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Abstract. This paper considers an extension of classical distribution problems and 
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instances from the literature. For the newly introduced problem, we provide good solutions 
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improve the performance. 
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1. Introduction

City logistics faces several major challenges, among which congestion and traffic are of great con-

cern. Finding an efficient and effective way to transport goods in urban areas has become the

definition of city logistics itself (Savelsbergh and Van Woensel, 2016). This efficient and effective

distribution within cities is not only related to cost reduction, but it also aims to alleviate and

avoid congestion and, consequently, greenhouse gas emissions (GHG). After all, research on green

freight transportation highlights the effect of congestion on fuel consumption and GHG emissions

(Demir et al., 2011; Speranza, 2018; Rincon-Garcia et al., 2020).

Several decisions directly impact distribution costs and GHG emissions in a city logistics context.

Other than purely distribution decisions, the use of different depots, timing, and fleet composition

are the main decisions to optimize (Koç et al., 2016b). Research and practice show that all these

decisions are interdependent and, therefore, must be jointly optimized. Several integrated supply

chain optimization problems that combine different decisions have been proposed in the literature.

Among them and related to our work, we can mention location decisions and capacity planning

(Fu et al., 2020), time-dependent issues related to traffic, transit-time, and urban distribution in

dense areas (Rincon-Garcia et al., 2020; Tyworth and Zeng, 1998; Snoeck and Winkenbach, 2020;

Jaballah et al., 2021).

The multi-depot vehicle routing problem (MDVRP) is a direct generalization of the vehicle routing

problem (VRP) that explores routing decisions from several depots (see Montoya-Torres et al. (2015)

for a review). At the same time, the optimization of the fleet size and mix can have important

tactical and operational advantages considered in the fleet size and mix VRP (FSM-VRP) (Golden

et al., 1984; Renaud and Boctor, 2002). These two problems have also been combined in what

is known as the fleet size and mix multi-depot vehicle routing problem (FSM-MDVRP) (Salhi

and Sari, 1997; Salhi et al., 2014; Vidal et al., 2014; Mancini, 2016; Lahyani et al., 2018). These

problems are very applicable to real-world situations in which a fleet of heterogeneous vehicles is

available to perform distribution.

One of the main drawbacks of these problems is that routing decisions are optimized without

taking traffic congestion into account. Congestion evolves throughout the day and can cause some

routes to be excessively delayed, making them infeasible due to time window or maximum duration

violations. In this paper, we study the time-dependent FSM-MDVRP (TD-FSM-MDVRP) to
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account for these issues. Our main contribution lies in considering a routing costs dependent on

the time of the day, i.e., a time-dependent routing cost. We use a real traffic database to estimate

the routing costs considering the travel time.

In addition to introducing the TD-FSM-MDVRP, the contributions of this work are as follows. We

formally define and model the problem and solve it with both exact and approximate approaches.

We design a fast and efficient heuristic algorithm and post-optimization procedures based on math-

ematical programming to polish its solutions. Several instances of the problem are developed using

real traffic data from Québec City. These instances are used to show the effectiveness of the pro-

posed solution algorithms. They are generated from real data helping us gain insights on the impact

of location and routing decisions on city logistics issues. The results indicate that while vehicles of

medium capacity (and cost) are used more often, it is important to have a few smaller and larger

vehicles available, as these also help decrease costs and improve performance. The results also

indicate that to serve an urban area, it is beneficial to exploit several small depots geographically

dispersed instead of using fewer larger facilities. Moreover, our algorithms are evaluated on clas-

sical FSM-MDVRP instances, and compared with two competing algorithms from the literature,

showing their performance in achieving good solutions in reasonable execution time, including a

new best known solution.

The remainder of this paper is organized as follows. In Section 2, we provide an overview of the

studies related to our problem. In Section 3, we present the formal description of the problem

and its mathematical formulation. Our proposed matheuristic is described in Section 4. This is

followed by the results of extensive computational experiments in Section 5 where we assess the

performance of our algorithms on TD-FSM-MDVRP and the FSM-MDVRP. Finally, we draw the

conclusions of our study in Section 6.

2. Literature review

This section reviews time-dependent routing problems and the two building blocks of our problem,

namely the FSM-MDVRP and the MDVRP itself. We provide a brief review of the recent state-

of-the-art in these domains.

The MDVRP is a well-known generalization of the standard VRP, in which a more realistic situation

is considered by optimizing vehicle routes to reduce logistics costs in multi-depot networks (Li et al.,
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2018). In this problem, multiple vehicles from several depots perform deliveries to a set of customers.

Each vehicle must start from and end at the same depot, minimizing total travel costs. A few exact

methods are available in the literature, while several heuristic procedures have been proposed to

solve it. Baldacci and Mingozzi (2009) have developed an exact method for solving different classes

of VRPs, including the MDVRP. This algorithm is based on a set partitioning formulation that first

applies a procedure to generate routes, followed by three bounding procedures to reduce the number

of variables. Contardo and Martinelli (2014) propose an exact algorithm for the MDVRP under

capacity and route length constraints that uses a vehicle-flow and a set partitioning formulation.

Several classes of valid inequalities are added to strengthen both formulations, including new ones

to forbid cycles. Alternatively, Salhi and Sari (1997) have proposed a multi-level heuristic for

the MDVRP that was also tested on the problem with a heterogeneous fleet. Ho et al. (2008)

have developed a simple and a hybrid genetic algorithms. The first one generates initial solutions

randomly, while the second one incorporates the Clarke and Wright savings method, the nearest

neighbor heuristic, and the iterated swap procedure. Yu et al. (2011) also propose a parallel

improvement ant colony optimization for the MDVRP, applied when a virtual central depot is

added to the problem. Vidal et al. (2013) solve the periodic MDVRP combining a population-based

evolutionary search, a neighborhood-based metaheuristics, and an advanced population-diversity

management.

The FSM-VRP was introduced by Golden et al. (1984) and is a well-established class of routing

problems combining complex assignment and routing decisions under the objective of minimizing

fixed vehicle costs and variable routing costs. This problem differs from the heterogeneous VRP as

the fleet is considered to be unlimited (Koç et al., 2016b). Arguing that a fleet of different capacities

is usually available, Salhi and Sari (1997) incorporate heterogeneous vehicles in the multi-depot

context. They propose a multi-level composite heuristic based on integrating and modifying efficient

heuristics designed for the single depot FSM-VRP. Later, Salhi et al. (2014) proposed a mixed-

integer linear programming formulation for the problem with a new set of valid inequalities, and

a variable neighborhood search metaheuristic. Vidal et al. (2014) develop a unified algorithmic

framework tackling different classes of MDVRPs with and without mixed-fleet, and with unlimited

fleet size, using a multi-start iterated local search and a hybrid genetic algorithm. To solve a real

and new variant of the MDVRP with heterogeneous fleet, multiple periods and different levels

of incompatibility constraints, Mancini (2016) proposes an adaptive large neighborhood search
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metaheuristic. Recently, Lahyani et al. (2018) propose five different formulations for the FSM-

MDVRP along with sets of new valid inequalities for each model. The authors implement branch-

and-bound and branch-and-cut algorithms for each formulation.

The common assumption in most fleet size and mix vehicle routing studies is the constant traveling

time, whereas in reality, travel time and cost vary with respect to traffic behavior. The average

traveling time (or speed) can be defined as a function of the time of the day. Malandraki and

Daskin (1992) introduced and modeled the time-dependent VRP (TD-VRP). For a comprehensive

review of the literature, see Gendreau et al. (2015). Despite the recent interest in time-dependent

routing, studies on variants of the TD-VRP are scarce and mainly restricted to cases with time

windows (e.g., Figliozzi (2012); Taş et al. (2014); Heni et al. (2019)). In the green vehicle routing

and scheduling problem (Xiao and Konak, 2016), heterogeneous vehicles and time-varying traffic

congestion are considered. Only one paper studies the time-dependent location routing problem

(TD-LRP) (Schmidt et al., 2019), where a limited fleet of homogeneous vehicles is considered and

a single depot must be selected.

Despite the practical importance of the TD-VRP with a heterogeneous fleet of vehicles and multiple

depots for distribution companies, city officials, and policy makers, there is an evident gap regarding

these problems in the literature. This lack has inspired this paper to incorporate fleet optimization

and depot choice in a time-dependent routing context.

3. Problem description and formulation

In this section, we formally describe the TD-FSM-MDVRP and present its mathematical formula-

tion. The problem is defined on a directed graph G = (N,A), where N represents the node set and

A is the set of arcs. Let Nd be the set of depots and Nc be the set of customers. We also consider

a set of dummy nodes called terminals, denoted by Nt, to be used by each type of vehicle as they

return to the depot, such that Nd ∩Nc = ∅, Nd ∩Nt = ∅ and Nc ∩Nt = ∅.

Let K be the set of |K| types of vehicles, each with a limited capacity Qk. Each terminal is linked

to only one type of vehicle, i.e., for each depot i ∈ Nd, we define δk(i) as a unique subset of

terminals linked to vehicles of type k ∈ K, that is, δk(i) ⊆ Nt. Therefore, we have one terminal

node v ∈ δk(i) for each type of vehicle from the fleet, in each depot. This notation is used to

indicate that each vehicle has to return to the depot it belongs to. Let also Adc, Acc, Act be arc sets
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such that each arc (i, j) is given from the Cartesian products as Adc = Nd × Nc;Acc = Nc × Nc,

i 6= j, and Act = ∪k∈K ∪i∈Nd {Nc × δk(i)} such that A = Adc ∪Acc ∪Act.

The graph is time-dependent, meaning that as the traffic condition changes, the time it takes to

traverse arc (i, j) also changes. We define H as the set of time intervals, where an interval is a

period of time over which traffic pattern is constant. A deterministic travel time thij is associated

wih each arc (i, j) ∈ A during each interval h ∈ H. We consider a single period (i.e., a day) divided

into m + 1 intervals, where each time interval h ∈ H = {0, 1, .., h, ..,m} has the same length of T

seconds. Therefore, [hT , (h+ 1)T − ε] represents the time interval associated with h, where ε is a

very small positive number representing the smallest time unit, i.e., one second.

The demand and the service time associated with customer i ∈ Nc are denoted by qi and si. The

fixed cost for each vehicle of type k ∈ K is denoted by Fk. Let Wi be the capacity of depot i ∈ Nd

and C be a coefficient used to convert the travel time into its cost equivalent.

We define our formulation based on the following binary variables: xhij indicate whether arc (i, j) is

traversed by a vehicle during interval h; fdi take value one if node i ∈ N\Nd is associated with depot

d ∈ Nd. We also define the following continuous variables: ai represent the departure time from

customer i ∈ Nc; bij represent the departure time from depot i ∈ Nd (in this case j is a customer)

or the arrival time at terminal j ∈ Nt (in this case, i is a customer); ui represent a bound on

the accumulated deliveries to all customers already visited before departing from customer i ∈ Nc.

The minimum value for these variables is the accumulated delivery, and the maximum value is

the capacity of the vehicle used for the delivery. Therefore, if the total demand delivered by a

vehicle is less than the vehicle capacity, this variable may not represent the accumulated demand

delivered for all customers from the route, as the difference between the vehicle capacity and the

total demand of that route represents a slack in these variables.

The mathematical formulation is as follows:

min
∑

(i,j)∈A

∑
h∈H

Cthijx
h
ij +

∑
k∈K

∑
j∈Nc

∑
d∈Nd

∑
v∈δk(d)

∑
h∈H

Fkx
h
jv (1)

subject to:

∑
i∈(Nc\{j})∪Nd

∑
h∈H

xhij = 1, ∀j ∈ Nc (2)
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∑
j∈(Nc\{i})∪Nt

∑
h∈H

xhij = 1, ∀i ∈ Nc (3)

∑
j∈Nc

∑
h∈H

xhdj =
∑
j∈Nc

∑
k∈K

∑
v∈δk(d)

∑
h∈H

xhjv, ∀d ∈ Nd (4)

ui − uj +max
k∈K
{Qk}

∑
h∈H

xhij ≤ max
k∈K
{Qk} − qj , ∀i, j ∈ Nc, i 6= j (5)

qi ≤ ui ≤ max
k∈K
{Qk}, ∀i ∈ Nc (6)

uv ≥ uj −max
k
{Qk}(1−

∑
h∈H

xhjv), ∀j ∈ Nc, ∀v ∈ δk(i), ∀k ∈ K,∀i ∈ Nd (7)

uv = Qk, ∀v ∈ δk(i), ∀k ∈ K, ∀i ∈ Nd (8)∑
i∈Nc

fdi qi ≤Wd, ∀d ∈ Nd (9)

bij + sj + thij − 2T |H|(1− xhij) ≤ aj ≤ bij + sj + thij + T |H|(1− xhij), ∀i ∈ Nd,∀j ∈ Nc,∀h ∈ H (10)

ai + sj + thij − 2T |H|(1− xhij) ≤ aj ≤ ai + sj + thij + T |H|(1− xhij), ∀i, j ∈ Nc, i 6= j, ∀h ∈ H (11)

aj + thjv − 2T |H|(1− xhjv) ≤ bjv ≤ aj + thjv + T |H|(1− xhjv), ∀j ∈ Nc, ∀v ∈ Nt, ∀h ∈ H (12)

bij ≤ (T |H| − ε)
∑
h∈H

xhij , ∀(i, j) ∈ Act (13)

∑
j∈(Nc\{i})∪Nt

∑
h∈H

hTxhij ≤ ai ≤
∑

j∈(Nc\{i})∪Nt

∑
h∈H

[(h+ 1)T − ε]xhij , i ∈ Nc (14)

∑
h∈H

hTxhij ≤ bij ≤
∑
h∈H

[(h+ 1)T − ε]xhij , ∀(i, j) ∈ Adc (15)

∑
d∈Nd

fdi = 1, ∀i ∈ N \Nd (16)

fdv = 1, ∀v ∈ δk(d), ∀k ∈ K, ∀d ∈ Nd (17)

fdi +

(∑
h∈H

xhij − 1

)
≤ fdj ≤ fdi +

(
1−

∑
h∈H

xhij

)
, ∀d ∈ Nd, ∀i ∈ Nc,∀j ∈ N \Nd, i 6= j (18)

fdi ≥
∑
h∈H

xhdi, ∀d ∈ Nd, ∀i ∈ N \Nd (19)

xhij ∈ {0, 1}, ∀(i, j) ∈ A,∀h ∈ H (20)

fdi ∈ {0, 1}, ∀d ∈ Nd, ∀i ∈ N \Nd (21)

ai ∈ R+, ∀i ∈ Nc (22)

ui ∈ R+, ∀i ∈ Nc ∪Nt (23)

bij ∈ R+, ∀(i, j) ∈ A \Acc. (24)

The objective function (1) minimizes the sum of routing and fixed vehicle costs. Assignment

constraints (2) and (3) ensure that each customer is visited exactly once. Constraints (4) enforce

that vehicles leave only from the selected depots and that they must return to their associated

terminal node. Constraints (5) and (6) are the extensions of the Miller-Tucker-Zemlin subtour
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elimination, here adapted to account for the heterogeneous fleet by using the capacity of the largest

vehicle. Constraints (7) control the accumulated demand delivered and constraints (8) restrict the

vehicle capacity. Since this constraint forces the accumulated delivered demand to be equal to the

vehicle’s capacity, it produces a slack on these variables if the demand of customers assigned to this

route is less than the capacity of its vehicle. The total demand assigned to a depot cannot exceed

its capacity as imposed by constraints (9). We control the departure time from the first customer of

each route using constraints (10). Similarly, constraints (11) control the departure time from all the

other customers. The same control is applied for the arrival time to the terminals with constraints

(12). Constraints (13) ensure that the vehicle performs its route within the planning horizon. The

departure time from each node i is linked to its corresponding time intervals by (14) and (15).

Constraints (10)–(15) enforce that if arc (i, j) is traversed by a vehicle in time interval h, then h

is the time interval considered in the departure from the origin i. Constraints (16) guarantee that

each customer and terminal are associated with only one depot. Constraints (17) link terminals to

their respective depots. Constraints (18) and (19) enforce the customer-depot assignment. Finally,

constraints (20)–(24) enforce integrality and non-negativity conditions on the variables.

3.1. Valid inequalities from the literature

As suggested in Kara et al. (2004) and applied for homogeneous fleet in Schmidt et al. (2019),

constraints (6) can be lifted as in (25) (adapted for a heterogeneous fleet):

ui − uj +max
k∈K
{Qk}

∑
h∈H

xhij +

(
max
k∈K
{Qk} − qi − qj

)∑
h∈H

xhji ≤ max
k∈K
{Qk} − qj , ∀i, j ∈ Nc, i 6= j. (25)

The problem can be further reduced in size by removing some variables associated with the depar-

ture interval of the vehicles. Based on Schmidt et al. (2019), we can remove several arc traversal

variables. We consider two cases as presented by constraints (26) and (27). Arc (i, j) can be re-

moved for interval h if the sum of the shortest time to traverse any incoming arc (from the depot

or any other customers) to customer i and the service time of i exceeds the upper bound of that

interval, imposed by constraints (26). This logic is also true if the time to reach the closest customer

to any depot in interval h and the service time required for customer i exceeds the upper bound of

interval h, as imposed by constraints (27).
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xhij = 0 ∀i ∈ Nc |
(

min
a∈(Nc\{i})∪Nd

{thai}+ si

)
≥ (h+ 1)T , ∀j ∈ Nc ∪Nt, j 6= i,∀h ∈ H (26)

xhij = 0 ∀i ∈ Nc |

min
a∈Nd
b∈Nc

{thab}+ si

 ≥ (h+ 1)T , ∀j ∈ Nc ∪Nt, j 6= i,∀h ∈ H. (27)

Similarly, Schmidt et al. (2019) remove some variables related to the terminal nodes. They test if

the last interval is not sufficient to leave a customer and reach the depot (including the travel time

to the depot in the last time interval (m), or the sum of the shortest arrival time to a customer,

its service time, and the shortest time to reach a terminal):

xmij = 0, ∀i ∈ Nc,∀j ∈ Nt | tmij ≥ T (28)

xmij = 0, ∀j ∈ Nc |
(

min
a∈Nc\{j}

{tmaj}+ sj + min
b∈Nt

{tmjb}
)
≥ T , ∀i ∈ Nc, i 6= j. (29)

Finally, we improve the routing part of the model by forbidding subtours of sizes two and three:

∑
h∈H

xhij +
∑
h∈H

xhji ≤ 1, ∀i, j ∈ Nc, i 6= j (30)

xhij + xhji ≤ 1, ∀i, j ∈ Nc, i 6= j, ∀h ∈ H (31)∑
h∈H

(xhij + xhji + xhiv + xhvi + xhjv + xhvj) ≤ 2, ∀i, j, v ∈ Nc, i 6= j 6= v. (32)

3.2. New and problem-specific valid inequalities

First, we establish lower bounds for each type of cost of the objective function. A lower bound

can be set on the fixed cost of using vehicles as in (33). Let f ′ be the minimum cost required to

serve all customers, considering the capacity of different types of vehicles available and customers’

demands. It is obtained as a solution to a variable cost and size bin packing problem.

∑
k∈K

∑
j∈Nc

∑
d∈Nd

∑
v∈δk(d)

∑
h∈H

Fkx
h
jv ≥ f ′. (33)
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We also set a lower bound on the routing costs. Let k′ be the minimum number of vehicles required

to meet all demands considering the maximum vehicle capacity of maxk∈K{Qk}, also obtained as

a solution of a bin packing problem. First considering all intervals, we identify the minimum cost

arc leaving each depot to reach every customer sdi = minh∈H{thdi}, ∀d ∈ Nd, ∀i ∈ Nc. Second, we

do the same for each arc returning from every customer i to every depot d as rid = minh∈H{thid}.

Then, we arrange all the |Nc| values obtained for each depot d for sdi and rid in an increasing

order, defining sndi and rnid as the sdi and rid values in the nth position. Moreover, for each d ∈ Nd,

let fnd = sndi + rnid. Once again, we arrange all the values obtained for fnd in an increasing order,

where fn is the value in the nth position. We then establish that at least the first k′ values of

the vector fn will be considered as routing costs to leave and return to any depot. Finally, we set

gc = mina∈Nc\{c}
h∈H

{thca},∀c ∈ Nd ∪ Nc. We also arrange gc in an increasing order. Therefore, gn is

defined as the value in the nth position. This term allows us to establish a lower bound on routing

costs for reaching customers.

∑
(i,j)∈A

∑
h∈H

thijx
h
ij ≥

k′∑
n=1

fn +

|Nc|−k′∑
n=1

gn. (34)

The minimum number of vehicles (of largest capacity) k′ is set as a lower bound for all departures

from all depots.

∑
i∈Nd

∑
j∈Nc

∑
h∈H

xhij ≥ k′. (35)

Finally, for each arc there can be at most one period in which it is used:

∑
h∈H

xhij ≤ 1, ∀(i, j) ∈ A. (36)
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4. Matheuristic algorithm

The general structure of our proposed matheuristic is based on evolutionary search. It is inspired

by some elements proposed in Koç et al. (2016a), adjusted for a time-dependent problem.

The algorithm encompasses three main phases: initialization, evolution, and improvement. In the

first phase, we generate an initial population of solutions. The second phase creates new solutions

and selects promising ones among them. The final phase comprises an additional process to improve

the quality of the selected solutions by solving a restricted mathematical model. An overview is

presented in Algorithm 1 and detailed as follows.

The initialization consists of creating solutions by assigning customers to depots and then con-

structing routes to serve them. Then, using different operators, we populate the initial solution set

until it reaches η individuals. In the evolution phase, we perform crossover, mutation, and to select

the surviving population. When the number of iterations without improvement (δ) in the current

population is reached, this phase ends, and the intensification phase begins. These first two phases

try to determine the best departure time from the depot to take advantage of the time-dependent

graph. The third phase applies a method to restrict our mathematical model from Section 3, using

a set of best solutions taken from the previous step. It is the final phase of our matheuristic.

Algorithm 1 General structure of the matheuristic algorithm
1: Generation of initial solutions.{//Initialization: Section 4.1}
2: while initial population ≤ η do
3: Increase the population.
4: end while
5: while the number of iterations without improvement < δ do {{//Evolution: Section 4.2}}
6: Select a set of parents from the current generation.
7: Apply crossover operators and directed mutation operators.
8: Update the surviving population.
9: end while

10: Return the ϑ best solutions.
11: for each one of the ϑ best solutions do {{//Improvement: Section 4.3}}
12: Let free all binary variables from the selected set that take value 1 on this solution.
13: end for
14: Fix all non-free variables to zero and solve the mathematical model.
15: Return the best solution.

4.1. Initialization phase

The initialization of our algorithm consists of creating a set of initial solutions by assigning cus-

tomers to depots, followed by route construction. The assignment is based on the travel time

between each depot and a customer. Different assignments can be generated because the travel
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time varies for each interval h ∈ H. Therefore, we generate four time matrices based on: (i) the

travel time in each interval h ∈ H, (ii) maximum times, (iii) minimum times, and (iv) average

travel times.

Given any of these four matrices, we assign each customer i ∈ Nc to its closest depot. This is

performed based on the shortest travel time between the depot and the customer, for both departure

and return. Then, we sort customers in a non-increasing order of travel time. We assign customers

to their closest depot, considering the depot capacity constraints. This procedure continues until

all customers are assigned. At this point, we try to improve the assignment by closing depots. We

first close one depot and try to assign its customers to other ones. The same procedure is applied

for closing two depots.

After the allocation phase, we start the construction of routes for each vehicle type. This allows

creating diverse routes that exploit the heterogeneous fleet. Aiming to diversify the solutions, we

apply two heuristics as follows.

In the first heuristic, the routes are constructed sequentially, i.e., once the capacity of the vehicle

is reached for the first route, the second route can be started. For each depot, we randomly select

a customer and insert it at the end of the current route. This operation is repeated for all open

depots and continues until the complete solution is generated. This process is repeated for each of

the four time matrices. For each of the generated routes, we apply an improvement step described

next.

The second heuristic uses the Clarke and Wright (1964) algorithm to generate routes. However,

we use the four travel time matrices instead of using a distance matrix, as previously described.

Note that the selected time matrix affects the assignment of customers to depots, and now again,

it affects the route generation.

In what we call the intra-route improvement step, a permutation procedure is applied sequentially

and iteratively. The departure time of the routes is also evaluated at different times, for example,

at every 30 min of the planning horizon. The improvement procedure uses either the full route

or partial permutations. In the full route permutation, all routes containing up to ν1 customers

are explored, and we determine the best sequence of customers by enumerating all permutations.

A partial permutation, however, is applied to a subgroup of ν2 customers. The position of these

customers in this subgroup is modified until the best sequence is obtained. Then, the position
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of the first customer in the subgroup is fixed, and the same procedure is applied to the next ν2

remaining customers. This process continues until all possible improvements for the entire route

are taken place. A numerical example is presented in Figure 1.

Initial route 1 2 3 4 5

Partial optimal 1 3 1 2 4 5

3 1 2 4 5

Partial optimal 2 3 4 2 1 5

3 4 2 1 5

Partial optimal 3 3 4 5 1 2

3 4 5 1 2

Partial optimal 4 3 4 5 1 2

3 4 5 1 2

Local optimal 2 3 5 1 4

Figure 1: A numerical example for the intra-route partial permutations improvement step

In the second phase of the initialization algorithm, new solutions are generated to increase the size

of the initial population. For this purpose, large neighborhood search operators are applied to the

initial solutions, with the selection of a removal and an insertion operator:

Removal operators:

• Depot swap: Applied by Hemmelmayr et al. (2012) and Koç et al. (2016a), this operator

randomly selects an open depot and closes it, followed by the opening of a closed depot. All

customers assigned to the closed depot are then kept in a removal list Lr.

• Depot opening: This operator is an adaptation of the one used by Hemmelmayr et al.

(2012) and Koç et al. (2016a). It randomly opens a closed depot. Then n′ customers are

removed from the current solution and added to the list Lr. The removal criterion is the

shortest average travel time between the customer and the newly opened depot.

• Random removal: Used by Ropke and Pisinger (2006) and Koç et al. (2016a), this operator

randomly selects n′ customers and adds them into the removal list Lr.

• Depot time exchange: Proposed by Koç et al. (2016a), it is based on the first removal

operator but differs in the criterion applied to choose the new open depot. We adapted it to
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consider the shortest average travel time between the closed and open depots.

Insertion operators:

• Greedy insertion: it is an adaptation of an operator from Ropke and Pisinger (2006). A

customer is randomly selected from the list Lr, and a route to insert it is also randomly

selected. Its insertion is tested into all possible positions, choosing the one that minimizes

the travel cost of the current route. If the insertion is not feasible in the existing routes, the

insertion is also evaluated for new routes from already opened depots.

• Travel cost – sequential greedy insertion: This operator is based on the previous one

but the route is not chosen randomly. We test the position in all routes to minimize the travel

cost.

• Travel cost – greedy insertion: Similar to the previous two, this is a greedy operator that

inserts the customer to the position with the lowest increase in travel cost. All customers

are evaluated, and the one with the best insertion cost is selected. After each insertion, the

remaining non-assigned customers are reevaluated.

• Regret insertion: it is also an adaptation of the operator applied by Ropke and Pisinger

(2006), and it is performed to avoid a customer being assigned to a bad position in a route.

This operator is more complicated than the previous ones and requires a higher number of

operations. For each customer, the regret is calculated based on the cost difference between

the insertion in its best and second best positions. Then, the customer with the highest regret

is selected. All possibilities are tested on existing and new routes, as long as they remain

feasible. After an insertion, all customers from the removal list are reevaluated.

The number n′ of removed customers is randomly chosen from an interval calculated as percentages

of the total number of customers. To create a new solution, we randomly select one of the solutions

generated in the first phase of the initialization. The complete solution is added to the initial

population. This process is repeated until the initial population reaches the size of η.

4.2. Evolution phase

In this phase, we improve and generate new solutions by using crossover and mutation operators.

The goal is to diversify the search and improve the quality of the solutions.

To generate solutions by the crossover operator we apply the Partially Mapped Crossover (Goldberg
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and Lingle, 1985). Initially, two solutions (parents) are randomly selected, P1 and P2. Two cut-

off points indicating the number of genes to be crossed are determined, referring to the number of

customers to be removed from the sequence. This number is randomly selected based on percentages

of the number of customers in the instance. Once the position of the first cut-off point is determined,

the genes that are between the two points are crossed for the offspring generation. It is probable

that during the genetic material exchange, chromosomes end up having repeated genes. In this

case, all those outside the cut-off region are replaced with those on the same locus but in another

chromosome. Having generated the sequence of customers for each child solution, following the

configurations of their parents with respect to the order of the sequence and the number of customers

at the respective routes, these children are placed in routes. Finally, we check the feasibility of

every solution and discard all the infeasible ones.

Mutation involves creating new children solutions by copying another solution to change the current

chromosome genes. In order to improve the quality of each new generation, we use directed mutation

in the form of an improvement heuristic. The procedure consists of two steps: a removal followed

by an insertion. In the first step, n′ customers are allocated to a removal list Lr. Again, n′ is

randomly selected based on percentages of the number of customers. During the insertion step, the

removed customers are relocated in the incomplete solution. Both operators are randomly selected

from the following ones.

Removal operators:

• Neighborhood removal: This operator is inspired by Ropke and Pisinger (2006); Demir

et al. (2012), Koç et al. (2016a). The general idea is to remove the n′ customers that are

“extreme” with respect to the travel time. We identify these customers by calculating the sum

of the time required to arrive at each customer coming from its previous node and the time

required to go from this customer to the subsequent node in the route. For each customer,

we consider the corresponding interval h associated with each inbound and outbound arc.

• Worst travel time removal: This operator removes the n′ customers that are “extreme”

with respect to the insertion cost. By inserting a customer into a route, we change the costs

associated with the new arc added to the route and the costs of all the subsequent arcs.

Therefore, we define the insertion cost as the difference between the total execution time of a

route with and without adding each customer. A distance-based version of this operator can
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be found in Ropke and Pisinger (2006); Demir et al. (2012), and Koç et al. (2016a).

• Depot removal – efficiency: Proposed by Koç et al. (2016a), this operator aims to calculate

the utilization efficiency of each open depot, expressed by the ratio of the total demand

allocated to the depot over its capacity. The depot with the lowest efficiency is closed, and

its customers are placed in the removal list Lr.

• Vehicle removal: Similar to the previous one, this operator computes the utilization effi-

ciency of each vehicle. This value is expressed by the ratio of the total demand associated

with a vehicle to its capacity. All customers associated with the least efficient vehicle are

placed in the removal list Lr.

Insertion operators:

• Greedy insertion – lowest cost: This operator iteratively assigns customers to routes in

the position that minimizes the insertion cost. In this operator, before adding customers to

routes, we try to improve the existing solution. Given a solution, we check the possibility of

serving the routes with a small vehicle (i.e., lower fixed cost) or allocating the routes to an

already open depot with no customers. Then for every customer in the Lr list, we compute

its insertion cost, including additional fixed and opening costs. We identify the customer with

the lowest insertion cost at each iteration and add it to the route.

• Greedy insertion – highest cost: This operator is similar to the previous one, but here

we insert the customer with the highest cost into a route.

The evolution and selection procedures are described next.

From the initial population Γinitial, which has a size η, we randomly select two solutions, P1 and

P2 and apply the crossover operator. If at least one of the two created children is feasible and new,

its cost is computed, and the solution is added to the current generation Γgeneration. We repeat this

process until ω new individuals are created. Then, the mutation procedure is iteratively applied

to the initial population solutions Γinitial. If this procedure creates a new solution, we apply the

route improvement procedure to these new routes: the permutation of customers and departure

time optimization in fixed intervals, say, 30 min. The improved solution is added to the current

generation Γgeneration. This procedure is applied either to the entire initial population or until η

new individuals are created. Then, we combine Γinitial and Γgeneration which will make the current
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population Γ containing up to 2η solutions. This population is ordered by cost, and a set Γparents

is selected to constitute the next generation. We select the χ1 best solutions, the χ3 worst, and

among the remaining solutions, we also randomly select χ2 solutions, so that χ1 +χ2 +χ3 = η. The

process terminates when there is no further improvement to the σ best solutions for δ consecutive

iterations.

4.3. Improvement phase

The last phase of our matheuristic aims to improve the quality of the solution. It involves a method

to restrict our mathematical model from Section 3, taking into account a set of best solutions from

the evolution phase. To do so, we fix many binary variables fdi and xhij such that only a few variables

can be optimized. We take the ϑ best solutions from the evolution phase and compare information

about the values of variables fdi and xhij . We set to zero all these variables that have never been

used in any of these ϑ solutions. This allows for some customers to be potentially exchanged, as all

used parts of the best ϑ solutions can be combined, and the model can optimize and merge pieces

of different solutions.

5. Computational experiments

This section provides details of our instances, the parameter setting of the algorithms, and extensive

results, along with an elaborated analysis. The algorithms are coded in C++, and we use Gurobi

Optimizer 9.1 with default settings as the mixed-integer programming (MIP) solver with default

settings. All computational experiments are conducted on an Intel Core i7 processor running at

3.4 GHz with 64 GB of RAM installed, with the Ubuntu Linux operating system. The solver uses

two threads, and a total time limit of 10800 seconds is imposed for each execution. Section 5.1

describes the instances used. The results of detailed computational experiments are provided in

Section 5.2.

The initial population sizeis defined as η = 30
√
|Nc|. This relation is defined to avoid overpopu-

lating generations in large instances. The number of best solutions used in each generation for the

evolution phase (Section 4.2) is a function of the initial population. Therefore, we set σ = 0.1η for

instances with 10 and 20 customers, σ = 0.15η for instances with 50 customers, and σ = 0.2η for

all the other instances. For the intra-route improvement heuristic, we set ν1 equal to 10, 9, 8, 7,

and 6, respectively, for instances with 10, 20, 50, 80 and 100 or more customers; ν2 equals to 3 for

all configurations. The composition of set Γparents is χ1 = 0.5η, χ2 = 0.4η and χ3 = 0.1η.
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The range defined for n′, the number of customers to remove, differs for each phase of the algorithm.

In the initialization phase, it is set between ninitiall = 0.3|Nc| and ninitialu = 0.6|Nc|, while in the

evolution phase, the range is defined as ncrossl = 0.2|Nc| and ncrossu = 0.4|Nc|. Finally, for the

mutation operator, these bounds are defined by nmutation
l = 0.2|Nc| and nmutation

u = 0.5|Nc|. The

number of individuals created at each iteration (Section 4.2) is set to ω = 0.02η.

We consider that all parameters have integer values. Hence, if necessary, we round the result to

the nearest positive integer.

5.1. Instance generation and benchmarks from the literature

We modify the instances used in Schmidt et al. (2019) to fit the fleet size and mix problem studied

here. The instances are based on geographical information from the real road network and traffic

of Quebec City. A planning horizon of 15 hours (from 6:00 to 21:00) is divided into intervals of

either 3600, 5400, or 10800 seconds. These three intervals then differentiate the large, medium, or

small instances. The number of customers is 10, 20, 50, 80, or 100, and the number of available

depots for each instance is 3 or 5. Each customer’s demand and service time are random numbers

chosen from [50, 750] units and [1000, 10800] seconds, respectively. We set the number of different

types of vehicles in the fleet, |K|, to 3 for all instances. For the capacity Qk of these vehicles, we

consider 2000, 4000, and 6000 units, and the fixed cost, Fk, 1000, 1500, and 2000 monetary units,

respectively. For each unit of travel time, we set the cost of 0.03 monetary units. We randomly

generate the depot capacity, Wi, from a discrete uniform distribution from the interval [wi
l , w

i
u].

We define the lower and upper bounds as percentages of total customer demand, respectively, set

at 50% and 85%. All instances, solutions, and detailed results are available at https://www.

leandro-coelho.com/time-dependent-location-routing-problem/.

To compare the performance of our models and algorithms, we have used a set of 14 instances

proposed by Salhi and Sari (1997) for the FSM-MDVRP, inspired from older benchmarks for other

VRPs. These instances are commonly used in the VRP literature, as for the multi-level composite

heuristic of Salhi and Sari (1997), the variable neighborhood search of Salhi et al. (2014), the

hybrid genetic search with advanced diversity control of Vidal et al. (2014), and the alternative

formulations and improved bounds for the FSM-MDVRP of Lahyani et al. (2018).

These instances contain between 50 and 360 customers and between two and nine depots. There are

five vehicle types whose capacities are generated centered around the value of the vehicle capacity
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Q∗ of the original instances designed for the MDVRP. The vehicle capacities Qk along with the

vehicle variable cost Ck and the vehicle fixed cost Fk are derived based on the following formulas:

Qk = (0.4 + 0.2k)Q∗, Ck = 70 + 10k, and Fk = 0.7 + 0.1k, with k ∈ K.

We have also used a set of 10 smaller instances generated by Lahyani et al. (2018). These instances

were created by randomly selecting subsets of customers from the smaller instances of Salhi and

Sari (1997), namely instances 4-55-100 and 4-50-80. They contain two and three depots, from 10

to 30 customers, five vehicle types, and different demands distribution.

5.2. Computational results

We now present the results of our extensive computational experiments. We start our analysis by

showing in Section 5.2.1 the results from the mathematical model of Section 3. Then, we compare

these results with the ones in which all valid inequalities are added. We continue the analysis

by presenting in Section 5.2.2 the results of our matheuristic algorithm. Finally, we evaluate the

performance of our matheuristic algorithm to solve two sets of FSM-MDVRP instances from the

literature in Section 5.2.3.

5.2.1. Results of the mathematical model

We now present the average results obtained by solving the proposed mathematical formulation of

Section 3, when provided with an initial solution as follows. We save the best solution obtained at

the initialization phase as input for the MIP model.

Table 1 presents the results for instances with 3 and 5 potential depots. In the first two columns of

this table, we provide information about the instance. Then, for each different number of depots,

we report information about the initial solution (IS), upper bound (UB), lower bound (LB), gap

calculated as 100(UB − LB)/UB, execution time, and finally, the improvement over the initial

solution.

Results in Table 1 show how the solver can improve the initial solution, but also that this im-

provement, typically, decreases as the number of customers increases. The average improvements

are 17.56% for instances with 3 and 22.52% for cases with 5 potential depots. Even with these

improvements, this table shows a significant difference between the upper and lower bounds, even

for instances with a few customers, with an average gap of 31.66% and 27.90% for sets with 3 and

5 depots, respectively.
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In what follows, we analyze the average results from our mathematical model when it is fed the

initial solution and with all valid inequalities. Table 2 presents the results, showing that using

valid inequalities does not significantly affect most upper bounds, compared to the ones reported in

Table 1. An average improvement of 3.51% is obtained for 3-depots instances, whereas it is 3.29%

for 5-depots instances. However, as expected, adding valid inequalities improves the lower bounds

and consequently reduces the gap. As indicated by the LB gap (%) in Table 2, the percentage

difference between these lower bounds and those presented in Table 1 is, on average, greater than

7.21% for 3-depots instances. In contrast, it is 5.46 % for instances with 5 depots. For almost

all instances with 80 or more customers, the lower bound improvement is greater than 10%. On

columns Gap (%), we can observe average gap values of 25.68% and 22.65%, for instances with 3

and 5 depots, respectively. These results highlight the importance of valid inequalities to improve

lower bounds. Detailed results (available online) also show that for instances with 10 customers,

the solver can prove optimality for all 30 test instances in an average execution time of less than 6

minutes. This time decreases by 16% when the set of valid inequalities are included. However, it is

evident that even by providing an initial solution and strengthening the mathematical model by a

set of valid inequalities, the average gap remains high after three hours of execution. This reflects

the complexity of the problem and the need to apply approximate methods.

5.2.2. Results of the proposed matheuristic

Table 3 shows the average results from our proposed matheuristic algorithm. We detail the best

solution obtained in each phase (initialization, evolution, and improvement), followed by the total

execution time. Finally, on the last two columns for each depot configuration, we present the im-

provement of our matheuristic over solutions from the mathematical model with an initial solution

and valid inequalities (results from Table 2).

Several interesting observations can be drawn from the analysis of the results in Table 3. First, we

observe that our metaheuristic can find, on average, better solutions than the MIP. The improve-

ments are remarkable: 12.03% for instances with 3 depots and 11.07% for those with 5 depots.

Except for some instances with 10 or 20 customers in which the average obtained solution slightly

worsens (less than 0.27%), we usually can significantly improve the solutions. Compared with the

solutions obtained by the mathematical formulation with valid inequalities, we can observe that our

method can improve the results by more than 20% in most instances with 80 and 100 customers.
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Considering the time needed to achieve these improvements, the effectiveness of the proposed

method is even better highlighted. The results from Table 3 show that the matheuristic approach

can provide better solutions considerably faster. For instances with 3 depots, the average execution

time is 2179 seconds, whereas, for cases with 5 potential depots, it equals 1416 seconds, against

more than 8000 seconds on average for the MIP, which represents a reduction of more than 81%

for instances with 3 depots and more than 84% for 5-depots instances. These results highlight the

importance of the matheuristic approach in both aspects: to find high-quality solutions significantly

faster.

Moreover, we can combine the strengths of both methods: quality solutions from our matheuristic

and lower bounds of the MIP, improved by our valid inequalities. We present in Table 4 an

aggregated gap by comparing these values. As presented, the resulting average gap for instances

with 3 potential depots is 16.80%, and it is 14.11% for instances with 5 potential depots.

The detailed solutions (available online) indicate that all depots and all vehicles types are used

in the final solutions, particularly for large instances. While medium-size vehicles are used more

often, these solutions properly exploit the benefits of smaller and larger vehicles, at different costs.

In most instances, the solution also serves customers using all available facilities, indicating that

in dense urban areas, it is beneficial to use small facilities that are geographically dispersed. This

also helps create routes using smaller vehicles, which is also positive for congestion issues within

city boundaries.

5.2.3. Matheuristic algorithm performance on the FSM-MDVRP

We now evaluate the performance of our matheuristic on the FSM-MDVRP by using the sets of

instances from the literature described in Section 5.1. These instances use different variable costs

for each vehicle type, but our problem and methods do not consider this parameter. To this end,

we compare our results with the ones obtained by Vidal et al. (2014) and Lahyani et al. (2018).

To adapt our proposed method for these instances, we use the same cost for all vehicles during the

optimization and update it at the end, according to type of the vehicle used in the final solution.

Table 5 reports and compares the results for the set of instances from the literature. We compare

the performance of our proposed algorithm against the results reported by Vidal et al. (2014) and

Lahyani et al. (2018) for the same sets. In the first two columns, we provide information about

the instances. They indicate the number of depots, customers, vehicle capacity Q∗ of the original
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Table 4: Average results of the matheuristic solution and lower bound of the MIP

Size |Nc|
3 depots 5 depots

Matheuristic MIP Lower Gap Matheuristic MIP Lower Gap
solution bound (%) solution bound (%)

Small

10 215.99 215.99 0.17 205.42 204.90 0.02
20 364.51 350.03 11.02 324.08 315.10 6.04
50 641.64 520.71 18.93 594.13 507.93 13.53
80 894.42 636.43 29.57 846.13 615.92 28.23
100 1070.55 759.87 30.73 865.20 652.06 26.64

Average 637.42 496.61 18.08 566.99 459.18 14.89

Medium

10 218.41 217.90 0.26 211.67 211.51 0.06
20 369.78 347.97 5.66 325.14 306.88 5.29
50 636.52 528.35 17.33 584.36 511.72 12.06
80 934.61 647.85 30.19 833.43 616.25 26.24
100 1053.66 755.70 27.76 861.79 651.60 24.23

Average 642.60 499.55 16.24 563.28 459.59 13.58

Large

10 217.84 217.51 0.00 198.05 198.01 0.27
20 377.70 336.05 3.27 323.64 303.36 2.67
50 643.21 521.12 18.97 587.90 507.53 14.49
80 888.79 620.90 28.89 849.05 606.92 27.06
100 1046.69 728.82 29.32 858.47 632.02 24.86

Average 634.85 484.88 16.09 563.42 449.57 13.87

Global average 638.29 493.68 16.80 564.56 456.11 14.11

instances, and who adapted the instances to this problem. We then show their best solution and

the last two columns contain the results of our proposed metaheuristic.

The results of Table 5 show the quality of our matheuristic approach on the instances when we

compare it with results obtained by Lahyani et al. (2018). The average time requested to run

all of them is 1785 seconds against 8590 seconds as reported by Lahyani et al. (2018). Moreover,

our average best solution is equal to 1971.61 against an average upper bound of 2211.04, which

represents a reduction of 19.27%. Our metaheuristic also found a new best know solution for

instance 3-30-80 (932.14).

In summary, the results show how our proposed matheuristic algorithm, adapted to the FSM-

MDVRP, can produce good-quality solutions requiring less processing time compared with the

runtime related by Lahyani et al. (2018) for the same set of instances.

6. Conclusions

This paper studies the time-dependent fleet size and mix multi-depot vehicle routing problem. Its

main contribution is to extend the time-dependent literature to include more real-world features to

this very practical problem. This paper also contributes to the integrated optimization literature as
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Table 5: Results from our metaheuristic on the FSM-MDVRP instances
Literature Proposed metaheuristic

Instance References
Vidal et al. (2014) Lahyani et al. (2018) Best Time

UB UB solution (s)

4-55-100 Salhi and Sari (1997) – 1398.30 1398.33 170
3-85-100 Salhi and Sari (1997) – 2131.46 2138.14 948
3-85-160 Salhi and Sari (1997) – 1483.51 1486.86 1219
4-50-80 Salhi and Sari (1997) 1477.73 1565.27 1504.21 399
4-50-160 Salhi and Sari (1997) 957.73 1021.59 970.13 250
5-75-140 Salhi and Sari (1997) 1569.67 1828.73 1585.55 1044
2-100-100 Salhi and Sari (1997) 2292.64 2660.50 2378.02 1982
2-100-200 Salhi and Sari (1997) 1453.64 1818.69 1531.90 1415
3-100-100 Salhi and Sari (1997) 2208.66 2648.17 2252.62 1370
4-100-100 Salhi and Sari (1997) 2198.91 2626.33 2260.84 737
2-80-60 Salhi and Sari (1997) 2072.18 2565.53 2158.94 1314
4-160-60 Salhi and Sari (1997) 3973.47 5157.49 4124.87 10236
6-240-60 Salhi and Sari (1997) 5887.43 7758.97 6436.88 10800
9-360-60 Salhi and Sari (1997) 8709.26 11638.50 10335.10 10765
2-10-60 Lahyani et al. (2018) – 441.59 441.59 1
2-15-60 Lahyani et al. (2018) – 674.32 674.32 1
3-20-80 Lahyani et al. (2018) – 666.02 666.02 12
3-25-80 Lahyani et al. (2018) – 787.37 787.37 41
3-30-80 Lahyani et al. (2018) – 940.49 932.14 84
2-10-60* Lahyani et al. (2018) – 482.09 482.09 1
2-15-60* Lahyani et al. (2018) – 690.38 690.38 1
3-20-100 Lahyani et al. (2018) – 563.19 563.19 6
3-25-100 Lahyani et al. (2018) – 676.59 679.12 11
3-30-100 Lahyani et al. (2018) – 839.98 839.98 29

it presents the first mathematical formulation for the TD-FSM-MDVRP. Using a commercial solver

to solve instances generated from Quebec city’s real traffic data, we evaluate instances with up to

5 potential depots, 100 customers, and 15 time intervals. We show that adding a pool of initial

solutions and considering several problem-specific valid inequalities are essential to obtain and

improve the lower bounds for the TD-FSM-MDVRP. However, to achieve high-quality solutions

and to reduce computational time, we propose a matheuristic algorithm based on exploring a

population of solutions. We have compared the performance of our proposed algorithm against the

exact method and shown the importance of a powerful approximate algorithm to solve complex

problems as the one studied in this paper. Our matheuristic can find good solutions for large

instances and significantly reduce the execution time. We have also evaluated our method on a

set of FSM-MDVRP instances from the literature, showing the solution quality and run time, and

providing a new best known solution.

This research demonstrates how companies can have financial gains by properly exploring several

facilities and vehicle fleets of different sizes. It also indicates that policies restricting the access of

large vehicles to dense urban areas do not necessarily impose any financial limitation on logistics

operators, as they can adapt and diversify the origins of their routes and the types of vehicles used.
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