
 

 

       CIRRELT-2022-16 
 
 
 
 
 
 
 
 

 
Data-driven Prioritization Strategies for Inventory 
Rebalancing in Bike-sharing systems 
 

 Maria Clara Martins Silva 
 Daniel Aloise 
 Sanjay Dominik Jena 
 
  
  

 
June 2022 

 
 
 
 
 
 

 
 

 
 
 
 

 



Data-driven Prioritization Strategies for Inventory Rebalancing in Bike-
sharing systems  

Maria Clara Martins Silva1, Daniel Aloise1,*, Sanjay Dominik Jena2 

 
1. Computer Engineering and Software Engineering Department, Polytechnique Montreal 
2. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation 

(CIRRELT) and Département d’analytique, opérations et technologies de l’information 
(AOTI), ESG, UQAM  

 
Abstract. The popularity of bike-sharing systems has constantly increased throughout the 
last years, given their convenience for users, low usage costs, health benefits and at their 
contribution to environmental relief. However, satisfying all user demands remains a 
challenge, given that the inventory of bike-sharing stations tends to be unbalanced over 
time. Bike-sharing system operators therefore explicitly rebalance station inventories in 
order to provide both available bikes and empty docks to the commuters. In most systems, 
the operator manually selects the stations and amounts of bikes to be rebalanced among 
those that are considered unbalanced. In practice, such manual planning is likely to result 
in suboptimal system performance. In this paper, we propose three variants of a machine 
learning-based algorithm to select the stations that should be prioritized for rebalancing, 
using features such as the predicted trip demand, as well as the inventory levels at the 
stations themselves and their surrounding stations. We evaluate the performance of these 
prioritization strategies by simulating real-world trips using data from 2019 and 2020, each 
of which exhibits distinct travel patterns given the restrictive measures implemented in 2020 
to prevent the spread of COVID-19. One of the strategies significantly improves the 
system’s performance, reducing the lost demand up to 22% and the required rebalancing 
operations up to 12% when compared to the prioritization scheme currently used in practice. 
Finally, another strategy encourages the selection of stations that are geographically 
clustered, which may facilitate rebalancing operations afterwards.  
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1. Introduction

Demand for bike-sharing systems (BSS) has constantly increased over the recent years, as they
continue to provide various advantages: they are typically simple to use and do not require pre-
vious reservation; they have been shown to be an environmentally friendly transportation mode
by reducing the ever-increasing amount of cars in circulation (Wang and Zhou, 2017); and, they
contribute to a healthy lifestyle (Pucher et al., 2010) of the participants. Particularly throughout the
ongoing pandemic, BSSs have been considered a transportation alternative with particularly low
risk of user contamination (Pase et al., 2020).

In this paper, we focus on dock-based BSSs, in which stations are located in different parts of the
city, and from which commuters may rent and return bikes. While dock-based systems have several
advantages (e.g. users get used to the location of stations and bikes), a main issue is that the station
inventories may quickly become unbalanced, i.e., either rental demand cannot be met, given that
not a sufficient number of bikes is available, or return demand cannot be met, when the station has
no empty docks. Such imbalances often occur during rush hours on weekdays, when commuters
relocate from their residential areas to the areas they work in the morning, and do the return trip
in the afternoon (Mellou and Jaillet, 2019). Unmet user demand likely causes user dissatisfaction,
which the system operators seeks to avoid as best as possible, given that it ultimately reduces the
user base as the system’s reputation is damaged.

An effective way to combat station inventory imbalances is to redistribute bikes among stations,
a process known as rebalancing. The literature distinguishes two main types of rebalancing. User-
based rebalancing consists of incentives given to the users in order to return bikes at stations
before they become empty (Vallez et al., 2021). Operator-based rebalancing is carried out by the
BSS operators themselves, typically by dispatching trucks that relocate bikes between the stations.
In this work, we focus on operator-based rebalancing, which has shown to be effective to increase
demand satisfaction (see, e.g. DeMaio (2009)) and is the common practice at major BSSs such as
BIXI in Montreal, Citi Bike in New York City and Ecobici in Mexico City. Such rebalancing is
also a less expensive solution compared to installing more stations or to adding more docks to the
current stations (Shu et al., 2013).

In most dock-based BSSs with operator-based rebalancing, the decision to actively rebalance a
station depends on which stations are considered unbalanced. Depending on the BSS, the criteria
may be different for a station to be categorized as such. For example, at NiceRide (Minneapolis,
U.S)1, a station is considered to be unbalanced when it either completely empty or completely full
(Wang et al., 2018). The operators of Vélo’v (Lyon, France) 2 classify a station as unbalanced if the
absolute difference between the number of arrivals and departures is larger than the standard devi-
ation of the distribution of these values over all the stations (Borgnat et al., 2011). BIXI Montréal
uses inventory intervals that establish an acceptable quantity of bikes at each station. Inventory
intervals are manually set by BIXI’s dispatching team, based on their experience on the station
location, intraday demand fluctuation and day of the week.

1https://niceridemn.com/
2https://velov.grandlyon.com/
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Nonetheless, the rebalancing process itself remains costly, as it accounts for gas, the mainte-
nance of the truck fleet, drivers salaries, etc. In addition, it reduces the favourable impact that bike
sharing claims to have on the environment. All considered, having a truck fleet large enough to
rebalance all unbalanced stations every hour is not financially viable for most BSSs, especially
during peak hours, and would erase most of the system’s initial value proposition. According to
JCDecaux, a company that offers self-service bikes to different cities around the world, the es-
timated cost in 2009 to relocate a single bike within a BSSs was about three dollars (DeMaio,
2009). Fleet trucks available for rebalancing are therefore limited in size and cannot rebalance all
unbalanced stations. It becomes immediate that the planning of the rebalancing operations must
be as effective as possible in order to satisfying the highest possible demand with the available
resources.

Typically, multiple rebalancing operations are required every day in a BSS. Whenever the num-
ber of unbalanced stations exceeds the maximum rebalancing capacity of the system, the operator
must select a subset of these stations to be rebalanced. Ideally, the subset of unbalanced stations
should be selected such that the number of served future demand requests is maximized, which
requires an appropriate demand forecast. However, predicting the demand of a BSS is a complex
task depending on several factors, such as the weather, the hour of the day, the day of the week,
holidays, public events, etc.
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Fig. 1: Average number of trips and rebalancing operations for all stations per weekday.

Demand prediction in BSS became even more challenging in 2020 due to restrictive measures
imposed by the governments in response to the COVID-19 pandemic, leading to a large part of
the population working from home. Figure 1 shows the average number of trips and the average
number of rebalancing operations performed by BIXI during the weekdays in July and August
2019 (left) and 2020 (right). Not only did the number of trips in 2020 decrease considerably with
respect to the same period in 2019, but the trip behaviour also changed. In 2019, the peak hours
happened right before and right after the working hours, i.e., at 8 a.m. and 5 p.m, respectively.
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However, this pattern was no longer observed in 2020, resulting in a flatter demand along the day.
Such drastic demand changes as observed from 2019 to 2020 severely affect the subset

of stations that become unbalanced over time, complicate the demand forecast and, in turn,
affects the choice of stations to be rebalanced. As a result, the pattern of BIXI’s rebalancing
operations changed drastically, reducing their activities by nearly half during the peak hours
in 2020. Given that the manual planning is mostly based on the previous experience of the
dispatching team gathered, there is a significant risk that manually adjusted rebalancing strategies
are ineffective in practice in a different environment of trip demand. This emphasizes the bene-
fit of data-driven strategies to assist BSS rebalancing in order to quickly react to changing demand.

The main contribution of this paper is to highlight the benefits of using data-driven methods
based on machine-learning in order to improve the performance of BSSs, thereby maximizing user
satisfaction while minimizing service costs. To this end, we propose three strategies to select the
stations that should be prioritized during the rebalancing process. These strategies are based on
the current inventory levels at the stations, as well as the predicted demand for the next hours.
The third strategy additionally considers the proximity among the unbalanced stations in order to
prioritize stations that are close to each other. This may lead to smaller operational routing costs
during an a posteriori truck route optimization.

Our three strategies are compared to a systematic approach, which is estimated to reproduce the
prioritization strategy currently employed at BIXI. More specifically, the comparison is conducted
by a tailored discrete-time simulation that computes the estimated lost demand (i.e., demand that
could not be satisfied), the total number of alerts raised each time a station becomes unbalanced,
and the number of performed rebalancing operations in the system. Within our computational
experiments, the second proposed strategy reduced the estimated lost demand by 18% for the
2019 data and by 22% for the 2020 data, as compared to a baseline strategy that reproduces the
prioritization performed by our BSS use case. The third prioritization strategy has demonstrated
to select stations more naturally grouped while keeping good performance measure values. All
proposed strategies can be easily implemented and are computationally cheap, therefore providing
an attractive alternative to planning models based on mathematical optimization.

The remainder of this paper is organized as follows. Section 2 reviews the most relevant liter-
ature in the area of rebalancing and prioritization strategies for bike-sharing systems. Section 3
describes how the inventory intervals are defined so as to serve as input to the prioritization al-
gorithms. Section 4 discusses the performance measures used to evaluate the various rebalancing
strategies, as well as the simulator used to estimate such measures. Section 5 describes the differ-
ent strategies propose to score the rebalancing priorities of unbalanced stations. Section 6 presents
and analyzes the computational experiments. Finally, Section 7 concludes the paper.

2. Literature Review

Rebalancing in BSSs can be divided into two main steps: (a) inventory management, and (b) op-
erational bike repositioning. Step (a) aims to set the number of bikes in each station to meet the
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predicted demand as best as possible. Step (b) focuses on the actual dispatching operations that are
necessary to achieve the desired station inventory levels in order to rebalance the system.

In order to define, in step (a), the optimal inventories that are likely to provide sufficient bikes
and free docks to satisfy future demand, it is necessary to forecast future demand sufficiently well.
Trip demand is influenced by numerous external factors, such as the weather, the day of the week,
the time of the day, land use, the location of the stations, points of interest, and social-demographic
characteristics (El-Assi et al., 2017; Hampshire and Marla, 2012). Most of the proposed approaches
to predict trip demand are either based on machine learning (e.g. Feng et al. (2018); Hulot et al.
(2018); Yin et al. (2012)) or on statistical models (e.g. Borgnat et al. (2011); Chen et al. (2016);
El-Assi et al. (2017); Gebhart and Noland (2014)). These models differ from each other in terms
of the predicted time horizon (hourly, daily or weekly), as well as the geographic granularity of
the predictions (station-level, cluster-level or network-level).

For instance, Yin et al. (2012) and Gebhart and Noland (2014) predict the total demand in the
network for each observed hour. Feng et al. (2018) and Borgnat et al. (2011) predict the total de-
mand on a cluster-level, while Chen et al. (2016) estimate the probability that a cluster of stations
becomes either completely full or empty. El-Assi et al. (2017) propose a model that estimates the
future demand for each station for five periods of time along the day (morning, midday, afternoon,
evening and overnight). Hulot et al. (2018) predict the hourly rentals and returns for each station,
using temporal (day, day of the week, holiday, etc.) and weather (temperature, humidity, rain, etc.)
features. The authors also propose a reduction technique to the trip data, improving the computa-
tional execution time and erasing outliers from the dataset. Once the demand is properly predicted,
optimal inventories values can be determined. Schuijbroek et al. (2017) model the station inventory
by means of a Poisson queuing system that estimates its optimal number of bikes while ensuring
a given service level. In the work of Liu et al. (2016), the demand is predicted using a k-nearest
neighbors regression model in which dissimilarities are weighted by meteorological forecast fea-
tures. From the predicted number of trips, target inventories are optimized in order to maximize
the amount of time a station is considered balanced. For practical purposes, station-level demand
predictions for shorter time-periods (such as one hour) seems preferable given that (i) the demand
can drastically change from one hour to the next, and that (ii) the rebalancing process is actually
planned and carried out at station-level.

Regarding the operational decision-making step (b), the works in the literature can be catego-
rized into two classes: those that assume that rebalancing operations are performed by the users of
the system (under some incentive) and those that rebalance by means of a truck fleet controlled by
the operator. Chemla et al. (2013b) propose a reward mechanism to encourage users to return bikes
to certain stations in the BSS. In Fricker and Gast (2016), the authors conclude that encouraging
the users to return the bikes to a non-saturated station does not significantly improve the system’s
performance. However, they also show that the performance can be improved, by constantly stim-
ulating users to return bikes to a nearby station with lower inventory.

In the case of dock-based BSS, as the one approached here, operator-based rebalancing via
trucks has typically been modelled via mixed-integer linear programming (e.g. Alvarez-Valdes
et al. (2016); Brinkmann et al. (2016); Bulhões et al. (2018); Chemla et al. (2013a); Contardo
et al. (2012); Dell’Amico et al. (2014); Erdoğan et al. (2015); Lowalekar et al. (2017); Pal and
Zhang (2017); Papazek et al. (2013)). These models generally aim at finding optimal truck routes
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to rebalance a set of stations, typically aiming to maximize customer satisfaction. The latter may
be achieved by minimizing the total lost demand (see, e.g. Alvarez-Valdes et al. (2016); Contardo
et al. (2012); Lowalekar et al. (2017) ), keeping station inventories close to their respective target
inventories (see, e.g. Brinkmann et al. (2016); Papazek et al. (2013)) or even by optimizing several
(possibly conflicting) objectives (see, e.g. Nunes et al. (2022)). Unfortunately, the use of such
models in practice is rather challenging, given that the resulting optimization models tend to be
hard to solve. This typically limits their use to a small number of stations, given that an intraday
planning typically requires decisions within a matter of minutes. Schuijbroek et al. (2017) observe
that their formulation becomes difficult to solve even for a small instances with 50 stations and 3
trucks. The authors therefore propose a heuristic that clusters stations using a maximum spanning
star and then rebalance among clusters. Likewise, Ghosh et al. (2017) cluster nearby stations, and
then rebalance among the clusters, where the capacity and the inventory of each cluster is given by
the sum of its stations. While such an approach is improves computational feasibility, it is based on
the assumption that nearby stations have similar patterns and that rebalancing within each cluster
is time feasible.

Several other heuristic methods have been proposed (e.g. Lu et al. (2020); Papazek et al. (2014);
Ren et al. (2020)). In particular, Vergeylen et al. (2020) propose a large neighbourhood search
algorithm that optimizes the truck routes only for stations that have raised an alert to the system.
An interesting characteristic of their optimization model is that such alerts have different priorities
which are proportional to their importance in the objective function. The list of stations to rebalance
(i.e., those that raised an alert) along with their associated priorities have to be provided as input
to the optimization model.

Such approaches, based on alerts raised for stations that are prone to become unbalanced, are
also easier to fit to existing practices at several BSSs, who often plan the dispatching operations
based on such alerts. Nonetheless, because of limited resources in practice, planners are often
required to choose a subset of the unbalanced stations. Indeed, a prior selection of stations can be
very useful to scale optimization models to large BSSs by restricting the amount of stations to be
actually considered.

The algorithms proposed in the next sections seek to recommend the best subset of stations to be
rebalanced over a prespecified period of time (e.g. one hour). Given that these prioritization strate-
gies are easy to implement and computed within a matter of seconds, they provide an attractive
alternative to computationally expensive optimization models and can easily complement systems
that perform rebalancing planning based on raised station alerts.

3. Inventory intervals and service levels

Keeping station inventories at specific target values is practically infeasible. BSS operators (such as
BIXI Montreal) therefore often use intervals of acceptable inventory levels, referred to as inventory
intervals. They are composed of a lower and an upper bound, as well as the target value of the
interval itself, which refers to the ideal inventory for that station and is located within the lower
and the upper bound. Typically, each station has its specific inventory interval defined for a specific
time period, and its values may change depending on hour and day. When the inventory of a station
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falls outside of its specified inventory interval, the station is classified as unbalanced, which in turn
triggers a rebalancing alert.
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Fig. 2: Trade-off between the number of alerts and lost demand when defining inventory intervals.

Inventory intervals have a major impact on the quantity of lost demand, on the number of raised
alerts and ultimately, on the total number of rebalancing operations. For example, narrow inter-
vals generate more alerts, but tend to keep the inventory closer to its target value, which in turn,
decreases the likelihood of lost demand (see Figure 2, left). In contrast, wide inventory intervals
create fewer alerts, but at the expense of keeping the inventory farther from its target values, which
may increase the number of lost demand (see Figure 2, right). Defining inventory intervals that
make this delicate trade-off in order to maximize system performance over the entire day is there-
fore a sensitive challenge.

Hulot et al. (2018) propose a model that automates the creation of inventory intervals using
demand prediction based on historical trips, weather and temporal data. The model first predicts
future demand and then computes the appropriate service levels that translate into inventory inter-
vals. The first part aims at predicting as accurately as possible the hourly rental and return demand
for each station. Among the tested machine learning models, the best regression performance was
obtained by a gradient boosted tree (GBT). As our objective is to provide a prioritization ranking
among all stations throughout the day, we adapt the GBT model in order to predict future demand.
As such, the prioritization strategies presented in this paper (see Section 5) take the station-level
demand prediction as an input. In the following, we will briefly review the concepts proposed by
the predictive model.

After forecasting the demand for each station, the model computes its service level, which is
defined as the ratio between the estimated number of realized trips and the total trip demand at
that station. The inventory of the stations is modelled as an M/M/1/K queue, whose parameters are
the time between the rentals, the time between the returns, the number of servers (here, a single
station) and the maximum capacity of the server (i.e., the total number of docks Cs). Since the
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authors assume that the trips are described by a Poisson distribution, the times between rentals
and returns follow exponential distributions. Thus, given a station s with initial inventory f , a
time period T , and the parameters mentioned above, the rental and the return service levels are
computed as:

SLrental(f, s, T ) =

∫ T
0 µs(t)(1− ps(f, 0, t))dt∫ T

0 µs(t)dt
(1)

SLreturn(f, s, T ) =

∫ T
0 λs(t)(1− ps(f, Cs, t))dt∫ T

0 λs(t)dt
, (2)

where ps(f,N, t) is the probability that the station s has N bikes at time t, assuming that it had
f bikes at time 0, and µs(t) (resp. λs(t)) is the expected demand at time t at station s for renting
(resp. returning) bikes. The conservative overall service level is then defined as:

SL(f, s, T ) = min{SLrental(f, s, T ), SLreturn(f, s, T )}). (3)

The authors of Hulot et al. (2018) also introduce a hyperparameter α to prioritize either rentals
or returns. This hyperparameter increases the flexibility of the model by adjusting service level
computation to periods of the day during which the rental demand is higher than the return demand,
and vice-versa. The overall service level parametrized by α is then computed by:

SLα(f, s, T ) = min{αSLrental(f, s, T ), (1− α)SLreturn(f, s, T )}. (4)

Thus, α > 0.5 emphasizes bike returns, while α < 0.5 emphasizes rentals.
We observe that the minimum and maximum service levels for a station s in a time period T

depend on the initial inventory at time 0, and are given by:

SLmin(s, T ) = min
f∈{0,...,Cs}

(SLα(f, s, T )), (5)

and

SLmax(s, T ) = max
f∈{0,...,Cs}

(SLα(f, s, T )). (6)

In order to establish a threshold Ω for the acceptable service level for a station s in time period
T , we compute:

Ω(s, T ) = SLmin(s, T ) + β(SLmax(s, T )− SLmin(s, T )), (7)

where the hyperparameter β controls how exigent the operator is about the network. A small value
of β approximates the threshold Ω(s, T ) to the minimum service level, while a large β brings the
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threshold c(s, T ) closer to the maximum service level.
The inventory interval for station s for time period T is then calculated as follows:

I(s, T ) = {f ∈ {0, ..., Cs}|SLα(f, s, T ) ≥ Ω(s, T )} (8)

Finally, the target value for a station s for a time period T is equal to the inventory value f ∈
I(s, T ) for which SLα(f, s, T ) is largest.

4. Measuring BSS performance via simulation

Operators of dock-based BSSs evaluate the performance of their rebalancing operations mainly us-
ing three measures: the number of raised alerts, the number of rebalancing operations carried out
and the ability of satisfying rental and return demand. The number of raised alerts indicates how
often stations have been classified as unbalanced. The number of rebalancing operations typically
depends on the raised alerts and impacts the operating costs. Finally, the results of the previous
two elements is the number of rental and return requests that could not be satisfied, also referred
to as lost demand, which directly affects customer satisfaction. In this section, we will explore
how we may estimate these three measures in order to classify the performance of a rebalancing
strategy, which in this paper, is given by a systematic strategy to prioritize stations. To this end,
we first review in Section 4.1 the inventory simulator propose by Hulot et al. (2018). Given that
this simulator assumes the worst-case inventory given by the lower and upper bound of the stations
inventory intervals, its outcome is useful to rank different rebalancing strategies, but the estimated
performance measures are likely to be less accurate. We therefore propose a more realistic sim-
ulator in Section 4.2, which simultaneously computes the number of alerts, demand losses and
rebalancing operations. This enables us to update the estimated inventory intervals depending on
the prioritization strategy for the rebalancing operations in a rolling-horizon fashion and obtain a
more realistic estimate of the three aforementioned performance measures.

4.1. Inventory simulator based on worst-case inventory levels

Hulot et al. (2018) propose two distinct ways to estimate the number of alerts raised by an BSS
as well as the lost demand of trips. To compute the first, their estimation assumes that the bike
inventories of all stations start at their target values, and that the operator has unlimited rebalancing
capacity. Then, at each hour, the inventory of the stations is updated according to the amount of
rented and returned bikes. Whenever the inventory of a station lies outside its inventory interval,
an alert is generated and a truck is dispatched to restore the inventory of that station to its target
value for the next hour.

Computing lost demand is, however, more challenging because it is usually related to unob-
served data (Tan and Karabati, 2004). That is, there is no information about how many commuters
wanted to rent or return a bike at a specific station, but could not due to starvation (i.e, no bikes
available) or due to congestion (i.e., no empty docks available). Besides, it is common for the com-
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muters to substitute an unavailable station by others, masking its lost demand and increasing the
demand in its nearby stations. Hulot et al. (2018) propose to estimate the lost demand considering
a worst-case scenario which computes the lost demand considering that the inventory of a station
is always at its maximum value for returns, and at its minimum value for rentals. For example,
assume that the interval’s lower bound for a given station is 3 and that 5 commuters want to rent
a bike at a given hour. The estimated lost rental demand is then computed as max{0, 5− 3} = 2.
Likewise, if we assume an upper bound of 12 for a station having 15 docks, and that 6 commuters
want to return a bike, the estimated lost return demand is computed as max{0, 6− (15−12)} = 3.

While the outcome of such a simulation may be useful to provide an approximate ranking among
different rebalancing strategies, in practice, the assumption of station inventories at their interval
bounds is rather conservative and may rarely occur. We propose next a more realistic inventory
simulation that takes into consideration the actual operator’s rebalancing capacity, as well as the
estimated inventory level at each station.

4.2. Inventory simulator based on expected inventory level

In view of the shortcomings exposed above, we developed a new simulation tool to compute the
number of raised alerts, lost demand and rebalancing operations in simulated BSSs. Our simulation
takes into account the constraints of the bike-sharing systems regarding the number of stations that
can be rebalanced throughout each time period (in our case, each hour). As a consequence, at
each time period, only a subset of unbalanced stations can be rebalanced and have their inventory
intervals set back to their respective target value.

Algorithm 1 presents the pseudo-code of the simulator. The algorithm receives input matrices
containing the inventory intervals’ lower bounds (lower), upper bounds (upper) and target values
(target) for all stations and all simulated time periods. These matrices are pre-computed as by
equation (8). Further input parameters include the demand matrices for rentals and returns at
each station and for each time period, the vector of available docks at each station (#docks), and a
variable representing the operator’s rebalancing capacity (rebalancing capacity), referring to the
number of stations that can be rebalanced.

The simulator first initializes the station inventories to their respective target value. At each
subsequent time period, their inventories are updated according to the expected rental and return
demand. The simulation starts with a loop in lines 1-7 that iterates over the stations to initial-
ize the current inventories (inventory) and the accumulator variables for the number of alerts
(alerts returns and alerts rentals), and lost demand (alerts rentals and lost returns). As
well, in line 8, the variable rebalancing ops, that stores the number of rebalancing operations
done so far in the simulated time period, is initialized. Next, the algorithm iterates over the sim-
ulated hours of the considered time period in lines 9-33. It assumes an empty set of unbalanced
stations at the beginning of each simulated hour. In the loop of lines 11-25, the algorithm proceeds
by updating the inventory of each station s in line 12. If the inventory of s is above its upper bound
in line 13 a return alert is raised. On the contrary, if the inventory of s is below its lower bound in
line 16 a rental alert is raised. In both cases, the station s is added to the set of unbalanced stations.
Likewise, lost demand is computed in lines 20-24 if the inventory of s lies below 0 or above its
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number of docks.
After iterating over all the stations, the algorithm calls the function PRIORITIZE in line 26 that

sorts all the unbalanced stations according to their priority. Then, in lines 27-31, the inventory of
the prioritized stations are rebalanced to their target values up to the system’s rebalancing capacity.
In the sequel, line 32 updates the number of performed rebalancing operations during the simu-
lation. Finally, the algorithm returns in line 33 information about the number of raised alerts, lost
demand and total rebalancing operations, which are used to assess the performance of the system.

5. Prioritizing strategies for unbalanced stations

As discussed in the previous sections, the rebalancing capacity available to the system operator
may not be sufficient to rebalance all stations that have raised an alert. Figure 3 shows BIXI’s
estimated hourly rebalancing capacity, as well as the average daily number of rental and return
alerts raised at BIXI’s stations, at each hour, for weekdays in July and August 2019 (left) and
2020 (right). Here, the number of rental and return alerts have, most of the time, been significantly
superior to the BIXI’s rebalancing capacity (about 46 stations in 2019 and about 22 stations in
2020).
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Fig. 3: Maximum rebalancing capacity and average daily number of alerts raised by BIXI’s stations
at each hour during weekdays in July and August 2019 and 2020.

Operators typically follow a systematic approach how to prioritize stations for rebalancing
among those that have raised an alert, which we here refer to as rebalancing strategies. In the
following, we will first review the prioritization strategy currently in place at BIXI in Section 5.1.
In the remaining three sections, we then propose three data-driven prioritization strategies, which
explicitly consider data such as the current and future demand, station inventory and location.
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Algorithm 1 Simulation algorithm to compute alerts and lost demand
Input:target,lower,upper,returns,rentals,#docks,rebalancing capacity

1: for each station s do
2: inventory[s]← target[s, 0]
3: alerts returns[s]← 0
4: alerts rentals[s]← 0
5: lost returns[s]← 0
6: lost rentals[s]← 0
7: end for
8: rebalacing ops← 0
9: for each simulated hour h do

10: unbalanced← ∅
11: for each station s do
12: inventory[s]← inventory[s] + returns[s, h]− rentals[s, h]
13: if inventory[s] > upper[s, h] then
14: alerts return[s]← alerts returns[s] + 1
15: unbalanced← unbalanced ∪ {s}
16: else if inventory[s] < lower[s, h] then
17: alerts rentals[s]← alerts rentals[s] + 1
18: unbalanced← unbalanced ∪ {s}
19: end if
20: if inventory[s] > #docks[s] then
21: lost returns[s]← lost returns[s] + (inventory[s]−#docks[s])
22: else if inventory[s] < 0 then
23: lost rentals[s]← lost rentals[s]− inventory[s]
24: end if
25: end for
26: prioritized stations← PRIORITIZE(unbalanced,inventory,lower,upper,h)
27: #rebalanced← 0
28: while #rebalanced < min{|prioritized stations|, rebalancing capacity} do
29: inventory[prioritized stations[#rebalanced]]← target[prioritized stations[#rebalanced], h]
30: #rebalanced← #rebalanced+ 1
31: end while
32: rebalacing ops← rebalacing ops+ #rebalanced
33: end for
34: return alerts returns, alerts rentals, lost returns, lost rentals, rebalancing ops

5.1. BIXI’s prioritization strategy

BIXI uses a systematic approach to select the subset of unbalanced stations that should be priori-
tized for rebalancing operations. Their approach is summarized by the flowchart3 in Figure 4. The

3The presented flowchart was obtained after several exchanges with BIXI’s planners. As such, it is not an official repre-
sentation of BIXI’s decision-making process.
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approach can be divided into three parts. First, stations are classified as critical, if they are either
completely empty (or completely full) and for which all neighbouring stations within a radius of
600 meters are also completely empty (or completely full)4. In this case, a lack of available bikes
or empty docks at the current or surrounding stations would result in lost demand. If the number
of critical stations is larger than (or equal to) the maximum rebalancing capacity N , the N critical
stations that are the closest to a metro station are rebalanced 5. If the number of such stations is
larger than the remaining rebalancing capacity, the second part of the approach rebalances stations
that are considered non-critical, but are close to a metro station (specifically, within a reach of 600
meters). If the remaining rebalancing capacity is smaller than the number of such stations, those
that are closest to a metro station will be prioritized. Otherwise, all of those stations will be re-
balanced and the rebalancing capacity remaining thereafter will be allocated in the third part. This
final part considers all remaining unbalanced stations that are within a reach of 600 meters from
any stations that have already been selected for rebalancing. This condition aims at leveraging
trucks that will already be sent close to such stations. Among those, stations are prioritized that
have the most unbalanced inventory.

Note that this prioritization strategy may disregard a certain amount of unbalanced stations (i.e.
stations that raised an alert) in case they do not meet the established conditions.

5.2. Prioritization strategy based on inventory forecasting

The first prioritization algorithm we propose, denoted Pa1, selects stations for rebalancing taking
into consideration the current station inventories, provided as input, and the expected demand,
which is obtained by the regression model of Hulot et al. (2018). We predict the inventory of each
station s in the network for the next hour h+ 1 as follows:

pred inventory[s, h+ 1] = inventory[s] + pred returns[s, h]− pred rentals[s, h], (9)

where pred rentals[s, h] and pred returns[s, h] are, respectively, the expected demand for the
number of rentals and returns at s during the simulated hour h, and inventory[s] refers to the
current number of bikes available at s.

Note that (9) can also be extended to predict inventories for subsequent hours in advance as well.
For that, it suffices to predict bike demands for the hours of the considered time period.

Then, for each station s in the system, the algorithm computes two indices

bikes−[s] = max{0,−pred inventory[s, h+ 1]} (10)

4The radius of 600 meters is defined by BIXI based on the fact that an average person may walk this distance within
10-15 minutes, which is the time that BIXI considers acceptable for a commuter to walk seeking to be served.
5If the number of critical stations equals the (remaining) rebalancing capacity, all stations are rebalanced without sorting.
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Fig. 4: Flowchart of BIXI’s prioritization strategy.

and

bikes+[s] = max{0, pred inventory[s, h+ 1]−#docks[s]}, (11)

which represent the predicted inventory shortfall and surplus, respectively. By definition, only one
of the two indices bikes−[s] and bikes+[s] can assume a value larger than 0. Finally, a prioritization
score, denoted priority1, is computed as:

priority1[s] = max{bikes−[s], bikes+[s]}. (12)

Hence, strategy Pa1 prioritizes stations for which a loss of demand is predicted for the next
hour(s). The stations are therefore prioritized in non-increasing order according to their predicted
inventory shortfall or surplus.
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5.3. Prioritization strategy using inventory intervals

The second prioritization algorithm we propose, denoted Pa2, is less conservative than Pa1. In-
stead of giving a high prioritization score to stations whose inventories are predicted below 0 or
above its dock capacity, this strategy prioritizes according to the deviation of the station’s inventory
from its inventory interval, as defined by (8). Therefore, indices (10) and (11) are replaced by:

bikes−I [s] = max{0, lower[s, h]− pred inventory[s, h+ 1]} (13)

and

bikes+I [s] = max{0, pred inventory[s, h+ 1]− upper[s, h]}. (14)

The final priority score provided by Pa2 is then computed as:

priority2[s] = max{bikes−I [s], bikes+I [s]}. (15)

As a result, Pa2 prioritizes stations that are expected to raise an alert within the next hour.
These stations are therefore sorted in non-increasing order according to how much their predicted
inventories deviate from their inventory interval bounds.

5.4. Prioritization strategy based on neighbourhood

Our third prioritization algorithm, denoted Pa3, proposes a modification to the priority score com-
puted by Pa2 and favours the rebalancing of neighbouring stations. Thus, Pa3 is expected to result
in geographically more compact and thus less costly (and faster) dispatching routes, grouping to-
gether nearby stations.

Let us defineN s as the index set of all stations within a radius of 600 meters from station s. The
priority score computed by Pa3, denoted priority3, is then given by:

priority3[s] =

{
γ × priority2[s] + (1− γ)×

∑
s′∈Ns,s′ 6=s priority2[s

′]

|N s| , if priority2[s] > 0

priority2[s], otherwise.
(16)

The hyperparameter γ controls the weight of the neighbourhood inventory information on the
computation of the priority score. By using γ < 1, the priority score computed by Pa3 for a station
s takes also into consideration the priority scores of its neighbouring stations. As γ approaches 0,
those scores tend to prevail in (16), prioritizing stations surrounded by others that raised an alert
to the system.

In all the proposed prioritization algorithms, stations are sorted in non-increasing order of their
computed priority scores, and are then returned by function PRIORITIZE (see pseudo-code of Al-
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gorithm 1). Stations with a priority score of 0 are simply discarded and, in the case where stations
have the same score, they are sorted based on their proximity to their closest metro station.

6. Computational experiments

We now report on computational experiments that were carried out to evaluate the performance
of the various prioritization strategies. We first present the details of the dataset used in our study.
In the sequel, we discuss the selection of the hyperparameters α and β, used to define inventory
intervals, as well as γ, used by prioritization algorithm Pa3. We then compare the estimated sys-
tem performance induced by the different prioritization algorithms by means of lost demand, the
number of raised alerts and the number of performed rebalancing operations. Finally, we assess
Pa3 with respect to the clustering property of its prioritized stations.

6.1. Data set

The dataset used in the experiments contains hourly information regarding time, weather, trips and
stations. The time features hold temporal data such as the hour, day, holiday and the day of the
week. The weather features store information such as temperature, wind speed, relative humidity,
etc. The trip features are composed by the number of bike rentals and returns observed at each
station of the network. At last, the stations features contain information regarding the geographical
location of each station, as well as their corresponding number of docks. Time and weather features
were collected from https://climate.weather.gc.ca (except for the holiday feature that was
manually collected), while trip and station features were both provided by BIXI-Montreal. More
details about the importance of the different features for the GBT used here can be found in Hulot
(2018).

The dataset was split between training, validation, and test datasets. The training data was used
to fit the machine learning model parameters. The validation dataset was used to tune the hyper-
parameters used by the prioritization algorithms. Finally, the test dataset was used to provide an
unbiased performance evaluation of the different prioritization strategies.

Because of a large observed discrepancy in the frequency and the behaviour of trips in 2020,
caused by the COVID-19 pandemic, we used different strategies for selecting the dataset for each
simulated season. For the 2019 tests, the training dataset contains data from April 2018 to June
2019, minus the months during which BIXI is out of service (i.e., December, January, February
and March). The validation dataset is composed of data from the first halves of July and August
2019, and the test dataset uses data from the second halves of July and August 2019. We opted to
divide both July and August into validation and test datasets so that the model is less sensitive to
demand changes observed between consecutive months.

Note that the physical network of BSSs typically changes over time, which makes it often diffi-
cult to use data linked to a specific station ID over longer periods of time. We therefore do not use
data from 2017 and before, since a large number of BIXI stations changed their location and/or
their capacity without changing their IDs in the provided databases after 2017. We have also ob-

Data-driven Prioritization Strategies for Inventory Rebalancing in Bike-sharing systems

CIRRELT-2022-16 15



served that, for the 2020 season, adding training data from previous years deteriorates the traffic
prediction. Consequently, we used training data from April 2020 to June 2020. In that case, the
validation dataset contains the first halves of July and August 2020, while the test dataset contains
the second halves of July and August 2020. Note that we focus our experiments on the months of
July and August because of their high demand and importance throughout the season.

Figure 5 depicts our simulation pipeline. For demand prediction, the algorithm uses trip, weather
and temporal data in order to learn trips patterns so as to predict for the next hours the number
of bike rentals and returns at each station. The predicted demand is then used along with the
station data (i.e., number of docks per station) to generate the inventory intervals for each of the
stations. Finally, the simulator estimates the inventory and the performance measures based on: (i)
the station and trip data (seen - training, or unseen - validation/test); (ii) the computed inventory
intervals; (iii) the predicted future demand; (iv) the maximum rebalancing capacity; and (v) the
ranked station lists from the prioritization strategies.

Trip
features

Weather
features

Temporal
features

Demand
prediction

Creation of
inventory intervals

Inventory
simulator

Station
features

Prioritization
algorithm

Maximum
rebalancing

capacity

Estimated number of
alerts, lost demand and
rebalancing operations
for the observed period

Fig. 5: Simulation pipeline.

6.2. Hyperparameter Tuning Process

In order to define inventory intervals that achieve a good performance during simulation, hyper-
parameters α and β (see Section 3) have to be tuned to the network. Ideally, the values of these
hyperparameters should lead to inventory intervals that adapt to the expected upcoming demand,
thus yielding small numbers of alerts, lost demand and rebalancing operations. However, the con-
sidered performance measures might be pairwise conflicting. For example, a small number of
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alerts tend to trigger less rebalancing operations in the system, which in turn, may increase the lost
demand.

With that in mind, we decided to set the values of α and β by examining their associated Pareto-
frontier Rosenthal (1985), composed by the set of non-dominated pair of values regarding (i) the
lost demand, (ii) the number of raised alerts, and (iii) the number of rebalancing operations objec-
tives. A pair of values (α′, β′) is said to be dominated by another pair (α′′, β′′) if the latter is at
least as good as the first regarding (i), (ii) and (iii), being strictly better for at least one of them. We
approximated the Pareto-frontier using a grid-search in α, β ∈ [0.20, 0.25, . . . , 0.80].

Hereafter, our results refer to three non-dominated Pareto solutions of interest, namely:

• Combination A = (αA, βA), which yielded the lowest volume of lost demand;
• Combination B = (αB, βB), which yielded the lowest amount of raised alerts and rebalancing

operations; and
• Combination C = (αC , βC), which is associated to the median of the ordered set of solutions

in the Pareto Frontier.

Table 1 reports the optimized hyperparameters values obtained in our computational tests. Par-
ticularly, we observe that the value of α = 0.5 appears to be optimal in all cases, which means
that the inventory intervals are defined such that they do neither prioritize rentals nor returns (see
Section 3).

Table 1: Optimized hyperparameters values used in the tests.

Algorithm Combination 2019 dataset 2020 dataset

BIXI
(αA, βA)
(αB , βB) (0.50, 0.20) (0.50, 0.20)
(αC , βC )

Pa1

(αA, βA) (0.50, 0.50) (0.50, 0.80)
(αB , βB) (0.50, 0.20) (0.50, 0.20)
(αC , βC ) (0.50, 0.30) (0.50, 0.50)

Pa2

(αA, βA) (0.50, 0.30) (0.50, 0.40)
(αB , βB) (0.50, 0.20) (0.50, 0.20)
(αC , βC ) (0.50, 0.25) (0.50, 0.30)

We also remark that the approximated Pareto frontiers obtained by the BIXI’s prioritization
algorithm for the 2019 and 2020 seasons have a unique solution. This is explained by the fact
that BIXI’s prioritization strategy prioritizes stations that are located close to a metro station (see
Figure 4). Higher β values imply more narrow inventory intervals, leading to an increased number
of stations that raise an alert. Therefore, stations located far from a metro station are less likely to
be rebalanced. As a result, the (α, β) combination with lowest β value was found to be the one
that performed best under BIXI’s prioritization strategy.

Finally, we remark that the β values, for combinations A and C, are larger for 2020 data. As the
trip demand was considerably smaller in 2020 than in 2019, the value of β is allowed to be further
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Table 2: Collected results from 2019 and 2020 season.

Lost
Demand Alerts

Rebalancing
Operations

Season Algorithm Combination Value Diff Value Diff Value Diff

2019

BIXI A, B and C 29480 41230 25474

Pa1

A 30798 4.47 100254 143.16 22764 -10.64
B 31130 5.60 57553 39.59 22278 -12.55
C 30963 5.03 69925 69.60 22547 -11.49

Pa2

A 24129 -18.15 43246 4.89 25446 -0.11
B 24283 -17.62 36994 -10.27 23481 -7.82
C 24185 -17.96 39738 -3.62 24441 -4.06

2020

BIXI A, B and C 7490 13174 10890

Pa1

A 9096 21.44 117431 791.38 9728 -10.67
B 9171 22.44 30509 131.58 9625 -11.62
C 9103 21.54 60377 358.30 9671 -11.19

Pa2

A 5859 -21.78 16676 26.58 12212 12.14
B 6809 -9.10 12515 -5.00 10503 -3.56
C 6118 -18.32 14104 7.06 11231 3.13

increased for reducing the lost demand before being limited by the system’s rebalancing capacity.
While we have considered hyperparameters α and β above, note that the selection of hyperpa-

rameter γ (as used in (16)), will be examined later in section 6.3.1 along with strategy Pa3.

6.3. Simulation results

We now report on the simulation results of BIXI’s data for the 2019 and 2020 seasons using
the hyperparameters selected above. Specifically, we compare the results of each prioritization
algorithm regarding the number of raised alerts in the stations, the amount of lost demand and the
number of performed rebalancing operations.

The capacities of maximum hourly rebalancing operations used in our simulator for the 2019
and 2020 seasons were set to 46 and 22, respectively, which corresponds to the average number of
rebalancing operations performed by BIXI during the peak rebalancing hours in the two years.

Table 2 presents the number of alerts, lost demand and rebalancing operations estimated by the
simulator (see Section 4.2) for each of the prioritization algorithms and hyperparameter combina-
tions. We present the absolute results with the estimated value for each performance measure, as
well as relative results (in %) with respect to the measure values obtained by the BIXI’s prioritiza-
tion strategy.

The trip demand for 2019 was considerably higher than in 2020 (also compare Figure 1), when
the measures applied by the Canadian authorities in response to the COVID-19 pandemic encour-
aged the population to social distancing and working from home. As a consequence of these mea-
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sures, both the total number of trips and the trip behaviour drastically changed. Since more data
was used for training the trip prediction model in 2019, the results obtained by the proposed prior-
itization algorithms for that year are usually better than those obtained for 2020, when compared
to the BIXI’s prioritization strategy.

Moreover, we observe that Pa1 is not effective as a prioritization algorithm. Recall that Pa1
only prioritizes stations for which a shortfall or a surplus is predicted for the next hour (see Equa-
tions (10-12)), even if an alert is raised for those stations. This turns out to be a rather restrictive
rebalancing criterion, resulting in a considerably smaller number of rebalancing operations using
Pa1 compared to the other prioritization algorithms, although the number of alerts is still large.

In contrast, strategy Pa2 successfully reduces the lost demand, attaining a reduction of ≈ 22%
(using hyperparameter combination A for 2020) with respect to BIXI’s prioritization strategy. Re-
garding the number of alerts and rebalancing operations, Pa2 (with combination B) improves
these performance measures in both 2019 and 2020 seasons, reaching a reduction of ≈ 10% in the
number of alerts and ≈ 8% in the number of rebalances in 2019. In particular, Pa2 with hyperpa-
rameter combination B improves all three measures for both seasons.

6.3.1. Evaluation of Pa3
In this section, we turn our analysis to the prioritization algorithm Pa3, which is designed to favour
the rebalancing of proximal unbalanced stations as γ tends to zero. Thus, it is expected that less
lengthy, and consequently, less expensive routes can be derived for the trucks that are in charge of
the system rebalancing.

Let G = (N,E) be a graph for which there is a node ni ∈ N corresponding to each station
selected for rebalancing at a given hour. Set E contains all edges eij for which i ∈ N and j ∈ N
and i and j are not more than 600m apart. Let us denote Si ⊆ N the set of nodes connected to
ni ∈ N .

In order to evaluate Pa3 regarding its intended objective, we compute the Watts–Strogatz clus-
tering coefficient of G given by:

ηG =
1

|N |
∑
ni∈N

ηi, (17)

where ηi is computed as:

ηi =
|{ejk ∈ E : nj ∈ Si, nk ∈ Si}|(|Si|

2

) . (18)

The Watts–Strogatz clustering coefficient measures the inherent tendency of a graph to form clus-
ters Watts and Strogatz (1998). In fact, value ηi of a node ni ∈ N measures how close its neigh-
bours are to being a clique.

Strategy Pa3 is assessed using different values of γ ∈ {0, 0.05, 0.10 . . . , 1} for the (α, β) com-
binations A, B and C obtained for Pa2. Thus, Pa3 is equivalent to Pa2 when γ equals 1. Figure 6
illustrates four graphs constructed from the stations prioritized by Pa3 in our simulation run for
July 22, 2019 at 6 pm, using α = 0.5, β = 0.3 and γ = 0.25, 0.5, 0.75 and 1. Nodes in N are
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drawn as red dots, whereas edges in E are indicated as yellow lines. We note from the figure
that small γ values yield graphs for which the selected stations can be more naturally clustered,
yielding higher Watts–Strogatz clustering coefficient values.

(a) γ = 0.25, ηG = 0.61 (b) γ = 0.5, ηG = 0.48

(c) γ = 0.75, ηG = 0.34 (d) γ = 1, ηG = 0.31

Fig. 6: Stations prioritized by Pa3 on July 22, 2019 at 6 p.m. with different values of γ.
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Next, Figure 7 illustrates the impact of hyperparameter γ on the Watts-Strogatz clustering coef-
ficient, as well as the three performance measures used in our study. In particular, for each value
of γ, Figure 7a presents the average Watts-Strogatz clustering coefficient of the graphs built from
the stations selected by Pa3 during busy hours of the 2019 BIXI’s season, i.e., between 7-11 am
and 4-8 pm. We can notice that ηG reaches its maximum value close to γ = 0.25, and not at γ = 0.
Since the stations available for prioritization might vary over time due to previous rebalancing
operations, being too greedy towards the prioritization of neighbouring stations might cause an ab-
sence of clusters of unbalanced stations for subsequent simulated hours. For reference, Pa3 yields
an ηG superior to that obtained by means of the BIXI’ s prioritization strategy for γ ≤ 0.6.

(a) (b)

(c) (d)

Fig. 7: Pa3 performance measures.

Finally, for the three performance measures, Pa3 improves its performance as γ approaches 1,

Data-driven Prioritization Strategies for Inventory Rebalancing in Bike-sharing systems

CIRRELT-2022-16 21



which indicates that Pa2 is indeed the better choice when the three performance measures are
the only criteria considered to select a strategy. Note, however, that the performance measures
disregard the routing effort to rebalance the selected stations. Although the number of rebalancing
operations observed with the use of Pa3 is larger for smaller γ, such operations are potentially less
expensive since the selected stations are closer to each other. Such tradeoff between the clustering
coefficient and the cost of the system’s rebalancing operations indeed merits further investigation.
However, it must be conducted in conjunction with routing optimization algorithms, which are out
of the scope of the present paper.

7. Concluding remarks

In this paper, we have proposed three different strategies to prioritize stations among all unbalanced
stations in dock-based BSSs. This is an important issue for BSS operators, given that it is neither
economically feasible nor ecologically desirable to provide a sufficiently large truck fleet in order
to rebalance all unbalanced stations at the same time. From a practical perspective, these strategies
are particularly attractive, given that they rely only on a predictive model and can be relatively
easily implemented, therefore circumventing major technical headwinds when trying to implement
rebalancing strategies based on mathematical optimization models. Once the predictive model is
trained, predictions and prioritization strategies are computed in a matter of seconds, which is a
practical requirement in the ongoing effort to rebalance stations throughout the day.

We have proposed a more realistic simulator that simulates the actual station inventory instead of
assuming worst-case availability of bikes and empty docks. Our strategies, along with a simulation
of BIXI’s current rebalancing practices, have been tested on real-world data from 2019 and 2020.
The results indicate that our prioritization strategies can considerably improve the number of raised
alerts, lost demand and rebalancing operations. Specifically, our strategies have reduced the raised
alerts up to 10%, the lost demand up to 21% and the rebalancing operations up to 12%.

Our strategies seem particularly useful during periods of high demand, when the dispatching
team cannot rebalance all unbalanced stations due to capacity restrictions. Nevertheless, even for
periods with low demand, our prioritization strategies successfully avoid unnecessary rebalancing
operations, excluding stations that may eventually be rebalanced by the “natural” customer demand
in the short-term. Among the prioritization strategies, Pa2 outperformed Pa1, which suggests
that considering the inventory intervals (in contrast to considering only completely empty or full
stations) to prioritize stations for rebalancing is important for the system performance. Algorithm
Pa3 also proved to be an effective alternative for rebalancing proximal stations, with the potential
to decrease operational routing costs.

Note that the current practices at BIXI and the here proposed strategies compute the priorities for
stations without distinguishing between bike drop-offs and pick-ups. This may lead to situations
where the number of bikes to be picked up may be much lower or much higher than the number
of bikes to be dropped off. While this issue may be partially mitigated by large truck capacities, it
remains a limitation of our work. In future research, our strategies may be used along with routing
optimization models, such that the entire rebalancing process is optimized in an integrated manner,
taking into consideration the capacity of the dispatched trucks, as well as the loading/unloading of
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bikes among the stations.
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