is equal to

∑n′

j=1 bj , meaning that all items have
been assigned, a feasible solution has been found and we stop. Otherwise, we increment α and try
again. If α ≥ 6, we stop and move to the next method. A time limit of 400 CPU seconds was given
to this method.

4.3 Arc-flow formulation

The third method consists of solving one of two possible arc-flow formulations of the VSBPP de-
veloped. These formulations were first proposed for the classical bin packing problem (BPP) by
Valério de Carvalho (1999). The idea is to construct a graph of pseudo-polynomial size where the
nodes represent the possible bin fillings and the arcs represent the packing of an item. It is common
for these graphs to grow very large in size when the bin capacity or the number of items is large.
New types of graphs were proposed by Côté and Iori (2018) and Delorme and Iori (2020) to reduce
their size and hence facilitate their resolution. These formulations are among the most performant
methods to date for solving the BPP and its variants(Loti de Lima et al., 2022). This third method
solves the VSBPP-SAT using the formulation from Valério de Carvalho (2002). Let G = (V,A)

be a directed graph where V = {0, 1, ..., c∗} is the set of vertices and c∗ = maxi=1,...,m′{ci} is the
capacity of the largest bin. Each node p ∈ V represents a partial packing of a set of items having a
sum of weights lesser or equal to p. Each arc (p, q) ∈ A represents either 1) the packing of an item
of weight q−p added to the partial packing p and giving the partial packing q or 2) an empty space,
also called loss arc between p and q. Let δ−(q) and δ+(q) define the set of arcs entering and leaving
arcs of node q. Let xpq be an integer variable indicating the number of times the arc (p, q) ∈ A is

16

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

taken. Also, let ri be an integer representing the number of times the bin i is used.

min
m′∑
i=1

ri (43)

s.t.
∑

(q,p)∈δ+(q)

yqp −
∑

(p,q)∈δ−(q)

ypq =

∑m′

i=1 ri if q = 0

−ri if q = wi, i = 1, ...,m′

0 otherwise
(44)

∑
(p,p+wj)∈A

yp,p+wj ≥ bj j = 1, ..., n′ (45)

ypq ≥ 0 and integer (p, q) ∈ A (46)

0 ≤ ri ≤ di and integer i = 1, ...,m′ (47)

Objective (43) minimizes the number of used bins, whereas constraints (44) ensure flow conser-
vation. Constraints (45) impose that at least bj units of flow goes through the arcs of each item j.
Graph G can be built using dynamic programming (details can be found in Côté and Iori (2018)).
The basic idea is to start from a graph empty of arcs and to consider each item j iteratively in
non-increasing order of weight. An arc (p, p+wj) can be placed in p only if p = 0 or if there exists
a path from 0 to p that does not go through any arcs of item j. Arcs are added progressively until
all items have been looked at.

We also consider the Reflect formulation proposed by Delorme and Iori (2020) and used by
Dell’Amico et al. (2019) for the MKP. It is another type of arc-flow formulation using a different
graph representation that only uses half the number of nodes. In many instances, Reflect is able
to reduce significantly the number of arcs, but on many hard instances, however, this number can
also be several times bigger than that of the classical arc-flow. Our method chooses the graph
representation (arc-flow or Reflect) that uses the smallest amount of arcs.

We also propose the following improvement to remove more arcs. At the time of placing arc
(p, p+wj) for item j, it is possible to calculate the maximal bin usage that this arc will lead to. If
the maximal bin usage leads to an empty space of at least f units in any bin, then, the arc can be
discarded. Let f ′ be the minimal empty space that can be generated using the remaining items if
arc (p, p+ wj) is taken. It is defined as follows :

f ′ = max
i=1,...,m′

ci − p− wj −
max

n′∑
l=j+1

z̄lwl

∣∣∣∣∣∣
n′∑

l=j+1

z̄lwl ≤ ci − p− wj , z̄l ∈ {0, ..., bl}, l = j + 1, ..., n′

(48)
If f ′ > f , then arc (p, p+wj) can be discarded. We calculate f ′ by dynamic programming while

building the graph. Experiments have shown that this procedure can remove several thousands of
arcs on hard instances. Both arc-flow and Reflect models benefit from this preprocessing.

17

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

5 Computational experiments

All algorithms were coded in C++ and compiled using gcc 4.8.5 with -O3. The detailed results
and our codes can be found at https://sites.google.com/view/jfcote/. We ran our tests on
a machine running Linux Oracle Server 7.7 with an Intel i7-6700x CPU at 3.50 GHz and 125 GB
of RAM. The single knapsack problems were solved using combo of Martello et al. (1999), and the
linear programming master problems as well as the set packing and arc-flow models were solved
using CPLEX 12.10. We also used MULKNAP of Pisinger (1999), suitably adapted to halt and
yield the current incumbent solution if the time elapsed exceeds the specified time limit.

Benchmark instances

We performed our tests on the benchmark instances proposed in Dell’Amico et al. (2019), which can
be obtained at http://or.dei.unibo.it/library. These comprise of five instance sets, namely
SMALL, FK1, FK2, FK3 and FK4. SMALL was adapted from an instance set suggested by
Kataoka and Yamada (2014) for the closely related multiple knapsack assignment problem, while
the FKi were generated using a classical procedure for generating benchmark instances for the
MKP. An instance in a given set is characterized by two parameters, namely:

1. The dimension of the instance (in the form of the values of n and m).

2. The so-called correlation class of the profits pj .

10 different instances were generated for every choice of parameters for SMALL and 20 were for
each FKi. In each of the FKi, there is exactly one choice of (n,m) corresponding to each of the
n
m ratios {2, 3, 4, 5, 6, 10}. We will refer to the set of all instances from a given instance set that
were generated according to a given choice of parameters as a subset. The possible values of said
parameters are given in Tables 1 and 2. Since there are 6 possible choices of n,m and 3 different
correlation classes for SMALL, it contains 3× 6 = 18 instance subsets, for a total of 18× 10 = 180

instances, and since there are 6 possible choices of n,m and 4 different correlation classes for each
FKi, each contains 4× 6 = 24 instance subsets, for a total of 24× 20 = 480 instances.

For both sets, the item weights wj were generated before generating the profits and the knapsack
capacities, and were uniformly generated in an interval of the form [α, 1000], where α is a set-
dependent parameter, equal to 1 for SMALL and to 10 for the FKi. The correlation class of a given
instance controls the way in which the components of the pairs (pj , wj) for j = 1, ..., n are related
to each other, ranging from being independent to being the same. The possibilities are:

1. Uncorrelated: The pj are uniformly distributed in [α, 1000].

2. Weakly correlated: The pj are uniformly distributed in [0.6wj + 1, 0.6wj + 400] for SMALL
and in [max(1, wj − 100), wj + 100] for the FKi.

3. Strongly correlated: The pj are set to wj + 200 for SMALL and to wj + 10 for the FKi.

18

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

4. Subset-sum: (only for the FKi) pj = wj .

Set W =
∑n

j=1wj . For SMALL, the knapsack capacities ci were generated dissimilarly, accord-
ing to the rule ci = b0.5λiW c, where λ was uniformly generated with the constraint

∑m
i=1 λi = 1 and

λi ≥ 0. For the FKi, the knapsack capacities ci were generated similarly, with ci being uniformly
generated in [0.4W

m , 0.6W
m] for 1 ≤ i ≤ m−1 and cm being set to 0.5W −

∑m−1
i=1 ci. All instances with

wj > mini ci for all j’s (so that some knapsacks are redundant), maxj wj > ci for all i’s (so that
some items are redundant) or W ≤ maxi ci (so that all items may be packed in a single knapsack,
rendering the problem trivial) were rejected and generated again.

Table 1: Values of n/m used for generating the instance sets
Set n/m

SMALL (20,10),(40/10),(60,10),(20,20),(40,20),(60,20)
FK_1 (60,30),(45,15),(48,12),(75,15),(60,10),(100,10)
FK_2 (120,60),(90,30),(96,24),(150,30),(120,20),(200,20)
FK_3 (180,90),(135,45),(144,36),(225,45),(180,30),(300,30)
FK_4 (300,150),(225,75),(240,60),(375,75),(300,50),(500,50)

Table 2: Characteristics of SMALL and the FKi

Instances Number of
Set per group Correlation classes α Capacities Instances
SMALL 10 Uncorrelated, weakly, strongly 1 Dissimilar 180
FKi 20 Uncorrelated, weakly, strongly, subset-sum 10 Similar 480

5.1 Empirical results regarding various relaxations

Experiments were performed on the benchmark instances SMALL and FK1 to compare the perfor-
mance of the various existing relaxations for the MKP with the new relaxation. No preprocessing
of any kind was performed on the instances. Both Lagrangian relaxations were solved using column
generation. When running the initial subgradient algorithm, the initial choice of multipliers for
computing L1 that was used is the one that is described in Hung and Fisk (1979): let the items be
ordered in decreasing order of density pj

wj
, and let l ∈ {1, ..., n} be the break item of the continuous

relaxation, i.e. the smallest l such that
∑l

j=1wj >
∑m

i=1 ci. Then, we set λj = pj − wjpl
wl

if j < l

and 0 otherwise. The initial choice of multipliers chosen in the case of L2 was simply µj = 0.

19

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

Table 3: Characteristics of various relaxations for SMALL (180)
Relaxation Value Time Gap Max gap Instances closed
Linear relaxation 16734.1 0.0 (0.0) 18.3 154.1 0
Surrogate relaxation (SMKP) 16625.1 0.0 17.0 147.3 32
Arc-flow 15829 2.8 0.3 3.6 64
Reflect model + Priority + nmax 15790.1 0.7 0.2 2.2 75
Lagrangian relaxation (L1) 15828.3 0.0 (0.0) 0.3 3.6 65
Lagrangian relaxation (L2) 15787.1 0.0 (0.1) 0.2 3.6 106
Average optimal value 15765.2

Table 4: Characteristics of various relaxations for FK1 (480)
Relaxation Value Time Gap Max gap Instances closed
Linear relaxation 19149.9 0.0 5.6 69.7 77
Surrogate relaxation (SMKP) 19126.1 0.0 5.4 69.5 264
Arc-flow 18420.8 6.1 0.1 0.9 155
Reflect model + Priority + nmax 18420.1 1.7 0.1 0.9 220
Lagrangian relaxation (L1) 18420.6 0.0 (0.1) 0.1 0.9 156
Lagrangian relaxation (L2) 18404.9 0.0 (0.1) 0.0 0.9 347
Average optimal value 18400.8

Tables 3 and 4 report some statistics concerning various possible relaxations for the MKP. The
surrogate relaxation is the relaxation described in Section 2.1, and was solved using combo. "Arc-
flow" and "Reflect model + Priority + nmax" correspond to the linear relaxations of arc-flow models
for the MKP, as described in Dell’Amico et al. (2019), which is where these figures come from, with
"Arc-flow" corresponding to a basic model and "Reflect model + Priority + nmax" corresponding
to a more sophisticated model where some supplementary constraints were added, and is the tightest
arc-flow based relaxation reported. Column "Value" corresponds to the average upper bound, to be
compared with the average solution, which is provided under the table; column "Time" reports the
average time taken to compute the relaxation; column "Gap" and "Max gap" respectively report
the average gap and the maximum gap, which is computed as 100UB−z∗

z∗ , whereby UB stands for the
upper bound provided by the relaxation and z∗ corresponds to the optimal solution of the problem;
and "Instances closed" reports the total number of instances for which UB was equal to z∗.

We see that the new Lagrangian relaxation L2 is clearly the strongest relaxation, providing
tighter bounds on average than all other methods and providing bounds that are greatly tighter
than those provided by the Lagrangian relaxation L1. It could also be computed reasonably quickly.
These results clearly demonstrate that the new relaxation L2 has independent interest, as it could
for example be used in a traditional branch-and-bound algorithm to prune large parts of the search
tree, or be used within a variable fixing scheme such as the one presented in Section 3.7 to reduce the
size of the problem without too much computational effort, provided that a good feasible solution
is known.

It is worth pointing out that there appears to be a connection between the Lagrangian relaxation

20

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

L1 and the linear relaxations of various arc-flow models for the MKP, as there is in the case of
the bin-packing problem, where these are equal(Valério de Carvalho, 1999). For all 180 SMALL
instances, it always held that zL1 ≤ zArc-flow, with the difference being smaller than 1 for 162
problems. Interestingly, it turns out that the Lagrangian relaxation L1 is very tight for instances
with a small n

m ratio and generally closes instances with n
m = 2, but gives increasingly weaker

bounds as n
m grows, while the opposite holds for the surrogate relaxation SMKP, which provides

very weak bounds for instances with a small n
m ratio but gets progressively tighter as n

m increases,
generally closing instances with n

m ≥ 6. This might give a theoretical explanation to the remark in
Dell’Amico et al. (2019) that the Reflect-based decomposition, which uses an arc-flow based MIP
and thus may behave similarly to the Lagrangian relaxation L1, works best for instances with an n

m

ratio of 3 or 4, while the knapsack-based decomposition, which uses a MIP based on the surrogate
relaxation, works bests for instances with an n

m ratio of 4, 5 or 6.

5.2 Empirical results regarding the VSBPP-SAT solver

Table 5 compares the performance of the VSBPP-SAT solver described in Section 4 and that of
the solver suggested by Dell’Amico et al. (2019) on the subproblems encountered by BP-MKP.
The strategy used by Dell’Amico et al. (2019), which we will refer to as CP + Reflect, goes as
follows: first, a constraint programming approach was tried for one second (using CPLEX’s IloPack
constraint). If this failed to find a feasible packing and to prove that none existed, their original
Reflect’s code was ran. To compare the performance of the two solvers, while running BP-MKP
on the test instances, we stored the VSBPP-SAT subproblems encountered in memory, along with
the time used and the result. We then ran the CP + Reflect procedure on the subproblems with
a time limit of 10 CPU seconds for problems that were encountered during preprocessing and 1200
CPU seconds otherwise. Problems with fewer than 3 knapsacks or with fewer than 5 items were
discarded from the statistics. Also, as problems encountered during instance reduction tend to be
much easier than those encountered during the course of the main algorithm, they are excluded
from the set-specific columns and are reported in a separate column.

The first four entries in the "Algorithm" columns correspond to the various algorithms of the
solver, as described in Section 4. The last entry corresponds to the performance of the overall
solver. The number in parentheses next to the name of a set/phase corresponds to the total number
of VSBPP-SAT problems that were encountered when solving problems from the set/phase. Each
entry of the "Opt" subcolumns report both the number of problems that the corresponding algo-
rithm succeeded in solving and the number of problems that the algorithm was run on, and each
entry of the "Time" subcolumns report the average CPU time the algorithm took on the problems
it was run on, in seconds. In the case of "Arc-flow" and "Reflect’, the second number corresponds
to the number of problems on which the method was ran. We see that the new solver was very
effective overall, solving all problems encountered when solving instances in SMALL, FK1, FK2

and FK3 and solving most problems coming from instances in FK4 and most problems encountered
during preprocessing (for which it had a time limit of 10 seconds). The heuristic did not perform

21

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

particularily well on problems in the first five categories, but it solved more than half of the pre-
processing problems extremely quickly. We also see that the set packing’s performance was more
than satisfactory, solving more than half of the instances in the first five categories rather quickly,
while the majority of the remaining instances were solved by the arc-flow and Reflect. It is also
interesting to see that, for large-sized problems, it was almost always found that arc-flow produced
a smaller model than Reflect, with this being the case for all 78 problems from FK4 that were not
solved by the heuristic or by the Set Packing.

Although our VSBPP-SAT solver did much better than the solver suggested in Dell’Amico et al.
(2019), being more than three times faster than it on all instance sets and solving more instances,
we nevertheless see that it had some difficulty with solving the subproblems coming from the larger
instances, as it took 120 seconds on average in the case of FK4, which corresponds to 10% of the
time limit and 21.9% of the adjusted time limit (which is 550 seconds). This implies that very few
VSBPP-SAT subproblems could usually be solved within the time limit.

Table 5: Respective performances of the two VSBPP-SAT solvers

Algorithm SMALL (70) FK1 (216) FK2 (371) FK3 (310) FK4 (239) Preprocessing (458)
Opt Time Opt Time Opt Time Opt Time Opt Time Opt time

CP + Reflect 70 5.7 216 3.9 371 19.2 307 86.4 198 423.0 304 8.1
New Solver 70 1.4 216 0.3 371 5.0 310 18.8 226 120.0 431 1.3
-Heuristic 1 0.0 3 0.0 0 0.0 0 0.1 1 0.5 253 0.1
-Set packing 46 0.7 173 0.1 219 1.2 204 9.8 156 53.5 74 2.4
-Arc-flow 5/5 1.3 8/8 2.3 94/94 13.3 94/94 29.1 69/78 202.5 99/102 0.7
-Reflect 18/18 2.4 32/32 0.5 58/58 2.4 12/12 2.3 0/0 0.0 5/5 0.1

5.3 Comparison of solution methods

Our algorithm was given a time limit of 1200 CPU seconds on every test instance. For a given
instance and for a given method, we define the gap as be given by the formula 100LB∗−LB

LB∗ , whereby
LB∗ stands for the best known solution and LB stands for the best found solution by the method
within the time limit. We compare our results to two other exact methods for solving the MKP:
Pisinger’s MULKNAP algorithm as well as Dell’Amico et al. (2019)’s best-performing algorithm,
namely Hy-MKP. The results given for MULKNAP and Hy-MKP in Tables 6, 8, 9 and 10 come
from the computational experiments of Dell’Amico et al. (2019), whose authors graciously accepted
to share their detailed results with us. It is worth mentioning that the average times reported for
MULKNAP in the Table 4 of Dell’Amico et al. (2019) are erroneous, and the results given here in
Table 6 are the correct values.

To account for the difference in computing power between our machine and that of Dell’Amico
et al. (2019), which cpubenchmark.com estimates to be a ratio of 2489

1142 ≈ 2.18 in processing speed,
whenever comparing our results with theirs, we specify in parentheses what every important result
would have been if our tests had been run on a machine of comparable processing speed and with the
same time limit as them, namely 1200 CPU seconds: in this respect, the adjusted number of solved
instances given corresponds to the number of instances that were solved in less than 1200

2.18 ≈ 550 CPU

22

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

Table 6: Overall results of various exact methods on the benchmark instances
SMALL (180) FK1 (480) FK2 (480)

Method Opt Time Opt Time Opt Time
MULKNAP 150 230.7 353 378.5 290 482.1
Hy-MKP 180 11.5 480 10.3 469 91.9
BP-MKP 180 (180) 3.3 (7.3) 480 (480) 1.8 (3.9) 478 (473) 29.3 (53.5)

FK3 (480) FK4 (480) All (2100)
Method Opt Time Opt Time Opt Time
MULKNAP 311 427.6 313 421.2 1417 410.6
Hy-MKP 461 146.3 398 286.9 1988 123.4
BP-MKP 477 (470) 36.1 (60.5) 452 (443) 98.9 (122.0) 2067 (2046) 38.2 (55.5)

seconds, and the adjusted average CPU time given corresponds to the average of 2.18min(550, t),
where t stands for the actual CPU time that was spent by BP-MKP on a given instance.

Table 6 showcases the overall results on every instance set and on all benchmark instances of
the exact algorithms under scrutiny. For every instance set, the number in parentheses next to the
name of the set corresponds to the number of instances in the set, while column "Opt" corresponds
to the number of instances that were solved to proven optimality by the method and column "Time"
corresponds to the average CPU time that it spent on every instance, in seconds. We see that even
when taking the difference in computing power into account, BP-MKP significantly outperforms
the best algorithm of Dell’Amico et al. (2019), being more than twice as fast on average on hard
instances and solving to proven optimality 58 more instances than it.

Table 7: Details on instances that were not solved by the preprocessing
SMALL (180) FK1 (480) FK2 (480) FK3 (480) FK4 (480)

Instances 101 291 280 251 247
Opt 101 291 278 248 219
Time 5.9 3.0 50.2 69.0 192.2
VSBPP-SAT time 1.0 0.2 6.9 23.2 116.1
VSBPP-SAT calls 0.7 0.8 1.5 1.2 1.0
Relaxation time / node 0.0 0.0 0.6 1.1 4.6
Nodes 66.4 35.2 167.9 77.5 42.4
Patterns 21,117.3 12,045.6 77,263.8 118,848.1 100,761.1
Average gap 0.00 0.00 0.00 0.00 0.06
Max gap 0.00 0.00 0.08 0.10 1.82

Table 7 provides more detailed information on BP-MKP’s performance on the instances sets.
Instances that were solved by the MULKNAP phase or during preprocessing were discarded from
these statistics, as both of these strategies are also used by Hy-MKP. For every instance set, the
number next to the name of the instance corresponds to the total number instances, and row
"Instances" corresponds to the total number of instances that were not solved by MULKNAP
or during preprocessing. Once again, row "Opt" corresponds to the number of instances that were
solved to proven optimality, and row "Time" corresponds to the average CPU time spent, in seconds.
Row "VSBPP-SAT time" corresponds to the average CPU time spent on solving VSBPP-SAT
problems in seconds, "VSBPP-SAT calls" corresponds to the average number of calls to the VSBPP-
SAT solver (both excluding preprocessing), row "Relaxation time / node" reports the average of
the average time spent running column generation per node for every instance, with the time spent
on the VSBPP-SAT solver excluded, row "nodes" reports the average number of nodes processed

23

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

Table 8: Detailed results on the FK2 benchmark instances
Instances MULKNAP Hy-MKP BP-MKP
n/m Type Opt Gap Time Opt Gap Time Iter Opt Gap Time Nodes Root %Pack Pack

120/60

Uncorrelated 20 - 3.1 20 - 3.0 0.0 20 (20) - 1.4 (3.2) 1.0 20 0.0 0.0
Weakly 20 - 3.2 20 - 3.2 0.0 20 (20) - 1.2 (2.7) 1.0 20 0.0 0.0
Strongly 20 - 6.5 20 - 3.2 0.6 20 (20) - 1.6 (3.5) 1.0 20 0.0 0.0
Subset-sum 20 - 3.6 20 - 3.2 0.6 20 (20) - 1.6 (3.5) 1.0 20 0.0 0.0

90/30

Uncorrelated 0 1.96 t.l. 20 - 24.9 11.2 20 (20) - 13.8 (30.1) 14.5 5 22.3 1.5
Weakly 0 1.68 t.l. 20 - 27.7 18.8 20 (20) - 37.8 (82.5) 191.8 1 11.2 1.5
Strongly 0 0.92 t.l. 16 0.00 684.8 31.0 20 (18) - 187.8 (385.8) 590.6 0 26.1 6.1
Subset-sum 0 0.37 t.l. 13 0.00 781.7 23.4 18 (15) 0.00 375.9 (595.4) 1177.9 0 8.3 3.7

96/24

Uncorrelated 0 1.76 t.l. 20 - 26.9 1.2 20 (20) - 2.7 (5.9) 1.9 17 15.6 1.2
Weakly 0 1.76 t.l. 20 - 119.4 16.9 20 (20) - 30.3 (66.1) 117.1 1 9.8 2.8
Strongly 1 0.40 1144.5 20 - 46.8 1.0 20 (20) - 2.7 (5.9) 3.1 12 6.6 1.0
Subset-sum 19 0.00 148.2 20 - 115.1 10.0 20 (20) - 31.5 (68.6) 208.9 9 0.2 0.6

150/30

Uncorrelated 7 0.25 784.4 20 - 126.2 0.7 20 (20) - 7.5 (16.4) 0.7 20 48.0 0.7
Weakly 0 0.58 t.l. 20 - 151.1 1.1 20 (20) - 4.9 (10.7) 1.2 18 12.3 1.1
Strongly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

120/20

Uncorrelated 19 0.00 60.3 20 - 6.1 0.1 20 (20) - 0.2 (0.4) 0.05 20 3.0 0.1
Weakly 4 0.12 970.1 20 - 82.2 0.9 20 (20) - 1.5 (3.3) 0.8 20 16.5 0.9
Strongly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

200/20

Uncorrelated 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Weakly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Strongly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

per instance, row "Patterns" reports the average number of patterns added to a master model per
instance, and rows "Average gap" and "max gap" respectively report the average and max gap over
all instances, including the ones that were solved to optimality. The values given for "Nodes" explain
why BP-MKP exhibits a much better performance on hard instances than all previous branch-and-
bound algorithms for the MKP, such as Pisinger’s MULKNAP and Fukunaga’s 2D/PS+B: while
BP-MKP requires much more computational effort per node than either of these algorithms, the
strength of the relaxation L2 as well as the fact that the search space grows much more slowly
with respect to instance size (as there are only n variables to branch on in total as opposed to nm)
make it so that BP-MKP has to process very few nodes, no more than a few hundred on average,
and the number of nodes processed does not grow out of hand as the problems increase in size. In
fact, interestingly, the node count was actually smaller for larger problems, on average. We also
see that the reported values for "VSBPP-SAT calls" are always very small, never exceeding two,
which shows that when the t∗j turn out to be integer, they very often correspond to the subset of
items that are included in the optimal solution of the problem. Also, 79% of the packing problems
encountered (excluding those encountered during preprocessing) could be proven to be feasible by
our algorithm.

Tables 8, 9 and 10 report the performance of all three considered methods on each specific
subset (i.e. choice of (n,m) and choice of correlation class) for FK2, FK3 and FK4, respectively.
We refrained from presenting the corresponding tables for SMALL and FK1 as all instances from
both sets were solved rather easily to proven optimality by both Hy-MKP and BP-MKP and are
thus not very interesting. For every method, a dash in an entry of the "Gap" subcolumn indicates
that all 20 problems were solved to proven optimality by the method, with the exception of the

24

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

Table 9: Detailed results on the FK3 benchmark instances
Instances MULKNAP Hy-MKP BP-MKP
n/m Type Opt Gap Time Opt Gap Time Iter Opt Gap Time Nodes Root %Pack Pack

180/90

Uncorrelated 20 - 6.3 20 - 6.4 0.0 20 (20) - 2.5 (5.4) 1.0 20 0.0 0.0
Weakly 20 - 9.2 20 - 6.4 0.6 20 (20) - 2.8 (6.1) 1.0 20 0.0 0.0
Strongly 20 - 6.3 20 - 6.6 0.6 20 (20) - 2.7 (5.8) 1.0 20 0.0 0.0
Subset-sum 20 - 6.2 20 - 6.6 0.6 20 (20) - 2.7 (5.8) 1.0 20 0.0 0.0

135/45

Uncorrelated 0 N/A t.l. 20 - 154.6 12.2 20 (19) - 70.6 (150.2) 18.3 7 23.4 1.9
Weakly 0 N/A t.l. 20 - 170.0 20.6 17 (12) 0.01 520.2 (755.9) 728.1 0 16.7 4.0
Strongly 0 N/A t.l. 16 20.0 457.5 3.4 20 (20) - 14.6 (31.9) 4.0 10 28.4 1.1
Subset-sum 0 N/A t.l. 12 0.00 928.8 21.3 20 (20) - 6.0 (13.0) 14.9 0 17.0 1.0

144/36

Uncorrelated 0 N/A t.l. 20 - 106.6 1.0 20 (20) - 2.5 (5.5) 1.0 20 26.5 1.0
Weakly 0 N/A t.l. 17 4.89 622.6 12.0 20 (19) - 184.4 (350.5) 163.7 2 32.9 4.1
Strongly 4 N/A 994.1 20 - 279.6 0.9 20 (20) - 3.1 (6.8) 1.5 15 16.5 0.9
Subset-sum 20 - 4.0 19 0.00 60.1 1.1 20 (20) - 7.7 (16.8) 35.9 19 0.0 0.1

225/45

Uncorrelated 16 N/A 240.8 20 - 86.0 0.2 20 (20) - 32.9 (71.8) 0.2 20 16.5 0.2
Weakly 0 N/A t.l. 19 2.78 359.8 1.1 20 (20) - 10.0 (21.8) 1.1 19 25.1 1.0
Strongly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

180/30

Uncorrelated 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Weakly 11 N/A 543.4 18 5.46 254.0 0.6 20 (20) - 2.6 (5.6) 0.7 18 25.3 0.5
Strongly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

300/30

Uncorrelated 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Weakly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Strongly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

Table 10: Detailed results on the FK4 benchmark instances
Instances MULKNAP Hy-MKP BP-MKP
n/m Type Opt Gap Time Opt Gap Time Iter Opt Gap Time Nodes Root %Pack Pack

300/150

Uncorrelated 20 - 11.9 20 - 11.7 0.0 20 (20) - 6.4 (14.0) 1.0 20 0.0 0.0
Weakly 20 - 11.8 20 - 11.7 0.0 20 (20) - 11.4 (24.8) 1.0 20 0.0 0.0
Strongly 20 - 12.7 20 - 11.9 0.6 20 (20) - 9.3 (20.2) 1.0 20 0.0 0.0
Subset-sum 20 - 11.4 20 - 11.9 0.6 20 (20) - 9.3 (20.3) 1.0 20 0.0 0.0

225/75

Uncorrelated 0 1.87 t.l. 13 15.00 847.6 14.7 17 (14) 0.24 358.0 (487.4) 16.2 14 68.9 1.8
Weakly 0 1.35 t.l. 7 0.03 1074.6 20.4 5 (1) 0.33 1102.2 (1186.0) 484.3 0 27.9 3.9
Strongly 0 0.51 t.l. 8 60.00 873.0 6.2 20 (20) - 26.3 (57.4) 2.0 13 59.6 1.0
Subset-sum 0 0.23 t.l. 0 0.05 t.l. 17.8 20 (20) - 32.9 (71.7) 9.7 0 40.3 1.0

240/60

Uncorrelated 0 1.06 t.l. 17 14.55 429.1 1.2 20 (20) - 12.7 (27.7) 1.0 20 61.0 1.0
Weakly 0 1.39 t.l. 8 39.49 907.0 2.0 18 (17) 0.11 187.5 (242.3) 2.2 17 51.8 1.1
Strongly 3 0.36 1022.4 16 20.00 507.1 1.5 18 (18) 0.01 133.2 (148.5) 2.4 13 52.8 0.9
Subset-sum 20 - 0.0 20 - 0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

375/75

Uncorrelated 18 0.01 120.2 19 5.00 114.5 0.2 18 (18) 0.00 120.3 (120.0) 0.1 20 9.8 0.1
Weakly 0 0.21 t.l. 11 39.20 663.3 3.1 16 (16) 0.00 283.4 (333.5) 1.1 19 69.1 1.0
Strongly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

300/50

Uncorrelated 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Weakly 12 0.01 483.0 19 3.33 220.7 0.5 20 (19) - 80.5 (175.2) 0.4 20 33.6 0.4
Strongly 20 - 0.2 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

500/50

Uncorrelated 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Weakly 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Strongly 20 - 1.2 20 - 1.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0
Subset-sum 20 - 0.0 20 - 0.0 0.0 20 (20) - 0.0 (0.0) 0.0 20 0.0 0.0

25

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

entries for MULKNAP in Table 9, as the lower bounds found by MULKNAP for problems in FK3

were not conserved by Dell’Amico et al. (2019) and are thus unknown. In the "Time" subcolumn,
which, as before, reports the average CPU time spent by the method on the instances of the given
group in seconds, "t.l.’, indicates that the method exceeded the time limit on all 20 instances. The
"Iter" subcolumn of Hy-MKP reports the average total number of iterations of either decomposition
performed by Hy-MKP, which corresponds to the number of VSBPP-SAT subproblems solved or
one less than that number if a timeout occurred while solving the decomposition MIP. The "Nodes"
subcolumn of BP-MKP reports the average number of nodes processed by BP-MKP while solving
instances from the given group, the "Root" subcolumn corresponds to the total number of instances
that were solved at the root node, and the "%Pack" subcolumn contains the average proportion of
the time spent in the VSBPP-SAT solver: if, for a given group instance i, where i ∈ {1, ..., 20}, BP-
MKP spent ti CPU seconds in total on the instance and spent vi CPU seconds in the VSBPP-SAT
solver, then the value reported is 100

20

∑20
i=1

vi
ti
. The "Pack" column reports the average number of

calls to the VSBPP-SAT solver.
We can make the following observations:

1. As noted in Dell’Amico et al. (2019), all algorithms are very efficient at solving instances with
an n

m ratio equal to 2 or 10 (or more generally greater or equal to 10). In the case of n
m = 2,

this is due to the fact that the instance reduction procedure described in Section 3.8 almost
always succeeds in packing nearly all items, and in the case of n

m ≥ 10, this is due to the fact
that the MULKNAP component solves these problems very quickly thanks to its splitting
heuristic, which, as mentioned in Section 2.1, almost always succeeds in inserting the items
chosen in the optimal solution of the surrogate relaxation of the problem at the root node,
which generally takes very little time.

2. It would seem that the only instances that require much work to identify the subset of items
that is part of the optimal solution are the ones with an n

m ratio of 3 or 4, as both Hy-MKP
and BP-MKP used very few iterations/nodes on most instances with an n

m ratio on 5 or 6
in all instance sets (and BP-MKP used a considerable proportion of its time in the VSBPP-
SAT solver in the case of the ones that it could not solve), so that solving such problems
may be considered more or less as hard as solving VSBPP-SAT problems. This also seems to
hold for very large instances with an n

m ratio of 4, so that the only very large instances that
require much searching may be those with an n

m ratio close to 3. In this respect, it should be
noted that the improved VSBPP-SAT solver made it possible to solve many problems with a
moderately large n

m ratio very quickly. For example, all 20 weakly correlated problems with
n = 180 and m = 30 in FK3 could be solved by BP-MKP in 5.6 adjusted CPU seconds on
average while Hy-MKP could only solve 18 and took 254 CPU seconds on average.

3. More generally, we see that the proportion of the total time spent by BP-MKP that was
spent in the VSBPP-SAT solver steadily increases as the instances get larger for all choices
of correlation class and n

m ratio, ranging from around 15% on average in the case of FK2 to

26

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

around 50% on average in the case of FK4, while the average node count and the number of
instances that required any searching, on the contrary, both steadily decrease. This outlines
the importance of having an efficient algorithm for solving the packing subproblems, as these
appear to be a major roadblock to solving many very large instances for both Hy-MKP and
BP-MKP.

4. The efficiency of BP-MKP does not seem to reside solely in the superior performance of
our VSBPP-SAT solver, but also in the fact that it requires solving far fewer VSBPP-SAT
subproblems than Hy-MKP, which, as noted in the preceding section, appear to be extremely
difficult to solve in the case of large instances. This difference is most pronounced in the
case of strongly correlated and subset-sum instances in FK3 and FK4: while Hy-MKP had
considerable difficulty on these instances, solving only 36 out of 80, BP-MKP could solve all
80 instances in 43.5 normalized CPU seconds on average, and in all 80 instances but two, it
needed to solve only one packing subproblem, while Hy-MKP performed 12.2 iterations of its
decomposition algorithms on average. Also, BP-MKP’s node count was very small on such
instances, being 7.7 on average, so that very little search was usually required. In general, Hy-
MKP relies exclusively on solving successive packing subproblems to explore the search space,
whereas BP-MKP relies mainly on enumeration, which required solving far fewer packing
subproblems in all cases. This seems preferable given that, in the case of FK4, solving a
packing problem took 26 times more computing time than processing a node did, on average
(though it can be assumed that most of the packing problems encountered by Hy-MKP were
easily proven to be infeasible, considering how many iterations of its decomposition algorithms
it could perform). We may expect this difference to be even more drastic in the case of even
larger instances. However, Hy-MKP performed comparably on large uncorrelated instances
with an n

m ratio of 3, and slightly better on large weakly correlated instances with an n
m ratio

of 3, where BP-MKP too had to solve many VSBPP-SAT problems.

6 Conclusion

In this paper, a branch-and-price algorithm for the Multiple Knapsack Problem was presented.
This algorithm is based on a new Lagrangian relaxation based on a reformulation of the problem
which dominates all known upper-bounding techniques. It works by controlling whether an item
is included in the solution or not, thereby reducing greatly the search space of the algorithm.
Computational experiments have shown that our algorithm shows a better performance than the
previous state-of-the-art algorithm for this problem on benchmark instances.

7 Acknowledgments

Financial support for this work was provided by the Canadian Natural Sciences and Engineering
Research Council (NSERC) under grants 2017-06054 and 2021-04037. This support is gratefully

27

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

acknowledged. We also thank CIRRELT for providing access to their computing facilities.

References

Alves, C. and Valério de Carvalho, J. M. (2008). A stabilized branch-and-price-and-cut algorithm
for the multiple length cutting stock problem. Computers & Operations Research, 35:1315–1328.

Belov, G. and Scheithauer, G. (2002). A cutting plane algorithm for the one-dimensional cutting
stock problem with multiple stock lengths. European Journal of Operational Research, 141(2):274–
294.

Côté, J.-F. and Iori, M. (2018). The meet-in-the-middle principle for cutting and packing problems.
INFORMS Journal on Computing, 30(4):646–661.

Dell’Amico, M., Delorme, M., Iori, M., and Martello, S. (2019). Mathematical models and decom-
position methods for the multiple knapsack problem. European Journal of Operational Research,
274(3):886–899.

Delorme, M. and Iori, M. (2020). Enhanced pseudo-polynomial formulations for bin packing and
cutting stock problems. INFORMS Journal on Computing, 32(1):101–119.

Fukunaga, A. S. (2011). A branch-and-bound algorithm for hard multiple knapsack problems.
Annals of Operations Research, 184:97–119.

Fukunaga, A. S. and Korf, R. E. (2005). Bin-completion algorithms for multicontainer packing and
covering problems. Journal of Artificial Intelligence Research, 28:393–429.

Görtz, S. and Klose, A. (2012). A simple but usually fast branch-and-bound algorithm for the
capacitated facility location problem. INFORMS Journal on Computing, 24(4):597–610.

Hung, M. S. and Fisk, J. C. (1978). An algorithm for 0-1 multiple-knapsack problems. Naval
Research Logistics Quarterly, 25(3):571–579.

Hung, M. S. and Fisk, J. C. (1979). A heuristic routine for solving large loading problems. Naval
Research Logistics Quarterly, 26(4):643–650.

Ingargiola, G. and Korsh, J. F. (1975). An algorithm for the solution of 0-1 loading problems.
Operations Research, 23(6):1110–1119.

Klose, A. and Görtz, S. (2007). A branch-and-price algorithm for the capacitated facility location
problem. European Journal of Operational Research, 179(3):1109–1125.

Laaloui, Y. (2013). Improved swap heuristic for the multiple knapsack problem. In Rojas I., Joya G.,
G. J., editor, Advances in Computational Intelligence, volume 7902 of Lecture Notes in Computer
Science, pages 547–555. Springer Berlin / Heidelberg.

28

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

Laaloui, Y. and M’Hallah, R. (2016). A binary multiple knapsack model for single machine schedul-
ing with machine unavailability. Computers & Operations Research, 72:71–82.

Lalami, M. E., Elkihel, M., El Baz, D., and Boyer, V. (2012). A procedure-based heuristic for the
0-1 multiple knapsack problems. International Journal of Operational Research, 4(3):214–224.

Loti de Lima, V., Alves, C., Clautiaux, F., Iori, M., and Valério de Carvalho, J. M. (2022). Arc
flow formulations based on dynamic programming: Theoretical foundations and applications.
European Journal of Operational Research, 296(1):3–21.

Martello, S., Pisinger, D., and Toth, P. (1999). Dynamic programming and strong bounds for the
0-1 knapsack problem. Management Science, 45(3):414–424.

Martello, S. and Toth, P. (1980). Solution of the zero-one multiple knapsack problem. European
Journal of Operational Research, 4(4):276–283.

Martello, S. and Toth, P. (1981a). A bound and bound algorithm for the zero-one multiple knapsack
problem. Discrete Applied Mathematics, 3(4):275–288.

Martello, S. and Toth, P. (1981b). Heuristic algorithms for the multiple knapsack problem. Com-
puting, 27:93–112.

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations.
Wiley.

Pisinger, D. (1999). An exact algorithm for large multiple knapsack problems. European Journal of
Operational Research, 114(3):528–541.

Valério de Carvalho, J. M. (1999). Exact solution of bin-packing problems using column generation
and branch-and-bound. Annals of Operations Research, 86:629–659.

Valério de Carvalho, J. M. (2002). Lp models for bin packing and cutting stock problems. European
Journal of Operational Research, 141:253–273.

29

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

CIRRELT-2021-49

	CIRRELT-2021-49-abstract.pdf
	Bibliothèque et Archives Canada, 2021

