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Abstract. The robotic mobile fulfillment system (RMFS) allows easy inventory repositioning 
by returning pods to different locations after their use. A better inventory arrangement leads 
to an energy-efficient picking process since pods can be parked closer to where they will be 
requested next. After an order arrives, we have to decide which picking station will deal with 
it (order assignment), which pod containing the products requested should be brought to 
this station (pod selection), and to which storage location these pods should be returned 
after picking (pod repositioning). In this paper, we solve these problems in an integrated 
manner using a wave picking strategy, where decisions are made periodically. They are first 
modeled for when future demands are known. Since full information about future demands 
is seldom available in practice, we propose different models to solve it, such as when no 
information about the future demands is available (myopic approaches) or when demands 
are uncertain (stochastic approach). A local search matheuristic is presented to solve real-
size instances. We solve the order assignment and pod selection problems and measure 
the energy consumption reduction when pod repositioning is integrated with them. We use 
a sampling scheme to represent future demands and perform detailed computational 
experiments for instances with real characteristics found in an RMFS. Our results attest to 
the value and effectiveness of considering stochastic demands when solving these 
operational problems. 
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1. Introduction

Although many distribution center operations are still very labor-intensive, a growing effort to auto-

mate some of these processes has been observed in the last decades with the advent of e-commerce [2].

Automated warehousing systems work with manual picking stations as a product-to-picker system.

A growing category of automated systems is the robotic mobile fulfillment system (RMFS), where

mobile robots can lift movable inventory pods and bring them directly to stationary human pickers

in fixed stations located around the storage area [5]. This system was popularized less than 15 years

ago [11, 22, 28]. Since then, many providers have entered the mobile robots market and many large

online retailers have switched the manual picking operations in their distribution centers to an RMFS

[5, 17, 27, 33].

In addition to the intrinsic advantages associated with automation, an RMFS provides increased

flexibility and scalability due to the ease of adding and removing pods and robots in the system and

repositioning inventory in the storage area. They also require a relatively low investment cost, even

for a large fleet of robots compared to other automated systems. Picking rates can more than double

in an RMFS compared to manual warehouses since they eliminate the unproductive walking time of

pickers [24]. Due to the lifting capacity of robots, the RMFS is efficient when used in warehouses

containing several small and lightweight items, which makes it a perfect choice for e-commerce [2].

Early studies dealing with operational problems in the RMFS literature focused on optimizing perfor-

mance measures related to the maximization of order throughput [16, 32]. Although optimizing this

measure is important in scenarios where a very tight delivery deadline has to be met, in reality, most

applications allow picking tasks to wait if this results in a more efficient overall picking process. For

example, orders with standard shipping can be delayed over orders with priority shipping. Moreover,

minimizing operation costs is as important as reducing the picking time in periods of low demand

[20]. These costs are usually associated with the number of pod visits to stations, which is another

common metric [1, 14, 29], or the distance traveled by robots [27]. With many robots running si-

multaneously in a typical warehouse, the total energy consumed is significantly high. Using energy

consumption as a performance measure can balance pod visits and distances traveled by robots since

energy consumption is directly related to both of them.

A common strategy to improve order picking efficiency is to process orders in batches using wave

picking [8], which is adopted in real-world RMFS [31]. At the beginning of a wave, the current state

of the system is known (number and capacity of operating picking stations, current set of orders in
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the backlog, and position of pods within the storage area). Then, several operational decisions are

made, such as the assignment of orders to stations (order assignment problem, OAP), the selection of

pods to be carried to the stations in the current wave (pod selection problem, PSP), and the location

they should return to after picking (pod repositioning problem, PRP). Although these problems are

known to be interrelated [21], only the OAP and the PSP have been extensively investigated in an

integrated manner [14, 25, 29, 30, 31]. In wave picking, the integration of PRP decisions with the

OAP and the PSP can lead to a better arrangement of inventory in the storage area for future waves.

However, no study could be found that integrates decisions for all these problems, which is one of our

main objectives.

We investigate different approaches to solve the integrated OAP–PSP–PRP problem in an RMFS using

a wave picking strategy. The objective is to reduce the total energy consumed by robots carrying the

pods around the storage area to meet the demands. We first consider an ideal scenario where the

demands of future waves are known and model the integrated problem as a multi-period integer

non-linear programming (MP-INLP) problem. We acknowledge that it is unrealistic to dispose of

full information about future demands in most situations. Therefore, we derive new approaches to

solve the integrated problem by planning waves individually. Given the information available at the

beginning of each wave, in the two-phase myopic approach, the problem is solved using a two-phase

procedure. In the first phase, the OAP and the PSP decisions are made by solving an integer linear

programming (ILP) model adapted from the literature [25, 30]. Then, in the second phase, the PRP

is solved using the “nearest rule”, which assigns pods to the nearest available locations [21]. Still

considering that no information about future demands is available, we propose the integrated myopic

approach to solve the problem in a single phase as an integer non-linear programming (INLP) problem.

Alternatively, the problem is solved considering that future demands can be predicted with uncertainty.

The stochastic approach considers that scenarios for future demands can be sampled from an ABC

distribution function commonly used in the warehousing literature, as it accounts for the skewness of

demands [7]. This approach is modeled using a two-stage stochastic programming (2S-SP) model and

is solved with a Benders decomposition scheme. The first stage formulates the integrated problem for

the current wave, and the second stage formulates the upcoming wave represented by the sampled

scenarios. We observe that the models for the integrated myopic and stochastic approaches are too

heavy to solve real-case instances. Thus, we present a local search matheuristic where the two-phase

myopic approach solution is improved by a simple local search to approximate optimal solutions for

the other approaches.
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Extensive computational experiments on instances based on the data commonly used in the RMFS

literature are performed to assess the impact on energy consumption when planning a wave using all

three approaches, i.e., two-phase myopic, integrated myopic, and stochastic. Their solutions are also

compared against the MP-INLP solutions to observe how far they are from the best possible case.

We further extend our analysis to evaluate the energy consumption when the number of pod visits is

minimized and when we can delay picks until more orders arrive before planning the waves.

This paper is structured as follows. Section 2 provides a literature review on the relevant papers that

solved the OAP, PSP, and PRP. Section 3 describes the RMFS considered, the decision problems,

and how the energy consumption of the robots is estimated. Section 4 introduces the mathematical

models for the approaches considered. Section 5 presents the local search matheuristic used to solve

large instances of the integrated problem. Section 6 reports the computational results for the different

approaches and situations analyzed. Finally, Section 7 presents the concluding remarks of this paper.

2. Literature Review

Nearly all studies dealing with an RMFS at the operational level, to some extent, use a solution

strategy to the three problems considered (OAP, PSP, and PRP). We summarize the relevant studies

that investigate these problems, focusing on those studying the PRP or at least two of the three

problems considered. They are referenced in Table 1, showing the problems investigated, the picking

strategy used (real-time, wave, or single solution), and the performance measures considered. More

details about the RMFS are found in the recent reviews of Azadeh et al. [2], Boysen et al. [5], and

Jaghbeer et al. [13].

Table 1: Studies that investigate the OAP, PSP, or PRP

Reference Year OAP PSP PRP Picking strategy Performance measure

Weidinger et al. [27] 2018 X Single solution Distance traveled
Xiang et al. [29] 2018 X X Single solution Pod visits
Merschformann et al. [21] 2019 X X X Real-time Order throughput rate
Li et al. [19] 2020 X Real-time Energy consumption
Jiang et al. [14] 2020 X X Wave Pod visits
Rimélé et al. [23] 2021 X X X Real-time Cycle and travel times
Xie et al. [30] 2021 X X Real-time, Wave Pod visits
Valle and Beasley [25] 2021 X X Single solution Pod visits
Aldarondo and Bozer [1] 2022 X X — Pod visits
Zhuang et al. [31] 2022 X X Wave Pods movements
Our study 2022 X X X Wave Energy consumption

The OAP and the PSP are the problems mostly investigated simultaneously on order picking in
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the RMFS literature. Xiang et al. [29] solve the integrated OAP–PSP after replenishment decisions

are made using an ILP model. A heuristic procedure is suggested to solve the integrated problem

considering product correlations and order associations. A variable neighborhood search (VNS) is

used to search for improved solutions by exchanging orders between batches. Later, Jiang et al. [14]

integrate replenishment decisions made in waves with the OAP and the PSP. A divide-and-conquer

paradigm is used to generate an initial solution for the problem. Then, another VNS is used to improve

it. Xie et al. [30] also integrate the OAP and the PSP by proposing several ILPs where orders are

allowed or forbidden to be split among different batches or periods. Although they consider real-time

picking using a simulation framework, the problem is solved periodically, when some jobs are finished

at the stations, such that orders are assigned in batches to the stations. A heuristic is proposed to

accelerate the computational time. The PRP is solved in the simulations using a policy that positions

pods in the nearest available location. They show that their integrated approach significantly reduces

the number of pod visits to stations compared to when OAP and PSP decisions are made sequentially,

such as in Merschformann et al. [21]. Valle and Beasley [25] also integrate OAP and PSP decisions

using an ILP. Many additional constraints are proposed, such as adding picks from different pod sides,

allocating a single pod to multiple stations, and balancing the workload among pickers. Two heuristics

are proposed to solve the integrated problem. The first is based on the assignment of batches to one

station at a time. The second fixes parts of the decision variables and solves the resulting sub-problem

(partial integer optimization). After this problem is solved, they also solve the pod sequencing problem.

Finally, Zhuang et al. [31] consider the OAP and the PSP and integrate them with the order and pod

sequencing problems. As with most of the other mentioned studies, the objective is to minimize the

number of pods visiting stations, although they consider a slightly different measure to include the

number of movements between stations. The integrated problem is modeled using an ILP and, for

larger instances, an adaptive large neighborhood search (ALNS) is proposed.

The PRP is considerably less investigated. Weidinger et al. [27] present an ILP model and an ALNS

to solve the PRP given that the sequence of pods to bring to the stations is known. Aldarondo

and Bozer [1] provide analytical formulas to determine the expected distance traveled by robots to

perform a task as a function of the PSP and PRP policies, the shape of the storage area, and the

locations of the stations. Li et al. [19] consider that pods are assigned to locations using a decentralized

storage policy based on a turnover rate. Simulations of an RMFS operating with this policy show a

significant reduction in energy consumption and an increase in the order picking efficiency. We found

two studies that analyzed the three problems considered here. Merschformann et al. [21] summarize
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the most common policies of the literature and practice, and sequentially solve all three problems

in real-time. The OAP is solved when an order is fulfilled, which triggers another order from the

backlog to be assigned to the station. The PSP is solved when a robot working for a station can

perform a new task. Finally, the PRP is solved when a pod leaves a station. For each of the problems,

several solution policies are suggested. The RMFS operating with different combinations of policies

is evaluated using a simulation framework to determine which one performs best considering several

performance measures. The experiments show that cross-dependencies exist between the policies used.

Rimélé et al. [23] present a mathematical framework to model the decisions considering the stochastic

nature of processing times and demands. The decision process is formalized for a real-time picking

strategy using a stochastic model. The model is illustrated using simple rules, similar to those used

in Merschformann et al. [21].

Compared to the literature analyzed, our major contributions are summarized as: (i) we extend the ILP

model from Xie et al. [30] to integrate the PRP decisions with the OAP and the PSP; (ii) we analyze

the impact of integrating these problems on the energy consumption in an RMFS, since only the PRP

is considered in Li et al. [19]; (iii) pod repositioning in wave picking is also new since previous studies,

such as Merschformann et al. [21] and Rimélé et al. [23], considered a real-time picking strategy only;

and (iv) we present the first stochastic programming model using a sampling scheme to account for the

uncertainty of future demands in wave picking. The previous solution approaches either considered

deterministic versions or real-time simulations to solve these problems.

3. Problem Description

In the RMFS considered, products are stored in identical storage pods. Robots can move underneath

the pods, lift them, and carry them to where they are required. The storage area has a grid format,

where each square represents either an aisle, used by robots to carry a pod through, or a storage

location, either containing a parked pod or not. As commonly considered in the RMFS literature,

both vertical and horizontal aisles are one-way and directions alternate among parallel aisles [16, 21].

Storage locations are grouped in blocks divided by rows, each with a storage location on each side,

thus allowing pods to have direct access to aisles. Picking stations are equally distributed on one

side of the storage area and a buffer zone separates the stations from the storage area. The ordered

products are picked by stationary pickers from the pods carried to the stations. Figure 1 shows the

floor plan representation of the described storage area.
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Figure 1: Representation of an RMFS storage area layout

3.1. Decision Problems

In wave picking, a planning horizon is divided into multiple periods, each representing a wave. Orders

that arrived in the previous period, for example, overnight, are in a backlog and can be picked in the

first wave. Each order contains a set of distinct order lines, i.e., different products to be picked. The

OAP has to be solved to determine which orders will be handled by which stations [21]. In the OAP,

multiple orders are batched and assigned together to stations. Overall, larger batch sizes are preferred

for energy-efficient picking. However, batch sizes are limited by the capacity of stations, determined

by the maximum number of bins available in the station at a time that picked products are deposited.

To avoid further order consolidation operations, we consider that each bin is used to deposit products

from a single order, although combining order lines is also possible when orders can be split among

stations [30]. Another common consideration is to balance pickers’ workload, such that each picker

performs a similar number of picks in each wave [25, 31]. To account for fairness among the work

distributed to pickers, we consider workload balance in our models. Workload balance is modeled such

that the difference between the number of order lines assigned in a wave to all pairs of pickers does

not exceed a threshold.

In a two-phase myopic approach, given an OAP solution, the next decision concerns which pods

containing the demanded products should be carried to each station. Typically, scattered storage is

adopted in an RMFS, such that items of the same product are spread over the warehouse in multiple

pods [26]. This policy increases the probability of having some nearby pods carrying a requested

product, reducing the mean processing time of orders [4, 17]. Due to the scattered storage, we have

to decide which pods should be carried to the stations to meet the demands of the orders assigned

to them by solving the PSP. We consider that pod replenishment is done before the beginning of the
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planning horizon such that the inventory in each pod is known when planning the picking waves. We

also assume that a sufficient quantity of items to satisfy all orders for the planning horizon is available

in each pod, which is a common and reasonable assumption in practice [31]. The initial pod locations

are also known, which can be randomly generated or determined by a storage policy, such as zoning

[16]. When solving the OAP and the PSP in an integrated manner, the same products contained in

different orders are usually batched together and assigned to a single station. Thus, we avoid the same

pod being used by multiple stations within a wave. For this reason, we also assume that each pod is

carried to a station only once per wave.

Still, in the two-phase myopic approach, once the OAP and the PSP are solved, one needs to plan the

robots’ tasks. A task indicates where each robot should go and the path to be followed. A central

server is responsible for assigning all tasks to robots. The decisions about which robots will be selected

consider their positions and the arrival sequence of tasks [10, 18]. When deciding the storage location

for returning a pod once the picking at a station is done, we solve the PRP [30]. When a pod is

returned, it can be repositioned at any available storage location, i.e., a location that has a space to

park the pod. In our models to integrate the PRP with other problems, we consider that all locations

left empty by the pods demanded in the current wave are available for all pods at their return. The

rearrangement of pod locations is an important aspect to be considered in a dynamic context, such

as wave picking. The reason is that pods containing products that will be demanded in a future wave

can be positioned near picking stations, saving time and energy.

3.2. Energy Consumption

From a context of sustainable development, the objective when solving the previously mentioned

problems is to minimize the energy consumed by robots. Energy saving has been the most frequently

studied topic within the context of green warehousing [3]. Typical robot’s tasks in an RMFS are done

following these steps:

Step 1. Move the unloaded robot from its current position to a requested pod;

Step 2. Lift the pod;

Step 3. Move the loaded robot to the designated station;

Step 4. Stop while picking is performed;

Step 5. Move the loaded robot to place the pod in its new position;
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Step 6. Drop the pod.

The steps described ignore certain situations, such as blocking, obstacles that may appear in the

robot’s path forcing them to stop, and queues formed by robots waiting to be processed by stations.

Blocking and queues are not an issue in the wave picking modeled here since time constraints are

not considered, so robots carrying pods can wait until the path is entirely free at no energy cost.

Unexpected obstacles rarely occur during operations such that their impact is negligible. The energy

consumed to move a loaded robot is 2.5 times higher than moving an unloaded one [33]. Since most of

the time robots are loaded, the effect on unloaded moves (step 1) has a low impact on the total energy

consumed and is, therefore, disregarded here. For this reason, moving robots to recharging stations is

also not relevant for this study. So, the total energy consumed El1sl2 in the pertinent steps of a robot

task to carry a pod from a location l1 to a station s and back to a location l2 is

El1sl2 = Elift + El1s + Esl2 + Edrop, (1)

where the energy consumed is Elift to lift the pod at its initial storage location l1 (step 2), El1s to

move from l1 to a station s (step 3), Esl2 to return the pod to a storage location l2 (step 5), and Edrop

to drop the pod in l2 (step 6). The energy spent in (step 4) is negligible.

Robots paths are computed as the shortest path between storage locations and stations following the

grid layout of the storage area and the directions of the aisles. To move straight between two points,

a robot accelerates, reaches the maximum speed and keeps moving if the path is long enough, and

then decelerates. If the path is too short, the robot does not reach its maximum speed, so the energy

consumed is only a fraction of the energy spent during the acceleration/deceleration. The total energy

spent in a full path between a storage location and a station, or vice-versa, is then the sum of the

energy spent to perform all the straight paths contained in it. Figure 2 is based on Li et al. [19] and

shows an example of the speed changes of a path traveled by a robot. Paths are short in the example

when moving the pod from its storage location to the middle of the aisle where it is located, and

vice-versa, and when entering in front of the station. Note in Figure 2b that speed changes are split

into a section representing the path traveled by the robot when carrying the pod to the station (El1s),

then it sits there while the picks are performed, and finally, it returns the pod to its new storage

location (Esl2).
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(a) Path traveled (b) Speed change and energy consumed

Figure 2: Path and speed of a robot to perform a task

The energy consumed by a robot traveling at a constant speed is

Ec = eu
dc
vmax

, (2)

where eu denotes the energy consumed by a unit of time, dc is the distance traveled at a constant speed,

and vmax is the maximum speed of a robot. The energy consumed by a robot during acceleration and

deceleration is

Ea = Ed = eu
vmax
a

, (3)

where a is the acceleration/deceleration of a robot. In summary, El1s and Esl2 are the sum of all

straight paths performed by a robot, and each straight path is the sum of Ea, Ec, and Ed, depending

on its length.

Zou et al. [33] estimate the work to lift/drop a pod as Elift = Edrop = 0.8 kJ. Li et al. [19] estimate

that a robot charged with 2.4 kWh of energy will operate for about 6 h. Therefore, the average hourly

energy consumption rate of this robot is eu = 0.4 kWh or 0.4 kJ/s. They also assume a maximum

speed of vmax = 2 m/s and an acceleration of a = 1 m/s2. We consider that the distance between the

center of each square on the square grid layout is equal to one meter. With the given equations and

parameters, we can estimate the total energy consumed by a robot to perform a task.

4. Mathematical Models for the Integrated OAP–PSP–PRP

Next, we present the mathematical formulations to solve the integrated OAP–PSP–PRP problem for

the RMFS previously described. For ease of reference, Table 2 provides a summary of the notation

used to model the integrated problem. Other notation used throughout this section will be introduced

when needed.
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Table 2: Notation for the integrated OAP–PSP–PRP models

Sets

L Storage locations
S Picking stations
P Pods
I Products
Pi ⊆ P Pods that contain product i ∈ I
W = {1, . . . , |W|} Waves
O Orders
Ow ⊆ O Orders arrived in wave w ∈ W
Io ⊆ I Order lines (products) of an order o ∈ O
Parameters

El1sl2
Energy consumed by a robot to carry a pod from location l1 to
station s and return to location l2

Lp Initial location of pod p
C Stations capacity (in orders) in a wave
δ Maximum difference of order lines assigned to pickers in a wave

Decision variables

xwps (PSP) Whether pod p is assigned to station s in wave w

ywos (OAP) Whether order o is assigned to station s in wave w
ywios Whether product i of order o is assigned to station s in wave w
zwpl (PRP) Whether pod p is parked at location l at the end of wave w

Regardless of the strategy used to solve the integrated problem, we are given a set of storage locations

L, picking stations S, pods P, and products I. The set Pi ⊆ P represents all pods that contain

product i. The initial location of pod p is given by Lp. The maximum number of orders a station can

handle in a wave is given by C. A parameter δ is used to define the maximum difference in the number

of picks (order lines) performed by all pairs of pickers. Setting δ = 0 imposes the same number of picks

to be performed at each station. However, setting a larger δ allows more flexibility when distributing

picking tasks. As discussed in Section 3.2, the energy consumed by a robot to carry a pod from a

storage location l1 to a station s and return to a location l2 is represented by El1sl2 .

Since we consider wave picking, all decisions are made at the beginning of each wave. So, we are given

W = {1, . . . , |W|} as the set of waves to be planned. Let O represent the set of all orders that will

arrive in the planning horizon each containing the order lines (products) Io ⊆ I. The set Ow ⊆ O

indicates all orders added to the backlog at the beginning of the wave w.

Three types of decision variables are considered, each representing one of the integrated problems.

Binary variables xwps represent the PSP decisions and indicate whether pod p is assigned to station s

in wave w. Binary variables ywos represent the OAP decisions and indicate whether order o is assigned to
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station s in wave w. It is also required to define variables ywios indicating whether product i demanded

by order o is assigned to station s in wave w. Finally, binary variables zwpl represent the PRP decisions

and indicate whether pod p is parked at location l at the end of wave w, regardless of this pod being

used in this wave. For convenience, we consider z0
pl as the binary equivalent of the parameter Lp to

represent whether pod p is initially located in l.

4.1. A Multi-period Integer Non-Linear Programming Model for the Case with Known Demands

The OAP, PSP, and PRP for the RMFS presented are integrated using a MP-INLP model to consider

the decisions to be made in all waves. This model works as an oracle and assumes that all orders that

will arrive in each wave are known a priori. Although this is a strong assumption for a real-world

application in e-commerce distribution centers, we will show later that this model can be adapted to

be used with the data available for demands with uncertainty. The integrated problem is modeled as

follows.

min
∑
w∈W

∑
p∈P

∑
s∈S

∑
l1∈L

∑
l2∈L

El1sl2z
(w−1)
pl1

xwpsz
w
pl2 (4)

subject to

∑
o∈Ow

∑
s∈S

ywos = |Ow|, ∀w ∈ W (5)

∑
s∈S

ywos = 1, ∀w ∈ W, o ∈ Ow (6)

ywos = ywios, ∀s ∈ S, w ∈ W, o ∈ Ow, i ∈ Io (7)∑
p∈Pi

xwps ≥ ywios, ∀s ∈ S, w ∈ W, o ∈ Ow, i ∈ Io (8)

∑
s∈S

xwps ≤ 1, ∀p ∈ P, w ∈ W (9)

∑
o∈Ow

ywos ≤ C, ∀s ∈ S, w ∈ W (10)

∑
o∈Ow

∑
i∈Io

∣∣ywios1 − ywios2∣∣ ≤ δ, ∀s1, s2 ∈ S, w ∈ W (11)

∑
p∈P

zwpl ≤ 1, ∀l ∈ L, w ∈ W (12)

∑
l∈L

zwpl = 1, ∀p ∈ P, w ∈ W (13)

∣∣∣z(w−1)
pl − zwpl

∣∣∣ ≤∑
s∈S

xwps, ∀p ∈ P, l ∈ L, w ∈ W (14)
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xwps ∈ {0, 1}, ∀p ∈ P, s ∈ S, w ∈ W (15)

ywos, y
w
ios ∈ {0, 1}, ∀s ∈ S, w ∈ W, o ∈ Ow, i ∈ Io (16)

zwpl ∈ {0, 1}, ∀p ∈ P, l ∈ L, w ∈ W. (17)

The objective function (4) minimizes the energy consumed by robots to perform all tasks assigned

to them during the planning horizon. The cubic expression indicates a task performed by a robot,

meaning that a pod initially located in l1 as defined in a previous wave (z
(w−1)
pl1

= 1) is carried in this

wave to station s (xwps = 1) and is returned to location l2 (zwpl2 = 1). Then, the energy cost to perform

this task is El1sl2 .

Constraints (5) set the number of orders satisfied in a wave equal to the number of orders arrived

in that wave. Constraints (6) guarantee that orders are assigned to a single station. Constraints (7)

ensure that if an order is assigned to a station in a wave, then all its order lines are also assigned to

the same station in the same wave. Constraints (8) assure that at least one pod containing products

assigned to a station will be carried to it when required. Constraints (9) determine that each pod can

only visit one station in each wave. Capacity constraints (10) guarantee that the number of orders

assigned to the stations respects their capacities. The workload balance is guaranteed by constraints

(11) by imposing that the difference in the number of picks performed in each pair of stations s1 and

s2 is lower than the threshold δ. Constraints (12)–(14) are used to solve the PRP by ensuring that

pods are assigned to valid locations after each wave. Constraints (12) guarantee that no more than

one pod is parked at any location after the wave. Constraints (13) guarantee that all pods are assigned

to a single location at any time. Finally, constraints (14) impose that pods stay in the same location

(|z(w−1)
pl − zwpl| = 0) when not moved in a wave (

∑
s∈S x

w
ps = 0). We highlight that the opposite is not

always true since a pod can move and still return to the same location. The domain of the decision

variables is defined in constraints (15)–(17).

4.1.1. Linearization.

The MIP model presented is non-linear due to the cubic term in the objective function and the

module function in constraints (11) and (14). To make it solvable by a commercial solver for linear

programming, we can linearize the former by replacing the product abc of three binary variables a,

b, and c, by a new binary variable d, adding to the model the constraints d ≤ a, d ≤ b, d ≤ c, and

d ≥ a+ b+ c− 2. Meanwhile, the latter is linearized by replacing the constraint in the form of |a| ≤ b

by two new constraints a ≤ b and a ≤ −b.
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4.1.2. Valid Inequality.

A valid inequality for the MP-INLP model described consists of removing the furthest locations from

the decision variables when a pod has to return from a station. The rationale is that it will never

be optimal to return a pod after a pick to a storage location beyond the |P| closest locations from

the station it was assigned to, i.e., to park in the furthest |L| − |P| locations from this station. Since

distances are station-dependent, it is not possible to simply remove a set of locations from the model.

Instead, the locations are sorted by distance to each station and, then, the inequality

xwps + zwpl ≤ 1, ∀p ∈ P, l ∈ Lp, s ∈ S (18)

is added to the model to guarantee that if pod p is assigned to station s, it cannot return to a location

l in the set Lp containing the |L| − |P| furthest locations from p.

4.1.3. Lower Bound.

A lower bound to the problem can be set as input to the solver to speed up the optimization process.

For the problem considered, it can be computed from the minimum number of pod visits to satisfy

the demands in each picking wave. To calculate a lower bound for the minimum number of pod visits

in a wave, we first get the number of distinct products demanded in this wave (U). Then, we identify

the pod with the maximum number of products and the number of demanded products it contains

(V ). Knowing U and V , a lower bound for the number of pod visits is given by W = dU/V e. An

example to illustrate is as follows. If among the orders in the backlog we have to pick nine distinct

products and the pod containing the most products among them has four products, we can be assured

that at least W = d9/4e = 3 pods are required to meet all demands in this wave. Since our model

minimizes energy consumption, not pod visits, we have to transform the lower bound described in

terms of energy.

Given the minimum number of pod visits, a lower bound for the energy consumption is computed in

a two-phase process. In the first phase, we find the W nearest pods containing at least one of the

products demanded in this wave, which is a lower bound for the PSP. In the second phase, we return

them to the nearest available locations, which is a lower bound for the PRP. The detailed steps for

this procedure are as follows:

Step 1. Sort all pods by their distances to the nearest station;

Step 2. Get the W nearest pods in the sorted list that contain at least one product demanded in this
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wave;

Step 3. Add to the lower bound the distances of these pods to their nearest stations;

Step 4. Sort all available locations, including those left empty by the W nearest pods, by the nearest

distance to each station;

Step 5. Given the nearest stations of the W nearest pods chosen, add to the lower bound the distances

to return them to the nearest available locations.

4.1.4. Model Reduction.

Another significant improvement is possible by reducing the number of locations |L| in half since the

energy cost to bring a pod from any row is similar, regardless of the side the pod is parked. In this

case, it is enough the reformulate constraints (12) to

∑
p∈P

zwpl ≤ 2, ∀l ∈ L, w ∈ W, (19)

and apply it on the reduced set L.

4.2. Solution Approaches for the Case with Demand Uncertainty

Warehouses may opt for wave picking to simplify the decision-making on the order picking process so

that the operational decisions can be made periodically instead of in real-time. Wave picking also has

the advantage of creating order batches more efficiently. The larger pool of orders in the backlog allows

different products located in the same pod to be batched and picked together. As shown by many

previous studies, this results in a reduction in pod visits but may also decrease the energy consumed

by robots when pods parked in better locations are used for the picks.

In the optimization context, wave picking can be seen as a sequential decision problem in which

decisions are made in an iterative process between “decide” and “reveal new information”. This

strategy belongs to the a priori optimization modeling paradigm since the OAP, PSP, and PRP

decisions are made given the current state of the warehouse considering that the uncertainty may

affect the outcome. The main source of uncertainty in the RMFS lies in the future products to be

picked. Therefore, in practice, warehouse managers may opt for approaches that account for the

demand uncertainty to solve the integrated problem. Among the factors to be considered are the

possibility of forecasting demands and the degree of difficulty to adopt the approach chosen.
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The following sections describe the solution approaches considered in this study. In the two-phase

myopic approach, we consider the most common method used in the literature where the problem

is decomposed into two subproblems solved sequentially, i.e., first, the OAP and the PSP are solved

together, then the PRP alone. In the integrated myopic approach, we assume that no information

about future demands is available or that the problem is solved with no lookahead. Therefore, each

wave must be planned considering only the current state of the system. Finally, in the stochastic

approach, we assume that the information about future demands is known at a stochastic level when

planning for a wave. This information can be embedded in the model, helping find robust solutions

that are expected to lead to good solutions for the next wave by explicitly considering the expected

future costs associated with the decisions made at the current wave.

The mathematical models for these approaches are derived from the MP-INLP model presented before.

We highlight that using any of these approaches to solve the integrated problem will necessarily result

in a solution worse than the optimal solution found solving the MP-INLP model. For this reason, we

will refer henceforth to the integrated problem with known demands as the integrated deterministic

(oracle) approach. Table 3 summarizes the approaches considered, showing the model implemented

to represent them, the information available about future demands, and the costs considered in their

objective functions.

Table 3: Summary of the solution approaches and their models for the integrated OAP–PSP–PRP

Approach Model Future demands Costs in objective function

Integrated deterministic MP-INLP All waves are known All waves
Two-phase myopic ILP Unknown Bring pods in the 1st wave only
Integrated myopic INLP Unknown 1st wave only
Stochastic 2S-SP Next wave known with uncertainty 1st wave + expected future cost

4.2.1. Two-phase Myopic Approach.

Given the current wave w, in the two-phase myopic approach, the integrated problem is solved in a

two-phase process using the information available for the orders currently in the backlog, i.e., the set

of orders Ow that arrived in w. The previous MP-INLP model is decomposed into two subproblems

which are solved sequentially. The first subproblem is the integrated OAP–PSP, while the second one

is the PRP alone. The integrated OAP–PSP can be adapted from the MP-INLP model by removing

PRP decisions. The multi-period model is reformulated to remove the index w from all decision
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variables. The result is an ILP formulated as:

min
∑
l∈L

∑
s∈S

(Elift + ELps)xps (20)

subject to

∑
o∈Ow

∑
s∈S

yos = |Ow|, (21)

∑
s∈S

yos = 1, ∀o ∈ Ow (22)

yos = yios, ∀s ∈ S, o ∈ Ow, i ∈ Io (23)∑
p∈Pi

xps ≥ yios, ∀s ∈ S, o ∈ Ow, i ∈ Io (24)

∑
s∈S

xps ≤ 1, ∀p ∈ P (25)

∑
o∈Ow

yos ≤ C, ∀s ∈ S (26)

∑
o∈Ow

∑
i∈Io

|yios1 − yios2 | ≤ δ, ∀s1, s2 ∈ S (27)

xps, yos, yios ∈ {0, 1}, ∀p ∈ P, s ∈ S, o ∈ Ow, i ∈ I. (28)

The objective function (20) represents the total energy consumed by robots to bring the pods de-

manded from their storage locations to the stations. Constraints (21)–(27) are equivalent to con-

straints (5)–(11) for the OAP and the PSP decisions, and constraints (28) define the domain of the

variables of the OAP and the PSP. The resulting linear model is an adaptation of the ILP model

presented in Xie et al. [30] to consider energy consumption as the system performance measure and a

workload balance to ensure a fair distribution of work among pickers.

This ILP model optimizes the energy consumption to bring pods to stations. However, it is still

required to return pods to storage locations to complete all decisions for a wave. Since we do not

consider the order of pods arriving at stations, this PRP is a simplification of the problem presented

in Weidinger et al. [27]. Given the set of pods located at picking stations, defined by solving model

(20)–(28) and the set of storage locations available in the storage area, a simple way to approximate

the optimal solution for this PRP is by using the nearest rule presented in Merschformann et al.

[21], where each pod is returned to the nearest available storage location to the station they are in.
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This rule is effective since parking pods further than the nearest available location is undesirable

since it will result in higher energy cost. We note that any combination of assignments of pods in

a station to the nearest available storage locations results in the same PRP solution. Despite its

simplicity, Merschformann et al. [21] show that the nearest rule still performed best in most cases. In

our context, however, it may lead to bad solutions in the long run since it can use good locations to

park pods that will not be required for a long time.

4.2.2. Integrated Myopic Approach.

The integrated myopic approach can be seen as the integrated version of the two-phase myopic ap-

proach since all three problems are solved simultaneously. Following the notation previously intro-

duced, the integrated myopic approach is modeled as follows.

min
∑
p∈P

∑
s∈S

∑
l∈L

ELpslxpszpl (29)

subject to (21)–(28) and to

∑
p∈P

zpl ≤ 1, ∀l ∈ L (30)

∑
l∈L

zpl = 1, ∀p ∈ P (31)

|1− zpl| ≤
∑
s∈S

xps, ∀p ∈ P, l ∈ L (32)

zpl ∈ {0, 1}, ∀p ∈ P, l ∈ L. (33)

As in the two-phase myopic approach, the objective function and all constraints are adapted from the

multi-period model to consider that decisions are made for a single wave. So, the objective function

(29) considers the tasks performed to move pod p from its initial location Lp to the station it is

required and back to any available location in the storage area. The integrated myopic approach

considers all constraints from the two-phase myopic approach, setting the new constraints (30)–(32)

for the PRP decisions. Compared to the MP-INLP model for the integrated deterministic approach,

this model has two major implications. First, its size is significantly reduced without the additional

index for the waves. Also, the objective function of the model is now quadratic instead of cubic, which

can be linearized by replacing the quadratic term ab by a new variable c, and adding to the model the

constraints c ≤ a, c ≤ b, and c ≥ a+ b− 1. The valid inequalities, lower bound, and model reduction
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described in Section 4.1 are easily adapted for the integrated myopic model considering a single wave

scenario.

4.2.3. Stochastic Approach.

Given the current state of the RMFS, we have shown that the integrated myopic approach can be used

to make successive decisions for the multi-period problem. However, since it only considers short-term

costs, i.e., the costs incurred in the current wave, its solution can place pods with a low turnover

in storage locations near the picking stations, reducing the efficiency of picking in future waves. An

alternative way to solve the multi-period problem is by integrating the expected behavior of future

demands arriving in the next wave to the model using stochastic programming, resulting in the so-

called stochastic approach. Predicting future demands is a challenge for many warehouses using the

RMFS. However, advances in tools for regression analysis, such as neural networks, are improving

predictions for the short and medium terms classically made using time series estimators and other

machine learning methods [9].

Consider an arbitrary solution uw = {xw, yw, zw} for the integrated problem in the current picking

wave w. The cost of uw in the current wave for the initial pod locations zw−1 is represented by the

function f(uw, zw−1). Assuming continuous distributions for the uncertain demands for the subsequent

wave w + 1, the expected cost of uw for w + 1 can be approximated by sampling a set Ω of scenarios

to represent the backlog state at the beginning of w + 1, where each sampled scenario ξ ∈ Ω has a

probability of occurrence P (ξ). Assuming that the scenario ξ is observed in wave w+1, with the pods

initially arranged as defined by uw, then the cost of the resulting solution uw+1
ξ is f(uw+1

ξ , zw). We

ignore the expected cost of the next wave w + 2 for the sake of avoiding the curse of dimensionality

to allow some optimization potential. Therefore, the expected cost of wave w + 1 for the arbitrary

solutions for each backlog sampled is
∑

ξ∈Ω P (ξ)f(uw+1
ξ , zw). In the stochastic approach, we are

interested in finding an optimal solution uw amongst the solution space Uw representing all feasible

solutions for the integrated problem in a given wave w. We do that by solving a 2S-SP model where

the first stage is defined as

min
uw∈Uw

f(uw, zw−1) + Eξ∈Ω[Q(zw, ξ)], (34)

where Q(zw, ξ) is the optimal solution for the subproblem

min
uw+1
ξ ∈Uw+1

ξ

f(uw+1
ξ , zw), (35)
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solved in the second stage for a given scenario ξ ∈ Ω.

The integrated myopic model presented in Section 4.2.2 is adapted to solve this 2S-SP model using

a logic-based Benders decomposition technique [12]. In the first stage, it is enough to modify the

objective function (29) for the integrated myopic approach to

min
∑
p∈P

∑
s∈S

∑
l∈L

ELpslx
w
psz

w
pl +

∑
ξ∈Ω

P (ξ)Q(zwpl, ξ), (36)

where the term P (ξ)Q(zwpl, ξ) is added to represent the stochastic costs to be estimated. To this end,

we solve a similar model in the second-stage to find the optimal solution for the set of orders Oξ that

are expected to arrive in each scenario ξ ∈ Ω. A scenario ξ is solved for the objective function

Q(zwpl, ξ) = min
∑
p∈P

∑
s∈S

∑
l∈L

EL∗pslx
w+1
ps zw+1

pl , (37)

where L∗p is the initial location of pod p in this stage given according to the solution found in the first

stage, i.e., L∗p = {l|zwpl = 1}. Also, the second-stage variables xw+1, yw+1, and zw+1 are subject to the

integrated myopic constraints. The sampling technique used to generate Oξ is presented in Section

5.2 and the samples are generated as described in Section 6.2.

We use an approach based on Benders decomposition in the solution procedure implemented to solve

the 2S-SP. Assuming that we are able to enumerate the finite set of feasible solutions to the set uw,

then the term
∑

ξ∈Ω P (ξ)Q(zwpl, ξ) in the objective function of the first-stage model can be replaced by

min c (38)

subject to

c ≥

1−
∑
p∈P

∑
l∈L:z̄wpl=1

(1− zwpl)

∑
ξ∈Ω

P (ξ)Q(zwpl, ξ), ∀z̄wpl feasible solution for Uw. (39)

Constraints (39) indicate that c should be at least equal to the expected cost
∑

ξ∈Ω P (ξ)Q(zwpl, ξ)

whenever all variables z̄wpl, representing the zw variables equal to 1 in the first-stage solution, reappear

in the optimization process.

It is possible to improve the optimization process described using a lower bound derived for the

stochastic costs. Let LB(ξ) be a known lower bound for Q(zwpl, ξ). The lower bound for the stochastic

19

Robotic Mobile Fulfillment System with Pod Repositioning for Energy Saving

CIRRELT-2022-12



costs in (36) is
∑

ξ∈Ω P (ξ)LB(ξ). Adding this lower bound to (36) can significantly speed up the

solution process since the second-stage model will be solved only when the stochastic costs can improve

the current solution given the lower bound provided. With the improvement described, we must

subtract LB(ξ) from the objective function of the second-stage model for scenario ξ to compensate

the stochastic costs already considered in the first stage. In our experiments, the lower bound LB(ξ)

is calculated using a modified version of the method described in Section 4.1.3 since we do not know

the initial pod locations for the second stage before solving the first-stage model. Now, we consider

that the minimum number of pods W to be picked will have to traverse the buffer zone twice without

identifying their possible initial locations.

5. A Local Search Matheuristic for the Integrated OAP–PSP–PRP

Due to the complexity of solving most of the models presented, the design of a heuristic is required to

approximate the optimal solution for the integrated problem with stochastic demands, i.e., the stochas-

tic approach, for large-size instances. We thus design a local search matheuristic, which combines the

effectiveness of generating solutions using one of the mathematical models previously introduced with

a local search capable of quickly verifying a neighborhood based on the repositioning of pods.

The description of our matheuristic is divided into three parts detailed in the next sections. The

first part shows how to generate a feasible solution for the problem from a simple adaptation of

the two-phase myopic approach. Then, we explain how we can generate representative scenarios to

estimate the stochastic cost of feasible solutions for the problem. Finally, a very efficient local search

is described that can improve solutions by searching on a neighborhood defined by solutions generated

by swapping pod positions in the current wave. The structure of our search allows the stochastic cost

to be easily updated for each neighbor solution using simple analytical formulas.

5.1. Generating Feasible Solutions

A feasible solution for a wave requires determining which orders are assigned to which stations, which

pods are assigned to which stations, and to where each pod should return after the picks, considering

the constraints previously described, such as the picking stations’ capacities and workload balance.

The first two decisions pose the biggest challenge to generating a feasible solution since the number

of existing matches between products contained in orders and pods is huge when a scattered storage

is used. Previous studies attempted to design heuristics for the integrated OAP–PSP [14, 25, 29, 30].
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A common technique is to use mathematical models, either entirely or partially, to obtain a feasible

solution that a local search algorithm can later improve.

In this study, due to the reduced complexity of the ILP model presented for the integrated OAP–PSP

in the two-phase myopic approach of Section 4.2.1 compared to the other models we have presented,

we use this model to generate a set of feasible solutions for the integrated OAP–PSP. State-of-the-art

mathematical programming solvers can generate a pool of solutions for a problem that are certified to

be the N best solutions for it. So, we start our matheuristic by solving the ILP model until we obtain

the N best solutions. Then, the PRP is solved using the nearest rule to decide where the pods should

be returned to after the picks. All solutions are evaluated and only the best one is kept.

In preliminary experiments, we observed that good solutions for the integrated myopic approach are

not too different than the optimal solution found in the first phase of the two-phase myopic approach.

Therefore, we fixed N to 100 in all our experiments to avoid wasting time to find solutions not so

close to the optimal one. Since this heuristic starts from the optimal solution of the two-phase myopic

approach and possibly improves it for the current wave, it leads to an energy cost that is upper bounded

by the optimal solution for the two-phase myopic approach and lower bounded by the solution for

the integrated myopic approach. We show in our computational experiments (Section 6) that, despite

its simplicity, our matheuristic is capable of improving the solution given by the two-phase myopic

approach to near-optimal solutions for the integrated myopic approach.

5.2. Evaluating the Stochastic Cost

Given a feasible solution for the current wave, we estimate the stochastic cost of the next wave by

sampling possible scenarios that may be observed in the future. We sample a number S of scenarios

using a sample average approximation (SAA) scheme. The SAA is used to solve stochastic problems

using a Monte Carlo simulation. It considers that a random sample of scenarios drawn from known

probability distribution functions can approximate well the expected cost of all possible scenarios

[15]. We use the SAA to sample a certain number of scenarios using typical demand distributions as

described in Section 6.2, and the same scenarios sampled are used throughout the solution process to

speed up the run.

After generating the backlog of S scenarios, we evaluate the stochastic cost by considering the pods’

positions determined by the heuristic to generate feasible solutions as the initial layout. Then, we

solve the ILP model for the OAP–PSP for each scenario individually followed by the PRP with the
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nearest rule. The stochastic cost is given by multiplying the solutions found by the probability of

occurrence of each scenario.

An important remark about the evaluation of the stochastic cost using the SAA is that scenarios are

evaluated independently from each other. This provides a great opportunity to perform evaluations

using parallel computing. Parallelism assigns different tasks of the algorithm to different threads of a

computer to speed them up, potentially linearly reducing the running time of the block of tasks being

parallelized. We used parallelism when solving the OAP–PSP for each scenario, which is by far the

most time-consuming task of our matheuristic.

5.3. Improving the Current Solution

Thus far, we described how a feasible solution for the current wave of the integrated OAP–PSP–PRP

is generated by our matheuristic and how its stochastic cost for the subsequent wave is estimated using

the SAA technique. With this information in hand, we can improve the current solution to reduce

its first and second wave costs using a simple best improvement local search algorithm based on

rearranging pods after they return from stations in both waves. Algorithm 1 presents the pseudocode

for the local search implemented. The idea of the best improvement search is to keep updating the

solution to the best one found in its neighborhood until no more improving solution can be found

(lines 1 and 33). A neighborhood of a solution is defined as all the solutions that can be generated by

changing the final position of a pod moved in the current wave. Given a pod p1 moved in this wave,

it can be repositioned to any available storage location, and the difference in the energy cost of this

wave is Es1l∗ − Es1l1 , i.e., the cost of returning this pod from the assigned station s1 to an available

location l∗ instead of returning to its current location l1 (lines 4–7). The next step is to evaluate how

this movement impacts the energy cost of the future waves represented by the sampled scenarios. For

each scenario, the local search updates the initial location of p1 and its cost in case p1 is also moved in

the wave representing this scenario (lines 12–14), and searches for the pod p2 that when repositioned

to the location left empty by p1 after the current wave leads to the lowest difference in the energy

cost ∆∗2 (lines 15–21). The savings (or increase) in the total solution cost is given by the sum of the

savings in both stages (line 23). If this difference is negative, then the movement of p1 to l∗ and of p2

to l1 results in an improving solution to the problem (lines 25–29). Since we use the best improvement

strategy, we search for all solutions in the neighborhood before deciding where the solution should be

moved to (line 32). The final solution for the search described is expected to approximate well the

optimal solution for the stochastic approach. In the next section, we compare its results with those
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found by each of the previously described approaches.

Algorithm 1 Best improvement local search

1: repeat
2: Best pod repositioning for the current wave and each scenario i: z∗1 , z

∗
2 ← ∅;

3: Best improvement: ∆∗ = 0;
4: for all pods p1 moved in this wave to a station s1 and returned to a location l1 do
5: for all locations available l∗ after the current wave do
6: Move p1 from l1 to l∗ at the end of the current wave;
7: ∆1 = Es1l∗ − Es1l1 ; // Update current wave return cost

8: for all scenarios i = {1, . . . , S} do
9: ∆∗2 ={Large number}

10: for all pods p2 moved in this wave to a station s2 and returned to a location l2 in scenario i do
11: ∆2 = 0;
12: if p1 is also moved in i from a location l′ to a station s′ then
13: ∆2 = ∆2 + (El∗s′ − El′s′); // Update future wave depart cost

14: end if
15: if l1 is available at the end of scenario i then
16: Move p2 from l2 to l1 at the end of the scenario i;
17: ∆2 = ∆2 + (Es2l1 − Es2l2); // Update future wave return cost

18: end if
19: if ∆2 < ∆∗2 then
20: ∆∗2 = ∆2;
21: end if
22: end for
23: ∆1 = ∆1 + ∆∗2;
24: end for
25: if ∆1 < ∆∗ then
26: z∗1 ← {p1, l∗};
27: z∗2 ← {p2, l1};
28: ∆∗ = ∆1;
29: end if
30: end for
31: end for
32: Reposition pods saved in z∗ to their new locations;
33: until No improvement is possible (∆∗ ≥ 0)

6. Computational Experiments

In this section, we report and analyze the results of extensive computational experiments performed

using the methods presented. Additionally, we compare solutions for a different objective function,

i.e., minimizing the number of pod visits instead of the energy consumption, and we provide a new

solution approach where we can wait for more orders to arrive before starting to plan the picking

waves.

The computational environment used to run the experiments is equipped with an Intel Gold 6148

Skylake CPU with a 2.4 GHz clock. Runs were limited to use a maximum of 8 GB of RAM and four

cores. All methods were implemented in C++, and the parallelism was implemented using OpenMP.

The optimization models were solved using Gurobi 9.5.
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6.1. Instance Generation

As is common in the warehousing literature, synthetic instances were generated to test the optimization

models and the matheuristic presented. Their parameters are based on previous studies on the RMFS,

most simulating real conditions found in warehouses. A summary of the parameters of the instances

generated is presented in Table 4.

Table 4: Summary of the instances generated

Layout |L| |S| |P| |I| |Ip| |W| |Ow| |Io| Lp C δ Skewness

Tiny 16 2 13 10 3 2 5 [1,4] Rand 3 4 80%, 50%, 33%
Small 72 2 61 20, 40 5, 10 2 10 [1,4] Rand 6 4 80%, 50%, 33%
Medium 200 3 170 50, 100 7, 15 2 25 [1,4] Rand 10 4 80%, 50%, 33%
Large 504 4 428 200, 500 10, 25 2 50 [1,4] Rand 15 4 80%, 50%, 33%

We generated instances in four different layout sizes – tiny, small, medium, large – each represented

by different numbers of vertical aisles, horizontal aisles, and rows in each block. The tiny layout is a

2× 1× 2, meaning that it has two vertical aisles, one horizontal aisle (front and back aisles excluded),

and two rows of locations in each of its four blocks. Since each row has two storage locations (one

on each side), these instances have |L| = 16 locations where pods can be parked. Small, medium and

large sizes are, respectively, 3 × 2 × 4, 5 × 4 × 4, and 9 × 6 × 6, meaning they have 72, 200, and 504

storage locations, respectively. The largest layout generated is similar to the one used in Xie et al. [30]

for their experiments to solve the OAP–PSP. The energy cost for a task El1sl2 is set as explained in

Section 3.2 for a buffer zone of five meters separating the stations from the storage area. The number

of stations |S| is between two to four. The number of pods is equal to 85% of the number of storage

locations, i.e., |P| = 0.85|L|. The number of distinct products available in the storage area |I| is

between 10 to 500. Being Ip ⊆ I the set of products contained in a pod p, we set |Ip| to be between

3 to 25 products. These combinations allow us to analyze different levels of products scatteredness

in the storage area. All instances have a planning horizon of two waves. Limiting |W| = 2 has the

advantage of requiring less computational effort to solve instances and allowing a fair comparison

between our solution approaches with a smaller set of instances. New waves are triggered when there

are enough products in the backlog to use most of the capacity available to reduce pickers’ idle time,

without overloading the system and leaving some flexibility to move orders between stations when

solving the OAP. The orders in each wave are generated using the procedure described in Section 6.2

for the scenarios generation such that each order has one to four products, the average order comprises

1.6 items, and the majority of them has a single item, as seen in e-commerce distribution centers. The

initial location of pods Lp is determined randomly. Stations’ capacities C range between 3 to 15
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orders. The maximum difference of order lines picked by stations δ is arbitrarily fixed at four to allow

some flexibility when assigning orders to stations. Finally, three demand skewness are considered to

generate orders in all sizes, ranging from 20% of orders accounting for 80% (low), 50% (medium),

and 33% (high) of all demands. The given parameters result in three settings for the tiny layout

and 12 settings for the remaining layouts each. Random seeds were used to generate 20 instances for

each setting, which result in 780 instances in total, all of them carefully generated to contain feasible

solutions.

6.2. Scenarios Generation

A scenario contains a certain number of orders, each with a certain number of products, which can be

a combination of any subset of products among all available products I.

The first decision when sampling a scenario to estimate the stochastic costs is to determine the number

of orders to be sampled. Since the starting point of a wave is a decision controlled by the warehouse

manager, we simply consider that the number of orders to be generated is fixed to the number of

orders arrived in the current wave.

The next decision concerns the number of order lines contained in each order. Orders in e-commerce

are typically composed of few products. The number of order lines in each order is commonly generated

from a truncated geometric distribution [16, 25, 30]. In this distribution, given a parameter µ the

probability that an order contains m distinct products is represented by µ(1 − µ)(m−1)/
∑M

n=1 µ(1 −

µ)(n−1) for m = {1, . . . ,M}, where M is the maximum number of items in an order. Following Valle

and Beasley [25], we generated orders using M = 4 and µ = 1/1.73, chosen such that orders have

an average of 1.6 order lines, which is known to be the average order demand at German Amazon

warehouses [6]. The chosen distribution also implies that 85% of orders contain only one item.

There is only left to determine the lines of each order, which can be generated using an ABC curve

[7]. The ABC curve is used to represent demand skewness by a continuous analytical function. The

more skewed demands are, the more weight few products have in the total demand. The ABC curve

is given as

F (x) =
(1 + s)x

s+ x
, 0 ≤ x ≤ 1, s ≥ 0, s+ x 6= 0, (40)

where x indicates the relative position of a product whose order frequency represents a fraction F (x)

of total warehouse activity. The parameter s indicates the skewness of the demand. In the instances

generated, we used s = 0.067 to represent the low skewness case, holding that that 20% of the products
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(x = 0.2) account for 80% of the picks (F (x) = 0.8), reducing to 50% when s = 0.333 in the medium

skewness case, and to 33% when s = 1 in the high skewness case. Given that the available products I

are sorted by their demands, the ABC curve is used to generate the order lines for the scenarios from

random x values. Finally, equal probabilities of occurrence are assumed for each scenario among the

S scenarios sampled, i.e., P (ξ) = 1/S.

6.3. Comparisons for Smaller Instance Sets

We start our analysis by using all methods presented, i.e., all exact methods for each approach and

our matheuristic, to solve the smaller instance sets (tiny, small, and medium). Thus, we can observe

what instance sizes each method is capable of solving within a reasonable time, defined here to be a

maximum of one hour for each run. Four scenarios are sampled for the stochastic approach and the

matheuristic to estimate the stochastic costs. In preliminary tests, sampling 1 to 32 scenarios per run,

we observed that sampling four scenarios is enough to guarantee stability in the solutions provided.

For this reason, we also bounded the number of cores available in each run to four to achieve high

efficiency. Table 5 compares the solutions obtained when solving the sets Tiny to Medium. Column

Method indicates whether either the exact, represented by each approach, or the matheuristic method

is used. Column Opt shows the percentage of instances solved to optimality within the time limit

established. This indicator is not shown for the matheuristic since optimality is not proven when

using it. Column Time (s) is the average time in seconds to prove optimality using the exact models

or to stop the matheuristic when it is the case. Columns Bring pods, 1st wave, and All waves show the

average energy cost to bring pods to stations in the first wave, the average total cost for the first wave,

and the average total cost for both waves, respectively, for the instances solved within the time limit.

We highlight in the table the best costs for each one to stress that the two-phase myopic approach

optimizes the cost to bring pods in the 1st wave, the integrated myopic approach optimizes all the

costs for the 1st wave, and the integrated deterministic approach optimizes all the costs for the whole

planning horizon.

Some observations are made from Table 5. First, the MP-INLP and the 2D-SP models cannot be

solved for any instance larger than those in the Tiny set, while the INLP model cannot be solved for

any instance larger than those in the Small set, which significantly limits the applicability of these

methods in practice. From the instances with optimality proven, we note that solving the INLP

model for the integrated myopic approach is leading to solutions on average 1.1% (Tiny) and 3.6%

(Small) better than solving the ILP model followed by the nearest rule for the PRP for the two-phase
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Table 5: Methods comparison for the smaller instance sets

Method
(approach)

Energy

Layout Opt Time (s) Bring pods 1st wave All waves

MP-INLP
(integrated deterministic)

Tiny 100% 85.8 9.99 20.04 39.38
Small 0% >3600 – – –
Medium 0% >3600 – – –

ILP + nearest rule
(two-phase myopic)

Tiny 100% 0.1 9.68 19.68 39.87
Small 100% 0.2 14.43 29.22 65.06
Medium 100% 4.8 30.47 61.27 132.60

INLP
(integrated myopic)

Tiny 100% 0.3 9.78 19.45 39.71
Small 100% 34.0 14.99 28.17 61.73
Medium 0% >3600 – – –

2S-SP
(stochastic)

Tiny 97% 155.0 9.89* 19.09* 39.09*
Small 0% >3600 – – –
Medium 0% >3600 – – –

Matheuristic
(stochastic)

Tiny – 0.3 9.76 19.62 39.62
Small – 1.5 14.80 28.53 62.19
Medium – 26.1 30.72 60.46 129.28

∗only for the instances with optimality proven

myopic approach for the current wave being planned, which attests the effectiveness of integrating

PRP decisions with the OAP and the PSP. However, solutions found by solving the INLP model for

the integrated myopic approach are still 0.8% (Tiny) further than the best possible solutions as given

by the MP-INLP model for the integrated deterministic approach. This means that there is room for

improvement that could be reached using the stochastic approach. Unfortunately, the 2S-SP model for

the stochastic approach could not solve all instances from any set, so a direct comparison between the

costs shown in the table against any other method is not possible. Removing the instances that the

2S-SP model for the stochastic approach could not solve from the other approaches, we still observe

a slight improvement of 0.04% compared to the solutions found solving the INLP for the integrated

myopic approach and a deviation of 0.69% to those found solving the MP-INLP for the integrated

deterministic approach.

In summary, our matheuristic is significantly improving the initial solutions generated by solving the

ILP model from the two-phase myopic approach. For the tiny instances, we see an improvement

of the average solution compared to the integrated myopic approach, which indicates that the SAA

technique used is being somewhat effective. For the small set, although solutions are not better in the

matheuristic than in the integrated myopic approach, we can see that it approximates them well in

considerably less time. This time advantage becomes clear in the medium set when no instances are
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solved using the INLP for the integrated myopic approach while the matheuristic is quickly finding

improvements for the initial solutions provided by solving the ILP for the two-phase myopic approach.

6.4. Comparisons for the Largest Instance Set

Now, we conduct a deeper analysis for the large instance set using the two methods capable of solving

instances at this size, i.e., the ILP + nearest rule and the matheuristic. The results are presented in

Table 6, detailed for the number of products (|I|), the number of products per pod (|Ip|), and the

demand skewness (skew). Column #Inst shows the number of instances – out of a total of 20 instances

– that the matheuristic finished its run within the time limit, allowing a direct comparison against

the ILP. Energy is the equivalent of the column All waves from Table 5, and Time (s) reports the

average run time. We also display a column Diff. (%) showing how much our matheuristic improves

the initial solution generated by the ILP. Negative values show an improvement.

Table 6: Methods comparison for the large instance set

ILP + nearest rule Matheuristic

|I| |Ip| Skew #Inst Energy Time (s) Energy Time (s) Diff. (%)

200

10
33 20 319.96 220.6 316.15 965.2 -1.19
50 20 309.52 166.7 308.85 649.5 -0.22
80 20 279.09 76.7 276.11 744.0 -1.07

25
33 2 178.28 532.3 180.26 2938.4 1.11
50 9 170.85 363.9 168.86 2593.1 -1.17
80 14 163.36 329.2 164.24 1984.8 0.54

500

10
33 20 599.18 6.5 595.03 52.4 -0.69
50 20 573.99 8.0 572.71 57.4 -0.22
80 20 537.62 11.6 532.04 56.1 -1.04

25
33 20 334.07 302.1 331.17 1273.7 -0.87
50 19 322.87 243.9 320.18 1208.3 -0.83
80 20 302.97 175.8 298.19 778.1 -1.58

From Table 6, we see that in most cases our local search matheuristic improves the solutions for the

two-phase myopic approach for the real costs observed after all picking waves. This is a clear sign that

solving the stochastic model – approximated here by our matheuristic – using the SAA scheme pre-

sented leads to better solutions for the integrated problem than using the two-phase myopic approach.

The average improvement observed is of 0.76% for the real-size instances tested. Instances with a

lower |I| and a higher |Ip| have products more scattered within the storage area and, consequently,

are harder to solve due to the larger number of pod options to choose to carry to the stations. Given

428 pods in this layout size, when |I| = 200 and |Ip| = 25 each product can be found on average in

53.5 pods. Meanwhile, when |I| = 500 and |Ip| = 10 each product is stocked only in 8.6 pods on
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average. Despite the increased difficulty to solve, more scattered storage leads to much lower energy

consumption, reducing from nearly 600 kJ per wave to around 180 kJ per wave comparing the two

most extreme situations investigated and a high demand skewness. Another conclusion drawn here is

that energy consumption is reduced when the demands are more skewed. This reduction is around

10.6% to 12.7% when the 20% most demanded products account for 80% of the total demand instead

of when they account for only 33% of the total demand.

We highlight that not all runs of the ILS for the two-phase myopic approach finished within the

time limit, indicating that this is approximately the largest instance size this method can be used in

practice. Since the matheuristic starts from this solution, we cannot use it to solve larger instances

either, unless a low scattered storage level is used, which is not common in an RMFS.

6.5. Further Analysis

In this section, we extend our analysis to two new cases that are worth investigating since they can

significantly impact energy consumption in an RMFS. In the first case, we show how our models can

be used to minimize the number of pod visits, which is a common performance measure optimized

in the RMFS literature, as mentioned before, and compare solutions for this metric and the energy

consumption when either of the two are minimized. The second case presents a situation where

picks can be delayed so that waves are planned after the backlog has more orders than the scenarios

considered so far. We compare the results for a backlog with twice the number of orders to show that,

whenever possible, delaying picks can significantly save energy due to a more efficient order assignment

solution.

6.5.1. Minimize the Number of Pod Visits Versus Energy Consumption.

Our exact models can be easily modified to optimize the number of pod visits instead of the energy

consumed by robots. For that, it is enough to change the objective function (20) of the ILP for the

integrated OAP–PSP to

min
∑
p∈P

∑
s∈S

xps. (41)

We run the modified ILP model to analyze the trade-off between energy consumption and the number

of pod visits when solving the same model for each objective, solving the PRP using the nearest rule

for both cases. Table 7 summarizes the results obtained. We removed from this analysis all instances

that took longer than one hour in either of the models to allow a direct comparison of the results. The

number of instances compared is shown under #Inst. Columns Energy and #Pods show, respectively,
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the average energy consumption and the number of pod visits for the solutions found. Columns

∆Energy (%) and ∆#Pods (%) show the difference in each indicator when solving the problem for

minimizing the number of pod visits compared to when minimizing energy consumption. Overall,

the results show that minimizing the number of pod visits leads to solutions with a 9.1% to 18.6%

higher energy consumption, even though between 11.7% and 25.2% fewer pods are carried to stations.

Despite the savings in energy consumption, it is possible that blocking becomes more frequent, and

long queues are formed at the stations when more pods are carried around, which may affect energy

consumption in practice. Also, higher operational costs can occur from the larger number of robots

required to pick the extra pods. These drawbacks should be weighted by the warehouse manager when

deciding which metric to use.

Table 7: Comparison between minimizing energy consumption and minimizing the number of pod visits

Min energy Min #Pods

|I| |Ip| Skew #Inst Energy #Pods Energy #Pods ∆Energy (%) ∆#Pods (%)

200

10
33 20 319.96 33.8 367.33 27.9 12.9 -21.0
50 20 309.52 32.8 359.88 27.2 14.0 -20.6
80 20 279.09 29.5 316.23 24.2 11.7 -21.9

25
33 16 176.71 20.6 217.04 16.9 18.6 -22.2
50 18 176.48 20.5 211.04 16.3 16.4 -25.9
80 20 165.70 19.1 190.90 15.3 13.2 -25.2

500

10
33 20 599.18 54.1 659.75 47.4 9.2 -14.1
50 20 573.99 51.2 631.50 45.9 9.1 -11.7
80 20 537.62 48.9 596.46 42.9 9.9 -13.9

25
33 20 334.07 33.8 379.45 28.2 12.0 -19.7
50 20 323.70 32.7 371.81 27.7 12.9 -17.9
80 20 302.97 31.0 341.45 26.1 11.3 -18.8

6.5.2. Picking Orders Immediately Versus Waiting Until All Orders Arrive.

Normally, the longer we wait to make decisions, the more information becomes available and the

more efficient order picking can be. We present an alternative approach to solve the integrated OAP–

PSP–PRP when the time available for the picks is not tight, such that we can delay the picks to be

done after more orders arrive than the available capacity. We call this a wait-and-see approach. This

approach can be seen as an integrated myopic approach with a larger number of orders in the backlog.

In practice, it is preferred to wait for orders to be picked in a later period with no significant penalty

in the demand satisfaction, such as when dealing with low-priority orders. In this case, more orders

in the backlog allow the picks to be planned more efficiently.

We solved all instances of the large layout set, either picking orders as they arrive or using the wait-
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and-see approach. Despite the possibility of using the INLP model for the integrated myopic approach

to solve the wait-and-see approach, we opted to use our matheuristic in this analysis so that we could

compare solutions for the largest instance set, which is closer to what is found in real situations. We

solve it considering that the orders for both waves are ready for picking at the beginning of the first

wave. Then, we run our matheuristic limiting the number of picks to be half the number of orders in

the backlog for a fair comparison against solving the original problem. After solving the problem for

the first wave, we remove the orders picked and run the matheuristic again for the remaining orders.

Since the wait-and-see approach generalizes the integrated myopic approach, its optimal solution is a

lower bound for the sum of the optimal solutions of the integrated myopic approach for each wave.

In practice, the wait-and-see approach may allow new orders to be added to the backlog as they

arrive. The results found show that the wait-and-see approach leads to solutions between 16% to

17.8% cheaper than picking as orders arrive. The major drawback of this approach is the increase in

order cycle times. Again, these have to be weighted when deciding which approach to use in practice.

7. Conclusions

In this paper, we investigated how the repositioning of pods in a robotic mobile fulfillment system can

lead to a more efficient order picking process. This is analyzed by observing the energy consumption

reduction of robots carrying pods between the storage area and the picking stations. We integrate pod

repositioning decisions with those for two other operational problems commonly found in this system,

namely the order assignment and the pod selection.

We proposed several approaches to solve the integrated problem using a wave picking strategy when

future demands are uncertain. We showed that when pod repositioning decisions are integrated with

other decisions, waves can be performed consuming up to 3.6% less energy than when decisions are

made sequentially. When we add stochastic information about future demands by sampling a few

scenarios and solving a two-stage stochastic programming model, solutions can be improved even

further. We show that these solutions are only 0.69% on average below the best possible case when

future demands are known.

We presented a local search matheuristic that starts from a solution generated by the two-phase

myopic approach and improves it by searching a neighborhood with solutions where pods are returned

to different locations after the pickings are done. Our matheuristic also uses information about future

demands to provide robust solutions for the integrated problem. Our experiments showed that this
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matheuristic can find solutions up to 1.58% better than the two-phase myopic approach when instances

are considerably larger than those solved by the exact methods.

Finally, further analysis showed how to adapt our methods to minimize the number of pod visits

instead of energy consumption. Our experiments showed that minimizing pod visits can lead to

solutions with up to 18.6% higher energy consumption compared to when energy consumption is

explicitly minimized. A second case analyzed is when orders can wait to be picked in a later wave.

We showed that a backlog with twice more orders can reduce energy consumption by up to 17.8%.
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