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Abstract. E-commerce continues to grow all over the world. The recent pandemic caused 
by COVID-19 has increased this trend. Concurrently, crowd-shipping is emerging as a 
viable solution to fulfill last-mile deliveries, with AmazonFlex taking the lead in implementing 
such distribution models. 
In this paper, we look at a problem of crowd-shipping were a crowd-shipping platform must 
fulfill 
delivery requests from a central depot with a fleet of professional vehicles and a pool of 
crowddrivers. The latter can accept or reject routes. The probability of route acceptance is 
dependent on the set of routes that are offered to crowd-drivers. The best compensated 
route is the most likely to be accepted. We develop a large neighborhood search heuristic 
to solve this routing problem. To investigate the practical viability of such distribution 
models, we show the market equilibrium when no fluctuation in supply is considered, versus 
the market equilibrium when the stochastic route acceptance of crowd-drivers is considered. 
The best compensation for crowd-drivers that minimizes the total expected cost of the 
routing problem is determined. We show in our numerical experiments that a 6% cost 
reduction can be achieved by adjusting the compensation level when we consider stochastic 
route acceptance. 
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1 Introduction

E-commerce continues to rise all over the world. People increasingly prefer to stay safe at home

and shop online rather than to expose themselves to dangerous pathogens, e.g., COVID-19, by

shopping in crowded areas (Bhatti et al., 2020). Concurrently, crowd-shipping is emerging as a new

way for distribution platforms to fulfill the increasing demand for home delivery (He et al., 2021).

Crowd-shipping platforms can use individuals in society that have a vehicle to deliver packages and

compensate them appropriately. Individuals own their vehicles and can work whenever they want.

Crowd-shipping has the potential to lower the cost of operation, reduce the environmental impact

by using vehicles that are already on the road network, provide a flexible way of making an income

with few entry barriers for the unemployed, and simultaneously, provide important home-delivery

services in times where infectious diseases are present in society. However, there are a series of

challenges that arise from crowd-shipping (Sampaio et al., 2019). Vehicles owned by CDs are not

designed to transport parcels, but rather, they are made with the intention of transporting people

and for the regular use of individuals. The size, model, and thus, the capacity of the vehicles

can vary widely. In addition, items sold by online retailers are heterogeneous, ranging from small

objects, e.g., smart phones, pencils and books, to large products, e.g., microwaves or bookshelves.

When the packages that need to be delivered are heterogeneous, the capacity of vehicles matters.

For instance, multiple notebooks can fit in a bicycle, but multiple microwaves cannot. How can a

set of delivery requests be assigned to a crowd-driver without previous knowledge of the available

capacity?

Crowd-shipping platforms are being created in large cities to solve these problems, e.g., Amazon

Flex (AmazonFlex, 2021). However, crowd-drivers (CD) are free agents and can decide what crowd-

shipping platform to work for. They could work for Amazon Flex one day delivering parcels, and

the next day, they could work for Uber or Lyft transporting people. They could even decide to

work for different platforms at the same time, i.e., delivering packages for multiple platforms or

delivering packages while they transport people. Crowd-shipping platforms have to compete with

each other and any other crowd-based transportation platforms for the participation of CDs. Thus,

the supply of CDs on any given day becomes uncertain.

Consider the market description of the supply and demand of CDs in Figure 1. In any major

city, there is a group of people that have vehicles and are willing to participate in the sharing

economy by utilizing their vehicle to fulfill transportation requests. There is also a set of platforms

that have a set of customers with transportation requests and are interested in employing CDs to

satisfy their customers’ demands. CDs supply the service of delivery while the platforms have a

demand for such service. The demand that platforms have for CDs vary from day to day and is

primarily a function of the customers that use the platforms. For instance, sporting events can lead

to a surge in demand for Uber drivers, while holidays, e.g., Christmas, can cause an increase in

demand for home delivery. If crowd-shipping platforms share some CDs, then the supply of drivers
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Figure 1: Market description of Crowd-Drivers and competing platforms

will change based on natural market fluctuations.

Crowd-drivers are assumed to be free agents that can decide to work or not on any given day.

The personal preferences of CDs for routes will impact the probability of route acceptance. Let

H be a set of routes that are offered to CDs. We assume that each CD has a preference ordering

for routes in H. Based on her personal preference, a CD will look at the set H and order the set

H from most preferred route to least preferred. In theory, CDs could have a different preference

ordering, however, a recent study (Asdecker and Zirkelbach, 2020) shows that CDs are primarily

motivated by compensation. Thus, we may assume that all CDs prefer higher compensated routes.

The probability of route acceptance of a given route, e.g., r, depends on the position of r in the

preference ordering of CDs. If CD-route r is better compensated than the other routes, then it will

be more likely to be accepted. Hence, the probability of route acceptance is dependent on whether

other better compensated routes exist in the list of CD-routes, i.e., H.
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In order to increase participation, the crowd-shipping platform has to calibrate the compensation

of CDs to the right level. For instance, by lowering the compensation of CDs, the cost of using

CDs will naturally decrease. However, few CDs will want to participate for a small compensation

and the participation will decrease. Thus, to fulfill delivery requests the platform has to use

more professional vehicles (PV), increasing the total cost of operations. Conversely, increasing the

compensation of CDs will also increase the participation in the platform, albeit, at a higher cost.

The main objective of this paper is to develop a method to set the compensation to a specific level

in order to minimize the total expected cost of operations. We assume that information exists

about the supply curve of CDs at different compensation levels. The supply curve can be obtained

by a market research initiative to find the average supply of CDs at different compensation levels.

The demand curve for CDs is obtained by solving a series of vehicle routing problems (VRP)

and determining the average number of CDs needed per compensation level to minimize the total

expected cost.

In this paper, we consider a setting introduced by Torres et al. (2021a) where a crowd-shipping

platform has a set of heterogeneous delivery requests that can be fulfilled by a professional fleet

of vehicles, i.e., PVs, owned by the platform, or by a pool of CDs. The products sold online vary

from groceries, electronics, books, to different appliances. Some products can require customer

signatures, others can have specific time windows for delivery to take place. Failed deliveries can

occur when customers are not present or when some unforeseeable event occurs. For example,

Amazon Flex requires CDs to return all undelivered packages to the fulfillment center after they

have finished their route (AmazonFlex, 2021). A two-stage stochastic model is proposed. In the

first stage, routes are created for PVs and a subset of delivery requests are separated by creating

CD-routes. In the second stage, the supply of CDs becomes known and recourse actions are taken

to complete deliveries. When the supply of CD is less than the number of planned CD-routes,

some CD-routes will be left without being fulfilled. PV are then used at a penalty to complete all

CD-routes that were left unfulfilled due to the lack of supply.

The contributions of this paper are as follows: we develop a Large Neighborhood Search heuristic

(LNS) to solve larger instances of the stochastic VRP variant presented in Torres et al. (2021a),

and show that LNS outperforms the column generation heuristic proposed in Torres et al. (2021a).

We introduce a procedure within the LNS algorithm that, given a set of routes, optimally assigns

them to PVs and CDs to minimize the expected cost of CD-routes based on the preference ordering

of CDs. Finally, we derive the best compensation level for CDs that minimizes the total cost of

deliveries.

The remainder of this paper is organized as follows. In Section 2, we present a review of the

related literature. In Section 3, we indicate how we adapt the model used by Torres et al. (2021a)

to the setting of this paper. In Section 4, we describe the LNS heuristic that we use to solve the

considered instances. In Section 5, we perform extensive computational experiments and determine
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the compensation of CDs that minimizes the total routing cost. Finally, in Section 6, we conclude

and discuss future research directions.

2 Related work

In Archetti et al. (2016), a deterministic and static problem with occasional drivers was introduced

to highlight the difficulties that can arise in crowd-shipping. A subset of delivery requests is

separated to be fulfilled by occasional drivers. The remaining subset of delivery requests must be

fulfilled by the fleet of PVs. In this setting, the flow of information is not considered. In practice,

PVs will be deployed first, then, information about the number of available CDs is reveled. An

extension of Archetti et al. (2016) was introduced by Gdowska et al. (2018), where a bi-level method

is proposed. The set of delivery requests is separated into two subsets, the first has to be fulfilled by

the fleet of PVs, while the second subset will be offered to CDs. However, CDs can reject delivery

requests with a given probability. A penalty is considered per delivery if CDs reject the delivery

request. Due to the complexity of the problem, only small 15-customer instances are solved with

the heuristic proposed.

Multiple deterministic extensions of the work of Archetti et al. (2016) have been proposed

(Mancini and Gansterer, 2021; Macrina et al., 2017; Macrina and Guerriero, 2018; Dahle et al.,

2019) but few consider stochastic aspects of the problem.

In a recent review by Alnaggar et al. (2021), it is shown that a gap exists between real crowd-

shipping platforms and the scientific literature on crowd-shipping. More precisely, in real crowd-

shipping platforms, e.g., AmazonFlex (2021), the available capacity of CDs is considered, while in

the scientific literature few variants consider the capacity of CDs. Furthermore, real deliveries have

a high level of uncertainty due to the preferences of CDs and the possibility of failed deliveries, yet,

few stochastic variants exist in the literature that consider these properties.

In Torres et al. (2021a), the authors present a stochastic VRP setting that we extend in this

paper. A crowd-shipping platform has a set of heterogeneous delivery requests that must be fulfilled

from a central depot by a fleet of PVs and a pool of capacitated CDs. Some items require signatures

to be delivered and failed deliveries can happen, in which case, a return trip to the depot is required

by CDs. It is assumed that CDs get compensated for the return trip regardless of whether a return

trip actually occurs or not. The supply of CDs is considered to be stochastic, thus, the number of

CDs available in a given day is unknown beforehand. The following two-stage stochastic formulation

is proposed:
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min
∑

r∈Ω∪Ω′

crλr + Q(λ) (1)

s.t.
∑

r∈Ω∪Ω′

ariλ
r = 1 ∀i ∈ N (2)∑

r∈Ω′

λr ≤ M (3)

λr ∈ {0, 1} ∀r ∈ Ω ∪ Ω′

Binary variables λr are equal to one if route r ∈ Ω∪Ω′ is performed by a vehicle in the solution,

and equal to zero otherwise. The set Ω is the set that contains all feasible PV-routes, and Ω′ is the

set of all feasible CD-routes. The parameter ari is equal to one if customer i ∈ N is visited in route

r ∈ Ω ∪ Ω′ and zero otherwise. The set N is the set of all customers. Parameter cr is the cost of

route r ∈ Ω ∪ Ω′. The value M is the upper bound on the number of CDs that can be available

in a solution and it can be set to the total number of CDs in the pool. The second-stage problem

is described by Q(λ). The objective (1) seeks to minimize the total cost of operation. Inequalities

(2) state that all customers must be visited only once by one vehicle, and constraint (3) guarantee

that CD-routes do not exceed an upper bound.

In the first stage, the set of customers are divided into two sets by the set partitioning model.

The first set of customers must be visited by the fleet of PVs, and the second set of customers

will possibly be visited by CDs. Routes are created in the model for both PVs and CDs in this

stage. CDs are not forced to follow CD-routes, rather the routes are created to establish the

compensation that needs to be paid to CDs and to bundle customers for CD-routes. The PVs start

routes immediately, while CD routes are left for the second stage; these routing decisions are made

with knowledge of the expected supply of CDs that will participate later in the day. A discrete

probability function is assumed to be available to predict the number of CDs that will participate.

In the second stage, the number of CDs is revealed and CDs perform the routes that are

assigned to them. Routes that are not fulfilled due to the lack of supply of CDs need to be

performed by PVs at a penalty. Thus, creating routes for CDs in the first stage has the possible

consequence of expensive recourse actions if the supply is low. Here, the probability of rejection of

CD routes is considered dependent on other routes. In Torres et al. (2021a), the authors develop an

exact branch-and-price algorithm to solve some instances with at most 100 customers. A column

generation heuristic is proposed to solve all 100-customer instances. However, in Torres et al.

(2021a), the increase of participation when the compensation increases is not addressed.

Table 1 shows the summary of the stochastic variants that were identified in the literature. In

the first column, we show which studies consider failed delivery attempts, i.e., if some actions or

plan is devised in the case that CDs are unable to deliver a package, e.g., when customers are
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absent. Next column, i.e., CD-Capacity, shows stochastic variants that consider a one-dimensional

value to represent the free space in CD-vehicles. The following column, i.e., Probability, specifies

the way in which the probability of route acceptance is formulated. When a delivery task is assigned

to a CDs the probability of acceptance should be dependent on other delivery tasks offered to CDs.

Study Failed deliveries CD-Capacity Probability Recourse Market Eq.

Dayarian and Savelsbergh (2020) NO NO Independent NO NO

Gdowska et al. (2018) NO NO Independent NO NO

Torres et al. (2021a) YES YES Dependent YES NO

Dahle et al. (2017) NO NO Independent NO NO

Torres et al. (2021b) NO YES Dependent YES NO

Mousavi et al. (2021) NO NO Independent NO NO

Sk̊alnes et al. (2020) NO NO Independent NO NO

This paper YES YES Dependent YES YES

Table 1: Summary of stochastic variants

Next, the column Recourse indicates whether a recourse action is defined in the case that the

availability of CDs is less than planned. Most stochastic variants in the literature consider some

abstract penalty that represents an unspecified future action. Only Torres et al. (2021a) and Torres

et al. (2021b) describe the recourse actions as using an additional PV to fulfill deliveries at a penalty.

The last column, i.e., Market Eq., shows that no stochastic variant in the literature considers

the market equilibrium between the supply curve of CDs and the demand curve for CDs in a setting

where route acceptance is stochastic.

In this paper, we extend the study done in Torres et al. (2021a) with the objective of finding

the best compensation level for CDs that minimizes the total delivery cost, considering stochastic

route acceptance and the supply and demand curves.

3 Problem description

We consider the setting presented in Torres et al. (2021a), that was briefly described in Sections

1 and 2. In this paper, CDs are rational agents that prefer routes that are better compensated.

Thus, we assume that, given a set of routes to choose from, CDs will order the available routes from

the most preferred to the least preferred; this is commonly referred to as a preference ordering.

Potentially, CDs could have different preference orderings, e.g., a small number of CDs could prefer

environmentally friendly routes. However, in Asdecker and Zirkelbach (2020), the authors show that

CDs are primarily motivated by compensation. Hence, we assume homogeneity in the preference

orderings of all CDs.

7

Crowd-Shipping: Determining the Compensation of Crowd-Drivers with Stochastic Route Acceptance

CIRRELT-2022-03



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

CD

C
om

p
en

sa
ti
on

Supply
Demand
Equilibrium

Figure 2: Example of a deterministic market equilibrium

In Figure 2, we describe a market equilibrium that is obtained with average values of supply

and demand. We assume that a supply curve exists that maps the average number of CDs available

for each compensation level. The compensation is expressed as a percentage of the cost of PVs. In

practice, the average supply of CDs will fluctuate. Like in Torres et al. (2021a), we assume that the

fluctuations of the average supply of CDs can be represented with a discrete probability function.

Such function can be created with the use of historical data. As the compensation increases, the

average number of CDs that accept routes also increases. In the case that the compensation is

decreased, then the number of routes accepted by CDs also decreases. Notice that the number of

CDs that accept routes and the number of routes accepted are interchangeable statements.

The demand curve is obtained by solving vehicle-routing-problem instances with an unlimited

supply of CDs and PVs at different compensation levels. However, the crowd-shipping platform

needs to find the compensation level that minimizes the total cost of operations under the stochastic

setting described in Torres et al. (2021a) and in Section 1. The fluctuation of the supply of CDs

will cause the platform to incur expensive recourse actions if CD-routes are rejected.

3.1 Cost structure

In the setting introduced in Torres et al. (2021a), PVs have a first-stage fixed cost of F and a

first-stage variable cost equal to the distance traveled in the route, i.e., dr. CDs have a fixed

compensation equal to F ′ and variable compensation equal to β′dr, where β′ < 1 is a parameter

that multiplies the distance traveled. The PV-capacity is set to Q and CD-capacity is Q′. CDs are
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assumed to have smaller capacity than PVs, i.e., Q > Q′.

The availability of CDs, i.e., ξ, is considered to be stochastic and a discrete probability distri-

bution, i.e., P (.), is assumed to be available. Given a set of CD-routes H, let s ∈ 0, . . . |H| be the

preference of a CD-route in the preference ordering of CDs, i.e., the route with preference s = 1 is

the best compensated route, with s = 2 is the second best compensated route, etc. For simplicity

when the preference of a route is equal to zero, i.e., s = 0, the route is performed by a PV in the

first stage.

In model (1)-(3), the first stage consists in creating routes for both PVs and CDs, with the

respective costs, i.e., F + dr and F ′ + β′dr. The second stage, i.e., Q(λ), is nonlinear and requires

the sorting of CD-routes from better compensated to least compensated to find the preference for

each route in that subset of CD-routes. The probability of route acceptance is high for the first

route and decreases for the following routes in the preference ordering. In the second stage, CD-

routes that are unfulfilled need to be completed by a PV at a penalty, i.e., α(F + dr), where α > 1

is the penalty that represents the cost of using a PV in the second stage, e.g., the penalty could

represent overtime paid to professional drivers. We can separate the expected cost of any route in

variable and fixed cost with the following parameters introduced in Torres et al. (2021a):

vs =

1, if s = 0;

β′ + P (ξ < s)(α− β′), otherwise

Fs =

F, if s = 0;

F ′ + P (ξ < s)(αF − F ′), otherwise

The expected cost of any route is equal to Fs+vsdr. Recall that for simplicity, s = 0 represents

first-stage PV-routes. The stochastic parameter ξ represents the total number of CDs available to

fulfill routes in the second stage. If the total number of available CDs is less than a route preference,

i.e., ξ < s, then all CD-routes with preference higher than or equal to s will need to be fulfilled by

a PV at a penalty.

4 Description of the Large Neighborhood Search Algorithm (LNS)

In this section, we describe the LNS algorithm that we use in this paper. In Section 4.1, we outline

the general procedure of LNS. In Section 4.2, we present the removal operators, while, in Section

4.3, we present the insertion operators. Finally, in Section 4.4, we introduce a new procedure that

sorts routes and optimally assigns a vehicle type and CD preference to each route.

9

Crowd-Shipping: Determining the Compensation of Crowd-Drivers with Stochastic Route Acceptance

CIRRELT-2022-03



4.1 Overview of LNS

LNS was first introduced in Shaw (1998). The main idea is to improve a solution by destroying

and repairing the solution iteratively. Heuristics based on LNS have been successfully used to solve

various vehicle routing and scheduling problems (Akpinar, 2016; Korsvik et al., 2011; Dayarian

et al., 2016). In Algorithm 1, we delineate the general framework of the LNS heuristic that is

used. An initial solution is created using the well-known Clarke and Wright savings heuristic. In

each iteration, we select a removal operator to remove a random number of customers. We assign

routes to vehicle types and assign the preference ordering for CDs with the Route Assignment

Procedure (RAP) described in Section 4.4. Next, we select an insertion operator and re-insert the

removed customers back into the solution, followed by RAP. The new solution is accepted if it

improves the incumbent solution; otherwise, the acceptance criteria is borrowed from well-known

simulated annealing methods, see Van Laarhoven and Aarts (1987); Dowsland and Thompson

(2012); Kirkpatrick et al. (1983); Afifi et al. (2013). The initial selected temperature is gradually

reduced with each iteration. As the temperature cools down, the probability of accepting a non-

improving solution decreases. When the temperature cools down below a certain threshold, i.e.,

Temperature < ϵ, we reheat the temperature and continue with LNS. Reheating can help escape

local optima by allowing different solutions to be accepted, see Afifi et al. (2013); Ting and Chen

(2008); Abramson et al. (1999). Finally, once the total number of iterations equals a predetermined

value, i.e., k, the algorithm stops and returns the best solution found.

The removal and insertion operators used within the LNS are adapted or inspired by operators

used in other works (Pisinger and Ropke, 2019; Koç et al., 2014, 2015; Pisinger and Ropke, 2007;

Paraskevopoulos et al., 2008).
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Algorithm 1: Overview of LNS

Incumbent sol = Initial solution;

Sol = Incumbent sol;

Set k;

Set Temperature;

Set Cooling rate;

for it = 1 to k do
Sol∗ = Sol;

Select removal operator;

RAP, see Section 4.4;

Select insertion operator;

RAP, see Section 4.4;

if Sol∗ value < Incumbent sol value then
Incumbent sol = Sol∗;

end

if Accept(Sol∗, Sol) then
Sol = Sol∗;

end

Cool Temperature;

if Temperature < ϵ then
Reheat;

end

end

return Incumbent sol;

4.2 Removal operators

The removal operators help escape local optima by destroying a large portion of the solution in

each iteration. Using different removal operators can help diversify the neighbourhoods that are

explored. We consider four removal operators, Random Removal (RR), Random Route Removal

(RRR), First Customers Removal (FCR), and Last Customers Removal (LCR). In each iteration, a

single removal operator is randomly selected to destroy the solution. After extensive computational

experiments, the probabilities of selection are set to: 0.7 for RR, 0.1 for RRR, 0.1 for FCR, and

0.1 for LCR, respectively.

• Random Removal (RR): Randomly selects a set of customers to remove from the solution with

uniform probability. When applied, this operator randomly removes between 5 customers and

25% of customers.

• Random Route Removal (RRR): Randomly selects a set of routes to remove from the solution
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with uniform probability. When applied, this operator randomly removes between 2 routes

and 25% of all routes in the solution.

• First Customers Removal (FCR): Removes a random number of customers from the beginning

of all routes. We iterate over all routes and select a random number of customers to remove

with equal probability. A random number of customers from 0 to at most 50% are removed

from each route. This is similar to a time-based removal. Customers that are scheduled at

the beginning of a route tend to have earlier time windows and can easily be replaced by

customers from the beginning of other routes.

• Last Customers Removal (LCR): Removes a random number of customers from the end of

each route. Similar to FCR, the last customers in a given route have later time windows;

by removing customers at the end of routes, the removed customers have compatible time

windows and can be switched when inserted back into the solution. Just like FCR, the number

of customers removed for each route is random.

4.3 Insertion operators

Insertion operators rebuild the destroyed solution and try to find better solutions in different

neighborhoods. We consider four insertion operators: Greedy insertion (GI), Greedy insertion

with noise (GIN), PV first insertion (PVFI), and CD first insertion (CDFI). In each iteration a

single insertion operator is randomly selected to rebuild the destroyed solution. After extensive

computational experiments, the probabilities of selection are set to: 0.7 for GI, 0.1 for GIN, 0.1 for

PVFI, and 0.1 for CDFI, respectively.

• Greedy insertion (GI): Selects a customer from the list of removed customers and inserts it to

the best feasible position. Recall the parameters vs and Fs from Section 3.1, the variable and

fixed cost for each preference. Let i∗ be the customer selected for insertion and let γs(i, j) =

vs(dii∗ +di∗j−dij) be the variable cost increase of inserting customer i∗ in between customers

(i, j); the index “s” indicates the preference of the route that contains both customers (i, j),

when s = 0, it represents a PV route. Let Fs(i
∗) be the increase in fixed cost; if the load

of the route that contains (i, j) exceeds the capacity of a CD vehicle, then Fs(i
∗) = F − Fs,

otherwise, Fs(i
∗) = 0. Customer i∗ is inserted at the best place that has the minimum cost

of insertion, i.e., (i, j) = arg min(i,j){γs(i, j) + Fs(i
∗)}

• Greedy insertion with noise (GIN): This operator is similar to GI except that a noise function

is considered. A customer is selected from the list of removed customers and inserted at the

best location based on a noise function. The noise function diversifies the solution by allowing

customers to be inserted in a different place than the cheapest insertion. The cost of insertion

is (γs(i, j) + Fs(i
∗))(1 + 0.1ϕ), where ϕ is a random number from -2 to 2.
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• PV first insertion (PVFI): Uses GI to insert a customer from the removed list to the PV-

routes first. If no feasible insertion in a PV route exists, then the customer is inserted in the

cheapest position within a CD-route.

• CD first insertion (CDFI): It is the opposite of PVFI. First it finds the cheapest insertion in

CD-routes, if no feasible insertion exits, then the customer is inserted in the cheapest position

of PV-routes.

4.4 Route assignment procedure (RAP)

The expected cost of each route depends on the preference the route has in the preference ordering

of CDs for all the CD-routes that are offered in the solution. In order to determine the expected

cost of a given solution, it is necessary to look at all the routes together and assign the optimal

vehicle along with the CD-preference to each route. Let H be an ordered list of routes such that

the first route of the list is the longest route, i.e., the dr ≥ dr+1 for r ∈ H. If route r ∈ H has a

total load that exceeds the capacity of a CD, then it has to be fulfilled by a PV. Otherwise, the

first route that appears in list H with a total load of less than the capacity of a CD is labeled

as a CD-route with first preference. The second route of list H with a total load of less than the

CD-capacity is labeled with second preference, etc. This assignment process is applied until the

expected cost of the route is greater than the cost of using a PV to perform it. When this point is

reached, all remaining routes in H are labeled PV-routes. The following is an overview of RAP:

1. Sort the list of routes based on total distance from longest to shortest.

2. Iterate over the ordered list of routes; set s = 1.

3. If the total load of the current route exceeds Q′, label the route as a PV-route. Adjust the

fixed and variable cost of the route accordingly. Move to the following route on the list.

4. If the current route has a total load of less than Q′, and the expected cost of the preference

s is less than the cost of a PV, then label the route as a CD-route with preference s. Then,

add the expected cost accordingly, set s = s+ 1 and move to the following route on the list.

If the cost for the current route with preference s exceeds the cost of a PV, then label the

current route as a PV-route.

5. Return the total expected cost of all routes with the assigned vehicle type and CD preference.

Given a set of routes, this simple procedure finds the optimal assignment of the routes with the

corresponding preference of the CDs. RAP is applied whenever a removal or insertion operator is

used in the solution procedure. When customers are removed, some routes become smaller, which

allows RAP to assign CD-routes, and more accurately estimate the insertion cost when inserting
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customers back into the current solution. By applying RAP after an insertion operator is applied,

we can use the acceptance criterion with the expected cost of the current solution.

5 Computational results

In this section, we perform a series of computational experiments to evaluate the solution approach

comparing it with the branch-and-price and column generation in Torres et al. (2021a), and provide

valuable insights into the properties of crowd-shipping. The LNS algorithm was implemented in

Java SE 1.8.0 and it was run in a Linux-CentOS 7 system with an Intel core E5-2683 at 2.1GHz,

and 8GB of ram.

In Torres et al. (2021a), the short-routes Solomon instances with 25, 50 and 100 customers are

considered and modified by adding a pool of 100 CDs. A binomial distribution is used to represent

the fluctuations, i.e., ξ ∼ B(p,M). Table 2 shows the parameters that were used for the base case.

Parameters Description Value

Q PV-capacity 200

Q′ CD-capacity 100

F PV fixed cost 100

F ′ CD fixed cost 50

α Second stage penalty 2.0

β′ CD variable cost 0.5

p Binomial distribution probability 0.05

M Size of the pool of CDs 100

p×M Average number of CDs 5

Table 2: Parameters for the base case

LNS is a randomized algorithm, hence, we run the algorithm 5 times for all experiments and

report the best solution with lowest cost of the 5 results. All the times reported are in seconds.

The remainder of this section is organized as follows. In Section 5.1, we evaluate the performance

of the LNS algorithm when compared to the column generation algorithm presented in Torres et al.

(2021a). In the following sections, all computational experiments were performed on larger 200-

customer instances. In Section 5.2, we provide the deterministic market equilibrium that considers

the average number of CDs. Finally, in Section 5.3, we find the market equilibrium when the supply

of CDs fluctuates from the average.

5.1 Performance

Table 3 compares the branch-and-price algorithm, i.e., B&P, and the column generation algorithm,

i.e., C-Gen, proposed by Torres et al. (2021a) with the LNS algorithm presented in this paper.

The first column identifies the group of instances and the second reports the number of cus-

tomers. Next, we present the exact B&P results, first, the lower bound, i.e., LB, then, the solution
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time in seconds, i.e., T(s). Afterwards, we show the performance of C-Gen reported in Torres

et al. (2021a), the first column is the solution value, i.e., Sol, followed by the time and the average

gap from the lower bound as a percentage, i.e., Gap(%). The final columns present the results of

the LNS heuristic that we implemented. Since LNS is a randomized algorithm, we executed the

procedure 5 times and we report the results of the best solution out of 5 runs. The first column

shows the average of the best solutions found in 5 runs for all instances, the next column shows

the average total time of 5 runs, then, the best solution is compared with the lower bound of B&P,

and the last column shows the deviation as a percentage, i.e., Dev(%), of the solution values of

LNS with respect to the solution values of C-Gen.

Table 3: LNS performance
B&P C-Gen LNS

Ins N LB T(s) Sol T(s) Gap(%) Sol T(s) Gap(%) Dev(%)

C1

25 434.85 355 435.92 8 0.27 440.0 40 1.17 0.94

50 817.77 6604 828.1 135 1.28 845.07 90 3.23 2.05

100 1776.5 10394 1797.3 450 1.18 1803.21 225 1.48 0.33

R1

25 652.0 102 652.76 8 0.14 663.02 45 1.69 1.57

50 1228.76 6511 1254.0 141 2.26 1250.74 120 1.79 -0.26

100 2096.51 9145 2198.2 2501 5.61 2188.77 330 4.40 -0.43

RC1

25 618.12 32 618.8 3 0.01 636.23 45 2.93 2.4

50 1161.3 6573 1193.6 44 2.53 1195.0 100 2.91 0.14

100 2212.0 10800 2376.6 977 7.38 2318.92 335 4.83 -2.42

We show that LNS is much faster than C-Gen and it provides better average solution values

for the larger 100-customer instances. On average, LNS terminates within 5 minutes for 5 runs,

while C-Gen can take up to 41 minutes on average for the R1 instances. However, the smaller

25-customer instances are solved faster with C-Gen and the gaps are better. In practice, since

platforms can have hundreds or thousands of delivery requests that need to be fulfilled, a method

that can solve large instances quickly is desired. The results presented in Table 3 clearly show

that LNS performs better when applied to solve larger instances, whereas the solutions provided

by C-Gen tend to decrease in quality on these instances. Recall that the bounds produced by B&P

are not exact solutions and could be arbitrarily weak for 100-customer instances. Yet, LNS still

provides solutions that are less than 5% from these weak bounds.

5.2 Deterministic Market Equilibrium

Here, we solve larger instances with 200 customers and a pool of 1000 CDs, i.e., M = 1000.

The same parameters are used for the computations as in Torres et al. (2021a). We assume a

deterministic setting where the platform has access to all vehicles in the pool with 100% certainty,

i.e., ξ ∼ B(1000, 1000). We assume that historical data and information of wages are available

for a given city, which allows us to derive a supply curve of the average number of CDs that
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will participate at each compensation level. The compensation is expressed as the ratio of the

compensation of PV. For example, a 0.5 compensation means that F ′ = 50, β′ = 0.5. We do not

change the costs of PVs.
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Figure 3: Market equilibrium for C1 200-customer instances
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Figure 4: Market equilibrium for R1 200-customer instances
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Figure 5: Market equilibrium for RC1 200-customer instances

Figures 3, 4 and 5 show the deterministic market equilibrium for the three instance classes, i.e.,

C1, R1 and RC1. The demand for CDs is the total number of CDs that we would like to use at the

current compensation value, if they were available. The supply curve shows the average number of

CDs that are willing to participate at the current compensation level. The supply curve intersects

the demand at a value that gives us the deterministic market equilibrium. The compensation at

equilibrium for C1 instances is 0.5 for an average number of CDs at 8.5. For R1 instances, the

compensation at equilibrium is 0.61 for an average number of CDs at 10.4. For RC1 instances, the

equilibrium is found at 0.58 compensation and 9.9 average CDs.

Recall that CDs are smaller than PVs and they are considered to have one half the capacity of

PVs. When the compensation level is high, we can see that few CDs are required in the solution,

even when we have an unlimited supply. However, once the compensation level is at around 0.7,

we can see a rapid change in the slope of the demand curve as more CDs are used in the solution.

The use of CDs continues to increase as the compensation decreases until a compensation level of

around 0.25. At this point, the slope of the supply curve rapidly changes once more. Even if CDs

were free, the platform can only use as many CDs as is necessary to fulfill all delivery requests.

Hence, a reasonable compensation level should be in the range between 0.7 and 0.2.

5.3 Stochastic Market Equilibrium

In this subsection, we consider the fluctuations from the average supply of CDs to find an equilib-

rium. The size of the pool of CDs is the same as in Section 5.2, i.e., M = 1000. We consider that
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the average number of CDs available will follow the same supply curve plotted in Figures 3, 4, and

5. The binomial distribution is adjusted so that the average supply of CDs in the supply curve

matches the average value in the binomial distribution, i.e., select h in B(h, 1000) such that h×1000

intersects the supply curve. In this setting, random variations of the supply of CDs are explicitly

considered. Moreover, in this case, the expected cost also includes the penalties associated with

the recourse actions of having additional PVs to fulfill the delivery requests.
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Figure 6: Best compensation for C1 200-customer instances

18

Crowd-Shipping: Determining the Compensation of Crowd-Drivers with Stochastic Route Acceptance

CIRRELT-2022-03



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5,000

5,200

5,400

5,600

5,800

Compensation

E
x
p
ec
te
d
C
os
t

Deterministic Eq.
Stochastic Eq.

Figure 7: Best compensation for R1 200-customer instances
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Figure 8: Best compensation for RC1 200-customer instances

Figures 6, 7 and 8 show the deterministic and stochastic market equilibrium for all three instance

classes, i.e., C1, R1 and RC1. The platform will adjust the compensation to minimize the expected

cost. When the compensation decreases, so does the participation. If the participation drops
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too much, the expected cost starts to rise. On the other hand, if the compensation is too high,

the platform prioritizes the use of larger PVs to fulfill deliveries. We can see that the difference

between the deterministic and stochastic market equilibrium is about 6% of the expected cost of

the platform. Notice this difference is not the cost reduction of using CDs. Rather, it is the cost

reduction when we consider the random fluctuations of the supply.

5.4 CD-Participation

In previous sections, it is assumed that the crowd-shipping platform wants to minimize the total

expected costs. However, if the crowd-shipping platform has a strategic objective that seeks to

increase participation in the platform, then it is better to establish the compensation level higher

to increase participation. Figure 9, shows the maximum participation can be achieved at a com-

pensation level equal to 0.5. When the compensation is low, few CDs want to participate, when

the compensation is high they become too expensive for the crowd-shipping platform and less CDs

are employed in the solution.
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Figure 9: Average CD-Participation

In Figure 10, we report the compensation level that maximizes the average total compensation

paid to CDs for all instances. We can see that the compensation level at 0.6 maximizes the total

compensation given to CDs. If the strategic objective is to maximize participation, this could be a

good way of doing it, i.e., by maximizing the compensation CDs receive. The overall participation

does not decrease significantly at a compensation level of 0.6, however, after that level CDs become
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too expensive in comparison to the much larger and available PVs.
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Figure 10: Average total Compensation given to CDs

6 Conclusions and future research

In this paper, we developed a LNS algorithm that outperforms the column generation method

proposed by Torres et al. (2021a). A new procedure was introduced that orders routes based on

the preference ordering of CDs and computes the total expected cost of the solution based on the

CD-preference for each route. We showed that the compensation determined by the deterministic

market equilibrium is not the compensation that minimizes the expected shipping costs of the plat-

form when we consider the stochastic route acceptance of CDs. We determined the compensation

that minimizes the total expected cost in a setting where the supply of CDs randomly fluctuates.

We also indicated how different strategic objectives, e.g., maximizing crowd-driver participation,

could be achieved by increasing the compensation level from the level at the market equilibrium.

There are different variants of crowd-shipping that exist, some consider the planned destinations

of CDs while others consider pick-up and delivery problems, etc. Considering that the compensation

strategy that is used is one of the main drivers that motivates the participation of CDs, finding the

optimal strategies for various crowd-shipping settings is certainly a worthy avenue of research to

pursue. Also, few stochastic variants of crowd-shipping exist. However, stochasticity is one of the

main characteristics of crowd-shipping. Variants that consider the stochastic properties of CDs are

still needed in the scientific literature, in particular, variants that consider the probability of route
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acceptance as dependent on the set of offered routes are scarce. If crowd-drivers are truly free to

choose, then the probability of route acceptance must be dependent on the set of offered routes.
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A Appendix

Table 4: Average results for all instances
Compensation Cost Vehicles

Comp. Ins. Fix Var Total Recourse Total CD Total

0.25

C1 68.50 82.92 151.42 89.59 4462.46 2.74 20.26
R1 67.50 178.47 245.97 145.88 5194.60 2.70 19.70
RC1 75.0 177.51 252.51 141.79 4774.85 3.0 20.0

Average 70.33 146.30 216.63 125.75 4810.64 2.81 19.98

0.30

C1 96.0 107.89 203.89 75.30 4441.75 3.20 20.30
R1 114.0 234.91 348.91 153.76 5168.14 3.80 20.20
RC1 93.0 213.37 306.37 89.03 4757.60 3.10 20.0

Average 101.0 185.39 286.39 106.03 4789.16 3.37 20.17

0.35

C1 136.50 139.66 276.16 70.95 4429.07 3.90 20.40
R1 150.50 306.64 457.14 135.17 5162.08 4.3 20.40
RC1 122.50 255.62 378.12 77.32 4764.68 3.50 20.20

Average 136.50 233.97 370.47 94.48 4785.28 3.90 20.33

0.40

C1 160.0 162.37 322.37 44.75 4444.12 4.0 20.50
R1 180.0 364.46 544.46 110.78 5161.98 4.50 20.40
RC1 184.0 344.47 528.47 95.57 4787.46 4.60 20.80

Average 174.67 290.43 465.10 83.70 4797.85 4.37 20.57

0.45

C1 165.0 180.82 345.82 20.26 4477.51 3.67 20.33
R1 207.0 414.55 621.55 71.84 5181.69 4.60 20.50
RC1 207.0 418.18 625.18 59.29 4787.53 4.60 20.70

Average 193 337.85 530.85 50.47 4815.58 4.29 20.51

0.50

C1 185.0 183.29 368.29 11.53 4499.23 3.70 20.40
R1 250.0 475.02 725.02 61.59 5227.20 5.0 20.60
RC1 245.0 448.34 693.34 36.98 4838.86 4.90 20.90

Average 226.67 368.89 595.55 36.70 4855.10 4.53 20.63

0.55

C1 181.50 191.19 372.69 3.90 4523.47 3.30 20.2
R1 280.50 530.95 811.45 46.22 5257.60 5.10 20.60
RC1 242.0 455.79 697.79 16.02 4898.13 4.40 20.70

Average 234.67 392.64 627.31 22.05 4893.07 4.27 20.50

0.60

C1 204.00 210.19 414.19 2.07 4558.37 3.40 20.30
R1 294.0 561.63 855.63 37.96 5312.47 4.90 20.60
RC1 264.0 477.67 741.67 10.96 4948.0 4.40 20.70

Average 254.00 416.49 670.49 16.99 4939.62 4.23 20.53

0.65

C1 110.50 106.65 217.15 0.12 4585.61 1.70 19.70
R1 286.00 492.40 778.39 17.06 5373.97 4.40 20.30
RC1 182.00 307.67 489.67 4.34 5002.79 2.80 19.80

Average 192.83 302.23 495.07 7.17 4987.46 2.97 19.93

0.70

C1 91.00 81.43 172.43 0.05 4595.23 1.30 19.50
R1 238.00 462.03 700.03 9.92 5421.82 3.40 19.90
RC1 154.00 259.69 413.69 0.74 5033.89 2.20 19.40

Average 161.00 267.72 428.72 3.57 5016.98 2.30 19.60

0.75

C1 45.00 40.22 85.22 0.01 4611.53 0.60 19.40
R1 172.50 324.97 497.47 3.32 5460.11 2.30 19.30
RC1 82.50 153.16 235.66 0.19 5048.84 1.10 18.90

Average 100.00 172.78 272.78 1.17 5040.16 1.33 19.20
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