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1 Introduction

The single-sink fixed-charge transportation problem (SSFCTP) can be stated as a distribution
problem in which a single customer acting as a sink and having access to a set of n suppliers
j = 1, . . . , n must acquire D units of the same item. Each supplier j can ship up to bj units to
the sink at a fixed-charge fj as well as a cost cj per unit. The problem is to minimize the total
cost while respecting the demand D of the sink. The classical formulation of the SSFCTP, that
we name P1, is

[P1] Z1 = min

n∑
j=1

(cjxj + fjyj) (1)

s.t.
n∑
j=1

xj = D, (2)

0 ≤ xj ≤ bjyj for j = 1, . . . , n, (3)

yj ∈ {0, 1} for j = 1, . . . , n. (4)

The binary decision variable yj is equal to 1 if the fixed cost is paid on node j. In this case, as
specified in constraint (3), the usage variable xj can take any positive value less than or equal
to bj . The demand constraint is given by equation (2). It is assumed that each supplier offers at
least one item, that all the unit and fixed costs are nonnegative and that the total offer suffices
to satisfy the demand, i.e. 1 ≤ bj ≤ D, cj ≥ 0 and fj ≥ 0 for each supplier j ∈ {1, . . . , n} and∑n

j=1 bj ≥ D. Furthermore, the demand D as well as the number of shipments xj to be made
from each supplier and the capacities bj are assumed to be integer-valued.

ThisNP-hard problem (see [1] for a proof ofNP-hardness) has various practical applications
[2] and is an important subproblem of the fixed-charge transportation problem (FCTP) [3], [4].
Furthermore, staircase transportation cost functions can be introduced to the SSFCTP, leading
to the so-called single-sink, fixed-charge, multiple-choice transportation problem, which arises as
a relaxation of more general minimum-cost network flow problems [5]. The SSFCTP is also
a special case of a relaxation of the multicommodity capacitated fixed-charge network design
problem [6].

Two main approaches have been used for the resolution of the SSFCTP in the literature. The
first one consists in an implicit enumeration algorithm, proposed by Herer et al. [2], that refines
an algorithm from Haberl [7]. The second one is a dynamic programming method introduced
by Alidaee and Kochenberger [8]. Both these methods were revisited and significantly improved
by Klose [1]. In particular, some of these improvements over the original algorithms directly
exploit the similarities between the SSFCTP and the binary knapsack problem (KP) to take
advantage of ideas first developed by Martello and Toth [9].

This paper takes a step further in this direction by introducing a new mathematical formula-
tion of the problem which allows expressing both a relaxation and subproblems of the SSFCTP
as KPs. The algorithm we introduce will thus be referred to as the knapsack transformation
algorithm (KTA). It is composed of a heuristic phase, a filtering phase and an exact phase that
are executed sequentially.

The different models developed in this article aim to reduce the search space as much as
possible while ensuring that at least one optimal solution to the original problem remains acces-
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sible. Doing so, the fast algorithms that have been proposed over time for solving the KP and
the rich literature that covers many of its variants (see for example [10], [11], [12], [13], [14]) can
be fully mobilized to solve the SSFCTP efficiently.

Our paper offers five main contributions that will be detailed in Sections 2, 3, 4, 5 and 7
respectively.

• We introduce model P2, a binary non-linear programming reformulation of the problem.
This new mathematical formulation takes advantage of an important property from the
literature to exploit the strong similarity which links the SSFCTP to the KP.

• A new heuristic method is proposed. Its main step is to solve knapsack subproblems, noted
P3, that are obtained through a relaxation of P2. We present an in-depth study of the
relations between specific subsets of solutions to models P1, P2 and P3. These properties
are used to extract several useful bounds and to introduce a new dominance relation as
well as a strong linear relaxation.

• Two new filtering techniques are introduced. The first method exploits a new strict total
order on the suppliers while the second one corresponds to a strengthened linear filtering
procedure. Together, they drastically reduce the size of the subproblems to be solved in
the last phase of KTA.

• We present a transformation of the subproblem which arises after allowing a unique node
to supply a positive number of items that is less than its capacity. This reformulation,
which is at the core of the exact phase of KTA, is also expressed as a KP.

• We introduce new instances, with the aim of providing an in-depth analysis of the perfor-
mance of KTA and the existing techniques of the literature. The structure of problems
resulting from various generation methods is studied theoretically and empirically.

The remainder of the paper is structured as follows. Section 6 contains a detailed summary
of KTA. In addition to new generation methods, Section 7 presents the results of our numerical
experiments, including an analysis of the performance of each step of our algorithm. Section 8
concludes the article.

Since there is a large number of propositions in this work, we have decided to regroup all
the proofs in Appendix 1 to lighten the reading.

2 Novel Reformulation

First, let us introduce some definitions that will be useful throughout the article.

Definition 2.1. A complete node j in a solution (x,y) to P1 is a node such that xj = bj.

Definition 2.2. A partial node j in a solution (x,y) to P1 is a node such that 1 ≤ xj ≤ bj−1.

Definition 2.3. An unused node j in a solution (x,y) to P1 is a node such that xj = 0.

From there, the following well-known property of the SSFCTP, of which a proof is given in
[15], shall be recalled.
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Proposition 2.4. There exists an optimal solution to P1 which contains at most one partial
node. Furthermore, if an optimal solution contains a partial node p ∈ {1, . . . , n}, then yj = 0
for each node j ∈ {1, . . . , n} such that cj > cp.

The classical interpretation of the SSFCTP is expressed as a decision problem on the number
of shipments to be made from each supplier to the sink. This interpretation can be modified to
bring the formulation of the SSFCTP even closer to that of the already closely related KP. Using
Proposition 2.4, the integer-valued decision variables of P1 can be replaced by binary variables
representing the selection of each node in the solution, among which only one can be partially
used. This reinterpretation leads to the following new model.

[P2] Z2 = min
n∑
j=1

(cjbj + fj)yj −
( n∑
j=1

bjyj −D
) n∑
j=1

cjzj (5)

s.t.

n∑
j=1

bjyj ≥ D, (6)

n∑
j=1

bjyj −D ≤
n∑
j=1

bjzj − 1, (7)

n∑
j=1

zj = 1, (8)

zj ≤ yj for j = 1, . . . , n, (9)

yj , zj ∈ {0, 1} for j = 1, . . . , n. (10)

In this binary non-linear formulation, a node j ∈ {1, . . . , n} is used if and only if yj = 1,
leading to a cost of cjbj + fj . Then, if constraint (6) does not hold with equality, the excess
offer

∑n
j=1 bjyj −D is left on the partial node p ∈ {1, . . . , n} such that zp = 1, which leads to

a reimbursement of cp for each excess unit. Constraint (7) ensures that a positive number of
shipments is made from the partial node. If (6) holds with equality, the binary variable zj can
be set to 1 on any of the nodes used in the solution without changing the quantity ordered from
this supplier or the objective function value, for which the second term is then zero.

The following propositions show that the resolution of the original SSFCTP can always be
achieved through P2.

Proposition 2.5. Let (y2, z2) be a feasible solution to P2. A feasible solution to P1, with the
same objective value, is given by (x1,y1), where y1j = y2j and x1j = bjy

2
j − (

∑n
i=1 biy

2
i −D)z2j for

all j ∈ {1, . . . , n}.

Proposition 2.6. The optimal objective value is the same for P1 and P2, i.e. Z = Z1 = Z2.

In addition, it is possible to strengthen the formulation of P2 to reduce the search space
while preserving the validity of the preceding propositions.

Definition 2.7. The strict total order ≺ on the set of nodes {1,. . . ,n} is defined as follows. For
two nodes indexed by i and j: i ≺ j ⇐⇒

(
(ci < cj) or (ci = cj and bi < bj) or (ci = cj and

bi = bj and i < j)
)
. We denote by � its inverse relation.
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Table 1: Lower and upper bounds by step of the heuristic phase

LB on

Z

UB on

Z

LB on

Z|(p is partial)

LB on

xp|(p is partial)

UB on

xp|(p is partial)

LB on the partial

node’s variable cost

H1)
Elementary

Bounds
ZLP
LB ZG

UB - - - -

H2)
Knapsack

Transformation
- ZP3

UB ZP3
LB(p) LBP3

xp UBP3
xp CP3

min

H3)
Dominance

Relation
- - - LBDom

xp - -

H4)
Strong Linear

Relaxation
- - ZLP

LB(p) LBLP
xp UBLP

xp -

Proposition 2.8. There exists an optimal solution to P2 for which zj = 1 if and only if yj = 1
and j � i for all i 6= j such that yi = 1. In other words, replacing constraints (8) and (9) by the
following non-linear constraint:

zj = yj1(j � i ∀i 6= j : yi = 1) for j = 1, . . . , n (11)

would not change the optimal value of P2 or invalidate Propositions 2.5 or 2.6.

Neither the initial formulation of P2 nor its transformation that includes constraint (11) are
intended to be solved directly. However, given a vector y that specifies the set of suppliers to
be used in a solution, Proposition 2.8 offers a direct rule that can be applied for the selection
of a partial node. Using it, the SSFCTP reduces to identifying the optimal subset of nodes
which must provide a positive number of items. This idea will motivate the introduction of P3,
a transformation of P2 which can be solved efficiently to identify such subsets.

3 Lower and Upper Bounds

This section presents the four main steps of the heuristic phase in their order of execution.
First, the classical linear relaxation of the SSFCTP and a simple greedy upper bound are briefly
presented in Section 3.1. The rest of the section consists of new contributions. Section 3.2
develops model P3, a KP derived from a relaxation of P2. The resolution of this reformulation
provides several bounds and represents the central part of KTA. Section 3.3 presents a new
dominance relation between partial nodes, while Section 3.4 introduces a strong linear relaxation
method which can be applied after fixing a supplier p as the partial node. These last two methods
use the theory developed in Section 3.2 to eliminate as many potential partial nodes as possible.

Different types of bounds will be extracted from each step. More specifically, bounds on the
objective value, on the conditional objective value and on the usage xp given that node p is used
as the partial node and on the partial node’s variable cost will be obtained. To facilitate the
understanding of the heuristic phase and the relations between its steps, Table 1 summarizes
these bounds and introduces their notation.
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3.1 Elementary Bounds

We start by considering a pair of simple lower and upper bounds which constitutes the first step
of KTA. Although generally weak, these bounds can in some cases reduce the number of steps
required by the iterative process of the subsequent sections.

3.1.1 Classical Linear Relaxation

A classical lower bound on the objective value of P1 is obtained by solving its linear relaxation.

ZLP
LB = min

n∑
j=1

ejxj (12)

s.t.

n∑
j=1

xj = D, (13)

0 ≤ xj ≤ bj for j = 1, . . . , n, (14)

where ej = cj + fj/bj .

Given that the nodes are sorted in non-increasing order of linearized cost e1 ≤ e2 ≤ · · · ≤ en,
the optimal solution to the LP relaxation can be calculated in O(n) and is given by

xj =


bj for j = 1, . . . , s− 1,

D −
∑s−1

j=1 bj for j = s,

0 for j = s+ 1, . . . , n,

where the split supplier s ∈ {1, . . . , n} is such that

s−1∑
j=1

bj < D and

s∑
j=1

bj ≥ D. (15)

The optimality of this solution can be demonstrated by considering the dual of the linear
program (12), as it is done by Klose [1]. Throughout this article, it will be assumed that
e1 ≤ e2 ≤ · · · ≤ en. This ordering will be required by various steps of our algorithm. We can
note that, even if the nodes were not initially sorted, computing ZLP

LB could still be done in O(n)
using the algorithm from Balas and Zemel [16] to determine the split node in linear time.

3.1.2 Greedy Upper Bound

Görtz and Klose [17] analyzed a range of popular greedy algorithms for the SSFCTP and showed
that the upper bounds they offer can be arbitrarily bad. Nevertheless, it can be useful to derive a
simple upper bound from the optimal solution to (12)-(14) inO(n). Our slightly modified version
of the greedy algorithm for the SSFCTP uses Definition 2.7 to improve this classical method
from the literature. Let x∗ be the optimal solution to the LP relaxation and p the maximal
element of the strictly totally ordered set (Y LP,≺), where Y LP = {1, 2, . . . , s} is the set of nodes
that are used in the linear relaxation. Also, let us denote by k = min{

∑s
i=1 bi − D, bp} the
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number of additional items that can be shipped from node s instead of node p without violating
constraint (3). A feasible solution to P1 is given by (x,y), where

yj =

{
1 for j = 1, . . . , s,

0 for j = s+ 1, . . . , n,

xj =


x∗j − k · 1(j = p) for j = 1, . . . , s− 1,

x∗j + k · 1(j 6= p) for j = s,

0 for j = s+ 1, . . . , n.

The objective value of this solution is ZG
UB = ZLP

LB + fs − (es − cs)x∗s − k(cp − cs). Increasing
the number of units used on the split node by k to reduce the usage of supplier p reduces the
objective value by k(cp − cs) compared to the classical greedy upper bound, in which nodes
j = 1, . . . , s− 1 are completely used and node s provides the remaining demand.

3.2 Knapsack Transformation

We now propose a transformation of P2, noted P3, in which constraint (7) is relaxed and the de-
cision variables zj , j ∈ {1, . . . , n} are removed. Furthermore, the reimbursement rate

∑n
j=1 cjzj

per excess unit is replaced by a multiplier λ, which can be interpreted as an approximation of the
unit cost of the optimal solution’s partial node, if it exists. This transformation of P2 exactly
corresponds to a min-knapsack problem (Min-KP) with weight bj and cost (cj − λ)bj + fj on
item j ∈ {1, . . . , n} and demand D.

[P3(λ)] Z3(λ) = min
n∑
j=1

(cjbj + fj)yj −
( n∑
j=1

bjyj −D
)
λ (16)

= λD + min
n∑
j=1

(
(cj − λ)bj + fj

)
yj (17)

s.t.

n∑
j=1

bjyj ≥ D, (18)

yj ∈ {0, 1} for j = 1, . . . , n. (19)

It is well known that a Min-KP can be transformed into a standard KP in linear time [18].
The previous problem is equivalent to

Z3(λ) = λD +

n∑
j=1

(
(cj − λ)bj + fj

)
−max

n∑
j=1

(
(cj − λ)bj + fj

)
ȳj (20)

s.t.
n∑
j=1

bj ȳj ≤
n∑
j=1

bj −D, (21)

ȳj ∈ {0, 1} for j = 1, . . . , n. (22)

where yj = 1− ȳj for j = 1, . . . , n.
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Since the binary program P3 does not include explicit decision variables that would allow
selecting a partial node, extracting feasible solutions to the SSFCTP from solutions to P3 will
require a systematic procedure to nominate a partial node. The following definition serves this
purpose.

Definition 3.1. Let y3 be a feasible solution to P3. The critical node p3 is defined as the
maximal element of the strictly totally ordered set (Y 3,≺), where Y 3 =

{
j ∈ {1, 2, . . . , n} : y3j =

1
}

is the set of nodes that are used in the solution.

Different sets of solutions to each of the previous formulations are now introduced. We note:

• S1 ⊂ Nn × {0, 1}n the set of feasible solutions to P1.

• S̃1 ⊆ S1 the subset of feasible solutions (x1,y1) to P1 that include at most one partial
node, selected as the maximal element of the strictly totally ordered set (Y 1,≺), where
Y 1 =

{
j ∈ {1, . . . , n} : y1j = 1

}
and in which no unnecessary fixed cost is paid (i.e. y1j ≤ x1j

∀j).

• S2 ⊂ {0, 1}n × {0, 1}n the set of feasible solutions to P2.

• S̃2 ⊆ S2 the subset of feasible solutions (y2, z2) to P2 that respect constraint (11).

• S3 ⊂ {0, 1}n the set of feasible solutions to P3.

• S̃3 ⊆ S3 the subset of feasible solutions y3 to P3 such that
∑n

j=1 bjy
3
j −D ≤ bp3−1, where

p3 respects Definition 3.1.

Bijective functions between these sets are now considered. These functions allow finding
feasible solutions to P1, the classical formulation of the SSFCTP, using feasible solutions to P2
and P3, which are defined on smaller decision spaces. The bijection proofs are given in Appendix
1.

• f̃2,1 : S̃2 → S̃1, f̃2,1(y
2, z2) = (x1,y1), where y1j = y2j and x1j = bjy

2
j − (

∑n
i=1 biy

2
i −D)z2j

for all j ∈ {1, . . . , n}.

• f̃3,2 : S̃3 → S̃2, f̃3,2(y
3) = (y2, z2), where y2j = y3j and z2j = 1(j = p3) for all j ∈ {1, . . . , n}.

• f̃3,1 : S̃3 → S̃1, f̃3,1(y
3) = f̃2,1

(
f̃3,2(y

3)
)
.

For (x1,y1) a solution to P1, (y2, z2) a solution to P2 and y3 a solution to P3(λ), their
corresponding objective value will respectively be noted Z1(x1,y1), Z2(y2, z2) and Z3(λ,y3).

The following proposition is at the core of KTA. It allows us to restrict our search for an
optimal solution to P1 to solutions in the subset S̃1, which can be directly discovered from
solutions to P3 through f̃3,1.

Proposition 3.2. S̃1 contains at least one optimal solution to P1.

Function f̃3,1 only gives a solution to P1 when a solution to P3 that is an element of S̃3 is
considered. Consequently, the following proposition gives a sufficient condition on the value of
the multiplier λ so that the resolution of P3(λ) leads to a feasible solution to P1.
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Proposition 3.3. For any multiplier value λ < e1, any optimal solution to P3(λ) is an element
of S̃3.

When a solution y3 ∈ S̃3 is obtained, the bijections defined above can be used to identify
the corresponding feasible solutions to P2 and P1. The relation between the objective value of
these solutions can be stated as follows

Proposition 3.4. Let y3 ∈ S̃3 be a solution to P3. Then,

Z1
(
f̃3,1(y

3)
)

= Z2
(
f̃3,2(y

3)
)

= Z3(λ,y3) + (λ− cp3)
( n∑
j=1

bjy
3
j −D

)
.

The next propositions state essential properties of P3(λ) that will be widely exploited
throughout the algorithm.

Proposition 3.5. Z3(λ) is a lower bound on the objective value of any solution (y2, z2) to P2
for which cjz

2
j ≤ λ for all j ∈ {1, . . . , n}. Equivalently, Z3(λ) is a lower bound on the objective

value of any solution (x1,y1) ∈ S̃1 which does not contain a partial node or contains a partial
node with a variable cost inferior or equal to λ.

Proposition 3.6. Let λ1 6= λ2 be two positive values and suppose that an optimal solution y3

to P3(λ1) is known, with objective value Z3(λ1,y
3) = Z3(λ1). Then, Z3(λ1) − (

∑n
j=1 bjy

3
j −

D)(λ2 − λ1) is an upper bound on Z3(λ2).

Proposition 3.7. Z3(λ) is a concave function.

In addition to a near-optimal feasible solution to the SSFCTP, the previous propositions
lead to various bounds that will be presented in the following sections. These bounds help at
reducing the computation time of the exact phase of KTA. They use a set L of multipliers λ
for which P3(λ) has been solved. Adding elements to L will generally improve the bounds, but
solving too many KPs is computationally cumbersome. Finding an appropriate set of multipliers
is therefore an important and non-trivial problem.

The closeness of λ to the unit cost of the partial node of the optimal solution will help
at finding a good incumbent while having a diverse set of multipliers will better restrict the
set of potential partial nodes. Based on these ideas, we introduce the heuristic P3Search,
which produces a set L of small cardinality allowing the bounds of Sections 3.2.1 to 3.2.4 to be
relatively tight. The algorithm starts by solving P3(λ) for λ = min

{
es, maxj∈{1,...,n}{cj}

}
. In

the subsequent steps, λ is set to the highest unit cost among the nodes selected in the previous
solution. This process is repeated until a same multiplier is visited twice, λ exceeds the linearized
cost of the split node or a solution without a partial node is found. Additional comments are
given in Section 3.2.5 on the choice of the initial multiplier value.

8

A Novel Reformulation for the Single-Sink Fixed-Charge Transportation Problem

CIRRELT-2022-05



Algorithm 1 P3Search

1: L← ∅
2: λ← min

{
es, maxj∈{1,...,n}{cj}

}
3: do
4: yλ ← arg miny∈S3

{
Z3(λ,y)

}
5: L← L ∪ {λ}
6: λ← maxj∈{1,...,n}{yλj cj}
7: while (λ /∈ L and λ ≤ es and

∑n
j=1 bjy

λ
j > D)

An example of the execution of P3Search is provided in Appendix 3.

3.2.1 Upper bound ZP3
UB

First, we present the upper bound ZP3
UB on the objective value of the SSFCTP that can be

extracted from the information retrieved through this algorithm.

For a given multiplier value λ ∈ L, let yλ be the optimal solution to P3(λ) identified during
the execution of P3Search and let pλ be its critical node as given by Definition 3.1. Let us denote
by M = {λ ∈ L : yλ ∈ S̃3} the set of multipliers such that f̃3,2(y

λ) is a feasible solution to P2.
Proposition 3.4 thus directly gives an upper bound on the SSFCTP’s objective value. For the
other multipliers λ ∈ L\M , an upper bound is given by Z3(λ)+λ(

∑n
j=1 bjy

λ
j −D)−(cpλbpλ+fpλ)

and corresponds to the objective value that is obtained when using all the nodes j 6= pλ such
that yλj = 1. Since

∑n
j=1 bjy

λ
j − bpλ ≥ D by definition of M , the total offer associated with this

solution is greater or equal to D and its value is therefore an upper bound on Z since all the
costs cj and fj are assumed to be positive. In summary, for each value λ ∈ L,

Z
P3(λ)
UB =

{
Z3(λ) + (λ− cpλ)(

∑n
j=1 bjy

λ
j −D) if

∑n
j=1 bjy

λ
j −D ≤ bpλ − 1,

Z3(λ) + λ(
∑n

j=1 bjy
λ
j −D)− (cpλbpλ + fpλ) otherwise.

The upper bound given by P3 is noted ZP3
UB = minλ∈L{Z

P3(λ)
UB }.

3.2.2 Lower bounds CP3
min on the partial node’s variable cost

Second, we introduce two lower bounds CP31
min and CP32

min on the variable cost of the partial node
of any solution from S̃1 that is susceptible to improve the incumbent value ZP3

UB. By excluding
potential partial nodes, these bounds contribute to reduce the number of knapsack subproblems
that will have to be solved during the exact phase of the algorithm.

If ZP3
UB = Z

P3(λ∗)
UB for a multiplier value λ∗ ∈M such that cpλ∗ = λ∗, then ZP3

UB = Z3(λ∗). In

this case, Proposition 3.5 implies that the objective value of a solution from S̃1 that includes a
partial node p with a variable cost cp ≤ λ∗ cannot be less than ZP3

UB. This leads to the lower
bound CP31

min = λ∗.

If such a multiplier λ∗ ∈ M does not exist, we set CP31
min = 0. In this case, a slightly weaker

bound CP32
min can still be calculated. Let us represent the points

(
λ, Z3(λ)

)
such that λ ∈ L
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in a graph with λ on the x−axis and Z3(λ) on the y−axis. We note λ0 = max
{
λ ∈ L :

Z3(λ) > ZUB

}
and λ1 = min

{
λ ∈ L : Z3(λ) < ZUB

}
, where ZUB is the incumbent objective

value. The equation of the line passing through points
(
λ0, Z

3(λ0)
)

and
(
λ1, Z

3(λ1)
)

is given

by g(α) = Z3(λ0) + (α − λ0)Z
3(λ1)−Z3(λ0)
λ1−λ0 . Consequently, for α∗ = λ0 + (λ1 − λ0) Z3(λ0)−ZUB

Z3(λ0)−Z3(λ1)
,

g(α∗) = ZUB and Proposition 3.7 therefore implies that ZUB ≤ Z3(α∗). By Proposition 3.5,
we conclude that ZUB is a lower bound on the objective value of any solution to P1 whose
partial node’s variable cost cp is inferior or equal to α∗. In other words, CP31

min = α∗ is a valid
lower bound on the partial node’s variable cost. If both sets max

{
λ ∈ L : Z3(λ) > ZUB

}
and

min
{
λ ∈ L : Z3(λ) < ZUB

}
are empty, then CP32

min = 0.

In short, the best lower bound on the partial node’s variable cost that can be extracted from
the data collected in P3Search is

CP3
min =

{
CP31
min if CP31

min > 0,

CP32
min otherwise.

3.2.3 Lower bound ZP3
LB(p) given that a node p is partial

Third, we detail a lower bound on the objective value of any solution (x1,y1) ∈ S̃1 that uses a
specific supplier p as a partial node.

This bound follows from Propositions 3.5 and 3.7. If cp ∈ L, it is directly given by Z3(cp).
Otherwise, for λ0 = max {λ ∈ L : λ < cp} and λ1 = min{λ ∈ L : λ > cp}, a lower bound on (Z|p
is partial) is given by Z3(λ0) − (cp − λ0)Z

3(λ0)−Z3(λ1)
λ1−λ0 . This bound corresponds to the y−axis

value of the point of x−axis value cp for the line passing by points
(
λ0, Z

3(λ0)
)

and
(
λ1, Z

3(λ1)
)
.

We will denote this lower bound by ZP3
LB(p) for each potential partial node p.

3.2.4 Lower and upper bounds LBP3
xp and UBP3

xp on xp given that p is partial

Finally, the last bounds that are directly extracted from the pairs
(
λ, Z3(λ)

)
, λ ∈ L concern the

quantity ordered from supplier p when it is used as a partial node.

Let y3 ∈ S̃3 be a feasible solution to P3(λ) with a corresponding solution f̃3,1(y
3) =

(x1,y1) ∈ S̃1 for which p3 = p, with cp ≥ CP3
min. For (x1,y1) to improve the incumbent

objective value ZUB, one must have

Z1(x1,y1)
(3.4)
= Z3(λ,y3) +

( n∑
j=1

bjy
3
j −D

)
(λ− cp) < ZUB. (23)

Also, for y3 not to have been discovered in P3Search, the inequality

Z3(λ,y3) ≥ Z3(λ) (24)

must hold ∀ λ ∈ L. The objective value Z3(λ,y3), as a function of λ, corresponds to the
line of equation

∑n
j=1(bjcj + fj)y

3
j − (

∑n
j=1 bjy

3
j −D)λ. Since the absolute value of its slope is
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given by the excess supply
∑n

j=1 bjy
3
j −D associated with solution y3, the previous constraints

offer both an upper bound and a lower bound on this amount for a solution with partial node’s
variable cost cp. By equations (23) and (24), we conclude that the inequality( n∑

j=1

bjy
1
j −D

)
(cp − λ) + ZUB > Z3(λ), ∀λ ∈ L (25)

must hold for (x1,y1) to improve the incumbent solution to P1. This is equivalent to the
following conditions.

n∑
j=1

bjy
1
j −D >

Z3(λ)− ZUB

cp − λ
∀λ ∈ L : λ < cp, (26)

n∑
j=1

bjy
1
j −D <

Z3(λ)− ZUB

cp − λ
∀λ ∈ L : λ > cp. (27)

Since solutions from S̃1 include at most one partial node, the number of shipments to be
made from p is directly given by xp = bp − (

∑n
j=1 bjy

1
j −D). Also, the excess supply is always

an integer. This leads to the bounds
LBP3

xp = bp −min{λ∈L:λ>cp}

{⌈
Z3(λ)−ZUB

cp−λ − 1
⌉}
,

UBP3
xp = bp −max{λ∈L:λ<cp}

{⌊
Z3(λ)−ZUB

cp−λ + 1
⌋}
.

When considering solutions where node p is partial, we can therefore narrow down our search
to solutions in which LBP3

xp ≤ xp ≤ UBP3
xp .

3.2.5 Choice of initial value of λ in P3Search

Our computational experiments have shown that taking λ = maxj∈{1,2,...,s}{cj} as the initial

multiplier value generally leads to identifying the best reachable upper bound ZP3
UB in a minimal

number of iterations. This follows from the fact that this value is generally a good approximation
of the maximum unit cost among the nodes used in an optimal solution to P1.

We nevertheless propose to use λ = min
{
es, maxj∈{1,...,n}{cj}

}
instead. It is frequent for

the equality
∑n

j=1 bjy
λ
j = D to hold despite this higher initial value of λ which favours solutions

with excess offer. In this case, if maxj∈{1,...,n}{cj} ≤ es, then CP31
min = maxj∈{1,...,n}{cj}. This

means that any solution including a partial node can be ignored and f̃3,1(y
λ) is an optimal

solution to the problem. These cases are frequent enough and the execution time reduction
associated with this early proof of optimality sufficiently large to justify this choice of initial
multiplier.

3.3 Dominance Relation

Some of the most expensive calculations of KTA are performed given that a node p is fixed
as partial and must be repeated for each node that may be partial in an optimal solution.
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Consequently, the efficiency of the algorithm relies in good part on our ability to exclude a
significant proportion of candidates before performing these calculations. For the remaining
candidates, restricting their partial use xp to a narrow interval [LBxp ,UBxp ] can still reduce the
computing time. The following dominance relation, by seeking to improve the bounds of Section
3.2.4, serves both these purposes.

Definition 3.8. If q is a node such that q � p and fq ≤ fp, then supplier p is said to be dominated

by q as a partial node for any usage xp ≤ LBDom
xp (q) =

{
bq if cq = cp,

min
{
fp−fq
cq−cp , bq

}
otherwise.

Indeed, for any solution (x1, y1) ∈ S̃1 in which xp ≤ LBDom
xp (q) units are shipped from the

partial node p, one can replace p by the unused node q to obtain a feasible solution with an
objective value of at most Z1(x1, y1). This leads to the following lower bound on xp given that
p is partial.

Proposition 3.9. Let LBDom
xp be defined as follows.

LBDom
xp = max{

q∈{1,...,n}:q�p and fq≤fp
}{bLBDom

xp (q) + 1c
}

(28)

There exists an optimal solution (x1, y1) ∈ S̃1 to P1 in which p is not partial or xp ≥ LBDom
xp .

3.4 Strong Linear Relaxation

By taking advantage of the theory developed in Section 3.2, the classical linear relaxation of the
SSFCTP can be adapted to pursue the same objective as the previous section. We propose a
stronger linear relaxation that is computationally more demanding than the dominance relation,
but leads to a better lower bound on xp given that a node p is partial. It also offers an upper
bound on this same variable as well as a a lower bound ZLP

LB(p) which aims to improve the one
described in Section 3.2.3.

3.4.1 Lower bound ZLP
LB(p) given that a node p is partial

By considering only the solutions to P1 that are elements of S̃1 and respect the bounds LBxp

and UBxp computed previously, a second lower bound on the objective value of (P1|p is partial)
can be obtained. Forcing all the nodes j such that j � p to be unused and adding constraints
LBxp ≤ xp ≤ UBxp to the linear relaxation (12)-(14) leads to the following problem.

ZLP
LB(p) = min fp + cpxp +

n∑
j=1
j 6=p

ejxj (29)

s.t.

n∑
j=1

xj = D, (30)

LBxp ≤ xp ≤ UBxp , (31)

0 ≤ xj ≤ bj1(j ≺ p) for j = 1, . . . , p− 1, p+ 1, . . . , n. (32)
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If UBxp +
∑n

j=1
j≺p

bj < D, then no feasible solution (x1,y1) ∈ S̃1 containing p as a partial

node and respecting constraint (31) exists. In this case, ZLP
LB(p) = +∞. Otherwise, let rp, tp ∈

{1, . . . , n} be the suppliers such that

rp−1∑
j=1
j≺p

bj < D −UBxp ≤
rp∑
j=1
j≺p

bj , (33)

tp−1∑
j=1
j≺p

bj < D − LBxp ≤
tp∑
j=1
j≺p

bj . (34)

All the nodes j < rp such j ≺ p must be completely used, while all the nodes j > tp different
from p must be unused in the optimal solution to respect the demand constraint. Finally, let
sp be the last node different from p to be used in the optimal solution to the strong linear
relaxation.

sp =

{
rp if erp ≥ cp,
max

{
j ∈ {rp, . . . , tp} : ej < cp and j ≺ p

}
otherwise.

(35)

The optimal solution to model (29)-(32) is given by

xj =



bj for j ∈ {1, . . . , sp − 1} : j ≺ p,
D −UBxp − Ep for j = sp if ej ≥ cp,
min{bj , D − LBxp − Ep} for j = sp if ej < cp,

D − Ep − xsp for j = p,

0 for j ∈ {1, . . . , p− 1, p+ 1, . . . , n} : j � p or j > sp,

where Ep =
∑sp−1

j=1
j≺p

bj is the total offer on the nodes respecting constraint (32) and preceding

the split node sp.

To obtain this solution, LBxp units are first used on node p. Afterwards, units are taken on
the nodes having the lowest linearized cost ej and respecting constraint (32) until the remaining
offer UBxp − LBxp available on p suffices to fill the demand. This step corresponds to using
nodes j ≤ rp − 1 such that j ≺ p completely. If erp ≥ cp, then sp = rp by (35). In this case, the
maximal offer UBxp is used on supplier p and the remaining demand of D − UBxp − Ep units
is satisfied using node sp. Otherwise, the following nodes that also respect constraint (32) are
used until all the demand is satisfied or a node with linearized cost ej ≥ cp is reached. The
remaining demand D−LBxp−Ep−xsp ∈ {0, 1, . . . ,UBxp−LBxp} is then filled using more units
from supplier p.

By construction, ZLP
LB(p) is a lower bound on the objective value of any solution (x1,y1) ∈ S̃1

containing p as a partial node and respecting the previously calculated bounds LBxp and UBxp

on its usage xp. Since KTA only considers solutions to P1 that are elements of S̃1, supplier p
no longer have to be considered as a potential partial node if ZLP

LB(p) ≥ ZUB, where ZUB is the
incumbent objective value.
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3.4.2 Lower and upper bounds LBLP
xp and UBLP

xp on xp given that p is partial

When the lower bound ZLP
LB(p) does not allow excluding p as a potential partial node, a strong

linear relaxation can be used to tighten bounds LBxp and UBxp in (31). These two bounds are
defined as follows: {

LBLP
xp = min{x : ZLP

LB(p) < ZUB given that xp = x},
UBLP

xp = max{x : ZLP
LB(p) < ZUB given that xp = x}.

They respectively correspond to the lowest and the highest usage xp on the partial node
p that can be enforced in a solution to the strong linear relaxation without the optimal value
ZLP
LB(p) to reach the incumbent value ZUB.

Suppose that the optimal solution x∗ to model (29)-(32) has been obtained as previously
explained with an optimal value ZLP

LB(p) < ZUB.

If the optimal usage x∗p on the partial node p is such that x∗p = LBxp , then the current lower

bound LBxp cannot be improved and LBLP
xp is set to LBxp . Otherwise, LBLP

xp can be obtained by
taking the unused units bj − x∗j on nodes sp, sp + 1, . . . respecting constraint (32) to reduce the
usage xp of the partial node. Each time a unit is taken from j instead of p, the objective value
increases by (ej − cp). This process must be repeated until xp = LBxp , the cost of the linear
relaxation reaches ZUB or all the offer on nodes j ≺ p has been used. The lower bound LBLP

xp is
given by the first value xp for which one of the previous conditions is met.

Similarly, if x∗p = UBxp , then the current upper bound UBxp cannot be improved and UBLP
xp is

set to UBxp . Otherwise, UBLP
xp can be obtained by reducing the usage x∗j on nodes sp, sp− 1, . . .

while increasing the number of shipments xp made from the partial node. Each time a unit
is taken from j instead of p, the objective value increases by (cp − ej). This process must be
repeated until xp = UBxp , the cost of the linear relaxation reaches ZUB or no more units are
used on nodes different from p. Once again, UBLP

xp corresponds to the usage xp on the partial
node when one of the previous conditions is first met.

4 Filtering

The various bounds described in the previous section generally allow restricting the set of nodes
that may be partially used in a solution that improves the incumbent to a very small subset
of suppliers P ⊆ {1, . . . , n}. From there, solving P1 exactly will require to solve a knapsack
subproblem for each of the remaining candidates p ∈ P . To reduce as much as possible the
number of nodes to be considered in each of these subproblems, a filtering of the non-partial
nodes is carried out beforehand.

4.1 Weak Linear Filtering

When considering the classical linear relaxation (12)-(14), as mentioned by Klose [1], if the flow
xj on a node j < s is fixed to 0, the LP bound will increase by at least bj(es− ej), since bj units
will have to be taken on suppliers i ≥ s instead of supplier j. Hence, if ZLP

LB + bj(es− ej) > ZUB,
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then node j cannot be unused in an optimal solution to P1. Consequently, when solving (P1|p
is partial) for a partial node p 6= j, the number xj of units ordered from supplier j can be fixed
to bj by trichotomy, since p has already been fixed as the only partial node in the solution.

Similarly, if the flow xj on a supplier j > s is fixed to bj , these bj units will each be paid at
a cost of ej instead of a cost inferior or equal to es. The LP bound will therefore increase by
at least bj(ej − es). If ZLP

LB + bj(ej − es) > ZUB, then node j cannot be complete in an optimal
solution to P1. In this case, when solving (P1|p is partial) for a partial node p 6= j, the number
of shipments xj to be made from j can be fixed to 0.

4.2 Strict Total Order Filtering

Since we only consider solutions to P1 that are elements of S̃1, when a partial node p ∈ P is
fixed in a given solution, the quantity ordered from nodes j such that j � p must be zero, by
definition of S̃1. The solutions that can be obtained during the exact phase of the algorithm
always contain a partial node. Hence, if we denote the maximal element of the strictly totally
ordered set (P,≺) by q, then it follows that any node j � q will have to be unused in the solution
to each remaining subproblem.

Given the set P of potential partial nodes and its maximal element q, this reasoning leads
to the following reformulation of the LP relaxation (12)-(14).

ZLP(q) = min
n∑
j=1

ejxj (36)

s.t.

n∑
j=1

xj = D, (37)

0 ≤ xj ≤
(
1− 1(j � q)

)
bj for j = 1, . . . , n. (38)

This problem corresponds to the linear program (12)-(14) solved for the subset of suppliers
Q =

{
j ∈ {1, . . . , n} : j ≺ q or j = q

}
. Consequently, its optimal solution x∗ is obtained as

explained in Section 3.1.1 considering only this subset. It is used directly to improve the weak
linear filtering described in the previous section.

4.3 Strong Linear Filtering

Let x∗ be the optimal solution to the LP relaxation (36)-(38) and sq ∈ Q its split node, defined
as follows:

sq−1∑
i=1
i∈Q

bi < D ≤
sq∑
i=1
i∈Q

bi. (39)

The bounds of Section 4.1 are obviously strengthened when all the nodes that are not part
of set Q are forced to be unused. However, an even stronger bound can be calculated for each
node j ∈ Q when the remaining offer bsq − x∗sq on the split node (or the number x∗sq of units
taken on it) is insufficient for bj more units to be respectively taken or unused from sq. When
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xj is fixed to 0 for a node j < sq such that j ∈ Q, the bound ZLP(q) will increase by

k0j =


bj(esq − ej) if bj ≤ bsq − x∗sq ,

(bsq − x∗sq)esq +
tj−1∑
i=sq+1
i∈Q

biei +
(
bj − (bsq − x∗sq)−

tj−1∑
i=sq+1
i∈Q

bi

)
etj − bjej otherwise.

The first case occurs when the remaining offer on the split node suffices to fill the demand of
bj units resulting from the removal of node j from the solution. In the second case, each node
i ∈ {sq, . . . , tj − 1 : i ∈ Q} is completely used and the remaining demand of

(
bj − (bsq − x∗sq)−∑tj−1

i=sq+1
i∈Q

bi
)

units is filled using supplier tj ∈ {sq + 1, . . . , n} ∩Q, which respects

tj−1∑
i=sq+1
i∈Q

bj < bj − (bsq − x∗sq) ≤
tj∑

i=sq+1
i∈Q

bj . (40)

Supplier tj corresponds to the split node of problem (36)-(38) when the offer bj is set to 0
on node j. If

∑n
i=1

j 6=i∈Q
bi < D, then no feasible solution (x1,y1) ∈ S̃1 exists in which node j

is unused. Therefore, k0j can be fixed to +∞ in this case. Otherwise, ZLP(q) + k0j corresponds
to the optimal value of the LP relaxation on subset Q when supplier j is removed from the
problem.

For j > sq, a similar bound can be obtained by reducing the number of shipments made from
nodes i ∈ {s, s − 1, . . . 1 : i ∈ Q} by bj in total, so that bj units can be shipped by supplier j.
Hence, when xj is fixed to bj for a node j > sq such that j ∈ Q, the bound ZLP(q) will increase
by

k1j =

bj(ej − esq) if bj ≤ x∗sq ,

bjej − x∗sqesq −
sq−1∑
i=rj+1
i∈Q

biei −
(
bj − x∗sq −

sq−1∑
i=rj+1
i∈Q

bi

)
erj otherwise,

where supplier rj ∈ {1, . . . , sq − 1} ∩Q is such that

sq−1∑
i=rj+1
i∈Q

bj < bj − x∗sq ≤
sq−1∑
i=rj
i∈Q

bj . (41)

Supplier rj is the split node of model (36)-(38) when the demand D is replaced by D−bj and
ZLP(q) + k1j corresponds to the optimal value of the LP relaxation on subset Q when supplier j
is completely used.

Note that variants of k0j and k1j can be applied to the split node j = sq to respectively
conclude, in some cases, that sq cannot be unused or completely used in an optimal solution
(x1,y1) ∈ S̃1. These simple adjustments are not detailed here for concision concerns.
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In summary, the filtering procedure we just introduced allows defining two subsets of nodes
R, T ⊆ Q defined as follows:{

R =
{
j ∈ {1, . . . , sq − 1} : ZLP(q) + k0j > ZUB

}
,

T =
{
j ∈ {sp + 1, . . . , n} : ZLP(q) + k1j > ZUB

}
.

In the following section, when solving a subproblem (P1|p is partial) for any node p ∈ P ,
the problem size will be reduced by fixing

yj =

{
1 ∀ j ∈ R : j 6= p,

0 ∀ j ∈ T : j 6= p,

xj =

{
bj ∀ j ∈ R : j 6= p,

0 ∀ j ∈ T : j 6= p.

As will be seen in Section 7, this method filters the vast majority of suppliers for all the
classes of problems we considered.

5 Exact Method

After solving P3(λ) for each multiplier λ ∈ L as described in Section 3.2, if the incumbent value
ZUB is such that ZUB ≤ Z3(λ) for at least one value λ ≥ 0, then it follows from Proposition
3.5 that a solution to P1 must contain a partial node to improve the current upper bound. In
this case, finding an optimal solution (x1,y1) ∈ S̃1 to (P1|p is partial) for each of the remaining
candidates p ∈ P suffices to conclude the resolution of the SSFCTP. The exact phase of KTA is
therefore to solve each of these |P | problems individually. This approach owes its efficiency to
the extremely restricted cardinality of P at this point and to the fact that the filtering methods
of Section 4 fix the vast majority of the decision variables for each subproblem.

5.1 Knapsack Transformation

Since we only consider solutions (x1,y1) ∈ S̃1, each subproblem (P1|p is partial) can be reduced
to a KP. In the following formulation, which is very similar to model (20)-(22), the fixed cost fp
is initially paid and the maximal flow UBxp on the partial node is used. The total cost cjbj + fj
is also paid on all the other nodes. Adding a node j 6= p or a group of items from p in the
knapsack can then be seen as removing them from our solution to the SSFCTP. The problem
is therefore to maximize the total cost of the unused nodes and that of the unused units of the
partial node while keeping enough active nodes so that the demand constraint of the original
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problem is respected.

[P4p] Z4
p = fp + UBxpcp +

n∑
j=1
j 6=p

(cjbj + fj)−max
( n∑
j=1
j 6=p

(cjbj + fj)ȳj +

n+dp∑
j=n+1

(cpb̂j)ȳj

)
(42)

s.t.
n∑
j=1
j 6=p

bj ȳj +
n+dp∑
j=n+1

b̂j ȳj ≤
n∑
j=1
j 6=p

bj + UBxp −D, (43)

ȳj ∈ {0, 1} for j = 1, . . . , n+ dp. (44)

The capacity of this KP, which is given by the right-hand side of constraint (43), corresponds
to the number of units that can be left unused on the nodes of the original problem given that
p is partial and that at most UBxp can be used on it.

The integer dp =
⌈

log2(UBxp − LBxp + 1)
⌉

is such that
∑dp−1

j=1 2j−1 < UBxp − LBxp ≤∑dp

j=1 2j−1. Each item j ∈ {1, . . . , p− 1, p+ 1, . . . , n} has a weight of bj and a profit of cjbj + fj ,
while the dp items j ∈ {n + 1, . . . , n + dp} compose the binary decomposition of the remaining
offer UBxp−LBxp on the partial node p after an initial number of shipments LBxp has been made

from it. Each item j ∈ {n+1, . . . , n+dp−1} has a weight of b̂j = 2j−n−1 and the item j = n+dp

has a weight of b̂j = (UBxp − LBxp)−
∑n+dp−1

j=n+1 2j−n−1. Each item j ∈ {n + 1, . . . , n + dp} has

a profit of cpb̂j .

This decomposition method has been introduced by Martello and Toth [18]. By selecting
one of the 2d

p
possible subsets of the items {n + 1, . . . , n + dp}, any total weight in the set

{0, 1, . . . ,UBxp − LBxp} and no weight outside this range can be obtained.

Setting a variable ȳj to 0 in the KP (42)-(44) for j ∈ {1, . . . , p− 1, p+ 1, . . . , n} corresponds
to using node j completely in the solution to P1, while j will be unused if ȳj = 1. Applying the
filtering methods detailed in Sections 4.2 and 4.3, one can directly set

ȳj =

{
0 ∀ j ∈ {1, . . . , p− 1, p+ 1, . . . , n} : j ∈ R,
1 ∀ j ∈ {1, . . . , p− 1, p+ 1, . . . , n} : j ∈ T ∪ {i : i � p}.

(45)

Furthermore, setting a variable ȳj to 1 for j ∈ {n + 1, . . . , n + dp} corresponds to reducing

the number of shipments to be made from p by b̂j . Consequently, this decomposition allows the
number of units to be used on node p to take on any value xp ∈ {LBxp , . . . ,UBxp} by introducing
only dp ∈ O

(
log(bp)

)
additional items to the knapsack subproblem.

Letting (ȳ∗) be an optimal solution to (42)-(44), an optimal solution (x1,y1) ∈ S̃1 to (P1|p
is partial) is given by

y1j =

{
1 for j = p,

1− ȳ∗j for j = 1, . . . , p− 1, p+ 1, . . . , n,
(46)

x1j =

{
UBxp −

∑n+dp

i=n+1 b̂j ȳ
∗
i for j = p,

bj(1− ȳ∗j ) for j = 1, . . . , p− 1, p+ 1, . . . , n,
(47)
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and its objective value is Z4
p .

Solving P4p for each candidate p ∈ P to find an optimal solution (x1,y1) ∈ S̃1 to (P1|p is
partial) with objective value Z4

p marks the end of KTA.

6 General Outline of KTA

This section organizes and summarizes how the models and the different bounds developed
in the preceding sections are integrated in our algorithm. In both the heuristic and the exact
phases, knapsack subproblems must be solved. To do so, COMBO, the state-of-the-art algorithm
presented in [19], is employed. The default parameters of COMBO are used.

6.1 Negative Costs Transformation

It has previously been assumed that all the fixed and variable costs fj and cj are nonnegative.
The principal instances of the SSFCTP previously explored in the literature also respect this
assumption. However, the SSFCTP arises as a Lagrangian relaxation subproblem of the FCTP
([3], [4]). In these cases, the unit costs cj of the SSFCTP are obtained by subtracting a positive
dual variable from the unit costs of the FCTP. These important instances can consequently
contain negative unit costs cj . Fortunately, a simple transformation can be performed to center
the minimal unit cost cj to 0 as well as to to eliminate any negative fixed cost fj .

Proposition 6.1. Redefining the unit costs by ĉj = cj − θ ∀j ∈ {1, . . . , n}, where θ = min{cj},
and solving the resulting problem P̂1 leads to the same optimal solution (x1,y1) as for the
original problem, with optimal value Ẑ1 = Z1 −Dθ.

Proposition 6.2. Fixing yj = 1 for each node j such that fj < 0 and solving the resulting
reduced problem leads to an optimal solution to the original problem, with the same objective
value.

6.2 Heuristic Phase

The execution of the algorithm itself begins by performing the heuristic phase, which essentially
consists in calculating the bounds given in Section 3. It can be decomposed as follows:

H1)

1. Calculate the lower and upper bounds ZLP
LB and ZG

UB. Set the global lower and upper
bounds ZLB and ZUB to ZLP

LB and ZG
UB respectively.

2. If ZLB = ZUB, an optimal solution has been found and the algorithm terminates.

The time complexity of this step is O(n).

H2)
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1. Apply P3Search. Terminate the execution after 5 iterations if the halting conditions have

not been met earlier. If minλ∈L{Z
P3(λ)
UB } < ZUB, update the incumbent solution.

2. If ZUB > Z3(λ0), where λ0 = min{λ ∈ L}, solve P3(0) and update the incumbent solution

accordingly. Otherwise, proceed to point 3. Since Z
P3(0)
UB ≤ Z3(0) by definition of Z

P3(λ)
UB ,

solutions without a partial node can now be ignored by Proposition 3.5.

3. Calculate the lower bound CP3
min on the partial node’s variable cost.

4. Let P =
{
j ∈ {1, 2, . . . , n} : cj > CP3

min

}
denote the set of nodes which could strictly

improve the incumbent solution when fixed as the partial node. Calculate the lower bound
ZP3
LB(p) and initialize the bound ZLB(p) to this value for each node p ∈ P . Remove p from

the set of candidates P if ZLB(p) ≥ ZUB. Otherwise, set the bounds LBxp and UBxp to

LBP3
xp and UBP3

xp respectively.

5. If P = ∅, an optimal solution has been found and the execution of KTA is completed.

The dominant operation is the execution of the P3Search algorithm. Since P3(λ) is solved
for at most a constant number of multiplier values, the time complexity of this step is the same
as solving a KP with n items and capacity (

∑n
j=1 bj − D). It is given by O(2t−s+1) in worst

case, where s and t correspond to the bounds of the decision core built in COMBO.

H3)

1. For each node p ∈ P , calculate bound LBDom
xp and update LBxp accordingly. For compu-

tational efficiency concerns, only consider suppliers q ∈ P as potential dominant nodes in
(28). Remove p from the set of candidates if LBxp > UBxp .

Denoting the cardinality of set P at the beginning of a step S by |PS|, the time complexity of
step H3 is bounded by O(|PH3|2) in worst case.

H4)

1. For each node p ∈ P , calculate the bound ZLP
LB(p) and update ZLB(p) accordingly. If

ZLB(p) < ZUB, calculate LBLP
xp and UBLP

xp to improve LBxp and UBxp .

2. If P = ∅ after this step, an optimal solution has been found and the algorithm terminates.

3. If the optimal solution does not have a partial node, it has necessarily already been found
during step H2. Setting the global lower bound ZLB to minp∈P {ZLB(p)} is therefore valid
and terminates the heuristic phase.

Using a naive implementation, the time complexity of this step is O(|PH4| · n). However, re-
specting the strict total order ≺ on the nodes of set P when computing the values ZLP

LB(p) makes
it possible to effectively adjust the solution to the strong linear relaxation when updating the
partial node p. Doing so, the complexity of this step can be reduced to O

(
n log(n) + |PH4| ·

min{n, max{bj}
min{bj} }

)
. See Appendix 2 for an explanation of this theoretical complexity.
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6.3 Filtering Phase

The SSFCTP is solved exactly by finding an optimal solution to (P1|p is partial) for each
remaining candidate p ∈ P . The filtering phase is applied prior to the exact resolution of these
subproblems in order to reduce their size.

F)

1. Execute the strict total order filtering of Section 4.2 to identify nodes j ∈ {i ∈ Q : i < sq}
that cannot be unused and nodes j ∈ {i ∈ Q : i > sq} that cannot be complete in an
optimal solution from S̃1.

2. Apply the strong filtering method of Section 4.3 to the nodes that have not been fixed
by the strict total order filtering. The resulting sets R and T respectively contain lists of
nodes j ∈ Q that must be complete and unused in a solution (x1,y1) ∈ S̃1 to (P1|p is
partial) for any node p ∈ P such that p 6= j.

The time complexity of this step is O
(
n · min{n, max{bj}

min{bj} }
)

in worst case, as detailed in

Appendix 2.

6.4 Exact Phase

Using the sets R and T constructed in the previous phase, the KPs (P1|p is partial) are reduced
and solved exactly for each p in P .

E)

1. For each node p ∈ P , find an optimal solution to P4p by solving the KP (42)-(44) after
reducing its size by applying the filtering rules (45). If Z4

p improves the incumbent value
ZUB, update the incumbent solution by applying equations (46) and (47).

2. At the end of this step, the incumbent solution (x∗,y∗) ∈ S̃1 is optimal. Its objective
value is ZUB = Z.

The exact phase has a complexity of O(|PE| · 2t−s+1), where s and t correspond to the bounds
of the decision core built in COMBO.

In summary, a total of O(1 + |PE|) KPs have to be solved during steps H2 and E. The

complexity of the other steps of KTA is bounded by O
(
n log(n)+ |PH3|2 +n ·min{n, max{bj}

min{bj} }
)
⊆

O(n2).

7 Computational Experiments

There are two main objectives guiding our computational experiments. The first is to compare
the performance of our algorithm with that of the state-of-the-art algorithms from the SSFCTP
literature as well as a recent MIP solver on a range of original and existing classes of instances.
The second objective is to provide an in-depth analysis of the performance of KTA and its
constituent steps.
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To do so, our algorithm, which has been coded in C, has been compared to the original C
implementation of the enumerative algorithm (EA) and the dynamic programming algorithm
(DP) proposed by Klose [1], that are the state of the art in the literature, and to Gurobi’s MIP
solver (version 9.1.1).

.

All experiments were conducted on a machine with an Intel(R) i7-10875H CPU @ 2.30GHz

along with 32 GB of RAM operated with Windows 10 Pro (version 1909) using the Gnu C  com-

piler (version 10.2.0). The instances and detailed results are available at https://github.com/
robinlegault/SSFCTP

7.1 Classes of Problems
Four different classes of problems are considered, for each of which a set of parameters is covered.
These four groups represent a total of 77 types of problems. Initially, 10 instances have been
generated using each of them, for a total of 770 instances.

The first two classes are inspired by Pisinger [20], who studied KPs of varying hardness,
while the last two are obtained using the generation methods described by Klose [1]. Each class
of problems defines a specific generation method for the demand D of the sink and the capacity
bj , the unit cost cj , the fixed cost fj and the total cost uj = cjbj + fj of node j ∈ {1, . . . , n}.

• Group 1: Uncorrelated data instances

This instance group is inspired by the Uncorrelated data instances described by Pisinger
[20] for the KP. It aims to produce easy instances of different sizes that preserve approxi-
mately the same structure independently of the number of nodes generated.

When generating a group of N instances of n suppliers j ∈ {1, . . . , n}, the instance i ∈
{1, . . . , N} is defined as follows:

bj
iid∼ unif{0.5n, n},

cj
iid∼ unif(8, 12),

fj
iid∼ unif{5n, 10n},

Di =
i

N + 1

n∑
j=1

bj .

A set ofN = 10 problems has been tested for each value of n ∈ {500, 1000, 5000, 10000, 25000}.
Increasing simultaneously the number of suppliers, their capacity and their fixed cost as
well as the demand of the sink limits the influence of n on the structure of the problem.
In particular, the proportion of instances for which the optimal solution contains a partial
node remains approximately constant regardless of the problem size. The definition of
the demands Di aims to vary the percentage of suppliers that will be used in the optimal
solution to each instance of a same parametrization. This way, the performance measure
of the algorithms to be tested ought to be more robust to variations in the problems’
structure.

• Group 2: Correlated data instances
This instance group is inspired by the Almost strongly correlated instances proposed in
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[20] for the KP. The number of nodes and the value of the correlation parameter can be
adjusted to produce instances of scalable difficulty having different structures.

The instance i ∈ {1, . . . , N} with n suppliers j ∈ {1, . . . , n} is defined as follows:

bj
iid∼ unif{5000, 10000},

uj = bj + αj ·
10000

β
, where αj

iid∼ unif(−1, 1),

fj
iid∼ unif{0.3 · uj , 0.5 · uj},

cj =
uj − fj
bj

,

Di =
i

N + 1

n∑
j=1

bj .

A set of N = 10 problems has been generated for each of the 20 combinations of parameters
with n ∈ {500, 1000, 5000, 10000, 25000} and β ∈ {5, 10, 100, 1000}.
While n controls the number of suppliers, β is the correlation parameter linking the lin-
earized cost of a node to its capacity. This correlation increases with β, which, up to a
point, makes it more difficult to filter nodes. Consequently, when β and n are both set to a
high value, one could expect the resulting problem to be harder. However, when β → +∞,
the linearized cost ej converges to 1 almost surely for each node. In this case, the structure
of the SSFCTP becomes very similar to that of a subset-sum problem. More precisely, any
solution (y, z) ∈ S2 respecting

∑n
j=1 bjyj = D would be optimal, with an objective value

Z = D that reaches the classical linear relaxation lower bound ZLP
LB . Hence, this type of

instance could in fact be relatively simple to solve. Indeed, since the capacities bj take
their value in a fixed interval, finding a subset of nodes whose total capacity is exactly D
becomes easier as the number of nodes increases.

• Group 3: Uncorrelated data instances with fixed demand
This class of instances is obtained by the generation method used by Klose [1] for his
first group of test problems. It produces instances of different sizes that have a constant
demand.

The properties of these uncorrelated instances are determined by two parameters. The
b-ratio Br = 100 · D/

∑n
j=1 bj estimates the percentage of nodes that are used in an

optimal solution, while the f -ratio Fr = f̄/(c̄b̄) is the ratio between the average fixed cost
f̄ = (1/n)

∑n
j=1 fj and the product of the average unit cost c̄ = (1/n)

∑n
j=1 cj with the

average capacity b̄ = (1/n)
∑n

j=1 bj of the suppliers.

The instance i ∈ {1, . . . , N} with n suppliers j ∈ {1, . . . , n} is first defined as follows:

b̃j
iid∼ unif(3, 5),

cj
iid∼ unif(8, 12),

f̃j
iid∼ unif(3, 5),

Di = 100,000.
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The capacities bj and the fixed costs fj are then obtained by scaling the values b̃j and f̃j
to meet the desired b-ratio and f -ratio. Finally, they are rounded to the nearest integer.
A set of N = 10 problems has been tested for each of the 48 combinations of parameters
used in [1], i.e. the parametrizations with n ∈ {500, 1000, 5000, 10000}, Br ∈ {5, 10, 25, 50}
and Fr ∈ {0.3, 0.6, 1.0}.
This generation method, first introduced by Herer et al. [2], produces very easy uncor-
related instances. In particular, since the demand D does not depend on the number
of suppliers, as n grows, the range of capacities bj becomes excessively small, leading to
highly structured instances in which many suppliers i strictly dominate other nodes j, as
defined in [2] (i.e. bj ≤ bi and fi + cix ≤ fj + cjx ∀ x ∈ {1, . . . , bj}).

• Group 4: Correlated data instances with small capacities
This class of instances is obtained by the generation method used by Klose [1] for his
second group of test problems. The generation method introduces a strong correlation
between the capacity of a node and its total cost.

The instance i ∈ {1, . . . , N} with n suppliers j ∈ {1, . . . , n} is defined as follows:

bj
iid∼ unif{10, 100},

uj
iid∼ unif{bj , 2 · bj},

fj = φj · uj , where φj
iid∼ unif(0.75, 1),

cj =
uj − fj
bj

,

Di = 0.5
n∑
j=1

bj .

A set ofN = 10 problems has been tested for each number of suppliers n ∈ {500, 1000, 5000, 10000}.
This generation method is the only one that was used by Klose [1] to test his algorithms on
correlated data instances. However, this class of problems is once again highly structured.
First, the capacities of the suppliers are small and undiversified. Also, since the values φj
are taken from the interval (0.75, 1), the importance of the fixed cost significantly exceeds
that of the unit costs. This property makes these instances very similar to KPs. Indeed, if
φj was equal to 1 for each node, the resulting SSFCTP would be equivalent to a Min-KP
with weight bj and cost fj on item j and demand D. We can consequently expect step
H2 of KTA, which specifically solves KPs that approximate the original SSFCTP, to offer
excellent bounds for this class of problems.

7.2 Computational Results

We now present the average computation time required by KTA, by the DP and EA methods of
Klose [1], and by Gurobi to solve instances from each group of problems. For each parametriza-
tion, N = 10 instances have been solved by each method, with a time limit of 5 minutes (300,000
ms) per instance. By construction of the SSFCTP, the relative optimality gap obtained by el-
ementary lower and upper bounds mechanically decreases as the number of suppliers and the
similarity between linearized costs increases. To adequately compare the performance of the
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Table 2: Average CPU times (ms) for Group 1 (Uncorrelated)

n KTA DP EA Gurobi

500 0.1 28.7 6.6 137.8

1,000 0.3 163.4 48.8 192.6

5,000 1.1 6,892.7 838.1 1,361.2

10,000 2.2 39,541.4 1,943.6 2,665.6

25,000 6.0 66,384.5(7) 20,879.1 10,612.9

(·) Number of instances, out of 10, that were not solved to opti-
mality within the time limit of 5 minutes (300,000 ms) or could
not be solved due to a memory error. The reported average is only
based on the instances that were solved within the time limit.

algorithms, the optimality tolerance has therefore been set to 0. The other default parameters
of the Gurobi MIP solver were left unchanged.

Results from Table 2 clearly show that our algorithm significantly outperforms the other
methods for the uncorrelated data instances of Group 1. The time required by KTA to solve
these instances seems to grow linearly with n, while the empirical time complexity of DP and
EA show exponential growth. Moreover, 7 of the 10 instances of size n = 25,000 could not be
solved by the DP algorithm within the 5 minutes time limit. Interestingly, as the size of the
problems grows, the general-purpose Gurobi MIP solver starts to outperform the two algorithms
of Klose [1], which still represented the state of the art of the SSFCTP literature.

The same trends emerge even more clearly from Table 3. In addition, while the computing
time required by DP, EA and Gurobi drastically increases with the correlation parameter β, the
performance of KTA remains essentially unchanged by β for a given number of suppliers. Even
more, for n = 25,000 and β = 1,000, where both DP and EA were unable to solve a single instance
in less than 300,000 ms, KTA only required 6.0 ms on average, which is 33% less than the time
required for the weakly correlated instances that were generated with β = 5. In comparison, the
time required by Gurobi was multiplied by more than 7, from 13,558.3 ms to 96,583.9 ms, for
the same pair of parametrizations. As explained previously, the structure of Group 2 instances
become very similar to that of the subset-sum problem when both n and β grow, making the
resulting problems straightforward to solve by appropriate approaches. These results confirm
that the procedure used by KTA effectively exploits this structure. More specifically, step H2
systematically identifies an optimal solution and proves its optimality for Group 2 test problems
with n ≥ 10,000 and β ≥ 100 by solving a single KP, which can be done in a few milliseconds
(see Section 7.4 for further details).

The problems of Groups 3 and 4 once again confirm the superiority of our algorithm over
the existing methods. As noticed by Klose [1], the execution time of both DP and EA increases
as the f -ratio approaches 1. While this same behaviour is clearly observable for Gurobi, KTA
shows the opposite tendency, especially for the problems of larger size. To explain this, we can
note that the probability for the optimal solution to contain a partial node decreases for large
values of n. As shown in Table 6, while 90% of the optimal solutions to the problems of Group 3
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Table 3: Average CPU times (ms) for Group 2 (Correlated)

n β KTA DP EA Gurobi

500 5 0.3 1,226.9 2.5 104.7

10 0.3 892.2 4.3 143.0

100 0.5 5,484.6 117.6 1,045.7

1,000 1.6 17,942.9 1,658.4 3,538.3

1,000 5 0.4 1,103.9 7.1 124.7

10 0.4 1,446.7 16.9 194.3

100 0.9 10,770.8 766.0 1,623.8

1,000 1.4 56,891.8 7,708.3 5,814.7

5,000 5 1.7 7,530.5 367.5 829.6

10 1.7 9,136.5 1,709.7 693.7

100 1.9 79,393.8 31,709.9 13,121.3

1,000 1.7 24,092.2(9) 139,554.8(5) 17,871.7

10,000 5 3.2 10,215.4 977.6 2,274.1

10 3.4 8,389.9 3,393.3 3,238.0

100 2.4 84,854.4(6) 107,727.6 26,031.2

1,000 3.4 44,854.4(8) 215,663.3(8) 54,575.1

25,000 5 9.0 22,975.6(1) 13,533.5 13,558.3

10 6.2 39,935.5 30,926.3 22,579.6

100 6.7 66,884.5(7) 84,229.2(9) 67,885.7

1,000 6.0 * * 96,583.9

∗ None of the 10 instances has been solved to optimality within
the time limit.
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Table 4: Average CPU times (ms) of KTA, DP and EA for Group 3 (Uncorrelated with
fixed demand)

n Br KTA, Fr DP, Fr EA, Fr Gurobi, Fr

0.3 0.6 1 0.3 0.6 1 0.3 0.6 1 0.3 0.6 1

500 5 0.3 0.3 0.3 570.4 1,271.4 1,568.0 0.6 8.5 7.5 77.9 92.3 66.5

10 0.3 0.2 0.3 268.2 335.7 553.5 1.0 3.9 26.4 95.7 120.9 88.1

25 0.3 0.2 0.2 73.8 111.9 112.3 5.1 4.2 14.0 96.5 83.8 108.9

50 0.2 0.1 0.1 24.8 41.6 48.5 4.6 8.3 16.1 90.8 108.8 127.1

1,000 5 0.5 0.5 0.5 348.8 390.1 855.5 3.9 20.0 42.4 85.9 106.8 214.5

10 0.5 0.4 0.4 84.5 240.1 361.9 10.1 44.4 42.1 86.1 149.9 165.7

25 0.4 0.3 0.2 50.2 60.9 73.4 9.5 20.2 31.0 135.2 145.2 171.5

50 0.3 0.1 0.2 19.5 17.3 45.5 6.0 35.8 37.0 178.6 123.6 226.3

5,000 5 2.0 1.1 1.2 84.8 166.4 312.6 157.6 256.6 19,856.7 240.2 325.5 397.0

10 1.7 0.5 0.4 73.5 116.2 116.7 101.8 660.5 337.0 257.1 355.2 324.1

25 1.3 0.4 0.4 34.8 44.0 64.4 62.8 89.3 106.5 355.8 387.1 380.7

50 0.4 0.4 0.4 20.1 30.8 62.9 40.5 83.4 167.1 301.7 398.9 612.8

10,000 5 3.7 1.3 0.9 80.9 155.6 324.3 524.2 3,432.2 13,799.1 433.1 515.4 675.7

10 3.1 0.8 0.8 75.3 167.9 114.8 218.9 414.3 3,123.2 491.2 421.4 736.0

25 2.1 0.8 0.9 21.5 75.9 53.7 72.3 239.0 297.6 424.9 716.0 723.6

50 0.8 0.8 0.7 18.2 35.7 40.1 85.0 229.9 198.0 568.2 826.0 663.7

Table 5: Average CPU times (ms) of KTA, DP and EA
for Group 4 (Correlated with small capacities)

n KTA DP EA Gurobi

500 0.1 1.6 5.5 52.2

1,000 0.1 3.2 149.6 118.3

5,000 0.5 15.0 20,429.4(5) 371.1

10,000 0.9 24.5 115.5(8) 760.2
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Table 6: Percentage of instances with an optimal solution having a partial node by group

n Group 1
Group 2,
β = 5

Group 2,
β = 10

Group 2,
β = 100

Group 2,
β = 1,000

Group 3 Group 4

500 60 100 97 80 19 90 0

1,000 68 96 92 67 7 58 0

5,000 69 84 76 19 0 9 0

10,000 77 80 66 1 0 1 0

25,000 71 63 47 0 0 - -

contained a partial node when n = 500, this frequency dropped to only 1% for n = 10,000. This
fact is coherent with the reduced capacities which come with high values of n for the generation
method of Group 3 test problems. Moreover, as Fr increases, the structure of the SSFCTP gets
closer to that of a Min-KP, since the contribution to the objective of the fixed costs becomes
proportionally more important. Hence, our approximation of the SSFCTP by a KP becomes
more precise as Fr increases and bounds from step H2 are therefore strengthened. This leads to
the observed reduction in computing time.

7.3 Analysis of the Instance Generation Methods

To support the analysis of the four classes of problems that were tested, we computed the pro-
portion of data instances for which the optimal solution contains a partial node on an extended
collection of instances. Each entry of Table 6, except for Group 3, has been computed on a
set of N = 100 new instances using common random numbers (CRN) to minimize the variance
in results due to the data generation process and therefore better isolate the influence of the
parameters on the problem structure. For Group 3, the same 120 instances that were used in
the previous section for each value of n has been preserved to cover the range of f -ratios and
b-ratios that were considered by Klose [1] and Herer et al. [2].

This measure is an important indicator of the structure of the SSFCTP. Indeed, it appears
that, for some groups of instances, the optimal solution never includes a partial node. For such
problems, the distinction between the fixed cost fj and the transportation cost cjbj of a supplier
completely disappears, since the total cost uj is systematically paid on each selected node. More
importantly, this means that solving a single Min-KP, given by model P3(λ), with λ = 0, always
suffices to find the optimal solution for these instances. Notably, the optimal solution to each
of the 440 instances of Group 4 that we generated did not contain a partial node. Furthermore,
when using KTA, P3Search required the resolution of one single KP per instance and the bounds
of step H2 sufficed in each case to prove the optimality of the resulting solution. Thus, not a
single computation has been executed during steps H3, H4, F and E for problems of Group 4.
We can therefore conclude that the supposedly hard instances considered by Klose [1] can now
be regarded as relatively simple instances of the Min-KP.

As expected, the generation method of Group 1 test problems seems to preserve the same
structure for every problem size, with approximately 70% of the optimal solutions containing
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Table 7: Average CPU time (ms) per step of KTA for Group 1

n H1 H2 H3 H4 F E Total

500 0.0 0.1 0.0 0.0 0.0 0.0 0.1

1,000 0.0 0.2 0.0 0.0 0.0 0.0 0.3

5,000 0.1 0.7 0.0 0.3 0.0 0.0 1.1

10,000 0.2 1.3 0.1 0.6 0.0 0.0 2.2

25,000 0.5 4.0 0.2 1.4 0.0 0.0 6.0

Average 0.2 1.3 0.1 0.5 0.0 0.0 1.9

a partial node. This property is desirable, since it makes it possible to test the influence of
problem size on the performance of algorithms without introducing a bias in the analysis that
would be due to an underlying transformation of the optimal solution properties.

In this regard, the generation method of Group 2 is complementary to that of Group 1. Its
parameters jointly transform the problem structure from a pure SSFCTP for which the optimal
solution always requires a partial node and is therefore quite distinct from a KP, to a problem
that closely resembles the KP and the subset-sum problem as n and β increase. Together, these
two classes of problems permit a robust analysis of the performance of algorithms on a range of
SSFCTPs that aims to cover most of the important problem structures that are likely to emerge
from future application contexts.

7.4 Performance Analysis of KTA

Tables 7 and 8 present the average computation time required by each step of the algorithm to
solve the instances of Groups 1 and 2 that were used in Section 7.2. The majority of the execution
time, respectively 65% for Group 1 and 72% for Group 2, has been spent in H2, the knapsack
transformation step. Overall, H4, the strong linear relaxation step, was the second most time-
consuming, followed by H3, the dominance relation step and H1, the elementary bounds phase.
The filtering and exact phases together required less than 1% of the total computing time for
both groups.

These computation times reflect quite directly the relative contribution of each step to the
whole resolution process. A notable fact is that, for each of the 3,670 data instances we consid-
ered, the optimal solution was identified by the knapsack transformation method of step H2. In
other words, the equality ZP3

UB = Z held for each problem and the exact phase could never im-
prove this bound. Although it is easy to build very small artificial instances such that ZP3

UB > Z,
this never happens on our test instances. In practice, the only purpose of the subsequent steps,
including the exact phase, is therefore to prove the optimality of the solution identified in step
H2.

Tables 9 and 10 show the remaining percentage of partial nodes candidates after steps H2,
H3 and H4. For Group 1 instances, the observed percentages after each step are relatively stable
from one size of problem to another. The knapsack transformation step filters approximately
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Table 8: Average CPU time (ms) per step of KTA for Group 2

n β H1 H2 H3 H4 F E Total

500 5 0.0 0.1 0.0 0.0 0.0 0.0 0.3

10 0.0 0.2 0.0 0.0 0.0 0.0 0.3

100 0.0 0.4 0.0 0.0 0.0 0.0 0.5

1,000 0.0 1.5 0.0 0.0 0.0 0.0 1.6

1,000 5 0.0 0.2 0.1 0.1 0.0 0.0 0.4

10 0.0 0.2 0.0 0.1 0.0 0.0 0.4

100 0.0 0.8 0.0 0.0 0.0 0.0 0.9

1,000 0.0 1.4 0.0 0.0 0.0 0.0 1.4

5,000 5 0.1 0.9 0.3 0.4 0.0 0.0 1.7

10 0.1 1.0 0.2 0.4 0.0 0.0 1.7

100 0.1 1.7 0.0 0.0 0.0 0.0 1.9

1,000 0.1 1.7 0.0 0.0 0.0 0.0 1.7

10,000 5 0.2 1.5 0.8 0.7 0.1 0.0 3.2

10 0.2 1.9 0.5 0.8 0.0 0.0 3.4

100 0.2 2.2 0.0 0.0 0.0 0.0 2.4

1,000 0.2 3.2 0.0 0.0 0.0 0.0 3.4

25,000 5 0.5 3.9 2.4 2.0 0.2 0.1 9.0

10 0.6 3.5 0.8 1.3 0.0 0.0 6.2

100 0.5 6.2 0.0 0.0 0.0 0.0 6.7

1,000 0.5 5.5 0.0 0.0 0.0 0.0 6.0

Average 0.2 1.9 0.3 0.3 0.0 0.0 2.7
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Table 9: Percentage of nodes that can be
partial after each filtering step for Group 1

n H2 H3 H4

500 0.64 0.32 0.00

1,000 3.86 0.66 0.00

5,000 2.70 0.16 0.00

10,000 3.09 0.10 0.00

25,000 2.48 0.06 0.00

Average 2.55 0.26 0.00

97.5% of the candidates on average. From there, the dominance step divides the cardinality of
P by approximately 10 and the strong linear relaxation eliminates virtually all the remaining
candidates. The exact phase is therefore almost never necessary for the instances of Group 1.
For Group 2 test problems, as the correlation parameter increases, the average percentage of
candidates remaining after H2 goes from more than 25% for β = 5 to less than 0.1% for β =
1,000. This result illustrates that this step of the algorithm is especially adapted to these last
instances of the SSFCTP, which are by construction very similar to KPs or subset-sum problems.
Fortunately, for small values of β, the bounds from H3 and H4 compensate for the weakness of
those of H2. The percentage of potential partial nodes that have to be considered during the
exact phase in consequently of only 0.03% on average for the correlated data instances.

Tables 11 and 12 give some details about the knapsack subproblems that are solved in both
the heuristic and the exact phases. The KPs that are considered in the heuristic phase are solved
within P3Search during step H2 and correspond to model P3(λ) for different reimbursement
rates λ. They are therefore quite different in structure from the ones of the exact phase, which
are solved during step E to obtain the optimal solutions to the subproblems (P1|p is partial)
using model P4p for the remaining candidates p ∈ P . In the latter case, the filtering procedure
described in step F significantly reduces the number of nodes that have to be considered in
the KPs. Indeed, for both Group 1 and Group 2 test problems, for every problem size, the
average number of items to be considered per knapsack subproblem was of approximately 40,
which corresponds to 8% of the suppliers when n = 500 and less than 0.002% of them when
n = 25,000. In addition, the exact phase was required for only 1 of the 40 instances of the first
group of problems and for 35 of the 200 instances of the second one, for an average of less than
0.2 KP solved per instance. During the heuristic phase, 1.6 KP was required per instance for
both groups on average.

In total, KTA required the resolution of fewer than 2 KPs per instance on average for both
Group 1 and Group 2 test problems. Since the resolution of these subproblems represents the
majority of the computation time of KTA, we can conclude that our new method, at least for
the types of instances that were considered in this article, fills the gap between the state of the
art on KPs and SSFCTPs.
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Table 10: Percentage of nodes that can be
partial after each filtering step for Group 2

n β H2 H3 H4

500 5 29.08 10.84 0.16

10 17.40 7.94 0.24

100 2.62 2.38 0.08

1,000 0.34 0.32 0.04

1,000 5 27.86 8.55 0.05

10 15.94 6.49 0.00

100 0.59 0.57 0.01

1,000 0.00 0.00 0.00

5,000 5 25.60 4.79 0.00

10 13.27 3.55 0.00

100 0.05 0.05 0.00

1,000 0.00 0.00 0.00

10,000 5 24.95 3.67 0.00

10 14.42 3.04 0.00

100 0.00 0.00 0.00

1,000 0.00 0.00 0.00

25,000 5 26.00 2.93 0.00

10 7.44 1.26 0.00

100 0.00 0.00 0.00

1,000 0.00 0.00 0.00

Average 10.28 2.82 0.03

Table 11: KPs solved for Group 1

Average number of KPs per instance Properties of exact phase’s KPs

n
Heuristic

phase
Exact
phase

Total
Instances requiring

the exact phase
Average number of items
per KP in the exact phase

500 1.4 0.0 1.4 0 -

1,000 1.7 0.0 1.7 0 -

5,000 1.6 0.0 1.6 0 -

10,000 1.7 0.1 1.8 1 40.0

25,000 1.7 0.0 1.7 0 -

Average 1.6 0.0 1.6 0.2 40.0
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Table 12: KPs solved for Group 2

Average number of KPs per instance Properties of exact phase’s KPs

n β
Heuristic

phase
Exact
phase

Total
Instances requiring

the exact phase
Average number of items
per KP in the exact phase

500 5 2.4 0.8 3.2 5 27.9

10 2.1 1.3 3.4 7 27.4

100 1.8 0.4 2.2 4 44.0

1,000 1.2 0.2 1.4 1 70.0

1,000 5 2.0 0.5 2.5 5 21.6

10 2.0 0.0 2.0 0 -

100 1.5 0.1 1.6 1 56.0

1,000 1.0 0.0 1.0 0 -

5,000 5 2.0 0.2 2.2 2 37.5

10 1.9 0.1 2.0 1 29.0

100 1.1 0.1 1.2 1 56.0

1,000 1.0 0.0 1.0 0 -

10,000 5 1.8 0.3 2.1 3 37.7

10 1.9 0.3 2.2 2 36.3

100 1.0 0.0 1.0 0 -

1,000 1.0 0.0 1.0 0 -

25,000 5 1.9 0.3 2.2 3 39.3

10 1.6 0.0 1.6 0 -

100 1.0 0.0 1.0 0 -

1,000 1.0 0.0 1.0 0 -

Average 1.6 0.2 1.8 1.8 33.6∗

∗ Weighted by the number of KPs solved in the exact phase for each type of instances
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8 Conclusion

We introduced a binary non-linear programming reformulation of the single-sink fixed-charge
transportation problem. Using the knapsack problem that is obtained by a transformation of
this new model, we developed several bounds, some of which are subsequently improved by a
dominance relation between potential partial nodes and a strong linear relaxation to produce
an efficient and robust heuristic method. A new filtering procedure allows us to complete
the exact algorithm by iteratively fixing a partial node and solving a reduced-size knapsack
problem. As shown on a large set of instances, the knapsack transformation algorithm completely
outperforms the existing algorithms from the literature. In particular, a reduction of several
orders of magnitude in the resolution time of the state-of-the-art methods occurs for large and
highly structured instances of the SSFCTP.
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Appendix 1

Proof of Proposition 2.5 : First, (x1,y1) respects constraint (2), since
n∑
j=1

x1j =
n∑
j=1

(
bjy

2
j −

( n∑
i=1

biy
2
i −D

)
z2j

)
(8)
=

n∑
j=1

bjy
2
j −

( n∑
j=1

bjy
2
j −D

)
= D.

Now, let p be the only node such that z2p = 1. Since x1j = bjy
2
j = bjy

1
j ∀j 6= p, constraint (3)

is respected for these nodes. Also, y1p = 1 and x1p = bp − (
∑n

i=1 biy
2
i − D) ∈(6),(7) {1, . . . , bp}.

Hence, constraint (3) is respected. Finally, constraint (4) is trivially respected by construction
of solution (x1,y1). Consequently, (x1,y1) is a feasible solution to P1.

The following shows that the objective values Z1(x1,y1) and Z2(y2, z2) are the same.

Z1(x1,y1) =

n∑
j=1

(cjx
1
j + fjy

1
j ) , by (1)

=

n∑
j=1

(
cj

(
bjy

2
j −

( n∑
i=1

biy
2
i −D

)
z2j

)
+ fjy

2
j

)
, by defn. of (x1,y1)

=
n∑
j=1

(cjbj + fj)y
2
j − cp

( n∑
j=1

bjy
2
j −D

)
, by defn. of x1p

=
n∑
j=1

(cjbj + fj)y
2
j −

( n∑
j=1

bjy
2
j −D

) n∑
j=1

cjz
2
j , by defn. of p

= Z2(y2, z2)

�

Proof of Proposition 2.6 : By Proposition 2.5, a feasible solution to P1 is associated with
any feasible solution to P2 and their objective value is the same. Hence, Z1 ≤ Z2.

Now, let (x∗,y∗) be an optimal solution to P1 in which at most one of the nodes that are
used in the solution can be partial and in which no fixed cost is uselessly paid, i.e. y∗j ≤ x∗j
∀j ∈ {1, . . . , n}. Such an optimal solution to P1 exists by Proposition 2.4 and because setting
yi = 1 for a node i such that xi = 0 cannot improve the solution since fj ≥ 0 ∀j by hypothesis.

Let p be the partial node of (x∗,y∗) if it exists and an arbitrary node j such that y∗j = 1

otherwise. We will now consider the solution (y2, z2) ∈ {0, 1}n×{0, 1}n such that z2j = 1(j = p)

and y2j = y∗j for all j ∈ {1, . . . , n}. (y2, z2) is a feasible solution to P2. First, it respects constraint
(6), since

n∑
j=1

bjy
2
j =

n∑
j=1

bjy
∗
j

(3)

≥
n∑
j=1

x∗j
(2)
= D (48)

Also, since (x∗,y∗) is a feasible solution to P1 in which p is the only node that may be
partial, the following equality holds.

n∑
j=1

x∗j =

n∑
j=1
j 6=p

bjy
∗
j + x∗p

(2)
= D (49)
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From there, (y2, z2) also respects constraint (7), because

n∑
j=1

bjy
2
j −D =

n∑
j=1

bjy
∗
j −D

=
n∑
j=1
j 6=p

bjy
∗
j −D + bp

=
( n∑
j=1
j 6=p

bjy
∗
j + x∗p

)
−D + bp − x∗p

(49)
= bp − x∗p
≤ bp − 1 , since x∗p ≥ y∗p = 1 by hypothesis

=

n∑
j=1

bjz
2
j − 1

Also, (8) is respected, since
∑n

j=1 z
2
j =

∑n
j=1 1(j = p) = 1. Finally, (9), as well as (10),

directly follow from the construction of (y2, z2). Consequently, (y2, z2) is a feasible solution to
P2.

Applying Proposition 2.5 to it leads to the feasible solution (x1,y1) to P1, where y1j = y2j = y∗j
and

x1j = bjy
2
j−
( n∑
i=1

biy
2
i−D

)
z2j =

bjy
∗
j = x∗j for j = 1, . . . , p− 1, p+ 1, . . . , n,

bj −
(∑n

i=1
i6=p

biy
∗
i −D

) (49)
= x∗j for j = p.

Hence, (x1,y1) = (x∗,y∗). By Proposition 2.5, we conclude that Z2 ≤ Z1. Therefore,
Z1 = Z2. �

Proof of Proposition 2.8 : Constraint (11) enforces that the partial node p, in any solution
to P2, if it exists, is the node with the maximal unit cost cj among suppliers shipping a positive
number of units. By Proposition 2.4, if an optimal solution to P1 containing a partial node p
exists, then yj = 0 for each node j ∈ {1, . . . , n} such that cj > cp. Hence, constraint (11) does
not make infeasible any optimal solution to P2 that leads to an optimal solution to P1 through
Proposition 2.5.

If an optimal solution (y2, z2) to P2 contains a partial node i such that ci = cj and bi < bj ,
then, using the

∑n
j=1 bjy

2
j excess units on j instead of i (i.e. fixing yi = 0 and yj = 1) would

lead to another feasible solution with the same objective value that respects (11). Consequently,
in case of equality on the maximal unit cost cj among the nodes that are used in a solution to
P2, the candidate with the greatest capacity bj can systematically be selected.

Note that the case (ci = cj and bi = bj and i < j) results from an arbitrary choice. Its last
condition could have been replaced by i > j in Definition 2.7. It is however necessary to include
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one or another of these conditions for ≺ to be a connected binary relation and thus a strict total
order. �

Proof of Bijection f̃2,1 : First, let us demonstrate that f̃2,1 is injective. Let (y2A, z2A), (y2B, z2B) ∈
S̃2 be solutions such that f̃2,1(y

2A, z2A) = (x1A,y1A) and f̃2,1(y
2B, z2B) = (x1B,y1B).

Suppose that (x1A,y1A) = (x1B,y1B). This implies that y1Aj = y1Bj for all j ∈ {1, . . . , n}.
By definition of f̃2,1, this means that y2Aj = y2Bj for each supplier j.

Now, by definition of set S̃2, (y2A, z2A) and (y2B, z2B) both respect constraint (11). Con-
sequently, z2Aj = y2Aj 1(j � i ∀ i 6= j : y2Ai = 1) and z2Bj = 1(j � i ∀ i 6= j : y2Bi = 1). Thus, the

fact that y2Ai = y2Bi ∀ i implies that z2Aj = z2Bj for all j ∈ {1, . . . , n}.

Hence, (y2A, z2A) = (y2B, z2B). Therefore, f̃2,1 is injective.

Now, to demonstrate that f̃2,1 is surjective, it suffices to refer to the proof of Proposition (2.6)
given above. We have shown that, for an optimal solution (x∗,y∗) to P1 in which at most one
node is partial, a feasible solution to (y2, z2) ∈ S̃2 can be build such that f̃2,1(y

2, z2) = (x∗,y∗).
Nowhere in the proof the optimality of (x∗,y∗) was used. The same proof in thus applicable
to any feasible solution to P1 that admit at most one partial supplier. Since each element of
S̃1 contains at most one partial node by definition, which is selected as the maximal element of
the strictly totally ordered set (Y 1,≺), where Y 1 =

{
j ∈ {1, . . . , n} : y1j = 1

}
, setting y2j = y1j

for all j ∈ {1, . . . , n} and fixing the value of the decision variables z2j according to equation

(11) leads to a feasible solution (y2, z2) ∈ S̃2 such that f̃2,1(y
2, z2) = (x1,y1) for any solution

(x1,y1) ∈ S̃1, by the proof of Proposition (2.6).

Hence, f̃2,1 is injective and surjective, thus bijective. �

Proof of Bijection f̃3,2 : First, let us demonstrate that f̃3,2 is injective. Let (y3A), (y3B) ∈ S̃3

be solutions such that f̃3,2(y
3A) = (y2A, z2A) and f̃3,2(y

3B) = (y2B, z2B).

Suppose that (y2A, z2A) = (y2B, z2B). This implies that y2Aj = y2Bj for all j ∈ {1, . . . , n}.
By definition of f̃3,2, this means that y3Aj = y3Bj for each supplier j. Hence, (y3A) = (y3B).

Therefore, f̃3,2 is injective.

Now, let us demonstrate that f̃3,2 is surjective. We consider a solution (y2, z2) ∈ S̃2. Since
P3 is obtained from P2 by removing the decision variables yj as well as a subset of constraints,
setting y3j = y2j ∀j ∈ {1, . . . , n} leads to a feasible solution y3 ∈ S3. Furthermore, the fact that

y3 is an element of the subset S̃3 follows from constraint (7), which must be respected by the
vector y2 and therefore by y3.

Let us consider solution (y∗, z∗) = f̃3,2(y
3). The definition of f̃3,2 directly implies that

y∗ = y2. Furthermore, since supplier p3, defined in 3.1, corresponds to the maximal element of
the set of nodes that are used in solution y3 and consequently in solution y∗ according to the
strict total order ≺, then setting z∗j = 1(j = p3) for all j ∈ {1, . . . , n} is equivalent to setting

z∗j = y∗j1(j � i ∀i 6= j : y∗i = 1). Consequently, since (11) is respected by (y2, z2) by definition

of S̃2, then z∗ = z2. Thus, f̃3,2(y
3) = (y2, z2). Therefore, f̃3,2 is also surjective. �
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Proof of Bijection f̃3,1 : Function f̃3,1 being the composition of two bijective functions, it is
also bijective. �

Proof of Proposition 3.2 : We have shown that f̃2,1 is a bijective function from the set of
feasible solutions to P2 respecting constraint (11) to a subset of feasible solutions to P1. This
function is the same as the one given in Proposition 2.5, but defined on the domain S̃2 ⊆ S2

instead of S2.

Hence, Proposition 2.5 implies that Z2(y2, z2) = Z1
(
f̃2,1(y

2, z2)
)

for any solution (y2, z2) ∈
S̃2.

By Proposition 2.8, there exists a solution (y∗, z∗) ∈ S̃2 such that Z2(y∗, z∗) = Z2. Thus,

Z1
(
f̃2,1(y

∗, z∗)
)

= Z2 (2.6)
= Z1.

Hence, f̃2,1(y
∗, z∗) ∈ S̃1 is an optimal solution to P1. �

Proof of Proposition 3.3 : Suppose that a solution y3 to P3(λ) includes a supplier i ∈
{1, . . . , n} such that y3i = 1 and

∑n
j=1 bjy

3
j − bi ≥ D, where λ < e1. Let us consider another

solution y∗ defined as follows:

y∗j =

{
0 for j = i

y3j for j = 1, . . . , i− 1, i+ 1, . . . , n.

It follows from the hypotheses above that y∗ respects constraints (18) and (19). The objective
value of this solution is given by

Z3(λ,y∗)
(17)
= λD +

n∑
j=1

(
(cj − λ)bj + fj

)
y∗j

= λD +
n∑
j=1

(
(cj − λ)bj + fj

)
y3j −

(
(ci − λ)bi + fi

)
= Z3(λ,y3)−

(
(ci − λ)bi + fi

)
= Z3(λ,y3)− bi(ei − λ)

≤ Z3(λ,y3)− bi(e1 − λ) , since e1 ≤ ej ∀j
< Z3(λ,y3) , since λ < e1

Thus, y∗ is a feasible solution to P3(λ) having a lower objective value than y3. Hence, a
solution to P3 that includes a supplier i ∈ {1, . . . , n} such that y3i = 1 and

∑n
j=1 bjy

3
j − bi ≥ D

cannot be optimal if λ < e1. In particular, this is true for i = p3. Hence, an optimal solution to
P3(λ) is necessarily an element of the subset S̃3 when λ < e1. �
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Proof of Proposition 3.4 : Let us consider a solution y3 ∈ S̃3. Applying the bijective
function f̃3,2 to this solution leads to the solution (y2, z2) = f̃3,2(y

3) ∈ S̃2, with objective value

Z2(y2, z2)
(5)
=

n∑
j=1

(cjbj + fj)y
2
j −

( n∑
j=1

bjy
2
j −D

) n∑
j=1

cjz
2
j

=
n∑
j=1

(cjbj + fj)y
3
j −

( n∑
j=1

bjy
3
j −D

) n∑
j=1

cjz
2
j , by defn. of f̃3,2

=
n∑
j=1

(cjbj + fj)y
3
j −

( n∑
j=1

bjy
3
j −D

)
cp3 , by defn. of p3

=

n∑
j=1

(cjbj + fj)y
3
j −

( n∑
j=1

bjy
3
j −D

)(
λ− (λ− cp3)

)
(16)
= Z3

(
λ, (y3)

)
+
( n∑
j=1

bjy
3
j −D

)
(λ− cp3)

Furthermore, as explained in the proof of Proposition 3.2, Z1
(
f̃2,1(y

2, z2)
)

= Z2(y2, z2) for

any solution (y2, z2) ∈ S̃2. Hence,

Z1
(
f̃3,1(y

3)
)

= Z1
(
f̃2,1
(
f̃3,2(y

3)
))

= Z1
(
f̃2,1(y

2, z2)
)

= Z3(λ,y3) +
( n∑
j=1

bjy
3
j −D

)
(λ− cp3).

�

Proof of Proposition 3.5 : Let (y2, z2) be a feasible solution to P2 and let us define µ =
maxj∈{1,...,n}{cjz2j }. Since (y2, z2) ∈ S2, the vector y3 ∈ {0, 1}n respecting y3j = y2j ∀ j ∈
{1, . . . , n} is a feasible solution to P3. Using a multiplier λ ≥ µ, the objective value of y3 is then
given by

Z3(λ,y3)
(16)
=

n∑
j=1

(cjbj + fj)y
3
j −

( n∑
j=1

bjy
3
j −D

)
λ

=

n∑
j=1

(cjbj + fj)y
2
j −

( n∑
j=1

bjy
2
j −D

)
λ

≤
n∑
j=1

(cjbj + fj)y
2
j −

( n∑
j=1

bjy
2
j −D

)
µ , by constraint (6) and since λ ≥ µ

≤
n∑
j=1

(cjbj + fj)y
2
j −

( n∑
j=1

bjy
2
j −D

) n∑
j=1

cjz
2
j , by (8) and the defn. of µ

(5)
= Z2(y2, z2)

From there, we can demonstrate the second part of the proposition. Let us consider a solution
(x1,y1) ∈ S̃1. The bijective function f̃3,1 guarantees the existence of a solution y3 ∈ S̃3 such
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that f̃3,1(y
3) = (x1,y1). By Proposition 3.4, the equation

Z1(x1,y1) = Z3(λ,y3) +
( n∑
j=1

bjy
3
j −D

)
(λ− cp3) (50)

holds for any multiplier λ ≥ 0. If (x1,y1) does not contain a partial node, then constraint
(18) holds with equality and the second term on the right-hand side is equal to zero. Hence,
Z3(λ,y3) = Z1(x1,y1).

If (x1,y1) contains a partial node, it corresponds to p3 by construction of S̃1. Hence, the fact
that (x1,y1) contains a partial node with a variable cost inferior or equal to λ is equivalent to the
inequality λ ≥ cp3 . Furthermore, the demand constraint (18) implies that (

∑n
j=1 bjy

3
j −D) ≥ 0.

Thus (50) lead to,

Z3(λ,y3) = Z1(x1,y1)−
( n∑
j=1

bjy
3
j −D

)
(λ− cp3) ≤ Z1(x1,y1)

In both cases, feasible solutions y3 ∈ S̃3 to P3 such that Z3(λ,y3) ≤ Z1(x1,y1) can therefore
be found. �

Proof of Proposition 3.6 : y3 is a feasible solution to P3, with objective value Z3(λ1).
Hence, replacing λ1 by λ2 in the objective function (16) does not affect the feasibility of y3 and
leads to the objective value given in the proposition, i.e.

Z3(λ2,y
3) =

n∑
j=1

(cjbj + fj)y
3
j −

( n∑
j=1

bjy
3
j −D

)
λ2

=
n∑
j=1

(cjbj + fj)y
3
j −

( n∑
j=1

bjy
3
j −D

)(
λ1 + (λ2 − λ1)

)
(16)
= Z3(λ1)−

( n∑
j=1

bjy
3
j −D

)
(λ2 − λ1)

�

Proof of Proposition 3.7 : Let g(λ) be the equation of the line passing by two points(
λ0, Z

3(λ0)
)

and
(
λ1, Z

3(λ1)
)

in the plane. This line is given by g(λ) = Z3(λ0) − (λ −

λ0)
Z3(λ0)− Z3(λ1)

λ1 − λ0
. We want to show that g(λ) is a lower bound on Z3(λ) ∀ λ ∈ [λ0, λ1].

Since g(λ0) = Z3(λ0) and g(λ1) = Z3(λ1), the result is trivial at the limits of the interval
[λ0, λ1]. Now, let us consider the case where λ0 < λ < λ1. Let yλ be an optimal solution to
P3(λ), with objective value Z3(λ).

Since Z3(λ0) is the optimal value of P3(λ0), the upper bound on Z3(λ0) that can be ob-
tained by Proposition 3.6 using yλ is necessarily greater than or equal to Z3(λ0). Furthermore,
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constraint (18) implies that (
∑n

j=1 bjy
λ
j −D) ≥ 0. Hence, we have

Z3(λ0) ≤ Z3(λ)−
( n∑
j=1

bjy
λ
j −D

)
(λ0 − λ) (51)

⇐⇒ Z3(λ0)− Z3(λ)

(λ− λ0)
≤
( n∑
j=1

bjy
λ
j −D

)
(52)

Similarly, since Z3(λ1) is the optimal value of P3(λ1), the upper bound on this value that is
given by Proposition 3.6 must be greater than or equal to Z3(λ1). Formally,

Z3(λ1) ≤ Z3(λ)−
( n∑
j=1

bjy
λ
j −D

)
(λ1 − λ) (53)

⇐⇒ Z3(λ)− Z3(λ1)

(λ1 − λ)
≥
( n∑
j=1

bjy
λ
j −D

)
(54)

Inequalities (52) and (54) directly lead to the expected lower bound on Z3(λ).

Z3(λ0)− Z3(λ)

(λ− λ0)
≤ Z3(λ)− Z3(λ1)

(λ1 − λ)

⇐⇒ Z3(λ) ≥
( λ− λ1
λ0 − λ1

)
Z3(λ0)−

( λ− λ0
λ0 − λ1

)
Z3(λ1)

⇐⇒ Z3(λ) ≥ Z3(λ0)− (λ− λ0)
Z3(λ0)− Z3(λ1)

λ1 − λ0
⇐⇒ Z3(λ) ≥ g(λ)

�

Proof of Proposition 3.9 : Proposition 3.2 states that there exists an optimal solution
(x∗,y∗) to P1 such that (x∗,y∗) ∈ S̃1. Now, suppose that a solution (x1,y1) ∈ S̃1 contains a
partial node p supplying x1p units. We will show that if the bound LBDom

xp (q) associated with a

node q � p respecting fq ≤ fp is greater than or equal to x1p, then another solution (x′,y′) ∈ S̃1

such that Z1(x′,y′) ≤ Z1(x1,y1) in which p is not used exists.

Since q � p, the fact that solution (x1,y1) ∈ S̃1 partially uses node p implies that x1q = y1q =
0. From there, the modified solution can be built as follows:

x′j =


x1j ∀j ∈ {1, . . . , n} : j 6= p and j 6= q

0 for j = p,

x1p for j = q.

y′j =


y1j ∀j ∈ {1, . . . , n} : j 6= p and j 6= q

0 for j = p,

1 for j = q.
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This modification only implies to use x1p units on node q instead of node p, which becomes

unused. Since bq ≥ LBDom
xp (q) by definition of the dominance relation, and since LBDom

xp (q) ≥ x1p
by hypothesis, (x′,y′) remains a feasible solution to P2. Also, the fact that (x1,y1) is an element
of S̃1 implies that p was the only partial node used in this solution, and that it was the maximal
element among the used nodes according to the strict total order ≺. Now, q is the only node
that can be partial in (x′,y′) by construction and the other used nodes remain the same. Hence,
since q � p by hypothesis, (x′,y′) respects the definition of S̃1.

From there, it suffices to show that Z1(x′,y′) ≤ Z1(x1,y1) to conclude that (x1,y1) does
not have to be considered to identify an optimal solution (x∗,y∗) ∈ S̃1 to P1. The changes made
to (x1,y1) modify the objective value Z1(x1,y1) by fq − fp + x1p(cq − cp). Let us demonstrate
that this value is nonpositive.

First, if this node q is such that cq = cp, then fq − fp + x1p(cq − cp) = fq − fp. Since fq ≤ fp
by hypothesis, this value is nonpositive and Z1(x′,y′) ≤ Z1(x1,y1).

In the opposite case, cq > cp, since q � p and cq 6= cp. By definition of the dominance

relation, LBDom
xp (q) ≤ fp−fq

cq−cp and x1p ≤ LBDom
xp (q) by hypothesis. From there, fq−fp+x1p(cq−cp) ≤

fq − fp +
fp−fq
cq−cp (cq − cp) = 0.

Consequently, in both possible cases,

Z1(x′,y′) = Z1(x1,y1) + fq − fp + x1p(cq − cp) ≤ Z1(x1,y1)

When considering solutions to P1 that are elements of S̃1 and in which a node p is partially
used, the global lower bound LBDom

xp therefore corresponds to the smallest integer number of
shipments xp for which the previous arguments do not prove the existence of a different solution
(x′,y′) ∈ S̃1 having an objective value at least as good as Z1(x1,y1) in which p is not used. �

Proof of Proposition 6.1 : Since the constraints of both problems P̂1 and P1 are identical,
any feasible solution to P̂1 is also a feasible solution to P1 and vice versa.

Hence, suppose that (x̂∗, ŷ∗) is an optimal solution to the modified problem P̂1. Its objective
value is given by

Ẑ1 =

n∑
j=1

(ĉj x̂
∗
j + fj ŷ

∗
j )

=
n∑
j=1

(
(cj − θ)x̂∗j + fj ŷ

∗
j

)
, by defn. of the unit costs ĉj

=
n∑
j=1

(cj x̂
∗
j + fj ŷ

∗
j )− θ

n∑
j=1

x̂∗j

=
n∑
j=1

(cj x̂
∗
j + fj ŷ

∗
j )− θD , since (x̂∗, ŷ∗) respects constraint (2)
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For the original problem P1, the objective value of (x̂∗, ŷ∗) is

Z1(x̂∗, ŷ∗) =

n∑
j=1

(cj x̂
∗
j + fj ŷ

∗
j )

= Ẑ1 + θD

Z1(x̂∗, ŷ∗) being the objective value of a feasible solution to P1, it is a lower bound on the
optimal value Z1 to P1. Thus, Z1 ≤ Ẑ1 + θD.

Now, let (x∗,y∗) be an optimal solution to the original problem P1. Its objective value is
given by

Z1 =
n∑
j=1

(cjx
∗
j + fjy

∗
j )

=
n∑
j=1

(
(ĉj + θ)x∗j + fjy

∗
j

)
, by defn. of the unit costs ĉj

=
n∑
j=1

(ĉjx
∗
j + fjy

∗
j ) + θ

n∑
j=1

x∗j

=

n∑
j=1

(ĉjx
∗
j + fjy

∗
j ) + θD , since (x∗,y∗) respects constraint (2)

For the modified problem P̂1, the objective value of (x∗,y∗) is

Ẑ1(x∗,y∗) =

n∑
j=1

(ĉjx
∗
j + fjy

∗
j )

= Z1 − θD

Ẑ1(x∗,y∗) being the objective value of a feasible solution to P̂1, it is a lower bound on the
optimal value Ẑ1 to P̂1. Thus, Ẑ1 ≤ Z1 − θD.

We have shown that Z1 ≤ Ẑ1 + Dθ and that Ẑ1 ≤ Z1 −Dθ. Therefore, we conclude that
Ẑ1 = Z1 −Dθ. �

Proof of Proposition 6.2 : Let (x,y) be a feasible solution to P1 such that yj = 0 for a
node j having a negative fixed cost fj < 0. Let (x̃, ỹ) be the same solution, except that ỹj = 1
for the aforementioned node j. This modification does not affect the feasibility of this solution
and leads to the objective value Z1(x̃, ỹ) = Z1(x,y) + fj < Z1(x,y). Hence, for a solution
(x1,y1) to P1 to be optimal, it is necessary that y1 = 1 for each node j ∈ {1, . . . , n} such that
fj < 0. Consequently, this reduction does not prevent the identification of an optimal solution
and therefore does not affect the optimal value. �
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Appendix 2

Explanation of the time complexity of steps H4 and F : Step H4 requires to solve
model (29)-(32) for each partial node p ∈ P . If ZLP

LB(p) < ZUB, the strong linear relaxation

bounds LBLP
xp and UBLP

xp on the usage of the partial node p are then computed.

One could use a naive implementation in which this process is executed independently for
each partial node p ∈ P . Each time, solving the linear program (29)-(32) optimally would be
done in O(n). Using the optimal solution to the strong linear relaxation, LBLP

xp and UBLP
xp could

then be computed in O(n). Indeed, starting from the optimal solution to (29)-(32), LBLP
xp can

be calculated by sequentially going through nodes j ∈ {sp, sp + 1, . . . }, verifying if they respect
constraint (32) and, if it is the case, computing how many units can be used on j instead of p
without the value of the current solution to (29)-(32) to exceed the incumbent value ZUB. When
xp reaches LBxp , the cost of the current solution to (29)-(32) reaches ZUB or node n is reached,
the computation stops. Computing UBLP

xp can be done very similarly. The only difference is
that, instead of visiting the unused nodes {sp, sp + 1, . . . } to decrease the usage of node p, the
complete nodes {sp, sp−1, . . . } are crossed sequentially and xp is increased. Using this approach,
the complexity of these computations would therefore be linear in the number of nodes n and
would be repeated for each partial node p ∈ P . The total complexity of step H4 would then be
O(|PH4| · n).

To improve this theoretical bound, we use a more clever implementation that relies on
appropriate data structures. First, we build a max-heap containing pointers to nodes j ∈
{1, . . . , s}, namely the nodes that are included in the optimal solution to the classical linear
relaxation (12)-(14). In the resulting complete binary tree, the children of an internal node that
contains a pointer to supplier j point to suppliers i such that i ≺ j. Building this heap is done in
O
(
n log(n)

)
. Then, we build a linked list containing pointers to the n nodes of the problem. The

nodes in the linked list respect the ordering used in the article i.e. e1 ≤ e2 ≤ · · · ≤ en. This step
is performed in O(n), since we suppose that the nodes were previously sorted in non-decreasing
order of linearized cost. Finally, in O(n), we build an array of size |PH4| containing pointers to
each potential partial node p ∈ P . The elements of this array are then sorted according to the
strict total order ≺, in O

(
|PH4| · log(|PH4|)

)
.

After initializing these data structures, ZLP
LB(p) and, if necessary, LBLP

xp and UBLP
xp , are com-

puted for each p ∈ P , starting by the maximal element of the strictly totally ordered set (P,≺)
and iterating backwards through the previously built array. For each new partial node p, we
start by removing from the heap each node that can no longer be used in a solution that is an
element of S̃1. To do so, it suffices to delete the root node j as long as j � p. Indeed, since
p � q for each remaining node q ∈ P , any root j � p is such that j � q and will thus not
be used in the optimal solution to the remaining problems (29)-(32), by constraint (32). After
removing these nodes from the current solution, we use our linked list to add the nodes j of
minimal linearized cost ej that follow the previous split node and that respect j ≺ p to the
solution until the demand is satisfied. When iterating over a node j such that j � p, we delete
it from the linked list in O(1). Each node that is added to the solution is inserted into the heap.
At this point, the current solution x corresponds to an optimal solution to the problem that
would be obtained by relaxing constraint (31) from model (29)-(32). To respect constraint (31)
and obtain the optimal solution that is defined is Section 3.4.1, the number of units that is used
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on node p must be adjusted. This is done by trading units between node p and other nodes,
over which we iterate by starting on the current split node and moving to its neighbours in the
linked list. At most bp units have to be moved between p and other suppliers. Hence, in addi-

tion to p, no more than min{n, bp
min{bj}} ∈ O

(
min{n, max{bj}

min{bj} }
)

nodes will be involved in these

movements of units. If ZLP
LB(p) < ZUB, computing LBLP

xp and UBLP
xp requires similar adjustment

operations, with the same complexity. In total, the complexity of step H4 is therefore bounded

by O
(
n log(n) + |PH4| ·min{n, max{bj}

min{bj} }
)
.

The complexity of step F can be justified similarly. First, the linear relaxation (36)-(38)
is solved in O(n). Then, the strict total order filtering requires to verify whether ZLP(q) +
bj(esq − ej) exceeds ZUB for each node j ∈ Q such that j < sq and, symmetrically, to compare
ZLP(q) + bj(ej − esq) with the incumbent value for each node j ∈ Q such that j > sq. This
step also requires O(n) operations in total. For each node j that could not be fixed by the
strict total order filtering, the strong linear filtering is applied. Computing k0j (or k1j if j > sq)

requires to move at most bj units from node j to nodes i ∈ {sq, sq+1, . . . , tj}∩Q (or from nodes

i ∈ {sq, sq−1, . . . , rj}∩Q to node j if j > sq). Hence, in each case, at most min{n, max{bj}
min{bj} } nodes

need to be visited. The time complexity of step F is thus bounded by O
(
n ·min{n, max{bj}

min{bj} }
)
.
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Appendix 3
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P3Search algorithm visualization

Z3(λ,y1) = 800− 6λ

Z3(λ,y2) = 700− 2λ

Z3(λ,y3) = 600− 3λ

Z3(λ,y4) = 500− 0λ(
cp1 , Z

1(x1,y1)
)

= (60, 440)(
cp2 , Z

1(x2,y2)
)

= (50, 600)(
cp3 , Z

1(x3,y3)
)

= (30, 510)(
cp4 , Z

1(x4,y4)
)

= (45, 500)

Suppose that y1,y2,y3 and y4 are four feasible solutions to P3. For each of these solutions
yi, by (16), the objective value respects Z3(λ,yi) =

∑n
j=1(cjbj + fj)y

i
j − (

∑n
j=1 bjy

i
j − D)λ.

Let assume that yi ∈ S̃3 for each i ∈ {1, 2, 3, 4}, so that f̃3,1 leads to a feasible solution
(xi,yi) ∈ S̃1, with objective value Z1(xi,yi) = Z3(λ,yi)+(

∑n
j=1 bjy

i
j−D)(λ−cpi) in each case

if yi is discovered.

In the visualization above, each line represents a feasible solution yi to P3. The y-intercept
of the line associated with solution yi corresponds to the sum of the total costs

∑n
j=1(cjbj+fj)y

i
j

of the nodes that are used in it. The negative slope D−
∑n

j=1 bjy
i
j represents the excess supply

associated with yi. When solving P3(λ), yλ is selected as the solution having the minimal value
at the λ abscissa-position. For each solution yi, the point (cpi , Z

1
(
xi,yi)

)
gives the unit cost of

the maximal element pi, as defined in 3.1, and the objective value of the corresponding feasible
solution to P1 given by f̃3,1(y

i).
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Suppose that min
{
es, maxj∈{1,...,n}(cj)

}
= 80. P3Search will be executed as follows:

L← {}
λ← 80

yλ ← y1

L← {80}

Z
P3(80)
UB ← 440

ZP3
UB ← 440

λ← 60

yλ ← y3

L← {80, 60}

Z
P3(60)
UB ← 510 > ZP3

UB

λ← 30

yλ ← y4

L← {80, 60, 30}

Z
P3(45)
UB ← 500 > ZP3

UB

λ← 45
n∑
j=1

bjy
λ
j = D

At the end of the execution, the solutions y1, y3 and y4 have been discovered. The set
of multipliers L for which the optimal value Z3(λ) is known is {80, 60, 30} and the incumbent
solution to P1 is (x1,y1), with an objective value of Z1(x1,y1) = 440.

This example also illustrates the influence of the initial multiplier λ on the quality of the
bounds that can be obtained through P3Search. For example, if λ was initially set to 50 instead
of 80, solutions y3 and y4 would be the only ones to be discovered and the global upper bound
ZP3
UB would therefore be equal to 500 instead of 440.
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