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Abstract. We consider a distribution network where shipment services between 
warehouses and distribution centers must be ensured by external carriers taking into 
account demand uncertainty. The problem is tackled at the operational decision level and 
is governed by contractual restrictions and decisions already taken at the strategic level. 
Strategic decisions provide a set of core carriers, and their shipping conditions, selected 
using a combinatorial auction mechanism. Operational decisions involve the set of the 
selected core carriers and a set of spot carriers available to procure transportation services. 
The main objective of the addressed problem is to determine optimal transportation 
decisions that minimizes inventory, backorder, and transportation costs over a finite 
planning horizon under a dynamic stochastic demand at distribution centers. The problem 
is modeled using a stochastic linear multistage formulation and solved by adapting the 
Stochastic Dual Dynamic Programming (SDDP) algorithm. Our paper is the first to adapt 
the SDDP algorithm to solve a multi-period and multi-product carriers’ selection and 
shipments assignment problem for distribution networks under demand uncertainty. Our 
computational results highlight the good performance of SDDP as near-optimal solutions 
are obtained within a reasonable computational time. We also study the benefits of using 
our SDDP-based method rather than an average scenario-based approach. 
Keywords: Operational decision making, transportation procurement, multistage model, 
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1. Introduction

In the past 30 years, companies have been outsourcing many logistic functions to cope

with the complexity of managing the whole supply chain. Freight transport outsourcing

was particularly encouraged by the deregulation of road haulage in the 1980s. Transporta-

tion services procurement markets, in general, include two main actors: (1) the shippers

that outsource their transportation operations to a third-party logistics, and (2) carriers

offering transportation services of different types and at various rates. Our paper deals

with the procurement of Truckload (TL) operations services in a distribution network.

We consider a context where a company uses the TL services of external carriers to deliver

a set of products from a set of warehouses to a set of distribution centers. TL operations

imply that shipments are moved in full trailers from origins to destinations without any

intermediate stops.

Transportation services procurement follows a three-level process: strategic, tactical,

and operational. Shippers generally select for-hire carriers at the strategic/tactical levels

and commit with them on a long-time period. This would ensure that some carriers

are available to satisfy their shipment requests at the operational level with interesting

transportation rates. At the strategic level, the shipper starts by constituting a small data

basis of potential carriers with which it would engage on a long-term period. These carriers

are pre-selected based on a number of criteria such as the carrier’s financial stability, its

shipment capacity and the geographical regions it covers. Once the strategic pre-selection

phase is achieved, the shipper and the “shortlisted” carriers start an information exchange

phase. The objective is to select carriers with which the company will engage on for the

next planning horizon (one to three years).

In the last decades, auctions, and more particularity combinatorial ones, have gained

popularity as an efficient market mechanism for strategic carriers’ selection. In these

auctions, the shipper acts as the auctioneer and presents its shipping requests to the set

of pre-selected carriers. Participating carriers compete by submitting their offers in the
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form of bids. Combinatorial auctions have the particularity to permit bids on packages of

shipping requests so that either all the requests in the package are allocated to the carrier

if its bid is won, or nothing at all. When compared to simple bidding, combinatorial

bidding enables a carrier to better express its preferences and to take advantage from the

economy of scope characterizing transportation operations.

When organizing the auction, the shipper uses historical data and estimations of fu-

ture outcomes for the upcoming planning horizon to provide the participating carriers

with some information on the shipments to be auctioned (e.g., pick-up/delivery locations,

products types, approximate shipment volumes). At this strategic level, such information

is generally aggregated and not known with certainty (Remli et al., 2019). The shipper

also gives some details on the auction format and the bids structure (Abrache et al., 2007).

Based on this, the carriers solve a Bid Construction Problem (BCP) to determine which

bids to submit. Once all the carriers’ bids are received, the shipper determines the win-

ners of the auction by solving the so-called Winner Determination Problem (WDP) and

approximately knows which carrier would probably serve which shipping request and at

which price for the next planning horizon. The winning carriers of the auction determined

at the strategic level are referred to as “strategic carriers” in the rest of the paper.

At the operational level, the planning horizon is discretized in shorter time periods

(weeks or months) compared to the strategic level. The shipper has then more disag-

gregated and precise information on its distribution network when selecting carriers and

allocating shipments. The final contracts with strategic carriers remain valid but the ship-

per may allocate some shipments to spot carriers to meet the actual demand observed for

each month or each week of the planning horizon. Moreover, at the strategic level, the

shipper has selected strategic carriers with the objective to only minimize transportation

costs. At the operational level, other costs such as the inventory and backorder costs as

well as spot carriers transportation costs must be taken into account.

This paper addresses a Carriers’ Selection and Shipments’ Assignment Problem (CSSAP)
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that must be solved by a company to distribute its products from its warehouses to its

DCs. The problem is tackled at the operational level and incorporates a number of re-

strictions deriving from the strategic selection level. More precisely, CSSAP consists in

finding the best way to select and allocate shipments to external carriers so that the total

expected cost of transportation, inventory and backordering is minimized over a finite

planning horizon. The demand at each distribution center is assumed stochastic and is

modeled as a random variable with known probability distribution for each time period.

The decisions of shipments allocation are made at the beginning of each period of the

planning horizon with available short-term information (e.g., inventory levels and costs,

spot carriers’ transportation costs). They are governed by contractual restrictions and

decisions from the strategic level (e.g., transportation rates of the carriers selected at the

strategic level, shipping contracts won, etc.). To the best of our knowledge our paper is

the first to address such a problem in a stochastic dynamic context.

CSSAP is formulated as a Multi-Stage Stochastic Program (MSSP) that can be solved

by a Dynamic Programming (DP) algorithm. However, for such multi-period, multi-

product, multi-warehouse and multi-DC problem, DP suffers from the curse of dimension-

ality. To handle this issue, Approximate Dynamic Programming (ADP) algorithms and

more precisely the well-known Stochastic Dual Dynamic Programming (SDDP) algorithm

is considered and adapted. This algorithm models the stochastic process as a scenario

tree that approximates the distribution of demands using a Monte Carlo Simulation, splits

the problem into small and tractable sub-problems solved in each stage separately, and

helps approximating the future cost function iteratively. Our experimental results prove

the efficiency of the SDDP in finding robust solutions in reasonable computing times. To

the best of our knowledge, our paper is the first to adapt and evaluate the performance

of the SDDP approach to a transportation services procurement problem.

The reminder of the paper is organized as follows. Section 2 reviews relevant and

recent papers in the literature dealing with transportation services procurement. Section
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3 defines the problem addressed and presents a mathematical formulation to model it.

The SDDP algorithm is presented in Section 4. Experimental results are reported and

discussed in Section 5. Finally, Section 6 concludes the paper and describes possible

extensions for future work.

2. Literature review

In the last decades, several works have been proposed in the literature to help shippers

select carriers either at the strategic or the operational decision levels. Electronic mar-

kets and more specifically reverse combinatorial auctions have been proved to be efficient

mechanisms for the strategic procurement of TL services (Caplice and Sheffi, 2006). A

number of interesting papers proposed either stochastic programming or robust optimiza-

tion approaches to deal with demand uncertainty for strategic carriers’ selection trough

combinatorial auctions (Remli and Rekik, 2013; Zhang et al., 2014, 2015). A recent pa-

per by Remli et al. (2019) addressed the strategic carriers’ selection problem with two

uncertain parameters: the shipper’s demand and the carriers’ capacity. Short-term trans-

portation procurement problems present in spot markets were also addressed by various

researchers (Figliozzi et al., 2003; Garrido, 2003; Mes et al., 2009; Berger and Bierwirth,

2010; Lindsey and Mahmassani, 2017; Budak et al., 2017). However a limited number

of works have tackled the stochastic version of the problem. In the rest of this section,

we report and discuss relevant papers addressing carriers’ selection and/or shipments

assignment at the operational level within stochastic environments.

(Agralı et al., 2008) proposed a two-stage stochastic model in a logistics spot market

with two types of carriers: local carriers based at the same region as the logistic center

and in-transit carriers that may be called by the logistics center while traveling to their

bases. In the first stage, an auction is analyzed depending on the given number of carriers

of each type that bid for an order and their cost distributions. In the second stage, a

continuous Markov Chain model is developed to determine the steady-state probability
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distribution of the number of carriers in the logistics center. Finally, they demonstrate

the effects of various parameters such as order and carrier arrival and abandonment rates

on the performance of the system.

(Tsai et al., 2011) applied concepts from the theory of Real Options to deal with un-

certainty in transportation capacity and costs using derivative contracts called truckload

options. They propose a mean-reverting stochastic process to model the spot prices of

truckloads and develop explicit pricing formulas for truckloads calls. Further, they pro-

vided an approach to estimate the potential value of truckload options to both shippers

and carriers for selected lanes.

(Xu and Huang, 2013) proposed a periodic double auction model to address transporta-

tion service procurement in a dynamic single-lane transportation spot market taking into

account the stochastic arrivals of demand and supply. In dynamic transportation con-

text, sequential auctions allow the purchase of transportation service to be real-time or

periodic based on dynamic pricing strategies. They develop asymptotically efficient dou-

ble auction mechanisms for transportation service procurement under two scenarios: (i)

symmetric demand and supply and (ii) supply-demand imbalance. The proposed method

determines the optimal operational strategy for the logistic e-marketplace to gain higher

myopic profit from a relatively short auction length.

(Feki et al., 2016) proposed an adaptive carriers’ selection strategy that minimizes

transportation, inventory and shortage costs in dynamic stochastic environment while

considering a random carriers’ availability and market demand. Within a long-short term

framework, their study emphasis on the allocation of freight shipments in a short-term

continuous time.

Later, (Collado et al., 2020) study a dynamic transportation procurement planning

problem under limited information of future demand for transportation services in the

presence of a shorter commitment horizon than the planning horizon for procurement

contracts. The authors show the value of the availability of partial information in con-
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tracting policies and also identify settings when this value is negligeable. The evolution of

the system can be formulated as discounted infinite time horizon Markov decision process.

We refer the reader to (Lafkihi et al., 2019) and the references therein for more details

regarding the existing freight transportation organization and procurement mechanisms

and their challenges and opportunities in the context of E-commerce.

Recently, (Wang et al., 2021) suggest an investigation into shipping structure and risk

management issues of the ocean freight industry with demand and freight rate uncertain-

ties. Three cases are studied: considering only the long-term contract with the carrier,

only the spot freight market and a combination of the two. Stackelberg games model is

formulated by taking into account both the carrier’s long-term decision (on freight rate)

as well as the shipper’s long-term decision (on shipment capacity procurement amount)

and spot market supplementary procurement decision. The study shows that long-term

contract with carrier combining short-term replenishment from spot freight market can

increase for the carrier-shipper’s overall performance.

A limited discussion on the integration of the strategic and operational planning in

freight transportation problem is provided in the literature. Our study belongs to this cat-

egory, more particularly the carriers’ selection and shipments assignment problem under

uncertainy. Kantari et al. (2021) address the problem of transportation services sourcing

using the mix of contract-based and on-demand sourcing. The proposed model includes

the complex shipment problem from plant to customers where the demand is fluctuating

following a seasonal pattern and the shipment time is uncertain. Due to the dynamic na-

ture of the problem, discrete event simulation was proposed to model the problem. The

effect of the demand fluctuation was measured by three performance indicators: product

fill rate, shipment reliability and truck utilization.

(Lopez, 2021) proposed an integrated planning framework considering tactical and

operational decisions with minimum commitment contracts in the filed of e-commerce

logistics distribution. A multi-period distribution problem is formulated with mixed-
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integer linear programs in order to minimize the total costs along a finite time horizon with

time varying demand. The management problem includes selecting carriers and deciding

on the distribution planning for every period along the time horizon. Several solution

methods such as the combinatorial Benders algorithm and a heuristic-based relaxation of

time-linking constraints are compared.

Our literature review shows that the problem of operationalizing the strategic carrier’s

selection decisions yielded by a combinatorial auction mechanism has not been addressed

before in a stochastic dynamic context. We mean by operationalizing, the allocation of

shipments on shorter periods while considering: (i) the decisions made at the strategic

level, (ii) the operational constraints and costs other than those related to transportation

operations (e.g., inventory and backorder, desegregated demand, depot capacity, replen-

ishment, etc.). Our paper fills these gaps by considering a multi-stage stochastic problem

in a dynamic context that incorporates appropriate information and constraints arising

form the strategic decision level.

Our paper makes a number of contributions to the field of CSSAPs. First, it is the first

to address a CSSAP with a stochastic demand and incorporating restrictions resulting

from a combinatorial-auction based strategic selection stage. Second, our paper is the

first to use, adapt and prove the good performance of the SDDP approach to solve the

CSSAP with stochastic demand. The SDDP approach has been intensively applied for

the stochastic dynamic hydrothermal planning and the related power system problems

with random events and stochastic processes (Hjelmeland et al., 2019; Morillo et al.,

2020; Mbeutcha et al., 2021) and recently used in several applications including pastoral

dairy farms (Dowson et al., 2019), portfolio optimization (Valladao et al., 2019) and multi-

echelon lot-sizing problem under demand uncertainty (Thevenin et al., 2021). Finally, our

paper proves, through an extensive experimental study, the relevance of tackling demand

uncertainty for the CSSAP addressed with an SDDP approach and the potential profit it

would generate for the shipper when compared to an average scenario-based approach.
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3. PROBLEM DEFINITION

3.1. Context and assumptions

The CSSAP addressed in this paper considers a set of warehouses I from which a set

of products P must be directly shipped (TL context) to a set of DCs J . The planning

horizon T is assumed to be finite and discretized into equal time periods t ∈ T . The

demands for all products at DCs are assumed to occur at the beginning of each period.

They are assumed to be known with certainty for the first time period. They are stochastic

for the remaining periods with known distribution functions. The demands at different

time periods, for different products and for different DCs, are assumed to be mutually

independent random variables.

Each unit of unsatisfied demand for a current period is backlogged to the next period

with a per-unit backordering cost. Transshipment between DCs is not allowed. Inventory

is allowed at both the warehouses and the DCs. The excess inventories after shipping

decisions are carried to the next period with a per-unit holding cost. Production plan-

ning is not integrated in the problem addressed. The quantities of products arriving at

warehouses (from the production units) are assumed to be an input parameter assuming

a periodic replenishment strategy.

The company has no private fleet. It must outsource all its transportation operations

to external carriers with which it already engages on at the strategic level (strategic

carriers) or those selected from the spot market at the operational level (spot carriers).

The set of strategic carriers is known at the beginning of the planning horizon. It derives

from a combinatorial auction process performed by the company at a strategic level. The

output of the auction specifies the set of winning carriers and the bids they win. A winning

bid includes the set of lanes (origin-destination pairs) won by the strategic carrier, the

shipping price for each volume unit shipped on that lane, and the minimum and maximum

total volumes that must or can be allocated to the strategic carrier on each lane won for

each period of the planning horizon T . The set of all carriers (including both strategic
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and spot ones) is denoted C.

It is assumed that the final contracts between the shipper and the strategic carriers

specify the following terms for the operational level: (1) the shipper must assign a mini-

mum volume for each period of the planning horizon as specified by the carrier for each

lane of a winning bid. Otherwise, the shipper pays the carrier a penalty cost for each

lacking unit, (2) the carrier commits to providing a capacity per period for each lane of a

winning bid at the transporting rates proposed at the strategic level. If the shipper wants

to allocate larger volumes, it has to pay the exceeding amount at possibly higher rates.

We assume that there are no losses during transportation (products are not damaged)

and that the time required to ensure a shipment between a warehouse and a DC is

relatively small (collect and delivery are done within the same discretization period).

Finally, the products are assumed homogeneous in size and infinitely divisible (to yield a

Linear Programming (LP) model).

3.2. Mathematical model for the deterministic context

When no uncertainty is considered, CSSAP can be formulated with an LP model,

denoted Mdet. Model Mdet uses the sets, parameters and decision variables described in

Table 1.
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Table 1: Sets, parameters and decision variables of model (Mdet)

Set Description

I Set of warehouses
J Set of DCs
P Set of products
CS Set of strategic carriers
CO Set of spot carriers
T Set of discretized periods of equal lengths
Bc Set of bids won by a strategic carrier c ∈ CS
Lc,b Set of lanes l covered by a bid b won by a strategic carrier c ∈ CS
Lo Set of all lanes (i, j) that can be allocated to the spot carriers
Parameter Description

Qp,i,t Quantity of product p arriving at warehouse i at the beginning of period t
Dp,j,t Demand of product p at DC j for period t
Ri Storage capacity of warehouse i
Rj Storage capacity of DC j
Cc,t Capacity of carrier c in period t
CW p,i Unit inventory cost of product p at warehouse i
CDp,j Unit inventory cost of product p at DC j
CBp,j Unit back order cost product p at DC j

LBc,b
i,j Lower bound on the volume per period that must be allocated to strategic carrier c ∈ CS on

lane (i, j) of a winning bid b ∈ Bc

UBc,b
i,j Upper bound on the volume per period that can be allocated to strategic carrier c ∈ CS on

lane (i, j) of a winning bid b ∈ Bc

CT c,b
p,i,j Transportation cost per unit of product p from warehouse i to DC j proposed by strategic

carrier c ∈ CS in its winning bid b
CT c,o

p,i,j Transportation cost per unit of product p from warehouse i to DC j proposed by spot carrier
c ∈ CO at the operational level

θc,bi,j Penalty cost associated with strategic carriers if the lower bound imposed on the volume per
period that must be allocated to strategic carrier c on lane (i, j) of a winning bid b ∈ Bc is
not respected

χc,b
i,j Penalty cost associated with core carriers if the upper bound imposed on the volume per

period that must be allocated to strategic carrier c on lane (i, j) of a winning bid b ∈ Bc is
not respected

Decision variable Description

Xb
p,c,i,j,t Quantity of product p shipped by strategic carrier c ∈ CS in period t on lane (i, j) where

(i, j) is covered by a bid b ∈ Bc won by carrier c
Xo

p,c,i,j,t Quantity of product p shipped on lane (i, j) by a spot carrier c ∈ CO in period t

Sp,i,t Inventory level of product p at warehouse i at the beginning of period t

S+
p,j,t Inventory level of product p at DC j at the beginning of period t

S−
p,j,t Backorder level of product p at DC j at the beginning of period t

Y b
c,i,j,t Lacking amount on a lane (i, j) ∈ Lc,b, b ∈ Bc, in period t, with respect to the lower bound

LBc,b
i,j promised to strategic carrier c ∈ CS in its winning bid b

Zb
c,i,j,t Exceeding amount on a lane (i, j) ∈ Lc,b, b ∈ Bc, in period t, with respect to the upper

bound UBc,b
i,j offered by strategic carrier c ∈ CS in its winning bid b

Model Mdet is given by:

min
∑
t∈T

∑
p∈P

∑
i∈I

CWp,iSp,i,t +
∑
t∈T

∑
p∈P

∑
j∈J

(CDp,jS
+
p,j,t + CBp,jS

−
p,j,t)

+
∑
t∈T

∑
p∈P

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

CT c,b
p,i,jX

b
p,c,i,j,t ++

∑
t∈T

∑
p∈P

∑
c∈CO

∑
(i,j)∈Lo

CT c,o
p,i,jX

o
p,c,i,j,t

+
∑
t∈T

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

(θc,bi,jY
b
c,i,j,t + χc,b

i,jZ
b
c,i,j,t) (1)
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s.t.
∑
p∈P

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t ≤ Cct ∀t ∈ T, c ∈ CS (2)

∑
p∈P

∑
(i,j)∈Lo

Xo
p,c,i,j,t ≤ Cct ∀t ∈ T, c ∈ CO (3)

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t +

∑
c∈CO

∑
(i,j)∈Lo

Xo
p,c,i,j,t − Sp,i,t + Sp,i,t+1 −Qp,i,t = 0

∀t ∈ T, p ∈ P, i ∈ I (4)∑
p∈P

Sp,i,t +
∑
p∈P

Qp,i,t ≤ Ri ∀i ∈ I, t ∈ T (5)

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t +

∑
c∈CO

∑
(i,j)∈Lo

Xo
p,c,i,j,t

+ S+
p,j,t − S−

p,j,t − S+
p,j,t+1 + S−

p,j,t+1 = Dp,j,t ∀t ∈ T, p ∈ P, j ∈ J (6)∑
p∈P

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t +

∑
p∈P

∑
c∈CO

∑
(i,j)∈Lo

Xo
p,c,i,j,t +

∑
p∈P

S+
p,j,t ≤ Rj

∀j ∈ J, t ∈ T (7)∑
p∈P

Xb
p,c,i,j,t + Y b

c,i,j,t ≥ LBc,b
i,j ∀t ∈ T, c ∈ CS, b ∈ Bc, (i, j) ∈ Lc,b (8)

∑
p∈P

Xb
p,c,i,j,t − Zb

c,i,j,t ≤ UBc,b
i,j ∀t ∈ T, c ∈ CS, b ∈ Bc, (i, j) ∈ Lc,b (9)

Xb
p,c,i,j,t, Y

b
c,i,j,t, Z

b
c,i,j,t ≥ 0 ∀p ∈ P, t ∈ T, c ∈ CS, b ∈ Bc, (i, j) ∈ Lc,b

(10)

Xo
p,c,i,j,t ≥ 0 ∀p ∈ P, t ∈ T, c ∈ CO, (i, j) ∈ Lo (11)

Sp,i,t ≥ 0 ∀p ∈ P, i ∈ I, t ∈ T (12)

S+
p,j,t, S

−
p,j,t ≥ 0 ∀p ∈ P, j ∈ J, t ∈ T (13)

The objective function (1) aims at minimizing the total expected logistic costs on the whole

planning horizon. The logistic costs are composed of the warehouses and DCs inventory

costs, the DCs backordering costs, the transportation costs for strategic carriers, the

transportation costs for spot carriers, and the penalty costs incurred for not satisfying

the minimum and maximum volume commitments established with strategic carriers.

Constraints (2), respectively (3), ensure that the total amount transported by strategic

carriers, respectively, spot carriers, at each period is lower than or equal to the carrier
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capacity at each period. Constraints (4) ensure that the inventory level of product p at

warehouse i at the beginning of period (t+1) is equal to its inventory level at period t plus

the quantity of product p arriving at period t minus the total quantity of product p leaving

(transported from) warehouse i during period t. Constraints (5) ensure that the maximum

amount that can be stored at warehouse i during period t respects the warehouse capacity.

Constraints (6) ensure that the inventory (or backorder) level of product p at DC j at

the beginning of period (t+1) is equal to the sum of its inventory (backorder) level at the

beginning of period t and the corresponding quantity entering DC j during period t (the

quantity transported to it) minus the product demand at period t. Constraints (7) ensure

that the maximum amount that can be stored at DC j during period t respects the DC

capacity. Constraints (8) define the shortage volume of shipments assigned to a strategic

carrier c ∈ CS at the operational level with respect to the lower bound promised to it, for

each bid b ∈ Bc won by this carrier at the strategic level, and each pair (i, j) covered by b.

Constraints (9) are similar to (8) but consider the surplus with respect to upper bounds.

Finally, constraints (10)-(13) are non-negativity constraints on the decision variables.

The CSSAP addressed in this paper is a dynamic multi-stage stochastic distribution

problem, for which decisions, at the beginning of each period (stage) t, are taken based

on the information revealed up to that time and before knowing the value of the actual

demand at DCs in the upcoming periods. Next section describes the formulation proposed

to model it.

3.3. Multi-stage stochastic model

To deal with the dynamic nature of the problem addressed, we use the SDP paradigm.

SDP is a variant of dynamic programming that handles uncertainty on problem parame-

ters. It applies the Bellman recursion (Bellman, 1957) to the stochastic case to determine

an optimal policy over a certain period of time. A policy is a rule or function that indicates

the decision to take for each possible system state/period t. A state variable is generally

a particular variable, from the previous stage (t-1), that fully describes the system state
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at the beginning of the stage t (Defourny et al., 2012) so that the decision at stage t can

be taken without requiring any further information.

In dynamic programming, an optimal policy is constructed in a recursive way. Given

the initial system state at the beginning of period/ stage t, an optimal decision is taken

yielding a change in the system state. The resulting state will be the initial state for the

following period/stage and an optimal decision is made, and so on. The relation between

the state value at a stage t+1 with the state value at stage t given the optimal decisions

taken at stage t define the transition equation.

For CSSAP, knowing the levels of stocks in the warehouses and in the DCs is sufficient

to decide on the quantities to ship. In other words, the vector of state variables at period

t is given by St = (Sp,i,t, S
+
p,j,t, S

−
p,j,t) (recall that these variables represent the inventories

and backorders at the beginning of period t). The decisions that must be taken at period

t correspond to the quantity to be transported by each carrier within period t from the

different warehouses to the different distribution centres and the corresponding excess

and lack quantities with regard to the strategic level. Formally, the vector of decision

variables at stage t is given by: Xt = (Xo
p,c,i,j,t, X

b
p,c,i,j,t, Y

b
c,i,j,t, Z

b
c,i,j,t).

Based on this, we formulate the dynamic stochastic CSSAP with a multistage SDP model,

denoted by MSDP , as follows :

MSDP : min ED̃t
[
∑
t∈T

∑
p∈P

∑
i∈I

CWp,iSp,i,t +
∑
p∈P

∑
j∈J

(CDp,jS
+
p,j,t + CBp,jS

−
p,j,t)

+
∑
p∈P

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

CT c,b
p,i,jX

b
p,c,i,j,t +

∑
p∈P

∑
c∈CO

∑
(i,j)∈Lo

CT c,o
p,i,jX

o
p,c,i,j,t

+
∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

(θc,bi,jY
b
c,i,j,t + χc,b

i,jZ
b
c,i,j,t)] (14)

s.t. (2), (3), (5), (7)− (13)

Sp,i,t+1 = Sp,i,t +Qp,i,t −
∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t −

∑
c∈CO

∑
(i,j)∈Lo

Xo
p,c,i,j,t

∀t ∈ T, p ∈ P, i ∈ I (15)

S−
p,j,t+1 − S+

p,j,t+1 = S−
p,j,t − S+

p,j,t +Dp,j,t −
∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t
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−
∑

c∈CO

∑
(i,j)∈Lo

Xo
p,c,i,j,t∀t ∈ T, p ∈ P, j ∈ J (16)

The objective (14) aims to minimize the cost of the first stage plus the expected cost of

the optimal decisions of all subsequent stages resulting from the decision of the first stage,

the recourse decisions and the random variables D̃2... D̃|T |. Constraints (15) and (16) are

the transition equations.

By applying the Bellman’s principal of optimality, objective function (14) is reformulated

as:

F1(X1, S1, D̃1) = min
∑
p∈P

∑
i∈I

CSp,iSp,i,1 +
∑
p∈P

∑
j∈J

(CDp,jS
+
p,j,1 + CBp,jS

−
p,j,1)+∑

p∈P

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

CT c,b
p,i,jX

b
p,c,i,j,1 +

∑
p∈P

∑
c∈CO

∑
(i,j)∈Lo

CT c,o
p,i,jX

o
p,c,i,j,1+

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

(θc,bi,jY
b
c,i,j,1 + χc,b

i,jZ
b
c,i,j,1) + ED̃2

[F2(X2, S2, D̃2)] (17)

F1(X1, S1, D̃1) corresponds to the optimal costs for the entire horizon, which are incurred

by the immediate first stage decisions. F2(X2, S2, D̃2) represents the second stage costs

associated with decision X2 and realization D̃2 starting from period 2 until the end of

the planning horizon. The same decomposition process is repeated for every stage of the

horizon. The problem at stage t ∈ T , can thus be formulated using model MSDP
t as

follows:

MSDP
t : Ft(Xt, St, D̃t) = min

∑
p∈P

∑
i∈I

CSp,iSp,i,t +
∑
p∈P

∑
j∈J

(CDp,jS
+
p,j,t + CBp,jS

−
p,j,t)+∑

p∈P

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

CT c,b
p,i,jX

b
p,c,i,j,t +

∑
p∈P

∑
c∈CO

∑
(i,j)∈Lo

CT c,o
p,i,jX

o
p,c,i,j,t+

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

(θc,bi,jY
b
c,i,j,t + χc,b

i,jZ
b
c,i,j,t) + ED̃t+1

[Ft+1(Xt+1, St+1, D̃t+1)]

(18)

s.t. (2), (3), (5), (7)− (13), (15), (16)

The objective function (18) is the sum of the expected immediate costs at stage t and

the future cost from t + 1 to the end of the horizon. Ft+1(.) is referred to as the cost-
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to-go function from t + 1 to the end of the horizon and ED̃|T |+1
[F|T |+1] = 0. The future

cost function Ft+1(.) depends on the inventory level in warehouses Sp,i,t+1, the inventory

and the backorder levels in DCs (S+
p,j,t+1, S

−
p,j,t+1) at the beginning of stage t+ 1 and the

random demand D̃t+1 . . . D̃|T |+1. This function also implicitly depends on the realizations

of the random parameters in the previous stages.

As mentioned before, the solution of the proposed multi-stage problem is based on

the approximation of the recourse functions using a finite set of outcomes. However,

the DP technique suffers from the curse of dimensionality: the problem size increases

exponentially with the state space and becomes thus very difficult to solve ((Bellman,

1957)). To overcome this difficulty, (Pereira and Pinto, 1991) propose the SDDP approach

that uses an outer approximation of the cost to go function based on Benders cuts without

discretizing the state space. Section 4 describes in details how the SDDP algorithm is

adapted to our problem.

4. STOCHASTIC DUAL DYNAMIC PROGRAMMING METHOD

The SDDP is a sampling-based algorithm that can be used to solve stochastic linear

problems with a large number of stages. It approximates the Bellman function with a

set of piecewise linear functions by iteratively sampling a finite number of scenarios using

two passes: a forward and a backward passes(Pereira and Pinto, 1991). At each iteration,

the algorithm generates a sequence of feasible decisions, called trial solutions, starting at

the first stage and moving forward up to the last stage. At the completion of the forward

pass, a statistical upper bound of the optimal objective value of the problem is estimated.

Then a backward pass is performed to refine the approximation of the cost to go func-

tion using the trial solutions. This is done by adding new cuts (Benders cuts) to each

of the sub-problems visited in the forward pass, starting from the last stage and moving

backward to the first stage. At the end of the backward pass, a valid lower bound of the

optimal objective value of the problem is computed. The algorithm terminates when the
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lower and upper bounds satisfy a predefined convergence criterion. More details on the

SDDP approach and the convergence criteria are available in (Pereira and Pinto, 1991)

and (Shapiro, 2011).

In our case, the SDDP algorithm defines at each stage t an approximate value for function

Ft(Xt, St, D̃t) by replacing E [Ft+1(Xt+1, St+1, D̃t+1)] in model MSDP
t by variable ϕt+1 and

constraining ϕt+1 by the following set of Benders cuts:

ϕt+1 ≥
∑
p∈P

∑
i∈I

πl
p,i,t+1(Sp,i,t+1 − Sl

p,i,t+1) +
∑
p∈P

∑
j∈J

(S−
p,j,t+1 − Sl

p,j,t+1)λ
l
p,j,t+1

−
∑
p∈P

∑
j∈J

(S+
p,j,t+1 − Sl

p,j,t+1)λ
l
p,j,t+1 + Ft+1(X

l
t+1, S

l
t+1, D̃t+1) ∀l ∈ Lt

(19)

In inequalities (19), Lt denotes the set of trial solutions and πp,i,t and λp,j,t are the

Simplex multipliers associated with constraints (15) and (16), respectively, of modelMSDP
t

(more details on how these multipliers are determined are given next). Based on this, the

problem at stage t ∈ T , can be approximated using model MASDP
t as follows:

MASDP
t : Ft(Xt, St, D̃t) = min

∑
p∈P

∑
i∈I

CSp,iSp,i,t +
∑
p∈P

∑
j∈J

(CDp,jS
+
p,j,t + CBp,jS

−
p,j,t)+∑

p∈P

∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

CT c,b
p,i,jX

b
p,c,i,j,t +

∑
p∈P

∑
c∈CO

∑
(i,j)∈Lo

CT c,o
p,i,jX

o
p,c,i,j,t

+
∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

(θc,bi,jY
b
c,i,j,t + χc,b

i,jZ
b
c,i,j,t) + ϕt+1 (20)

s.t. (2), (3), (5), (7)− (13), (15), (16), (19)

At each iteration of the SDDP algorithm, and for each stage t ∈ T , N trial solutions

are considered. These trial solutions are obtained (through a forward pass) by solving

models MASDP
t , t ∈ T taking into account the Benders cuts added in the previous it-

erations (through the backward pass). To handle uncertainty on demand, the number

of realizations of demand at each stage t is assumed finite and the corresponding set of

plausible scenarios is denoted by Ωt. It is also assumed that the random data process is

stagewise independent, i.e., random vector D̃t+1 is independent of D̃1, . . . , D̃t. Formally,
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for each iteration k of the SDDP algorithm, a trial solutions n = 1 . . . N is obtained by

randomly generating a vector of demand values D̃t,k,n in Ωt for each stage t ∈ T . Then,

the trial solution is progressively constructed by solving a deterministic version of mod-

els MASDP
t - starting with the first stage (t = 1) and moving forward to the last stage

(|T |)- where the value of the demand in constraints (16) is taken equal to D̃t,k,n. At itera-

tion k, models MASDP
t include the Benders cuts (19) generated in iterations 1, . . . , (k−1).

To generate the Benders cuts used to approximate the cost-to-go functions at stages

t ∈ T , a modified version of models MASDP
t are solved backward, for each trial solution

n, starting from t = |T | and moving backward to t = 2. The modified version of model

MASDP
t at stage t associated with a trial solution n and solved in a backward pass (denoted

by M
ASDP

t,n ) uses the same variables and constraints as MASDP
t except that the right-hand

sides of transition constraints (15) and (16) consider the values of the trial solution n

obtained at stage t − 1. Formally, constraints (15), respectively, (16), are replaced by

constraints (21), respectively, (22) as follows:

Sp,i,t+1 = S
n

p,i,t +Qp,i,t −
∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t −

∑
c∈CO

∑
(i,j)∈Lo

Xo
p,c,i,j,t

∀t ∈ T, p ∈ P, i ∈ I (21)

S−
p,j,t+1 − S+

p,j,t+1 = S
−n

p,j,t − S
+n

p,j,t +Dp,j,t −
∑
c∈CS

∑
b∈Bc

∑
(i,j)∈Lc,b

Xb
p,c,i,j,t

−
∑

c∈CO

∑
(i,j)∈Lo

Xo
p,c,i,j,t∀t ∈ T, p ∈ P, j ∈ J (22)

where (S
n

p,i,t, S
−n

p,j,t, S
+n

p,j,t) are the values of inventory/backorder variables obtained for trial

solution n at stage t− 1.

Solving model M
ASDP

t,n to optimality enables determining the simplex multipliers associ-

ated with constraints (21) and (22). To handle uncertainty, it is rather an approximation

of these multipliers that is used in inequalities (19). Formally, a pre-specified number Ξ of

demand scenarios are generated from Ωt for each stage t. Then, for each trial solution n,
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a deterministic version of model M
ASDP

t,n is solved Ξ times, one time for each demand sce-

nario. The simplex multipliers values associated with scenario ξ are denoted by πn
p,i,t,ξ and

λn
p,j,t,ξ. The expected simplex multipliers values used in constraints (19) to approximate

the cost-to-go function ϕt+1 are then computed as:

πn
p,i,t =

Ξ∑
ξ=1

ρξπ
n
p,i,t,ξ (23)

λn
p,j,t =

Ξ∑
ξ=1

ρξλ
n
p,j,t,ξ, (24)

where ρξ denotes the probability of occurrence of scenario ξ.

At each iteration of the SDDP algorithm, a valid lower bound is obtained by solving the

first stage model MASDP
1 which is a relaxation of MSDP

1 given that there is no guarantee

that all the benders cuts required to fully define the cost-to-go functions are considered

(Pereira and Pinto, 1991). Upper bounds are estimated based on the N problems solved

in each forward pass to derive the N trial solutions. As already mentioned, each trial

solution is obtained by randomly choosing demand scenarios in ∈ Ωt, t ∈ T and performing

a forward pass. Based on this, one can compute an average upper bound value, UB =

1
N

∑N
n=1 UBn, where UBn is the value of the total cost (cost of stage t = 1) obtained

with trial solution n in the forward pass. The corresponding (1-α)% confidence interval

is given by [UB − zα ∗ σ√
N
; UB + zα ∗ σ√

N
] where zα = Φ−1(1 − α) and Φ(.) is the

cumulative distribution function of the standard normal distribution. These lower and

upper bounds are updated at each iteration of the SDDP algorithm. As in Shapiro

(2011), the algorithm is stopped when e the lower bound lies in the confidence interval

[UB − zα ∗ σ√
N
; UB + zα ∗ σ√

N
] and the gap between the upper bound of the confidence

interval and the lower bound is smaller than a pre-specified threshold ϵ. An overview of

the the SDDP algorithm is illustrated in Figure 1.
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Figure 1: Flowchart of the SDDP algorithm

5. COMPUTATIONAL RESULTS

Our experimental study is twofold. First, we want to assess the computational perfor-

mance of the proposed algorithm (in terms of computing time and costs approximation)

to solve the dynamic stochastic CSSAP within different contexts. Our second objective

is to evaluate the quality of the solutions obtained by our approach compared to an aver-

age scenario-based approach and assess thus its relevance and its efficiency in addressing

CSSAPs in dynamic stochastic environments.

The SDDP algorithm is implemented in Microsoft Visual C++ using ILOG CPLEX
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12.6 optimization library. All experiments were conducted on a dual Intel Xeon X5650

processor 2.66 GHZ and 72 GB DDR3 ECC Reg Memory RAM.

5.1. Problem tests

Eight distribution contexts are generated by varying the number of Dcs, the number

of warehouses, the number of products and the number of strategic carriers. Table 2

gives a formal description of these contexts. For all the contexts, we consider a 12-period

planning horizon (one year with a discretization period of one month). The demand of

each product p at each DC j for each period t (Dp,j,t) is randomly generated following a

normal distribution N(700, 60). We assume that the results of the strategic selection level

are known and that one spot carrier with an infinite capacity is available at the operational

level. The lower and the upper bounds associated with a winning bid b of a strategic

carrier c for each pair (i, j) covered by b are generated as : LBc,b
i,j = 0.5

∑
t∈T

∑
p∈P Dp,j,t

|I| ,

UBc,b
i,j = 1.5

∑
t∈T

∑
p∈P Dp,j,t

|I| .

Five instances are randomly generated for each of the eight contexts. These instances

differ on the values assigned to the different types of costs. For all the 40 instances,

unit transportation costs for the spot carrier (CT c,o
p,i,j) are generated following a uniform

distribution within the interval [90,100]. The unit transportation cost of strategic carriers

for each lane (CT c,b
p,i,j) is generated within 70% and 75% of the corresponding spot cost.

The unit penalty costs incurred by the shipper for not respecting the minimum and the

maximum volumes restrictions on each lane covered by the winning bids are set to 20% of

the corresponding strategic transportation cost. Unit inventory costs at warehouses and

DCs are generated following a uniform distribution within the interval [4,5]. The unit

backorder cost for each product p at each DC j is generated as: CPp,j = 0.8×
∑

i CT c,o
p,i,j

|I| .

5.2. Computational performance of the SDDP algorithm

In order to assess the computational performance of the proposed SDDP algorithm,

we first evaluate its accuracy in approximating the total operational cost under demand
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Table 2: Description of the contexts

Context |J | |I| |P | |CS|
1 15 10 2 3
2 10 10 2 3
3 15 5 2 3
4 25 10 2 3
5 15 10 4 3
6 15 10 4 2
7 15 10 4 4
8 15 15 2 3

uncertainty. To this end, we generate a large set of plausible demand scenarios, denoted by

Ξ′, such that |Ξ′| ≫ |Ξ| (recall that Ξ denotes the set of demand scenarios considered in the

SDDP algorithm to derive average simplex multipliers used in the Benders cuts). Then, for

each scenario ξ ∈ Ξ′, we compute: (i) the total operational cost, denoted by Zsddp
ξ , yielded

by the SDDP solution, and (ii) the optimal cost denoted by Z∗
ξ . A relatively small value

of ∆∗
ξ =

Zsddp
ξ −Z∗

ξ

Z∗
ξ

implies that the proposed SDDP algorithm accurately approximates the

total operational cost for scenario ξ.

As described in Section 4, the SDDP algorithm does not provide a particular solution

but rather an approximation of the expected operational costs over the planning horizon.

In our case, we determine a SDDP solution for a scenario ξ by performing an additional

forward pass on the models MASDP
t , t = 1, . . . , T obtained at the last iteration of the

SDDP algorithms and by fixing the demand vector to its value in scenario ξ. These

models include all the Benders cuts generated through the algorithm iterations until the

stopping criteria are met. The optimal objective value Z∗
ξ is obtained by solving model

Mdet for scenario ξ.

We tested the algorithm accuracy for different parameters values that are likely to impact

its performance, namely the number of trials (N = 3, 5, 7) and the number of scenarios

(|Ξ| = 20, 50, 100). Table 3 reports the results obtained. More precisely, it displays for

each context and each combination (N, |Ξ|), the average (Avg.), the minimum (Min.)
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and the maximum (Max.) values (in percentage) obtained for ∆∗
ξ over all the scenarios

ξ ∈ Ξ′ and all the five instances of the context. Detailed results for each instance are

given in Tables A.6 and A.7 in the appendix.

Table 3: Accuracy of the SDDP algorithm in approximating the total operational cost

Context ∆∗
ξ (%)

SDDP parameters combinations (N trials, |Ξ| scenarios)
(3,20) (3,50) (3,100) (5,20) (5,50) (5,100) (7,20) (7,50) (7,100)

1 Avg. 2.42 1.69 2.43 2.10 2.26 1.71 1.90 2.24 1.54
Min. 1.13 0.42 0.54 0.54 0.83 0.37 0.75 0.62 0.00
Max. 3.92 3.40 4.23 3.97 4.29 3.48 3.39 4.20 3.65

2 Avg. 2.78 2.22 2.75 2.61 2.41 2.58 2.84 2.38 2.38
Min. 0.92 0.30 0.03 0.82 0.26 0.90 1.02 0.31 0.28
Max. 4.84 4.59 4.94 4.66 4.15 5.09 4.72 4.80 4.55

3 Avg. 3.31 3.34 3.69 3.19 3.40 3.12 3.10 3.16 3.37
Min. 1.08 1.77 1.53 0.89 0.82 1.03 0.66 0.20 1.18
Max. 6.19 5.85 6.66 5.98 6.45 5.85 5.79 6.58 5.94

4 Avg. 3.00 3.07 2.94 3.02 2.88 3.04 2.62 2.81 3.00
Min. 2.12 2.07 2.05 2.05 1.99 2.08 0.98 2.11 2.07
Max. 4.09 4.38 3.87 4.36 3.78 4.19 3.84 3.66 4.14

5 Avg. 2.60 2.39 2.68 2.43 2.64 2.49 2.49 2.53 2.56
Min. 0.74 0.59 1.08 0.71 1.47 1.33 0.45 1.11 1.24
Max. 4.41 3.93 4.32 4.24 4.33 4.03 3.99 4.09 3.97

6 Avg. 3.06 2.82 2.96 2.92 2.77 2.99 2.96 3.02 2.92
Min. 1.03 0.62 1.06 0.88 0.65 0.77 1.00 0.80 0.82
Max. 4.65 4.66 4.79 4.69 4.71 4.69 4.59 4.71 4.71

7 Avg. 2.04 2.12 2.07 1.73 1.86 1.94 1.38 1.66 1.84
Min. 0.32 0.18 0.4 0.5 0.01 0.1 0.25 0.28 0.03
Max. 3.94 4.29 3.82 3.70 3.56 3.17 2.51 3.55 3.80

8 Avg. 2.90 3.09 2.70 2.68 2.70 2.96 2.67 2.8 2.76
Min. 1.23 1.48 0.91 0.44 0.4 1.14 0.06 0.11 0.51
Max. 4.30 5.16 4.90 4.19 4.54 4.81 4.61 4.76 4.55

The results of Table 3 show that the SSDP algorithm generally well approximates

the total cost for all the instances considered and for all the SDDP parameters values.

Indeed, the deviation between the SDDP cost and the optimal true cost for each demand

scenario ξ ∈ Ξ′ averages 2.62% for the 40 instances and the nine combinations. To study

the impact of the SDDP parameters on the algorithm accuracy, we draw in bold (in

Table 3) the smallest average deviation obtained for each context. We then compute,

for each context, the absolute difference between the average deviation obtained for each

combination (N, |Ξ|) and the minimum deviation obtained for this context (Hence, a
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difference of 0 for a combination (N, |Ξ|) implies that this combination yielded the smallest

deviation with regard to the optimal cost). Figure 2 displays for each context (x axis)

this difference (y-axis) for each combination (N, |Ξ|) (the value to the right of each point

in Figure 2 is the value of this difference for the corresponding (N, |Ξ|) combination).
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Figure 2: Comparison between the different SDDP parameters settings on the algorithm accuracy

One can observe that the impact of the increase/decrease of the number of trials

and the number of scenarios on the algorithm accuracy is not substantially conclusive.

Although, for the eight considered contexts, fixing the number of trial to 7 (the largest

value) yielded the lowest average deviation for 5 context, the difference with regard N = 3
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or N = 5 remains relatively small. Besides, for a fixed number of trials, increasing the

number of scenarios not always results in a smaller average deviation. If one has to decide,

overall, it is the combination (7, 100) that offers, in average, the best accuracy.

Next, we evaluate the computational performance of the proposed SDDP algorithm

in terms of computing times and the variability in the value of the expected total cost

output by the algorithm for the different combinations of the algorithm parameters. Table

4 reports the average CPU time (in seconds) and the average expected cost (lines TC) in

Millions $ obtained for each context and each combination (N, |Ξ|), these averages being

computed on the five instances of each context. Observe that the value reported for TC

corresponds to the value of the upper bound output by the SDDP algorithm when the

stopping criteria are met. Detailed results for each instance are given in Tables A.8 and

A.9 in the appendix. Observe that Tables A.8 and A.9 also provide the 95% confidence

interval for each instance over the set of scenarios Ξ′.

Table 4: CPU time and cost variability for different parameters values of the SDDP algorithm

Context Cost/CPU
SDDP parameters combinations (N trials, |Ξ| scenarios)

(3,20) (3,50) (3,100) (5,20) (5,50) (5,100) (7,20) (7,50) (7,100)

1 TC 17.93 17.80 17.93 17.87 17.90 17.81 17.84 17.90 17.78
CPU 1248 1848 2460 1104 2736 2832 1788 3300 3900

2 TC 11.99 11.93 11.99 11.97 11.95 11.97 12.00 11.95 11.93
CPU 588 1152 1680 804 2220 2424 984 1944 3204

3 TC 18.12 18.25 18.32 18.23 18.26 18.22 18.21 18.22 18.26
CPU 504 720 744 780 972 972 504 720 1308

4 TC 29.77 29.96 29.92 29.95 29.91 29.95 29.83 29.89 18.26
CPU 1416 1104 1668 1236 1932 2436 2028 2604 3024

5 TC 35.80 35.72 35.83 35.74 35.81 35.76 35.76 35.77 35.79
CPU 1104 2472 2520 2148 2712 2956 3324 3720 5640

6 TC 36.09 36.01 36.05 36.04 35.99 36.06 36.06 36.08 36.04
CPU 1812 1524 2076 2 172 2124 3036 3456 3444 4560

7 TC 35.61 35.64 35.62 35.50 35.55 35.58 35.38 35.48 35.54
CPU 1800 2628 3240 2364 2820 3600 3012 3540 5184

8 TC 17.93 17.96 17.89 17.89 17.89 17.94 17.89 17.91 17.91
CPU 1212 1 596 1908 1764 1692 2412 2568 2 436 4 224

The results of Table 4 prove that the SDDP algorithm requires a total CPU time that

varies between 504 and 5640 seconds for all the 40 instances and the nine parameters
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combinations. The CPU time increases with the number of trials and the number of

scenarios used in the SDDP algorithm. Indeed, the CPU time required when |Ξ| = 100

(for all the trial values) averages 1655 seconds compared to 2165 seconds for |Ξ| = 50 and

2834 seconds for |Ξ| = 20. It averages 1626 seconds when N = 3 (for all |Ξ| values), 2094

seconds whenN = 5 and 2934 seconds forN = 7. This was predictable since increasing the

number of scenarios and the number of trails increases the number of problems that need

to be solved during the forward and backward passes of the SDDP algorithm. Regarding

the variability in approximating the total cost, one can observe that the difference in the

reported costs is not significant when the SDDP parameters take different values.

Combining the results of Tables 3 and 4 shows that there is a clear trade off between

computing time and algorithm accuracy in approximating costs that must be managed

when fixing the parameters values of the SDDP algorithm. Overall, the SDDP algorithm

ia relatively accurate in approximating the future costs and its computational performance

relatively stable varying slightly with its parameters tuning.

5.3. Relevance of the proposed approach

In this section, we investigate the relevance of the SDDP approach to produce good-

quality solutions when compared to the so called “Mean Scenario-Based” or MSB ap-

proach. For the MSB approach, a solution is obtained by simply solving model Mdet

where the demands at DCS are fixed to their average values (700 for our experiments).

This solution is referred to as XMSB in the following.

To ensure a fair comparison of both approaches, we determine the SDDP solutions as

follows. We perform a forward pass on the final models MASDP
t , t = 1, . . . , T obtained

at the last iteration of the SDDP algorithms (so that all the benders cuts generated by

the SDDP algorithm to approximate the cost-to-go at each stage are considered). These

models are solved for the average demand scenario (700 in our experiments). The result-

ing SDDP solution is denoted by XSDDP .

Then, we evaluate and compare the total costs induced by both solutions for different
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demand scenarios realization. To this end, we generate 500 plausible demand scenarios.

The set of generated scenarios is denoted by Ξ′. For each scenario ξ ∈ Ξ′, we denote by

ZMSB
ξ the total cost induced by XMSB for scenario ξ. This cost is obtained by solving a

variant of model Mdet where transport decisions (namely Xo
p,c,i,j,t and Xb

p,c,i,j,t variables)

are fixed to their values in XMSB and the demands in constraints (6) are set to their

values in scenario ξ. Given that the quality of the SDDP solution may differ with regard

to the parameters tuning of the SDDP approach (as observed in Section 5.2), we compare

the total cost induced by XMSB in two cases of parameters values combinations (N, |Ξ|)

for each context. The first case is referred to as “Best” and the second as “Worst”. For

each context, the values of N and |Ξ|, for the best case, correspond to the (N, |Ξ|) com-

bination for which ∆∗
ξ takes the lowest value when considering the five instances and the

nine (N, |Ξ|) combinations as reported in Tables A.6 and A.7. The worst case fixes N and

|Ξ| to the values for which ∆∗
ξ takes its largest value. Then, for each parameter combina-

tion (N, |Ξ|), we determine the SDDP solution as described above. Then for each SDDP

solution obtained for each combination (N, |Ξ|), we evaluate the total cost it induces for

scenario ξ ∈ Ξ′ by solving a variant of Mdet as for the mean-scenario based approach.

Let Zsddp
ξ , respectively, Z

sddp

ξ , denote the cost obtained by the SDDP approach for

scenario ξ when the best, respectively, the worst, case combination of the SDDP param-

eters values are considered. Table 5 reports for each context, the average, the minimum

and the maximum relative difference in costs (in %) between: (i) ZMSB
ξ and Zsddp

ξ (lines

“Best”) and, (ii) ZMSB
ξ and Z

sddp

ξ (lines “Worst”), over the scenarios ξ ∈ Ξ′ and all the

five instances of each context. Observe that these relative differences in costs are com-

puted relatively to the MSB cost:
Zsddp

ξ −ZMSB
ξ

ZMSB
ξ

for the difference with respect to the SDDP

cost for the best case; and
Z

sddp
ξ −ZMSB

ξ

ZMSB
ξ

for the worst case. Hence, a negative value under

columns “Relative difference” in Table 5 implies that the SDDP approach yields a lowest

total cost than the MSB approach. Table 5 also displays the parameters combination (N,
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|Ξ|) for the best and worst cases considered for each context.

Table 5: Comparison between the SDDP and the MSB approaches

Parameters
combination Relative difference (%)

Context Cases N |Ξ| Avg. Min. Max.

1 Best 7 100 -11.22 -11.43 -11.06
Worst 3 100 -5.88 -6.07 -5.78

2 Best 5 50 -12.15 -12.48 -11.86
Worst 5 100 -12.15 -12.41 -11.87

3 Best 7 50 -22.95 -23.28 -22.63
Worst 3 100 -5.6 -5.71 -5.51

4 Best 7 20 -13.51 -13.85 -13.34
Worst 3 50 -5.73 -5.82 -5.65

5 Best 7 20 -12.3 -12.48 -12.12
Worst 3 20 -3.79 -4.01 -3.56

6 Best 5 50 -8.78 -9.1 -8.57
Worst 3 100 -3.55 -3.72 -3.47

7 Best 5 50 -12.5 -12.61 -12.38
Worst 3 50 -10.6 -10.7 -10.5

8 Best 7 20 -13.33 -13.55 -13.1
Worst 3 50 -11.13 -11.32 -10.99

The results of Table 5 show that the proposed SDDP algorithm considerably outper-

forms the MSB approach even for its worst performance. Although the MSB approach

has the advantage of being simple to apply, the SDDP approach is much more relevant

to deal with the dynamic stochastic nature of the problem. For the instances considered,

it yielded a relative saving in total costs that varies between 8.57% and 23.28% when the

SDDP algorithm performs the best and between 3.47% and 12.41% when it performs the

worst.

6. CONCLUSION

Our paper proposes a multi-stage stochastic carrier’ selection and shipment assignment

model under demand uncertainty, where a set of strategic and spot carriers are available to

procure transportation services and to ship loads from warehouses to distribution centers.
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To deal with the dynamic nature of the problem, a Stochastic Dual Dynamic Programming

method was proposed to tackle it. An experimental study is conducted to highlight

the computational performance of the proposed algorithm. The results prove that the

SDDP algorithm produces good-quality solutions within a reasonable computational time.

Additional simulation experiments are carried out to investigate the relevance of the SDDP

method compared to an average-scenario deterministic approach. Our results prove that

the SDDP method yields important savings. A first extension would be to integrate the

strategic and the operational decisions for carriers’ selection using the SDDP algorithm.

A second research avenue would be to consider uncertainty on additional parameters such

as the replenishment quantities or the carriers capacity during operations.
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Appendix A. Detailed results for Section 5.2

Tables A.6 and A.7 display for each instance of each context, the average, the minimum

and the maximum deviation (in %) with regard to the optimal cost; these values being

computed over the scenarios ξ ∈ Ξ′.Tables A.8 and A.9 report for each instance of each

context, the average estimated cost (TC) in Million Dollars ($), its 95% confidence interval

(CI) in Million Dollars ($) and the total CPU time (in seconds) required by the SDDP

algorithm.
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Table A.6: Accuracy of the SDDP algorithm in approximating the total cost: detailed results for contexts 1-4

SDDP parameters (N, |Ξ|)
Context Instance ∆∗

ξ (%) (3,20) (3,50) (3,100) (5,20) (5,50) (5,100) (7,20) (7,50) (7,100)

Avg. 1.82 1.42 1.33 1.33 1.54 1.13 1.72 1.26 0.5
1 Min. 1.13 0.77 0.54 0.54 0.83 0.47 1.06 0.62 0.004

Max. 2.44 1.99 1.91 1.91 2.27 1.68 2.31 1.80 1.10
Avg. 1.83 1.42 1.80 1.92 1.61 1.23 1.30 1.40 1.44

2 Min. 1.2 0.89 1.23 1.36 0.93 0.75 0.75 0.83 0.91
Max. 2.33 1.90 2.33 2.42 2.13 1.74 1.82 1.94 1.89
Avg. 1.96 1.90 1.96 2.48 1.91 2.22 1.86 2.28 1.85

1 3 Min. 1.31 1.32 1.39 1.92 1.33 1.67 1.25 1.72 1.24
Max. 2.56 2.45 2.49 3.02 2.45 2.80 2.39 2.79 2.35
Avg. 3.28 0.91 3.60 1.35 3.59 1.01 1.76 3.49 0.70

4 Min. 2.77 0.42 3.09 0.74 3.04 0.37 1.25 2.96 0.24
Max. 3.92 1.41 4.20 1.78 4.29 1.51 2.29 4.20 1.27
Avg. 3.23 2.81 3.48 3.44 2.66 2.96 2.88 2.78 3.22

5 Min. 2.61 2.23 2.83 2.99 1.98 2.43 2.39 2.24 2.76
Max. 3.77 3.40 4.23 3.97 3.12 3.48 3.39 3.31 3.65
Avg. 3.18 2.77 4.18 3.68 3.32 4.27 3.67 1.96 3.41

1 Min. 2.33 2.13 3.38 2.93 2.55 3.45 2.88 1.38 2.70
Max. 4.11 3.49 4.94 4.43 4.06 5.09 4.39 2.67 4.19
Avg. 4.08 3.88 3.88 3.93 3.51 3.28 3.94 4.08 3.86

2 Min. 3.28 3.00 3.10 3.11 2.67 2.35 3.14 3.24 3.02
Max. 4.84 4.59 4.61 4.66 4.15 4.00 4.72 4.80 4.55
Avg. 2.22 2.04 3.41 1.62 3.25 1.83 2.46 2.08 2.12

2 3 Min. 1.60 1.11 2.76 1.05 2.48 1.12 1.79 1.36 1.53
Max. 2.95 2.69 4.11 2.22 3.95 2.55 3.06 2.91 2.90
Avg. 2.78 1.35 0.89 2.36 0.87 1.61 2.34 2.63 0.99

4 Min. 2.02 0.53 0.03 1.58 0.26 0.90 1.59 1.89 0.29
Max. 3.78 2.20 1.62 3.41 1.75 2.48 3.48 3.71 1.90
Avg. 1.64 1.09 1.40 1.48 1.11 1.91 1.80 1.15 1.05

5 Min. 0.92 0.30 0.66 0.82 0.52 1.07 1.02 0.31 0.28
Max. 2.35 1.86 2.06 2.30 1.73 2.83 2.65 1.99 1.75
Avg. 2.68 2.72 3.05 2.61 3.01 2.38 2.91 2.75 3.01

1 Min. 2.07 2.03 2.38 1.83 2.35 1.76 2.28 2.03 2.32
Max. 3.41 3.46 3.70 3.21 3.71 2.91 3.54 3.53 3.74
Avg. 2.96 2.37 2.88 2.40 2.39 2.40 2.36 1.02 2.33

2 Min. 2.28 1.82 2.24 1.67 1.71 1.68 1.62 0.20 1.68
Max. 3.76 3.10 3.63 3.07 3.03 3.15 3.10 1.73 3.03
Avg. 3.79 4.20 4.41 4.13 4.44 4.04 3.70 4.25 4.23

3 3 Min. 3.09 3.50 3.72 3.38 3.69 3.35 3.00 3.53 3.51
Max. 4.44 4.89 5.05 4.81 5.09 4.70 4.35 4.92 4.93
Avg. 5.46 5.10 5.94 5.26 5.66 5.13 5.07 5.88 5.27

4 Min. 4.80 4.45 5.15 4.61 4.92 4.44 4.43 5.10 4.59
Max. 6.19 5.85 6.66 5.98 6.45 5.85 5.79 6.58 5.94
Avg. 1.68 2.29 2.16 1.53 1.48 1.65 1.43 1.88 2.02

5 Min. 1.08 1.77 1.53 0.89 0.82 1.03 0.66 1.23 1.18
Max. 2.21 2.80 2.75 2.12 2.16 2.36 2.00 2.55 2.55
Avg. 3.24 3.26 3.31 3.29 3.30 3.26 3.02 3.16 3.27

1 Min. 2.80 2.77 2.81 2.82 2.84 2.74 2.53 2.60 2.83
Max. 3.75 3.76 3.77 3.89 3.78 3.71 3.46 3.66 3.79
Avg. 2.81 2.76 2.47 2.52 2.40 2.49 2.36 2.70 2.57

2 Min. 2.46 2.30 2.05 2.18 1.99 2.08 1.97 2.31 2.21
Max. 3.20 3.21 2.86 2.89 2.86 2.93 2.79 3.14 3.00
Avg. 2.87 2.94 3.12 2.99 3.21 3.07 3.05 2.84 3.08

4 3 Min. 2.39 2.42 2.71 2.54 2.77 2.61 2.54 2.41 2.64
Max. 3.31 3.46 3.59 3.46 3.61 3.50 3.52 3.29 3.54
Avg. 2.58 2.52 2.51 2.51 2.69 2.78 1.39 2.59 2.55

4 Min. 2.12 2.07 2.05 2.05 2.21 2.31 0.98 2.11 2.07
Max. 3.15 3.08 3.00 3.05 3.22 3.30 1.74 3.12 3.12
Avg. 3.51 3.88 3.31 3.78 2.82 3.61 3.28 2.77 3.53

5 Min. 3.02 3.42 2.84 3.26 2.41 3.10 2.81 2.33 3.06
Max. 4.09 4.38 3.87 4.36 3.33 4.19 3.84 3.36 4.14
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Table A.7: Accuracy of the SDDP algorithm in approximating the total cost: detailed results for contexts 5-8

SDDP parameters (N, |Ξ|)
Context Instance ∆∗

ξ (%) (3,20) (3,50) (3,100) (5,20) (5,50) (5,100) (7,20) (7,50) (7,100)

Avg. 1.20 1.07 1.49 1.11 1.93 1.76 0.77 1.53 1.68
1 Min. 0.74 0.59 1.08 0.71 1.47 1.33 0.45 1.11 1.24

Max. 1.57 1.47 1.90 1.49 2.32 2.19 1.12 1.96 2.09
Avg. 3.25 3.31 3.29 3.26 3.55 3.39 3.16 3.54 3.40

2 Min. 2.81 2.81 2.79 2.78 3.06 2.86 2.72 3.10 2.94
Max. 3.80 3.92 3.88 3.82 4.33 4.03 3.75 4.09 3.97
Avg. 1.86 1.99 2.25 1.97 2.28 2.22 1.85 2.27 2.18

5 3 Min. 1.37 1.60 1.75 1.55 1.92 1.75 1.51 1.82 1.75
Max. 2.87 2.41 2.72 2.49 2.69 2.78 2.31 2.75 2.65
Avg. 2.73 3.28 3.70 2.01 2.99 2.15 3.36 2.69 2.94

4 Min. 2.19 2.78 3.10 1.54 2.47 1.76 2.75 2.11 2.43
Max. 3.36 3.93 4.32 2.63 3.64 2.64 3.99 3.39 3.62
Avg. 3.96 2.28 2.69 3.79 2.43 2.92 3.33 2.61 2.63

5 Min. 3.42 1.76 2.29 3.30 1.87 2.45 2.83 2.13 2.26
Max. 4.41 2.78 3.13 4.24 2.86 3.38 3.85 3.04 3.27
Avg. 4.08 3.82 3.83 3.89 3.93 4.18 3.81 3.98 3.97

1 Min. 3.56 3.28 3.23 3.37 3.42 3.67 3.26 3.49 3.34
Max. 4.60 4.66 4.59 4.44 4.71 4.69 4.59 4.67 4.69
Avg. 3.25 2.54 2.54 2.83 2.42 3.11 3.04 3.24 2.82

2 Min. 2.79 2.02 1.99 2.33 1.94 2.72 2.61 2.48 2.35
Max. 4.03 2.90 2.97 3.39 2.86 3.68 3.43 3.71 3.26
Avg. 1.40 1.02 1.48 1.33 1.01 1.18 1.39 1.20 1.16

6 3 Min. 1.03 0.62 1.06 0.88 0.65 0.77 1.00 0.80 0.82
Max. 1.88 1.46 2.05 1.88 1.39 1.61 1.88 1.67 1.55
Avg. 4.05 3.97 4.21 4.10 3.81 3.84 3.96 4.14 4.11

4 Min. 3.54 3.46 3.58 3.61 3.26 3.24 3.41 3.55 3.51
Max. 4.65 4.47 4.79 4.69 4.52 4.45 4.53 4.71 4.71
Avg. 2.55 2.76 2.73 2.43 2.68 2.63 2.63 2.56 2.52

5 Min. 2.09 2.31 2.12 1.89 2.11 2.11 2.01 2.12 2.02
Max. 3.08 3.17 3.18 2.87 3.11 3.02 3.05 3.00 2.91
Avg. 3.37 3.76 3.38 3.17 3.09 2.69 1.98 3.10 3.30

1 Min. 2.86 3.25 2.88 2.76 2.62 2.23 1.56 2.65 2.86
Max. 3.94 4.29 3.82 3.70 3.56 3.17 2.51 3.55 3.80
Avg. 2.46 2.65 2.43 1.02 1.88 2.28 1.38 0.91 2.55

2 Min. 1.99 2.18 1.98 0.50 1.39 1.72 0.91 0.46 1.82
Max. 2.98 3.14 2.88 1.48 2.40 2.91 1.97 1.36 3.45
Avg. 2.05 1.55 2.01 1.71 1.92 2.56 1.89 1.90 1.27

7 3 Min. 1.65 1.12 1.56 1.09 1.37 2.11 1.46 1.51 0.67
Max. 2.59 2.20 2.47 2.18 2.44 3.10 2.42 2.36 1.79
Avg. 0.90 0.79 1.03 1.10 0.43 0.58 0.83 0.77 0.63

4 Min. 0.32 0.18 0.49 0.52 0.01 0.10 0.25 0.28 0.03
Max. 1.32 1.24 1.45 1.62 0.93 1.02 1.28 1.21 1.10
Avg. 1.39 1.86 1.51 1.62 2.01 1.59 0.82 1.63 1.48

5 Min. 1.03 1.47 1.14 1.24 1.60 1.26 0.49 1.21 0.83
Max. 1.77 2.28 1.91 1.98 2.36 2.06 1.25 2.02 1.82
Avg. 1.68 1.94 1.75 0.97 0.98 1.61 0.53 0.69 0.95

1 Min. 1.23 1.48 1.26 0.44 0.40 1.14 0.06 0.11 0.51
Max. 2.21 2.48 2.31 1.38 1.49 2.22 1.06 1.28 1.45
Avg. 3.60 4.44 4.22 3.54 3.76 4.10 4.04 4.08 3.92

2 Min. 3.01 3.96 3.73 3.04 3.17 3.61 3.50 3.47 3.39
Max. 4.30 5.16 4.90 4.19 4.54 4.81 4.61 4.76 4.55
Avg. 3.00 3.07 1.32 3.05 2.94 2.95 2.97 3.06 2.77

8 3 Min. 2.45 2.51 0.91 2.48 2.39 2.36 2.43 2.55 2.24
Max. 3.62 3.61 1.87 3.54 3.53 3.51 3.57 3.62 3.35
Avg. 3.14 2.97 2.99 3.06 2.81 2.97 2.90 2.96 2.99

4 Min. 2.43 2.35 2.36 2.39 2.16 2.40 2.27 2.33 2.39
Max. 3.84 3.58 3.68 3.69 3.47 3.63 3.57 3.59 3.64
Avg. 3.11 3.04 3.22 2.78 3.02 3.19 2.91 3.20 3.17

5 Min. 2.61 2.52 2.75 2.27 2.52 2.60 2.47 2.68 2.63
Max. 3.74 3.65 3.80 3.31 3.58 3.81 3.42 3.78 3.67
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Table A.8: CPU time (in seconds) and cost variability: detailed results for contexts 1-4

TC/CI SDDP parameters (N, |Ξ|)
Context Instance CPU (3,20) (3,50) (3,100) (5,20) (5,50) (5,100) (7,20) (7,50) (7,100)

TC 17.958 17.887 17.871 17.850 17.909 17.836 17.939 17.859 17.725
1 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004

CPU 900 1 680 3 120 1 560 3 240 2 880 2 520 3 720 3 900
TC 17.795 17.723 17.788 17.810 17.755 17.689 17.702 17.720 17.726

2 CI ±0.003 ±0.004 ±0.004 ±0.003 ±0.003 ±0.004 ±0.004 ±0.004 ±0.003
CPU 1 320 2 340 1 320 780 1 020 1 920 1 620 2 520 3 480
TC 17.852 17.842 17.852 17.943 17.844 17.898 17.835 17.908 17.833

1 3 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004
CPU 1 500 1 260 2 880 1 020 3 300 3 180 1 320 3 780 4 260
TC 18.075 17.660 18.130 17.737 18.129 17.677 17.808 18.111 17.624

4 CI ±0.003 ±0.005 ±0.003 ±0.004 ±0.003 ±0.004 ±0.004 ±0.003 ±0.005
CPU 1 320 1 080 2 280 840 2 940 3 120 1 500 2 520 3 780
TC 18.004 17.930 18.049 18.041 17.905 17.958 17.943 17.926 18.002

5 CI ±0.003 ±0.004 ±0.003 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.003
CPU 1 200 2 880 2 700 1 320 3 180 3 060 1 980 3 960 4 080
TC 12.084 12.035 12.201 12.143 12.100 12.212 12.142 11.941 12.111

1 CI ±0.003 ±0.003 ±0.002 ±0.003 ±0.003 ±0.003 ±0.003 ±0.004 ±0.003
CPU 660 1 320 1 980 1 200 1 920 3 120 900 3 420 4 080
TC 12.061 12.037 12.038 12.043 11.994 11.968 12.045 12.061 12.035

2 CI ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002
CPU 720 1 920 2 820 1 320 4 920 4 080 1 500 3 180 4 140
TC 11.759 11.739 11.896 11.691 11.878 11.715 11.787 11.743 11.748

2 3 CI ±0.003 ±0.004 ±0.003 ±0.004 ±0.003 ±0.004 ±0.004 ±0.004 ±0.004
CPU 1 020 1 380 1 680 600 3 000 2 520 1 320 1 260 4 680
TC 12.138 11.968 11.914 12.088 11.912 11.999 12.085 12.120 11.926

4 CI ±0.002 ±0.003 ±0.003 ±0.002 ±0.003 ±0.003 ±0.004 ±0.004 ±0.004
CPU 300 840 1 560 360 600 1 740 900 1 320 2 220
TC 11.942 11.876 11.914 11.922 11.879 11.974 11.960 11.883 11.872

5 CI ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003
CPU 240 300 360 540 660 660 300 540 900
TC 18.195 18.203 18.262 18.183 18.254 18.142 18.237 18.208 18.254

1 CI ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.004 ±0.003 ±0.003 ±0.003
CPU 540 1 200 720 1 860 1 560 1 920 960 1 440 2 040
TC 18.061 17.957 18.045 17.963 17.960 17.961 17.955 17.719 17.950

2 CI ±0.004 ±0.005 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.005 ±0.004
CPU 360 840 960 540 660 720 240 480 1 200
TC 17.765 18.512 18.549 18.498 18.553 18.482 18.423 18.521 18.516

3 3 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004
CPU 240 840 540 300 1 020 720 540 900 1 140
TC 18.428 18.365 18.512 18.392 18.463 18.369 18.359 18.501 18.394

4 CI ±0.003 ±0.003 ±0.002 ±0.003 ±0.003 ±0.003 ±0.003 ±0.002 ±0.003
CPU 480 300 960 960 1 140 840 480 480 1 200
TC 18.150 18.259 18.236 18.124 18.115 18.146 18.106 18.186 18.211

5 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004
CPU 900 420 540 240 480 660 300 300 960
TC 29.998 30.005 30.019 30.013 30.015 30.003 29.934 29.974 30.008

1 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.005 ±0.004 ±0.004
CPU 720 1 200 1 800 780 1 320 2 580 1 140 1 980 1 920
TC 30.065 30.051 29.967 29.981 29.947 29.974 29.935 30.034 29.995

2 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.005 ±0.004 ±0.005 ±0.004 ±0.004
CPU 1 320 1 000 1 200 900 1 200 1 200 1 680 1 500 1 740
TC 28.789 29.811 29.863 29.824 29.887 29.847 29.842 29.781 29.851

4 3 CI ±0.005 ±0.004 ±0.004 ±0.005 ±0.005 ±0.004 ±0.004 ±0.004 ±0.004
CPU 1 200 1 320 1 800 1 140 1 320 1 800 1 320 1 620 2 100
TC 29.842 29.825 29.822 29.821 29.873 29.899 29.497 29.845 29.832

4 CI ±0.005 ±0.005 ±0.005 ±0.004 ±0.004 ±0.004 ±0.005 ±0.005 ±0.005
CPU 1 320 1 200 1 440 2 400 2 760 2 880 1 440 3 180 3 720
TC 30.034 30.142 29.975 30.112 29.833 30.063 29.969 29.819 30.040

5 CI ±0.005 ±0.004 ±0.005 ±0.004 ±0.005 ±0.004 ±0.005 ±0.005 ±0.004
CPU 2 520 1 500 2 100 960 3 060 3 720 4 560 4 740 5 640

37

An SDDP-based Solution Approach for Carriers’ Selection and Shipments Assignment under Dynamic Stochastic Demand

CIRRELT-2022-17



Table A.9: CPU time (in seconds) and cost variability: detailed results for contexts 5-8

TC/CI SDDP parameters (N, |Ξ|)
Context Instance CPU (3,20) (3,50) (3,100) (5,20) (5,50) (5,100) (7,20) (7,50) (7,100)

TC 35.456 35.410 35.560 35.425 35.712 35.654 35.306 35.573 35.624
1 CI ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.005 ±0.006

CPU 720 960 900 960 720 720 2 640 2 820 2 940
TC 36.021 36.039 36.034 36.022 36.123 36.069 35.988 36.122 36.071

2 CI ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005
CPU 1 560 3 480 2 880 3 000 2 880 3 240 2 700 4 980 5 280
TC 35.530 35.576 35.667 35.571 35.677 35.657 35.527 35.674 35.642

5 3 CI ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.006
CPU 840 1 200 3 000 2 280 2 340 3 660 4 080 4 260 4 680
TC 35.712 35.902 36.047 35.460 35.803 35.510 35.930 35.699 35.782

4 CI ±0.006 ±0.006 ±0.005 ±0.006 ±0.006 ±0.005 ±0.005 ±0.006 ±0.006
CPU 1 020 2 460 1 740 1 440 1 740 1 380 1 740 2 040 7 740
TC 36.290 35.704 35.844 36.229 35.756 35.926 36.070 35.817 35.824

5 CI ±0.004 ±0.005 ±0.005 ±0.004 ±0.005 ±0.005 ±0.005 ±0.005 ±0.006
CPU 1 380 4 260 4 080 3 060 5 880 5 280 5 460 4 500 7 560
TC 36.492 36.402 36.404 36.425 36.439 36.526 36.395 36.455 36.452

1 CI ±0.004 ±0.005 ±0.005 ±0.004 ±0.005 ±0.004 ±0.005 ±0.005 ±0.005
CPU 1 360 1 800 1 800 3 300 4 140 4 800 4 440 4 320 5 040
TC 36.329 36.081 36.080 36.184 36.038 36.281 36.256 36.329 36.178

2 CI ±0.004 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005
CPU 960 1 500 2 880 2 760 1 980 3 300 2 760 2 940 3 660
TC 35.439 35.308 35.467 35.414 35.304 35.364 35.436 35.370 35.358

6 3 CI ±0.005 ±0.005 ±0.005 ±0.006 ±0.005 ±0.005 ±0.005 ±0.006 ±0.005
CPU 2 520 1 800 2 580 2 520 1 860 3 000 3 480 3 240 4 620
TC 36.469 36.442 36.524 36.485 36.383 36.395 36.436 36.499 36.489

4 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.005 ±0.005 ±0.005 ±0.004 ±0.004
CPU 1 500 1 260 1 740 1 080 1 440 1 680 2 580 2 280 3 420
TC 35.746 35.821 35.809 35.706 35.793 35.776 35.774 35.752 35.737

5 CI ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005
CPU 720 1 260 1 380 1 200 1 200 2 400 4 020 4 440 6 060
TC 35.956 36.090 35.960 35.886 35.856 35.720 35.473 35.861 35.930

1 CI ±0.005 ±0.005 ±0.005 ±0.005 ±0.006 ±0.006 ±0.006 ±0.005 ±0.005
CPU 1 680 1 800 2 220 1 860 1 440 1 980 2 820 2 280 3 840
TC 35.723 35.788 35.715 35.222 35.520 35.662 35.348 35.183 35.753

2 CI ±0.006 ±0.006 ±0.006 ±0.006 ±0.006 ±0.008 ±0.007 ±0.007 ±0.005
CPU 1 380 4 260 4 440 2 520 4 260 4 800 4 740 4 560 5 400
TC 35.835 35.661 35.821 35.718 35.791 36.013 35.780 35.783 35.562

7 3 CI ±0.005 ±0.006 ±0.005 ±0.006 ±0.005 ±0.005 ±0.005 ±0.005 ±0.006
CPU 1 620 1 440 1 920 1 800 1 920 2 880 1 380 2 520 4 440
TC 35.387 35.347 35.433 35.457 35.222 35.275 35.363 35.342 35.292

4 CI ±0.006 ±0.006 ±0.006 ±0.006 ±0.007 ±0.006 ±0.006 ±0.006 ±0.006
CPU 3 060 4 620 5 100 3 840 5 160 6 060 4 260 5 460 7 260
TC 35.172 35.332 35.212 35.251 35.384 35.240 34.972 35.254 35.202

5 CI ±0.006 ±0.006 ±0.006 ±0.006 ±0.005 ±0.006 ±0.007 ±0.006 ±0.006
CPU 1 260 1 020 2 520 1 800 1 320 2 280 1 860 2 880 4 980
TC 17.725 17.771 17.739 17.602 17.604 17.714 17.526 17.553 17.599

1 CI ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004 ±0.004
CPU 1 920 2 100 2 700 4 320 2 820 3 120 6 540 4 740 8 820
TC 18.038 18.185 18.146 18.028 18.065 18.125 18.115 18.122 18.093

2 CI ±0.004 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003
CPU 1 140 1 440 1 500 1 380 1 920 3 480 1 680 2 040 4 080
TC 17.791 17.803 17.501 17.800 17.781 17.782 17.786 17.802 17.751

8 3 CI ±0.003 ±0.003 ±0.004 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003
CPU 720 900 1 500 1 260 1 380 1 560 1 200 1 500 2 700
TC 18.164 18.135 18.138 18.151 18.107 18.134 18.122 18.132 18.138

4 CI ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003
CPU 1 200 1 920 1 980 1 200 1 140 2 040 1 440 1 740 2 340
TC 17.935 17.924 17.955 17.878 17.920 17.950 17.901 17.951 17.946

5 CI ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003
CPU 1 080 1 620 1 860 660 1 200 1 860 1 980 2 160 3 180
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