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Abstract. One of the major challenges for humanitarian organizations when planning relief 
efforts is dealing with the inherent ambiguity and uncertainty in disaster situations. The 
available information that comes from different sources in post-disaster settings may involve 
missing element sand inconsistencies, which can severely hamper effective humanitarian 
decision making. In this paper, we propose a new methodological framework based on 
graph clustering and stochastic optimization to support humanitarian decision makers in 
analyzing the implications of divergent estimates from multiple data sources on final 
decisions and efficiently integrating these estimates into decision making. We illustrate the 
proposed approach on a case study that focuses on locating shelters to serve internally 
displaced people in a conflict setting, specifically, the Syrian civil war. We use the needs 
assessment data from two different reliable sources to estimate the shelter needs in Idleb, 
a district of Syria. The analysis of data provided by two assessment sources has indicated 
a high degree of ambiguity due to inconsistent estimates. We apply the proposed 
methodology to integrate divergent estimates into the decision making for determining 
shelter locations in the district. The results highlight that our methodology leads to higher 
satisfaction of demand for shelters than other approaches such as a classical stochastic 
programming model. Moreover, we show that our solution integrates information coming 
from both sources more efficiently thereby hedging against the ambiguity more effectively. 
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1 Introduction

While the availability of high-quality information is crucial to make effective decisions for all organizations,

it can be difficult to access complete and accurate information in some settings. In particular, the nature

of the information flow in complex humanitarian environments (such as after the occurrence of a natural

disaster or during a conflict) can significantly impede effective decision making processes of humanitarian

agencies, whose mission is to provide timely and sufficient aid to the affected communities (Day et al., 2012;

Altay, Labonte, 2014; Comes et al., 2020). Specifically, humanitarian agencies have to make decisions under

significant uncertainty due to lack of sufficient information on various parameters (e.g., needs, vulnerabilities,

infrastructure network conditions) that are critical for disaster response planning. Moreover, to estimate these

parameters, agencies often need to make sense of a large amount of information with missing and inconsistent

elements, which can create high degrees of ambiguity in decision making. Specifically, ambiguity is defined

as the “uncertainty about probability, created by missing information that is relevant and could be known”

(Snow, 2010). While it may not be possible to eliminate ambiguity in post-disaster environments, we propose

a methodological framework that enhances agencies’ capabilities to deal with ambiguity in decision making.

In post-disaster environments, available information may involve inconsistencies since data can come

from a variety of sources (Day et al., 2012; Altay, Labonte, 2014). For instance, post-disaster needs may

be estimated by using pre-disaster information about the affected region (e.g., governmental statistics) and

post-disaster information obtained through various technologies (e.g., satellite pictures, aerial images collected

by drones), media reports as well as interviews made by local key informants (such as community leaders,

affected people, local agencies). In addition to the large number and diversity of information sources, different

methods and assumptions can be used in data processing, which can lead to different estimates on critical

parameters that are used for planning response activities. While considering all available information may

be attractive in making plans, it is challenging for humanitarian organizations to systematically integrate

different estimates into decision making in an environment where the pressure and stakes for acting quickly

are high. There is an overarching need for approaches that support humanitarian decision-makers to integrate

information processing and decision making in post-disaster settings effectively (Raymond, Al Achkar, 2016;

Benini et al., 2017; O’Brien, 2017; Comes et al., 2020). In this study, we aim to address this important

research gap.

When faced with multiple estimates on a parameter (e.g., affected population in a town, the proportion of

people with shelter or food needs), a humanitarian decision-maker can combine different values into a single

value by applying simple aggregation techniques such as taking the highest data value to “play it safe” (Day

et al., 2012), or computing average or weighted-average values (Benini et al., 2017). Defining a triangular

distribution based on the best, minimum and maximum estimates is also possible (Benini et al., 2017).

In the humanitarian logistics literature, it is common to define probability distributions to represent the

uncertainties brought by different estimates and then use stochastic optimization techniques to support post-

disaster decisions (such as last mile relief distribution, evacuation planning, shelter location) (Liberatore

et al., 2013; Dönmez et al., 2021). However, one disadvantage of such mathematical aggregation of data

without examining its consequences on decision making is that it can mask the effects and contributions

of individual data sources in final decisions (Benini et al., 2017). That is, when the data that comes from

different sources is aggregated into a single value or a probability distribution in advance, it is not possible

to observe whether the final solution would correspond to a consensus decision if the individual assessments
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were considered. Therefore, one cannot identify which decisions are well supported by different estimates,

and which ones are significantly affected by the differences among assessments. Moreover, decision-makers

may not know which data aggregation techniques to use (such as computing simple averages or using more

sophisticated techniques), and most importantly, what effects the chosen aggregation techniques will have

on the final decisions. Therefore, additional information that would reduce such high level of ambiguity in

decision making would be valuable (Snow, 2010).

In this study, rather than merging data that comes from different sources by using an aggregation method

in advance of solving a decision-making problem, we aim to develop a method that can effectively integrate

the data aggregation and decision making processes. Specifically, given different estimates provided by mul-

tiple data sources on critical parameters for post-disaster decision making, we present an approach based

on stochastic optimization and unsupervised machine learning, specifically graph clustering. The aim of our

graph clustering approach is to identify groups of scenarios whose associated solutions are similar. The result-

ing clusters provide the information that directly reduces the level of ambiguity faced by the decision-maker.

More specifically, the proposed methodological framework aims to deal with ambiguity in humanitarian

decision making by i) analyzing solutions systematically to identify whether there exists a high degree of

consensus among different estimates in terms of their implications on decisions and observe how different

estimates influence the decisions, and ii) integrating the data from different sources into decision making in a

meaningful way by adjusting the weights to different solutions to obtain the most “agreed” solution. To the

best of our knowledge, this is the first study to address ambiguity and the integration of divergent estimates

into complex humanitarian decision-making processes.

While our methodology is general and can be applied to different decision-making environments where

quantitative estimates are available from multiple sources, we illustrate the implementation of the proposed

approach on a case study focusing on the integration of needs assessment data with shelter location decisions

during the Syrian conflict. Since the beginning of the conflict, sector-specific (e.g., shelter, nutrition) needs

across the country have been systematically assessed by different humanitarian initiatives. However, dis-

crepancies may occur between different assessments since different assessment agencies may follow different

methodologies to conduct surveys with different key informants, as well as they may use different assumptions

and techniques while cleaning and aggregating the collected information. For instance, as reported by Benini

et al. (2017), the estimated proportion of internally displaced people (IDP) in a single sub-district of Syria

varies between 15% and 74% across different data sources. We apply the proposed methodology to the needs

assessment data provided by two reliable assessment initiatives, which were collected in July/August 2018

from the Idleb sub-district of Syria. We integrate this needs assessment data related to the shelter needs

of the affected population into decision making for designing a shelter network and show the benefits of the

proposed approach in dealing with information ambiguity compared to traditional approaches.

The rest of this paper is organized as follows. In Section 2, we review the relevant literature. In Section 3,

we define our problem, and in Section 4, we describe our methodological framework. We present a numerical

analysis to illustrate the implementation and advantages of the proposed methodology in Section 5. Finally,

we conclude and discuss future research in Section 6.
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2 Literature Review

In this section, we review the relevant literature on information management in humanitarian operations

(Section 2.1), scenario clustering methods (Section 2.2) and shelter location problems (Section 2.3).

2.1 Information Management in Humanitarian Operations

This study is motivated by the need for systematical approaches to facilitate linking information processing

and decision making stages, which is a primary challenge in humanitarian environments. In all its benefits,

growing amounts of data from heterogeneous sources can bring significant challenges for humanitarian or-

ganizations that have limited time to make decisions. The importance of accessing accurate information for

effective humanitarian decision making and the difficulties of information management in disaster contexts

have been widely discussed in the literature (e.g., Day et al. (2012); Altay, Labonte (2014); Walle Van de,

Comes (2015); Gupta et al. (2016); Benini et al. (2017); Gupta et al. (2019); Comes et al. (2020)). Altay,

Pal (2014) highlight that the quality of information is crucial for effective use of resources. Especially in

the post-disaster phase, inaccurate and noisy information often leads to ambiguities that significantly ham-

per decision-making. Yin, Jing (2014) analyze the functioning of cognitive schemata, including information

ambiguity, in the perception of disaster situations. As highlighted by Taylor et al. (2021), ambiguity and

uncertainty are the main reasons for the difference between post-disaster policy formulation and its actual

implementation. They present a framework that assess the impact of ambiguity and uncertainty as obstacles

to policy implementation. According to Hosseinnezhad, Saidi-mehrabad (2018), information is often merged

from several heterogeneous sources in disaster chains, where decision-makers might face contradictory infor-

mation. Therefore, the authors emphasize the need for new approaches integrating ambiguity, vagueness and

inconsistency. We aim to address the need for innovative methods to better link information management

and decision making in humanitarian supply chains, which is increasingly stressed as an important research

gap (e.g., Van Wassenhove, Besiou (2013); Comes et al. (2020)).

In this study, we address this challenge by implementing the proposed methodology based on unsuper-

vised machine learning. The increasing use of technology in disaster settings enables the accessibility to ever

greater amounts and types of data, making machine learning techniques increasingly popular in disaster man-

agement (Sokat et al. (2016); Swaminathan (2018)). For instance, Ofli et al. (2016) propose a parameterized

classification model to identify damaged shelters or buildings based on aerial imagery. Different machine

learning methods, e.g. Näıve Bayes, random forests, neural networks, are applied to data from social net-

works like Twitter to extract and categorize useful information in disaster situations (Li et al., 2018; Reynard,

Shirgaokar, 2019; Dong et al., 2021). A broader overview of recent machine learning approaches in disaster

and pandemic management can be found in Chamola et al. (2020). Our study also contributes to this stream

of literature by introducing an application of machine learning techniques to humanitarian setting.

2.2 Scenario Clustering

As shown by several review papers (e.g., Grass, Fischer (2016b); Gutjahr, Nolz (2016); Yáñez-Sandivari

et al. (2020)), discrete scenarios are most often used to capture the uncertainties in disaster contexts. In

general, there are two ways of generating scenarios in a humanitarian setting, either by deriving them from

past data on disasters or by interviewing experts (Yáñez-Sandivari et al., 2020). For instance, Andres et al.
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(2020) propose a scenario-based artificial intelligence approach where scenarios are based on empirical data

to forecast the number of forcibly displaced people.

In this study, we propose a scenario clustering approach to specifically analyze the levels of ambiguity

regarding the source-specific scenarios. Scenario clustering techniques have been primarily used to search

for patterns in, or associated with, scenarios or to reduce the number of scenarios. The generally large size

of the scenario set (Birge, Louveaux, 2011) can lead to formulations that are intractable to solve directly

(e.g., Dyer, Stougie (2006)). Decision-makers are faced with a trade-off between a sufficiently large set of

meaningful scenarios on the one hand and the size of the scenario set on the other. This motivates the

scenario reduction problem, namely to identify a subset that minimizes some approximation error induced

by replacing the original set with the identified subset.

The clustering approach to scenario reduction aims to create a partition C1, ..., CM of the scenario set

S. In other words, each scenario s ∈ S is contained in exactly one of the clusters C1, ..., CM . In general,

the clusters are allowed to be of different sizes and chosen such that all elements of a cluster are similar to

each other, subject to a given notion of similarity. The number of clusters M is an input parameter to be

specified. Scenario reduction can then be performed, for example, by choosing one representative from each

cluster. In this way, groups of similar scenarios are replaced by a single representative. See for example Jain,

Dubes (1988) or Han et al. (2011) for an overview of clustering methods.

While there are many possible notions of similarity on which the clustering can be based, two have

proven particularly useful in scenario reduction. First, parameter based clustering is based on the values of

the uncertain parameters that the scenarios represent (Crainic et al., 2014). More concretely, suppose that

the uncertain parameters are all real-valued, say α1, ..., αd. Each scenario represents particular values that

these parameters can take. In this way, we can associate a d-dimensional vector to each scenario. The notion

of distance is then chosen to be a distance on the space of d-dimensional vectors, for example the Euclidean

(sum-of-squares) distance. In other words, two scenarios are considered to be close to each other if they

represent similar values for the uncertain parameters. Since scenarios are embedded into a Euclidean space,

standard clustering algorithms such as the k-means (Lloyd, 1957) or the k-medoids algorithm (Jain, Dubes,

1988) can be applied. This idea has been successfully applied, for example, in Crainic et al. (2014) to solve

a stochastic network design problem.

The second, solution-based approach seeks to identify groups of scenarios whose associated solutions are

similar. One example of this approach is given by Keutchayan et al. (2021). In Hewitt et al. (2021), an

opportunity cost distance on scenarios is introduced. Under this distance, scenarios are considered close if

they have mutually acceptable decisions associated to them. This gives rise to a weighted graph structure on

the set of scenarios. Due to the more complex structure, the k-means type clustering algorithms need to be

replaced by graph clustering methods (Shi, Malik, 2000; Luxburg von, 2007). Our approach uses and extends

the methodology of Hewitt et al. (2021) by analyzing the level of decision agreement among scenarios and

integrating these scenarios through optimization to reach a consensus decision.

2.3 Needs Assessment and Shelter Location Problems

In this study, we propose an integrated data aggregation and decision making methodology, which is il-

lustrated on a post-disaster setting that focuses on linking the needs assessment data and shelter location

decisions during a complex emergency. Both post-disaster needs assessment planning and shelter location
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problems are widely studied in different humanitarian contexts (e.g., see the reviews by Galindo, Batta (2013);

Farahani et al. (2020)). The needs assessment process focuses on collecting information from the affected

communities to understand their needs for survival and well being (e.g., Balcik (2017)). While the assessment

information may highly affect the design and management of relief operations, the linkages between assess-

ment and response phases have not been explored yet. That is, in existing studies, data analysis and decision

making are usually not considered in an integrated way; rather, available assessment data is processed first

to estimate the values of uncertain critical parameters (i.e., demand), which are then used as deterministic or

stochastic inputs to solve an optimization problem for making disaster response decisions (e.g., Stauffer et al.

(2016); Lorca et al. (2017)). In contrast to the traditional sequential approach, we present a new method

that integrates the available needs assessment data into decision making for disaster response, which can

provide more intuition to decision-makers in understanding the effects of data aggregation and making sense

of different solutions generated by data from different assessment sources.

Locating shelters such as town halls, gyms or tents, to serve the affected people after a disaster is an

active research field (Kılcı et al., 2015; Jahre et al., 2016; Ni et al., 2018; Kınay et al., 2018; Azizi et al.,

2021). Given that location decisions are extremely impeded by the high degree of uncertainty inherent in

disaster and crises situations, stochastic optimization techniques are widely utilized (Liberatore et al., 2013;

Dönmez et al., 2021). Specifically, two-stage stochastic models have been often used to model uncertainty

(e.g., Grass, Fischer (2016a); Elçi, Noyan (2018); Paul, Zhang (2019)). These models consist of decisions

made before (i.e., first stage) and after (i.e., second stage) the realization of uncertainty represented by

scenarios. Two-stage stochastic programming is well suited in the chaotic aftermath of a disaster where there

exist a high level of uncertainty regarding needs in the affected region. We consider a two-stage stochastic

model to locate shelters with limited capacities in the aftermath of a disaster, and explore how ambiguous

needs assessment information can be integrated in the decision making. Note that robust optimization,

particular distributionally robust optimization, is an approach that can be applied to solve problems that

involve ambiguity and to find solutions that hedge against the risks associated with this ambiguity. This is

done by considering the worst case across the ambiguity, see for example the review by Rahimian, Mehrotra

(2019). However, our objective here is to allow the decision-maker to analyze and link the decisions to be

made with the information provided by the different data-sources, which cannot be achieved by applying

robust optimization.

This study contributes to the literature by developing a new methodology that links information pro-

cessing with decision making in a post-disaster environment that involves uncertainty as well as ambiguity

and presenting the benefits of the proposed approach on a complex emergency setting with real data. The

proposed methodology can support humanitarian decision-makers to eliminate the excessive effort and energy

spent to deal with information ambiguity without connecting it to decisions, and hence shifting the focus

from aggregation of data to aggregation of data with respect to conclusions to be drawn, thereby allowing

humanitarian organizations to obtain solutions supported by different viable assessments. Although the pro-

posed approach is illustrated on a shelter location problem formulated as a two-stage stochastic model, it is

general and would apply to any kind of optimization model involving scenarios.
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3 Problem Definition

In this section, we first define the problem in general terms (Section 3.1) and then introduce a shelter location

problem in a humanitarian setting (Section 3.2).

3.1 General Problem Statement

Consider a decision maker who faces a given problem involving uncertainty, such as the allocation of relief

resources under demand or supply uncertainty. Specifically, the decision maker must make a series of decisions,

which we represent as the variable vector x, while the informational context in which the problem appears

contains uncertain parameters, which we represent as the parameter vector ξ. We further assume that φ(x, ξ)

defines the function that the decision maker seeks to optimize. Without loss of generality, let us assume that

function φ(x, ξ) computes the total value associated with x if the uncertain parameters turn out to be ξ and

which the decision maker is interested in maximizing. Considering that vector ξ contains a series of uncertain

parameters, then for a fixed set of decisions x, φ(x, ξ) defines a distribution of values (i.e., each one associated

with a possible realization of vector ξ).

In the context of our shelter location problem (Section 3.2), x is the choice of shelter locations to serve the

affected population that need shelter, whereas ξ represents a number of uncertain parameters that affect the

outcome of the allocation of aid, such as the number of people in need of shelter. The function φ(x, ξ) then

represents the total number of IDPs that can be accommodated if a decision x is taken and the realization

of the uncertain parameters is ξ.

The probability measure P encodes the distribution of the vector of uncertain parameters ξ. The following

optimization model can then be solved by the decision maker to find an appropriate solution to the problem:

max
x∈A

E [φ(x, ξ)] , (1)

where A defines a set of constraints that are imposed on the decision variables x. The objective function

defined in model (1) is the expected value of a given solution and it represents what is often referred to as the

value function or recourse function in a stochastic program (Birge, Louveaux, 2011). We seek to maximize

the total expected number of people that can be accommodated in shelters. It is assumed that a series of

data sources, which are different assessments for shelter needs, are leveraged to formulate the probability

measure P. Let K define the finite set of distinct data sources that are considered. It is further assumed that

each data source k ∈ K can be used to define a source-specific probability measure, which we define as Pk.

Moreover, the applied hypothesis is that the same level of confidence is associated with all the source-specific

probability measures Pk, ∀k ∈ K. Therefore, there is ambiguity regarding which of the probability measures

should be used to define model (1).

Stochastic optimization enables problems to be solved by formulating the uncertain parameters using a

probability measure that is explicitly defined, see Birge, Louveaux (2011). Although this approach does not

directly tackle ambiguity, it allows a problem to be solved using different probability measures. When the

approach is applied to the present problem, given any P, a set S of scenarios with associated probabilities

ps for s ∈ S is generated to produce a more manageable problem to solve. Thus, the following discrete

probability measure is obtained:

PS =
∑
s∈S

psδs (2)

6

A Machine Learning Approach to deal with Ambiguity in theHumanitarian Decision Making

CIRRELT-2021-51



where δs, ∀s ∈ S, define indicator functions that state whether or not the associated scenarios appear in a

given random experiment. Another way of viewing (2) is as a discretization of P. Assuming that ξs represents

the realization of the uncertain parameters associated with scenario s ∈ S, then the following approximation

problem (i.e., with respect to the original problem (1)) can be solved:

max
x∈A

∑
s∈S

psφ(x, ξs). (3)

Assuming that problem (3) is solved using a given set Sk, that is generated using the source-specific

probability measure Pk, then one would obtain the optimal solution x?k. Specifically, solution x?k defines a set

of feasible decisions (i.e., x?k ∈ A) that provide the maximum approximated value function if the data source

k ∈ K is used to generate the scenario set Sk (i.e., the underlying assumption being that Pk defines the

distributions of the parameters ξ). If this two-step process
[
Step 1 : generate a set of scenarios; Step 2 : solve

the resulting approximated problem (3)
]
, is then repeated for all available data sources k, then one obtains a

set of feasible (and most likely different) solutions x?k ∈ A, ∀k ∈ K. Each of these solutions prescribes the set

of decisions that would be appropriate to implement if each data source is used separately to formulate the

probability measure applicable to formulate the distributions of the uncertain parameters. On their own, each

solution x?k does not guarantee an efficient integration of the probabilistic information that may be gathered

from the other data sources (i.e., ∀k′ ∈ K such that k′ 6= k). Solution x?k only provides the perspective of

what decisions are warranted if Pk is trusted to properly formulate the prevailing uncertainty. However, x?k,

∀k ∈ K, can be used as the basis to evaluate just how close a given solution comes to simultaneously reaching

the prescribed decisions when the probabilistic information, inferred from each data source, is considered. In

particular, given a specific solution to the considered problem x ∈ A, let us define the following function:

εk(x) =
∑
s∈Sk

psφ(x?k, ξs)−
∑
s∈Sk

psφ(x, ξs). (4)

Function εk(x) defines the gap, evaluated based on the approximated probabilistic model derived using the

data source k, associated with solution x when it is compared with the optimal solution x?k (i.e., which is

obtained under the assumption that Pk is applicable). An overall gap can then be defined as follows:

ε(x) =
∑
k∈K

εk(x). (5)

To deal with the ambiguity encoded in the probability measure, we then propose to search for a solution x?

that minimizes the overall gap value:

x? ≈ arg min
x∈A

ε(x). (6)

In the present paper, we will show that, by using a novel clustering methodology to perform a systematic

analysis of the scenarios included in Sk, ∀k ∈ K, we can define an alternative approximation model of type

(3) that can be solved to obtain a high-quality solution of type (6).

3.2 Shelter Location Problem and Model

As stated in the introduction, when considering the type of problems that are faced by humanitarian orga-

nizations (such as the deployment of aid in post-disaster environments) another important imperative for
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decision makers is the need to analyze how the various data sources k ∈ K impact the decisions to be made

(i.e., x ∈ A). From a qualitative perspective, it can be valuable for them to gain insights regarding how

the various data sources influence their decisions. Such insights are often essential to justify the choices

made regarding how the aid is deployed and the available resources managed. But such analysis may also be

required for accountability purposes with respect to donors, who expect that the use of their donations be de-

termined following a careful needs assessment. In all cases, properly integrating the information provided by

the various data sources directly into the decision processes defines an important challenge in humanitarian

planning settings.

In this subsection, we consider a problem of accommodating people or families affected by a disaster, e.g.

a civil war as in our case, where it is difficult to obtain accurate information. For our case study in Section

5, we use two data sources, i.e. |K| = 2, that collect information to assess shelter needs in crisis-affected

regions based on different surveys made in the same district in close periods. Our network consists of nodes,

e.g. cities or districts, where shelter demand can arise and where facilities such as a tent or a public building

can be set up or temporarily converted to meet this demand. In the first stage, i.e., before the full extent

of the disaster and the demand have been realized, decisions on shelter locations have to be taken. Each

shelter can accommodate people within a particular coverage distance. When the actual number of people

and families in need of shelter is known, second-stage decisions on how many of them can be accommodated

are taken. The objective of our model is to meet the expected demand for sheltering where the number

and capacity of shelters are limited. The stochastic optimization model presented in the following is an

adopted and simplified version of the one proposed by Noyan et al. (2015). We present our notation and the

mathematical model below.

Sets:

I: set of demand nodes

O: set of candidate shelter nodes

Mo =
{
i ∈ I

∣∣Dio ≤ τ
}

: set of demand nodes that can be covered by shelter at node o ∈ O

Ni =
{
o ∈ O

∣∣Dio ≤ τ
}

: set of candidate shelters that can cover demand at node i ∈ I

S: set of possible scenarios

Scenario-independent parameters:

Dio: distance between demand node i ∈ I and shelter at node o ∈ O

G: maximum available shelter capacity, i.e. total number of people that can be accommodated

κ: maximum number of shelters to be opened

ho: maximum number of people that can be accommodated in shelter o ∈ O

τ : maximum coverage distance

Scenario-dependent parameters:

qsi : number of people in need of shelter at node i ∈ I in scenario s ∈ S

ps: probability of scenario s ∈ S
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θs = min
{
G,
∑
i∈I q

s
i

}
: minimum value of available shelter capacity and the total number of people in need

of shelter in scenario s ∈ S

Scenario-independent decision variables (first stage):

zo: 1 if a shelter is opened at node o ∈ O; 0 otherwise

Scenario-dependent decision variables (second stage):

rso: number of people accommodated in shelter at node o ∈ O in scenario s ∈ S

ysio: 1 if demand at node i ∈ I is covered by shelter at node o ∈ Ni in scenario s ∈ S, 0 otherwise

Formulation:

max
∑
s∈S

∑
o∈O

psr
s
o (7)

s.t.
∑
o∈O

zo ≤ κ (8)∑
o∈O

rso ≤ θs ∀s ∈ S (9)∑
o∈Ni

ysio ≤ 1 ∀i ∈ I, s ∈ S (10)

rso ≤ hozo ∀o ∈ O, s ∈ S (11)

rso ≤
∑
i∈Mo

qsi y
s
io ∀o ∈ Ni, s ∈ S (12)

ysio ≤ zo ∀i ∈ I, o ∈ Ni, s ∈ S (13)

zo ∈ {0, 1} , ∀o ∈ O (14)

ysio ∈ {0, 1} ∀i ∈ I, o ∈ Ni, s ∈ S (15)

rso ≥ 0, ∀o ∈ O, s ∈ S. (16)

The objective in (7) is to maximize the expected number of accommodated people. This has to be

achieved by meeting the following constraints. No more than κ shelters can be opened in the first stage,

imposed by constraint (8). Second-stage constraints (9) state that in each scenario s the capacity of shelter

at node o cannot exceed θs, representing the minimum between available shelter capacity G and the overall

number of people in need of shelter. People at node i can be accommodated by at most one shelter that

is located within distance τ , i.e., within a certain coverage distance, which is expressed by constraints (10).

Constraints (11) and (12) ensure that shelters cannot accommodate more people than there is capacity and

shelter demand, respectively. According to constraints (13), only those facilities can provide shelter that

are open and located within coverage distance τ . Binary variables zo, y
s
io and non-negative variables rso are

defined in (14)-(16).

4 Methodological Framework

We now detail the proposed methodological framework, which enables a large amount of information contained

in the assessments emanating from the set of data sources k ∈ K to be more efficiently integrated within

decision making. These data sources can be used to specify a probability estimate for an event or a state,
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Figure 1: General methodological process.

or simply to provide a range of values (i.e., the minimum, maximum and most probable) for an unknown

quantity such as the number of people in need, see Benini et al. (2017). In the latter case, the range of values

can be used to define probabilistic measures, for example via the use of triangular distributions, which are

easy to understand and interpret (Benini et al., 2017).

As discussed in the previous section, since the different data sources k ∈ K may lead to drastically different

assessments of the uncertain parameters, integrating the overall contextual information that is provided (i.e.,

the value vectors ξs, ∀s ∈ Sk and ∀k ∈ K) becomes quite challenging for humanitarian organizations. To

efficiently incorporate the ambiguous information provided by the set of data sources k ∈ K to find a high-

quality solution of type (6), we propose a two-phase methodological framework, as illustrated in Figure 1.

In the first phase (descriptive phase), a descriptive analysis is performed on the source-specific prob-

ability measures obtained from the set of data sources. The objective of this phase is not only to specify

the information provided by the data sources, but also to assess the impacts that this information has on

the considered planning problem. Upon completing this phase, knowledge is obtained on both the unknown

contextual information of the problem and on the level of overall decision agreement that may exist between

the models generated from the data sources with regards to how their information affects the problem.

The second phase of our framework is dedicated to the use of the obtained knowledge to prescribe an

appropriate solution to the problem (prescriptive phase). Through the use of novel decision analysis

techniques and mathematical programming methods, the information extracted from the data sources is effi-

ciently interpreted and aggregated to provide decision support. Specifically, we will show how an alternative

approximation model of type (3) can be defined to obtain a consensus solution x? as defined by (6).

In the rest of the section, we describe the two phases included in the framework. The descriptive phase

is explained in Section 4.1, while the prescriptive phase is presented in Section 4.2.

4.1 Descriptive Phase

As indicated in Figure 1, the descriptive phase consists of performing the following four distinct steps: scenario

generation, the computation of the opportunity cost distance, cluster generation and ambiguity analysis.

Step I: Scenario generation. Obtaining information from each data source is subject to two types

of error (Hoffman, Hammonds, 1994). On the one hand, there is the uncertainty encoded in the data

source which we call intrinsic uncertainty. It is this type of uncertainty that motivates giving a range,

rather than a point estimate. On the other hand, there is uncertainty not encoded in the data source, or

extrinsic uncertainty. For example, any data source expressed through an expert assessment is likely subject

to overestimation of the precision regarding the expert’s predictions (Hammitt, Shlyakhter, 2006). Also,

unlikely outcomes may not have occurred (or be explicitly considered) in the data set, which leads to their

probability being underestimated (Abdellaoui et al., 2011). In the extreme case, the range of values for an
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uncertain parameter obtained from different data sources may not even overlap: all values that lie in the

possible range extracted from one data source may be considered impossible by the other.

In order to hedge the risk posed by this extrinsic uncertainty, we formulate a larger prediction uncertainty

than that given by any individual data source (see Section 5.2 for more details). Let us recall that we denote

by Pk the source-specific probability distribution associated to data source k ∈ K. That is, Pk encodes the

assessment of uncertainty represented by the data source k. In our case study, we consider two data sources,

which provide needs assessment results based on different surveys made in the same district in close periods.

Recall further that x denotes the decision vector – in our case the allocation of shelter nodes – and that ξ

denotes the vector of uncertain parameters, i.e., the shelter needs.

From these probability distributions, we then sample discrete values for the uncertain parameters and

include them into scenarios: each scenario being associated with one set of values that the uncertain parameter

vector takes. See King, Wallace (2012) for more details on sampling methods that can be applied in this

context. In the following, we will denote the discretization of the probability measure Pk by Sk (the scenario

set). For each scenario s ∈ Sk we denote by ξs the corresponding realization of the uncertain parameter ξ.

Denoting by Nk the number of scenarios contained in Sk we can write

Sk =
{
sk1 , . . . , s

k
Nk

}
and Ξk =

{
ξsk1 , . . . , ξskNk

}
.

The sets containing all scenarios and their associated realizations of the uncertain parameters are denoted by

S =
⋃
k∈K

Sk and Ξ =
⋃
k∈K

Ξk.

We assume throughout that the scenario sets generated from each data source are disjoint. Therefore,

|S| =
∑
k∈K

∣∣Sk∣∣ =
∑
k∈K

Nk.

Step II: Opportunity cost distance. The second step of the descriptive phase defines the basis over

which the scenarios included in the sets Sk, ∀k ∈ K, will be compared and analyzed. Specifically, the idea

is to interpret the information contained in ξs, ∀s ∈ S, in terms of the decisions to be made regarding the

specific decision making problem that is considered. Therefore, for each data source k ∈ K, the following

solutions are obtained:

x(ski ) = arg max
x∈A

φ(x, ξski ), i = 1, . . . , Nk. (17)

These solutions can be understood as follows: if one is somehow able to predict that scenario ski will occur

(i.e., the data source k has thus provided the correct assessment) then the solution which should be chosen

and implemented is x(ski ), which is obtained by solving the problem (17) using the predicted scenario ski .

Each data source k ∈ K is thus associated with the following solution set:

Xk =
{
x(sk1), . . . , x(skNk

)
}
.

The overall set of all such solutions is thus denoted as:

X =
⋃
k∈K

Xk.
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Therefore, for s ∈ S, we define x(s) ∈ X as the representative solution that is associated with the considered

scenario.

We now apply a notion of distance between scenarios, called opportunity cost distance that was first

introduced in Hewitt et al. (2021). For any pair of scenarios s1 ∈ S and s2 ∈ S, we evaluate the cost of

predicting scenario s1 and taking the associated decision, when in fact scenario s2 occurs. Thus, these two

scenarios are close with respect to this distance if the decisions associated to them are mutually acceptable

(i.e., solutions x(s1) and x(s2) are good surrogates for one another). Mathematically, the opportunity cost

distance is given by

d (s1, s2) = φ(x (s1) , ξs2)− φ (x (s2) , ξs2) + φ(x (s2) , ξs1)− φ (x (s1) , ξs1) . (18)

An opportunity cost distance matrix is then obtained by calculating the distance values using equation (18)

for all scenario pairs in the overall set (i.e., compute d (s1, s2), ∀s1, s2 ∈ S).

Step III: Cluster generation. Equipped with the opportunity cost distance function, and having

computed the associated distance matrix, we now look for groups of scenarios that are very close to each

other, but relatively far away from the other groups. This step reduces to solving a clustering problem over

the scenario set S, for which various unsupervised machine learning methods can be applied, e.g., Shi, Malik

(2000) and Luxburg von (2007). In the present case, we choose the normalized N-Cut algorithm (Shi, Malik,

2000; Hewitt et al., 2021), which seeks to minimize the diameter of each cluster in relation to the distance

between clusters. In this way, we obtain a partition C1, . . . , CM of the scenario set S such that elements of

the same cluster Cj are relatively close with respect to the opportunity cost distance (18), whereas members

of two different clusters Ci and Cj for i 6= j are relatively far away from each other. The number of clusters

M can be chosen by the user depending on the context by considering the trade-off between a higher quality

of the clustering (more clusters) and lower computational complexity (fewer clusters). In some contexts, M

may be set in advance.

In our case, we will choose M so as to maximize a particular notion of clustering quality called the

Silhouette score. This score is a measure of how close each scenario is to other members of its own cluster,

compared to its distance to other clusters (Rousseeuw, 1987).

Step IV: Ambiguity analysis. The descriptive phase ends with a step that is dedicated to the analysis

of the obtained clusters with a focus on diagnosing the level of decision agreement among the scenarios

included in S and data sources K. Therefore, we begin this step by identifying how (if at all) the data

sources agree with each other in terms of the most appropriate decisions to be made, by analyzing the

clusters generated above. For any subset U ⊆ S we can define the decision level of agreement : ∆(U) ∈ [0, 1],

by

∆(U) =
4

|U |2
∑

s1,s2∈U
∆ (x (s1) , x (s2)) , (19)

where ∆(x1, x2) denotes the normalized Hamming distance between two permissible solutions x1, x2 ∈ A,

which is defined as follows:

∆(x1, x2) =
1

L

L∑
l=1

1x1(l) 6=x2(l),

where L is the common length of x1 and x2, that is x1, x2 ∈ RL.
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In this way, we can calculate the decision level of agreement within the clusters, i.e., ∆(Cj) for j =

1, . . . ,M . In addition, by computing ∆(Sk), we can also measure the variance of the information obtained

from one data source k ∈ K, i.e., to what extent the different scenarios generated from k lead to the same

solutions (or decisions).

For a concrete example, suppose that there are five potential shelter locations enumerated 1,...,5 and that

there are two potential solutions x1 and x2. If solution x1 proposes to open shelters at locations 1, 2 and 3,

and solution x2 proposes to open shelters at locations 2, 3 and 4, there is agreement on opening shelters in

locations 2 and 3, and not to open a shelter in location 5. In other words, the two solutions disagree on the

opening of a shelter in two locations (1 and 4), so that ∆(x1, x2) = 2
5 = 0.4. The metric ∆ provides a value

between 0 and 1 that allows decision-makers to quickly compare agreement between solutions x1 and x2: in

the extremes, ∆(x1, x2) = 0 means that the two solutions are identical whereas ∆(x1, x2) = 1 implies that

the two solutions disagree about whether to open a shelter or not at every single location.

Another important dimension to consider in this analysis is the distribution of scenarios’ origin within a

cluster. We will be interested in distinguishing between clusters where all scenarios were generated by a single

data source and clusters with a mix of scenarios from different data sources. In other words, we analyze the

distribution of data sources in a cluster. By explicitly considering this information, the decision-maker is able

to directly analyze the levels of ambiguity related to the overall assessments provided by the different data

sources (i.e., the context information contained in Ξ). Therefore, the more data sources are present in a given

cluster, the less ambiguity is involved between them regarding the scenarios contained within the cluster. In

other words, even though the scenarios may originate from different data sources and may specify different

values for the uncertain parameters, they all lead to make decisions (i.e., find solutions to the problem) that

are similar (i.e., solutions that are good surrogates for one another). This analysis thus provides value for an

ambiguity-averse decision-maker. Next, we show how a measure can be defined to quantify such observations.

More precisely, for a cluster Cj and a data source k ∈ K, let πk(Cj) be the proportion of scenarios in Cj

generated from the data source k:

πk(Cj) =

∣∣Cj ∩ Sk∣∣
|Cj |

. (20)

We say that a data source k ∈ K is present in a cluster Cj if πk(Cj) > 0. We then define the diversity of

data sources within a cluster via the entropy

H(Cj) = −
∑
k∈K

πk(Cj) log(πk(Cj)), (21)

with the usual convention that 0 log(0) = 0.

The value of H(Cj) lies between 0 and log(|K|) (recall that |K| is the number of data sources). A value

close to 0 indicates a low diversity of data sources. The extreme case of H(Cj) = 0 means that all scenarios

in Cj were generated by a single data source. While a large value of H(Cj) indicates a high diversity of data

sources. The highest possible value of H(Cj), namely log(|K|), means that every data source is present in

the cluster with the same proportion.

To illustrate this, consider the case where |K| = 2, i.e., there are two data sources, say source #1 and

source #2. Suppose that cluster C1 contains only scenarios generated by data source #2. Then the diversity

of sources is H(C1) = 0. If cluster C2 contains 10 scenarios from source #1 and 30 scenarios from source #2
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then the diversity of sources is

H(C2) = −
[

1

4
log

(
1

4

)
+

3

4
log

(
3

4

)]
≈ 0.56.

Finally, suppose that cluster C3 contains 20 scenarios each from the two sources. As shown above, H(C3)

then takes the maximal value of log(2) ≈ 0.69. This is illustrated in Figure 2.

(a) (b)

Figure 2: (a) Entropy for two data sources. The x-axis represents the proportion π1 of scenarios

from data source #1, while the y-axis shows the corresponding entropy H. The three values for

π1 (0, 1
4 and 1

2) are marked in red. (b) Illustration of the example from the text: H(C1) = 0,

H(C2) ≈ 0.56 and H(C3) = 0.69.

In the following, we show how this measure can be directly leveraged to find a consensus solution for the

problem that is considered.

4.2 Prescriptive Phase

As indicated in Figure 1, the prescriptive phase consists of performing the integration through optimization

to achieve a consensus decision.

Step V: Integration through optimization. In order to integrate the different estimates coming

from various sources, we introduce two choices, namely a subset S of the scenario set and weights ws for each

scenario s ∈ S, based on the metrics defined above. As a way of formalizing the problem expressed in (6),

we define a consensus solution as follows

x? = arg max
x∈A

∑
s∈S

wsφ(x, ξs). (22)

This raises questions when formulating problem (22): which scenarios should be included in S and how

should the weights ws be defined?

Regarding the choice of S, we could include all scenarios: S = S. Then the consensus solution is obtained

by explicitly considering all information stemming from the data sources. This would minimize the risk of not

taking into account some of the information contained in the data sources. However, the size of the overall

scenario set S might be very large, and considering the complexity involved in computing the value function

φ, solving problem (22) with the full set of scenarios might not be computationally efficient. In this case, a

representative scenario can be identified for the cluster and used as a proxy for the cluster in the definition of
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(22). As proposed in Hewitt et al. (2021), the medoid of the cluster (i.e., the scenario that has the minimum

average dissimilarity to all other scenarios of the cluster) can serve as the representative. Applying such a

reduction, i.e., choosing S ⊂ S, naturally leads to an approximation error with respect to using the full set

S when searching for a consensus solution (22). That being said, as numerically illustrated in Hewitt et al.

(2021), the use of the medoids as representatives of the clusters can still be used to produce a high-quality

upper bound that can be more efficiently computed.

We define the weight ws associated with a given scenario s ∈ S in two parts: 1) through the diversity

of data sources within the cluster to which s belongs, and 2) according to the stochasticity of the data

source from which s was generated. If a scenario reduction approach is applied to obtain S, then the weights

associated with the scenarios in a given cluster are assigned to its respective representative.

In the first part, we place more weights on scenarios in clusters that contain more data sources. This is

done as a means to prioritize the context information emanating from a cluster where there is less ambiguity

related to the data sources that are present within it. When the data sources provide a differing view on the

underlying uncertainty, this can lead to a skewed representation of the information sources in clusters. Recall

that in our setting we cannot judge the reliability of each source and each source is assigned the same level

of confidence. Thus, a source whose information leads to a higher level of uncertainty in our model will be

represented in a larger number of different clusters. In turn, this knowledge allows us to better hedge against

the risks of inaccurate predictions. This motivates the second part, where we place more weight on scenarios

generated by data sources that appear in more clusters.

Diversity weight. The first weight w
(1)
j is the same for each scenario in a given cluster Cj , i.e., the

weight only depends on the cluster index j ∈ {1, ...,M} and defined as follows (recalling the definition of H

from (21)):

w
(1)
j = λK +H (Cj) , where λK =

log (|K|)
4

. (23)

Stochasticity weight. As explained above, we also place more weight on scenarios generated from data

sources that appear in more clusters. The second weight is the same for each scenario that was generated

from the same source. We therefore denote the second weight by w
(2)
k for k ∈ K (recall that K is the set of

data sources).

Suppose that two scenarios s1 and s2 were chosen uniformly from Sk, the set of scenarios generated by

source k. The weight w
(2)
k is an affine function of the probability that s1 and s2 belong to different clusters.

In other words, the weight is higher if the source k is more evenly represented across the clusters. More

formally, let ι : S −→ {1, ..,M} denote the function that maps each scenario s to the index ι(s) of the cluster

to which it belongs, i.e., so that s ∈ Cι(s). Then

w
(2)
k =

1

4
+

1

|Sk|2
M∑
j=1

∣∣Cj ∩ Sk∣∣ ∣∣Sk \ Cj∣∣ . (24)

The addition of 1
4 in the formula is important in the case where all scenarios generated by a data source lie

in the same cluster.

Defining the overall weight. Having defined the two weights w
(1)
j and w

(2)
k , we now define an overall

weight on each scenario by multiplying them together. Recall that w
(1)
j only depends on s through the cluster
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j that s belongs to and w
(2)
k only on the data source k scenario s was generated from. However, this is not

quite satisfactory yet, since we would like the weights to be equal to 1 on average.

Formally, we define the overall weight ws for s ∈ S as:

ws =
w

(1)
ι(s)w

(2)
γ(s)

W
, where W =

1

|S|
∑
s∈S

w
(1)
ι(s)w

(2)
γ(s) (25)

and γ(s) ∈ K denotes the data source from which scenario s was generated, that is s ∈ Sγ(s). The definition

of the normalization constant W ensures that the average of the weights is equal to 1:

1

|S|
∑
s∈S

ws = 1.

An illustrative example can be found in Appendix A.

5 Numerical Study

In this section, we present a numerical study developed based on data from the Syrian conflict to illustrate

the implementation of the proposed methodology and assess its value for decision-makers. We focus on the

integration of the needs assessment data with decision making for locating shelters to serve the people in need.

We first give background information on the available needs assessment data provided by different sources

(Section 5.1). We then explain the implementation of the proposed methodology to this setting (Section 5.2)

and conclude with the corresponding results and analyses performed (Section 5.3).

5.1 Case Data Set

Syria has been at civil war since 2011, which has led to millions of casualties and displaced people (UN Refugee

Agency, 2021). In the light of the hazardous circumstances in Syria, gathering accurate information on the

humanitarian situation is extremely challenging. Various humanitarian initiatives conduct needs assessments

in the affected regions to gather information on the community necessities. The collected information is

processed (i.e., cleaned, combined, cross-checked with secondary sources) and the sector-specific needs (e.g.,

shelter, nutrition) in each district are published publicly.

We focus on two major assessment data sets, which are made publicly available by two humanitarian

initiatives, namely the Humanitarian Needs Overview (HNO) and REACH. HNO (2019) provides estimates

on the number of people in need for different types of relief in each district of Syria. We consider the

nation-wide needs assessment of HNO conducted for 6,322 communities in Syria between July and August

2018. Specifically, 95,000 surveys at the household level were carried out. REACH (2018) also conducts need

assessments in Syria on a regular basis since 2012. The assessments are based on community-level interviews

by key informants, which are selected based on their knowledge of resident populations and IDPs in the

community and sector-specific expertise. Specifically, three to seven key informants at each location are

interviewed. In needs assessment reports, REACH provides the estimated total number of people residing in

a district and the percentage of people requiring different types of supplies, e.g., water, medical items, food

and shelters. We consider the assessment data set of REACH based on the interviews conducted between 12

and 20 August 2018. In the following, we refer to HNO as source #1 and REACH as source #2 who provides

estimates on the humanitarian needs.
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In both data sets, we focus on the assessments of Idleb district, which is located in northwestern part of

the country bordering Turkey. Idleb is one of the most tormented parts of Syria due to frequent skirmishes

between the Syrian government and the opposition forces. Due to the recurring bombardment and air strikes,

about 1.7 million people have fled the area seeking security in neighboring countries like Turkey. Those who

stay require essential supplies like water, food and medical care. Idleb district consists of 26 sub-districts,

which are represented by nodes placed in the center of each sub-district.

To illustrate our approach, we chose one item type for simplification. Specifically, we focus on people in

need of shelter in Idleb. While source #1 provides estimated number of people requiring shelter in detail,

source #2 provides an aggregate estimate, which specifies that about 56% of local people are in need of

shelter (REACH, 2018). Therefore, we multiplied the reported total population in need by 0.56 to obtain

an estimation for shelter needs. As a result, we obtain two assessment values for shelter needs in each

sub-district, which can be utilized to represent demand qi for shelter at each sub-district of Idleb.

For this case study we assume that a shelter can be opened at every of the 26 nodes in Idleb. Google

Maps was used to obtain distances Dio between the nodes, i.e., between the centers of the sub-districts. For

illustration, we hypothetically set that no more than κ = 10 shelters can be opened, each with a capacity

of ho = 100, 000 people, hence, the maximum available shelter capacity is G = 1, 000, 000. Finally, the

maximum coverage distance τ is set at 50 kilometers.

5.2 Implementation of the Methodology

In this section, we explain the steps of our methodology implemented to solve the proposed shelter location

problem in the Syrian conflict setting.

Step I: Scenario generation As mentioned in Section 4, using easy to define and interpret triangular

probability distributions, consisting of a minimum value min, maximum value max and the most probable

value mode, can be practical in humanitarian settings to represent uncertainty (Benini et al., 2017). Here,

we treat the shelter needs reported in the needs assessment data sets of source #1 (HNO, 2019) and source

#2 (REACH, 2018) as the mode values, respectively. To capture the uncertainty inherent in the data,

we generated the min and max values of the triangular distributions as follows: we chose to set min =

mode ∗ (1− a) and max = mode ∗ (1 + a). Thus, the value a ∈ [0, 1] corresponds to the confidence associated

to the prediction: in the extreme case a = 0 there is no uncertainty associated to the prediction, whereas

a large value of a implies a low confidence in the prediction, corresponding to high levels of uncertainty.

Since the level of uncertainty varies from source to source, but also from sub-district to sub-district, we have

chosen to generate the uncertainty parameter a randomly for each source and sub-district prediction. The

probability distribution of the uncertainty parameter is given in Table 1.

Table 1: Probability distribution for the uncertainty parameter a

values for a

0.1 0.2 0.3 0.4 0.5 0.6

probability 0.15 0.4 0.15 0.1 0.1 0.1
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The sampled uncertainty parameter is represented by the variation of the population in the given sub-

district (the intrinsic uncertainty), yielding a range in which the true population should lie based on the

corresponding source. We have observed several sub-districts where the ranges thus obtained are disjoint,

i.e., no value extracted from source # 1 is contained in the range of source #2 and vice versa. This illustrates

the potential existence of a second source of extrinsic uncertainty : the precision of the estimate may be

overestimated.

In order to model such extrinsic uncertainty, we have further widened the ranges by requiring that the

ranges are at least touching each other, i.e., if the smallest possible value according to one source is larger

than the largest possible value to the other, we increase a until this is no longer the case.

Figure 3 illustrates this approach for the sub-district Bennsh as an example. According to the prediction

of source #1, the maximal possible value for this sub-district was about 9,500, whereas the minimal possible

value according to source #2 was over 17,000. Therefore, there is a significant source of extrinsic uncertainty,

due to the fact that one of the predictions must be off by more than what would be the maximum possible.

The original distributions are shown by dashed lines in Figure 3. The distribution obtained after making the

adjustment are shown by solid lines.

Figure 3: Illustration of the distinction between intrinsic and extrinsic uncertainty, using the Bennsh

sub-district. Dashed lines represent distributions pre-adjustment, solid lines the final distributions

Once the value for a has been chosen, 500 scenarios for each source have been generated from the resulting

triangular distributions, i.e., we obtain a total of |S| = 1, 000 scenarios. Each scenario s can occur with the

same probability, i.e., ps = 0.001.

Step II: Opportunity cost distance In the second step of our methodological process, the opportunity

cost distances d(·, ·) had to be determined. For this purpose, our two-stage stochastic model (7)-(16) was

solved for each scenario separately and differences between the corresponding objective values were calculated

via (18). In the case where a single scenario is considered, (7)-(16) becomes a deterministic model.

Step III: Cluster generation Using the opportunity cost distance d(·, ·) from the previous step, we now

have a graph on the set of 1,000 scenarios, where the length of the edge between any two vertices s1 and s2 is

given by the opportunity cost d(s1, s2). This leads us to the graph clustering problem of identifying clusters

of vertices such that the edge between any two scenarios from the same scenario is short. Based on the

opportunity cost distances in (18), we have grouped the scenario set using the normalised N-Cut algorithm,

as mentioned in the third step of our methodology in Section 4.1. In this algorithm, the number of clusters M
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is an input parameter that can be chosen. Specifically, we have clustered the graph into 2, 3, ..., 39 clusters

and haven chosen the optimal clustering according to the Silhouette score. While this upper bound of 39

may seem to be arbitrary, we have found that as the number of clusters grows above 10, the quality of the

clustering decreases rapidly. Therefore, the upper bound does not turn out to be very important.

Step IV: Ambiguity analysis In the last step of the descriptive phase, we analyze the consensus level

between sources by determining the decisional level of agreement (19) and the diversity of sources in a cluster

(21) based on the previously generated clusters. The corresponding results are shown in Section 5.3.

Step V: Integration through optimization (prescriptive phase) Following the application of

the descriptive phase, the integration step involves identifying the consensus decisions, which are obtained

through optimization (22). The determination of the corresponding weights ws are explained in the following.

Let us define z = (zo : o ∈ O) as a binary vector that includes the shelter opening decisions. We further

define Z = {z |
∑
o∈O

zo ≤ k, zo ∈ {0, 1} ,∀o ∈ O} as the set of first-stage constraints. Considering a solution

z ∈ Z, we also express the second-stage cost function φ(z, qs, θs) = max
∑
o∈O psr

s
o for a specific scenario

s ∈ S, such that constraints (9)-(13) and (15)-(16) hold. For a given set S ⊆ S and the weight values ws,

s ∈ S, the integration optimization model in (22) is defined for our case as follows:

max
∑
s∈S

wsφ(z, qs, θs) (26)

s.t. z ∈ Z. (27)

Therefore, the consensus decisions, which we denote as z? (i.e., the optimal solution for model (26)-(27)), are

directly dependent on the choices made regarding the set S and how the weights ws, s ∈ S, are fixed.

Regarding our specific application, we present four strategies to fix the set S and the weights ws, s ∈ S,

in solving model (26)-(27):

1. Expected value approach: The expectation is applied over the information based on both sources as the

means to integrate. When applied in our case problem, this entails that we define the expected scenario

s for which the associated parameters are defined as follows: qs = (qi : i ∈ I), where qi =
∑
s∈S

psq
s
i ,

∀i ∈ I and θs =
∑
s∈S

psθ
s. Thus, to obtain the consensus decisions in this case, we fix S = {s} and we

set the value ws = 1. Model (26)-(27) is then solved, and we let z define the optimal solution obtained.

2. Stochastic optimization: This is the traditional stochastic programming approach, which approximates

the stochastic phenomena that is present in the considered problem by generating a set of representative

scenarios. In this case, we thus define S = S and we set ws =
1

| S |
, ∀s ∈ S, to account for the fact that

the confidence level for all sources is identical (i.e., we thus assume that all scenarios are equiprobable).

Model (26)-(27) is then solved and we let z̃ define the optimal solution obtained.

3. Scenario clustering : The clusters generated in step III of our methodology are used to perform the

ambiguity analysis to assess the level of consistency between the sources regarding the information

they are providing. In the present case, we set S = S and determine the weights ws, s ∈ S using

equation (25). Model (26)-(27) is then solved and we let ẑ define the optimal solution obtained.

4. Source specific integration: This approach relies solely on the information provided by the first and sec-

ond source, respectively. Therefore, we define S = S1 (S = S2) and we set ws =
1

| S1 |

(
ws =

1

| S2 |

)
,
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∀s ∈ S. The model (26)-(27) is then solved to obtain the optimal solution z?1 and z?2 , respectively. In

this case, solution z?1 (z?2) can be interpreted as the best possible solution if source #1 (#2) is used in

the assessment of the needs.

For the case with two data sources, (4) and (5) can be written as:

ε1(z) =
∑
s∈S1

1

| S1 |
φ(z?1 , q

s, θs)−
∑
s∈S1

1

| S1 |
φ(z, qs, θs), (28)

ε2(z) =
∑
s∈S2

1

| S2 |
φ(z?2 , q

s, θs)−
∑
s∈S2

1

| S2 |
φ(z, qs, θs), (29)

ε(z) = ε1(z) + ε2(z). (30)

In the following, we use our methodological framework to analyze the ambiguity of both data sources

and to evaluate the proposed clustering approach.

5.3 Results and Analysis

In this section, we apply the steps of our methodology and present results for our case instance that focuses

on making shelter location decisions based on multiple needs assessments. Given the scenarios generated in

step I of our methodology, step II consists in solving model (7)-(16) for each scenario s ∈ S to obtain shelter

solutions zo according to (17). We have found that some of the shelters are ‘uncontroversial,’ in the sense

that they are opened either in almost all scenarios or in none of them. Table 2 shows which shelter locations

are chosen in more than 90% and fewer than 10% of scenarios overall. For instance, node 2 is chosen for

opening a shelter in more than 90% of the scenarios, i.e., independent of the data source. In contrast, shelter

locations 10, 12, 13, 16, 17, 18, 20, are almost never part of the solution. For the remaining 18 locations,

such generalization for opening or not, cannot be made.

Table 2: Location decisions to open shelters

Decision Shelter

Almost always open (> 90%) 2

Almost never open (< 10%) 10, 12, 13, 16, 17, 18, 20

‘Controversial’ shelters 1, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 19, 21, 22, 23, 24, 25, 26

The reason for the ‘controversial’ cases can be found in the distribution of overall demand according to

the two sources. In some cases, these predictions are quite far apart. Consider for example the distribution

of the overall demand prediction for Abul Thohur, illustrated in Figure 4a. Here, the ranges of estimated

values based on the two sources barely overlap. In other words, there is high ambiguity between the two

data sources with respect to the prediction of shelter demand, as the sources do not even agree on the range

of feasible values.

At the other extreme, there are districts where there is very low ambiguity since the predictions of the two

sources almost completely coincide. Consider for example Figure 4b, where the overall demand prediction

for Harim is shown.
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(a) (b)

Figure 4: Overall demand prediction for Abul Thohur (a) and Harim (b), according to sources #1

and #2

The question arises as to where shelter locations should be opened when demand assessments differ greatly

in some cases, e.g. as in Abul Thohur, and most shelter locations are ‘controversial’ (Table 2). To answer

this question, the ambiguity of both data sources has to be analyzed and integrated in the decision-making

process.

By implementing step III of the proposed methodology and based on the Silhouette score, the optimal

number of clusters is M = 7. These clusters are used in the following to perform the ambiguity analysis, as

described in step IV of our methodology. As illustrated by Figure 5, the scenarios generated from source #1

split over 5 clusters and the last two clusters consist exclusively of the source #2 scenarios. Two observations

can be made. First, source #1 predicts a much higher level of uncertainty than source #2 as it is present

in more clusters. Second, the clusters are very homogeneous with respect to the data source from which the

scenarios were generated: in all clusters only one data source is present, i.e., there is no diversity of data

sources within the clusters and therefore no entropy. This means that in terms of the shelter solution there

is a high degree of disagreement between the two data sources.

Figure 5: Distribution of scenarios across the clusters

Within each of the seven generated clusters the decision level of agreement (19) is shown in Table 3. A

graphical representation of the distribution of opened shelters across the clusters is also given in Figure 6

in the Appendix. According to the results, in clusters consisting of scenarios from source #1, i.e., C1 - C5,

there is a relatively greater consensus regarding shelter locations than in those from source #2, i.e., C6 and

C7, resulting in a higher credibility of source 1#. Such analyses allow the decision-maker to understand the
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level of ambiguity in the information coming from different sources and its impact on shelter locations. Such

insights cannot be gained when traditional stochastic optimization approaches are utilized.

Table 3: Decision level of agreement by cluster Cj

∆(C1) ∆(C2) ∆(C3) ∆(C4) ∆(C5) ∆(C6) ∆(C7)

0.3371 0.3505 0.3654 0.3608 0.3209 0.5465 0.5694

Next, we implement step V of our methodology by identifying consensus decisions z? for different ap-

proaches, i.e., expected value, stochastic optimization, scenario clustering as well as the source specific inte-

gration described in the last step in Section 5.2. The corresponding shelter solutions are shown in Table 4.

Although source #1 and #2 estimate shelter needs for some districts differently, e.g. as in the case of Abul

Thohur, shelter solutions z?1 and z?2 for data source #1 and #2, respectively, have many overlaps. According

to Table 4, both solutions coincide for 8 out of 10 possible shelter locations, namely at nodes 2, 3, 21, 22,

23, 24, 25, and 26. In contrast to Table 2, where shelter locations are chosen in a deterministic setting, i.e.,

for a particular scenario, shelter solutions of source #1 and #2 are similar when uncertainty is taken into

account.

Notably, shelter locations chosen by the expected value approach have six overlaps with source #1 and

#2, whereas the stochastic solution has only two overlaps. In contrast to the expected value, the stochastic

approach does not try to find the best solution for a specific scenario, but across all scenarios. However, both

approaches neglect the ambiguity inherent in the data sources. To account for the underlying ambiguity, the

shelter solution for the clustering approach has been computed with weights ws in (25) based on M = 7. Due

to the lack of data source diversity, i.e., H(Cj) = 0 for j ∈M , the first weight in (23) is w
(1)
j = 0.1733 for each

cluster. According to (24), the second weight is w
(2)
#1 = 1.0285 and w

(2)
#2 = 0.387 for data source #1 and #2,

respectively, leading to the final weight ws = 0.1782 for scenarios generated by source #1 and ws = 0.0671

by source #2. Therefore, scenarios coming from the risk-averse source #1 are weighted more than those from

source #2, as it is present in more clusters showing its rather “stochastic” attitude. In other words, source

#1 predicts a higher level of uncertainty, which can be considered more realistic and is therefore weighted

more. Such integrated analysis, i.e., taking into account the impact on the decision problem at hand, reveals

which source should be given more weight. As a result, the corresponding shelter solution ẑ in Table 4

indicates an overlap more with shelter locations based on source #1 than with #2. Overall, our clustering

approach leads to more shelter overlaps with both data sources #1 and #2 than the expected value and

the stochastic approach, see z and z̃, respectively. The remaining shelter locations, i.e. 6, 17 and 18, were

chosen by the clustering approach to hedge against ambiguity and risk. These results show that the proposed

methodology can provide an effective means of guiding the decision-maker to reach a consensus decision based

on conflicting information from multiple reliable information sources such as experts, and hence addresses an

important need in practice as highlighted by humanitarian practitioners (e.g., Benini et al. (2017)).

5.4 Out-of-Sample Tests

Now, we evaluate the objective value obtained by the proposed clustering method compared with respect to

the expected value and stochastic approaches. For this purpose, out-of-samples tests were carried out, where
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Table 4: Shelter locations for different approaches

Shelter Location Node Source #1 z?1 Source #2 z?2 Expected Value z Stochastic z̃ Clustering ẑ

Abul Thohur 1 x

Bennsh 2 x x x

Idleb 3 x x x x

Maaret Tamsrin 4 x x

Saraqab 5 x x

Sarmin 6 x x x

Teftnaz 7 x x x

Heish 8 x

Kafr Nobol 9 x

Khan Shaykun 10

Ma’arrat An Nu’man 11 x x x

Sanjar 12

Tamanaah 13 x x x

Armanaz 14 x

Dana 15 x

Harim 16 x

Kafr Takharim 17 x x

Qourqeena 18 x

Salqin 19

Badama 20

Darkosh 21 x x x x

Janudiyeh 22 x x

Jisr-Ash-Shugur 23 x x

Ariha 24 x x x

Ehsem 25 x x x

Mhambal 26 x x x x

5,000 scenarios were generated for source #1 and #2 each based on the same principles as before and shelter

locations from Table 4 were used as an input.

Table 5 shows the gaps (28)-(30) between the objective values of the out-of-sample tests for the expected

value, stochastic and clustering approaches and the objective values for source #1 and #2, respectively.

For instance, the expected value approach leads to a solution where 1,075 fewer people or families can be

accommodated than in the solution based on source #2, i.e. ε2(z) = 1, 075. Although the shelter solution

of the expected value approach has many overlaps with both data sources, see Table 4, it performs worst in

terms of the objective value. The number of overlaps alone is no guarantee for a good objective value, as

the stochastic shelter solution hardly overlaps with both data sources, but still leads to lower objective gaps.

In contrast, our scenario clustering approach provides the lowest gap results, meaning that solution ẑ best

integrates the information coming from source #1 and #2 while hedging against ambiguity and uncertainty.

In particular, it provides the same objective value as source #1 and at the same time can accommodate more

people than the other two approaches in the case of source #2. This clustering method can thus support

the humanitarian decision-maker to incorporate divergent information of different data sources in a way that

higher demand satisfaction can be achieved.
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It should be recalled that these numerical experiments only involve the Idleb region and the specific

planning of the aid that is provided to service the needs for shelter for the IDP. The proposed clustering

method could bring more benefits if applied to multiple affected districts in Syria by considering a broader

set of needs for the IDP such as different relief items (e.g., food, hygiene sets, etc.). In this case, it can be

expected that further gains will be obtained for both the overall efficiency of the aid that is provided and

the hedge that is obtained against the risks stemming from both the ambiguity and the uncertainty in the

planning setting.

Table 5: Gaps of objective values for different approaches

Gaps Source #1 Source #2 Total

ε1(z) ε2(z) ε(z)

Expected Value 84 1075 1159

Stochastic 6 535 541

Clustering 0 402 402

Finally, the out-of-sample tests highlight the overall value of the clustering approach. The assessments

of shelter needs provided by source #1 and #2 disagree strongly for some locations. On the one hand,

one cannot agree with both sources at the same time. On the other hand, we do not know which of the

predictions is closer to the true values. Our clustering approach allows to obtain the smallest gaps while

at the same time, integrating the ambiguous information coming from both sources, i.e., the characteristics

of the solution provided by our approach are closer to the solutions provided by each source. In this way,

a higher level of efficiency is achieved both in terms of the gaps obtained and the solutions that are found.

Therefore, a more effective approach is provided that can deal with the ambiguity and the uncertainty that

is faced by humanitarian decision-makers.

6 Conclusion

The inherent uncertainty in disaster situations complicates the humanitarian decision-making process. Crit-

ical disaster response decisions must be made under significant uncertainty. Furthermore, the complexity of

information flow in disaster situations bring significant challenges in making effective decisions. Specifically,

different information sources might deliver high-volume data, varying in type and nature, that humanitar-

ian organizations have to gather, analyze and aggregate to estimate the values of important parameters for

response such as the needs of the affected people. The available information and estimates from different

sources might involve inconsistent elements, which create high levels of ambiguity in decision making. This

study takes the first step to present a methodology that can support humanitarian decision-making to ana-

lyze the information provided by multiple viable data sources in a systematic and transparent way so that

ambiguous information can be transformed into actionable insights and solutions.

We illustrate the proposed approach by focusing on a conflict setting where significant uncertainty and

ambiguity may exist in important parameters for making response decisions (such as needs). Specifically,

we analyze the estimates of shelter needs in the Syrian civil war derived from two reliable data sources.
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Our analyses have revealed a high degree of ambiguity and disagreement between both data sources, as

there is a large number of ‘controversial’ shelter locations and a lack of diversity of data sources within

the resulting clusters. Our numerical results show that the proposed methodology better integrates such

ambiguous information compared to other common approaches such as the expected value method and

stochastic optimization. Specifically, the solutions produced by the new approach are closer to both data

sources while achieving greater demand satisfaction, as evidenced by the smaller gaps. Therefore, our newly

proposed methodological framework offers humanitarian decision-makers an effective and efficient way to

hedge against both ambiguity and uncertainty.

There can be a few future research directions. First, in our case study, our optimization model focuses

on a simplified post-disaster shelter location problem for illustration, and the impact of using the proposed

methodology in terms of gaps are likely to increase further when more complex models are used. For instance,

it would be interesting to evaluate how the clustering method could further improve the decision-making

processes when addressing more complex planning problems (e.g., multiple items and periods). Another

future research direction would be to explore how to include diverse data types (e.g., unstructured data

such as images, audio and video recordings) into the scenario generation step of the proposed methodology.

It is crucial to make the best use of all the information provided in today’s digitized and data-rich world.

Machine learning approaches can be investigated to enhance the proposed methodology to consider diverse

data sources, which may have different formats and reliability levels.
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A Illustrative Example

Suppose that there are two data sources: K = {1, 2}, and that 20 scenarios were generated from each source.

The scenario set S = S1 ∪ S2 was grouped into four clusters C1, ..., C4, with the distribution of scenarios

from S1 and S2 in each cluster as given in Table 6.

C1 C2 C3 C4

source #1 10 2 3 5

source #2 4 4 2 10

Table 6: Distribution of scenarios across clusters and data sources in the illustrative example

In order to calculate the first set of weights, we observe that the proportion of scenarios generated by

source #1 are 5
7 , 1

3 , 3
5 and 1

3 in clusters 1 through 4 respectively. Thus,

H (C1) = −
[

5

7
log

(
5

7

)
+

2

7
log

(
2

7

)]
≈ 0.60,

and similarly H(C2) = H(C4) ≈ 0.64 and H(C3) ≈ 0.67. Since |K| = 2 we have λ2 = 1
4 log(2) ≈ 0.173. This

yields

w
(1)
1 ≈ 0.773, w

(1)
2 ≈ 0.813, w

(1)
3 ≈ 0.843, w

(1)
4 ≈ 0.813.
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We now calculate the second set of weights according to (24), where the stochasticity weight for source

#1 is

w
(2)
1 =

1

4
+

1

|S1|2
(∣∣S1 ∩ C1

∣∣ ∣∣S1 \ C1

∣∣+
∣∣S1 ∩ C2

∣∣ ∣∣S1 \ C2

∣∣+
∣∣S1 ∩ C3

∣∣ ∣∣S1 \ C3

∣∣+
∣∣S1 ∩ C4

∣∣ ∣∣S1 \ C4

∣∣)
=

1

4
+

10 · 10 + 2 · 18 + 3 · 17 + 5 · 15

400
= 0.905,

and similarly w
(2)
2 = 0.91.

It remains to calculate the normalization constant W that ensures that the weights are 1 on average:

W =
1

|S|
∑
s∈S

w
(1)
ι(s)w

(2)
γ(s)

=
1

40

(
10w

(1)
1 w

(2)
1 + 2w

(1)
2 w

(2)
1 + 3w

(1)
3 w

(2)
1 + 5w

(1)
4 w

(2)
1

+ 4w
(1)
1 w

(2)
2 + 4w

(1)
2 w

(2)
2 + 2w

(1)
3 w

(2)
2 + 10w

(1)
4 w

(2)
2

)
≈ 0.413.

Putting everything together, we obtain the weights on each scenario according the cluster j it was grouped

into and the data source k it was generated from (see Table 7).

C1 C2 C3 C4

source #1 1.692 1.376 1.160 0.943

source #2 1.540 0.876 0.420 0.164

Table 7: The final weights in the illustrative example

In conclusion, we observe that the weights defined in (23) and (24) can lead to significant changes in the

importance given to the different scenarios. In this example, the weights given to those scenarios coming from

source #1 and having been assigned to cluster C1 are about ten times the weights given to those scenarios

coming from source #2 and assigned to cluster C4. In addition, it can also be seen that all weights associated

to the scenarios originating from source #1 are higher, when compared to the weights of the scenarios coming

from source #2. This can be explained by the fact that, as mentioned above, clusters with a higher diversity

of sources and data sources generating a higher level of stochasticity each receive a greater weight. The

implementation of this general approach in an humanitarian environment that involves integrating needs

assessment data with shelter location decisions is presented next.

B Proportion of Controversial Shelters

It is interesting to see how the discrepancy between the sources translates into the first-stage decisions zo to

be taken, i.e., which shelters are to be opened. Figure 6 shows the distribution of opened shelters across the

clusters for the ‘controversial’ shelters 1, 3-9, 11, 14, 15, 19, 21-26. In Figure 6, we only show the controversial

clusters because the corresponding figures for the others would not be very informative: one would see an

empty plot for the ‘almost never open’ shelters and a plot of bars close to 100% for the ‘almost always open’

shelter.
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Figure 6: Proportion of scenarios in which the ‘controversial’ shelters 1, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15,

19, 21, 22, 23, 24, 25, 26 (from left to right, top to bottom) were opened (blue: source #1; yellow:

source #2).
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