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Abstract. An equitable distribution of workload is essential when deploying vehicle routing 
solutions in practice. For this reason, previous studies have formulated vehicle routing 
problems with workload-balance objectives or constraints, leading to trade-off solutions 
between routing costs and workload equity. These methods consider a single planning 
period; however, equity is often sought over several days in practice. In this work, we show 
that workload equity over multiple periods can be achieved without impact on transportation 
costs when the planning horizon is sufficiently large. To achieve this, we design a two-phase 
method to solve multi-period vehicle routing problems with workload balance. Firstly, our 
approach produces solutions with minimal distance for each period. Next, the resulting 
routes are allocated to drivers to obtain equitable workloads over the planning horizon. We 
conduct extensive numerical experiments to measure the performance of the proposed 
approach and the level of workload equity achieved for different planning-horizon lengths. 
For horizons of five days or more, we observe that near-optimal workload equity and optimal 
routing costs are jointly achievable. 
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1 Introduction

Competition between companies in the transportation and distribution sectors has created
a need to improve many business practices. Although minimizing distribution costs is essential,
drivers’ and clients’ satisfaction should also not be neglected. Equitable workload assignments,
especially, are fundamental to maintaining employee satisfaction at the workplace and can signifi-
cantly impact the quality of services provided to clients. In recent works on vehicle routing problems
with equity considerations, workload balancing is often treated as a second objective—along with
cost minimization—in a bi-objective problem. In this context, Matl et al. (2019) reported that
the marginal cost of balancing routes is reasonable in most cases: nearly 40% of Pareto-optimal
solutions have an additional cost that does not exceed 10% of the minimum-cost solution. Solu-
tions that account for equity also appear more robust against unexpected events, such as a sudden
increase in demand, because bottlenecks are reduced (Matl et al., 2019; Mourgaya and Vanderbeck,
2007). Yet, such extra costs remain significant given that the transportation sector operates with
very tight profit margins.

In most previous studies, we noted that the definition of workload equity was unnecessarily
restrictive, as it focused on the balance between different drivers’ workloads for each day separately.
In practical situations, however, workload differences among drivers can be acceptable on each given
day as long as the total workload over a longer time horizon (e.g., a week) remains equitable. To
capture this notion, we formally define and study a multi-period VRP with workload balance
(MVRPB). In this problem, customer requests are known on a longer planning horizon, and the
goal is to find routes that optimize distance and workload balance over the entire planning horizon.
To solve the MVRPB, we propose a two-phase solution approach. In the first phase, a solution
with optimal distance is found for each period by optimally solving the corresponding VRPs. The
resulting routes are then combined in a second phase to obtain equitable workloads among drivers
based on the total distance traveled over the periods. We use this methodology to evaluate to
which extent the length of the planning horizon can impact equitable solutions. Therefore, this
work makes the following contributions:

1. We study workload balance among drivers over an extended planning horizon. With this view-
point, we show that workload equity can be achieved with very limited impact on economic
efficiency.

2. We formally introduce the MVRPB and a simple and efficient two-phase approach for its
solution. This approach also permits obtaining bounds on the best possible workload equity.

3. Through extensive numerical experiments, we demonstrate the performance of the proposed
solution approach. Moreover, we measure (i) the gap between the equity level achieved by the
two-phase method and perfect equity and (ii) the benefits of considering a longer planning
horizon.
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The remainder of this paper is organized as follows. Section 2 reviews related works for single
and multi-period VRPs. Section 3 defines the MVRPB, and Section 4 describes the proposed two-
phase solution approach. Section 5 presents a computational study based on test instances derived
from well-known capacitated VRP benchmark instances. Finally, Section 6 concludes the paper
and discusses research perspectives.

2 Related Studies

Single-period planning. The classical capacitated VRP (CVRP) seeks a set of routes starting
and ending at a central depot and visiting a given set of clients (Vidal et al., 2020). Each client is
characterized by a demand quantity and must be serviced in a single visit. The total demand of
the clients over each route should not exceed the vehicle’s capacity (considered to be identical for
all vehicles). The objective of the problem is to minimize the total traveled distance. The CVRP
is NP-hard as it generalizes the traveling salesman problem (TSP). Consequently, no optimal (i.e.,
exact) polynomial-time algorithm is known for its solution. Moreover, the best existing exact
approaches can only solve medium-sized problems counting a few hundred customers in less than
a few hours. Accordingly, heuristic approaches are widely used in practical settings (Ribeiro and
Lourenço, 2001; Vidal et al., 2013).

Bowerman et al. (1995) were among the first to introduce an equity objective in the context of
a school bus routing problem. They used a variance measure to balance the length of the drivers’
routes and the number of students transported. In addition, they considered two additional criteria
within a multi-objective framework. Since that work, numerous papers have considered workload
balance objectives in single-period VRPs with different equity measures (see, e.g., Golden et al.
1997; Lee and Ueng 1999; Jozefowiez et al. 2009; Lopez et al. 2014; Oyola and Løkketangen 2014;
Bertazzi et al. 2015; Galindres Guancha et al. 2018; Va et al. 2018; Vega-Mejia et al. 2019; Zhang
et al. 2019; Lehuédé et al. 2020; Londono et al. 2021). The Min-Max measure and the difference
between the maximum and minimum workloads (called Range by Matl et al. 2018) are most
commonly used. When considering distance as the workload metric, Min-Max minimizes the
longest route in a solution (see, e.g., Lopez et al. 2014), whereas Range minimizes the difference
between the longest and shortest route (see, e.g., Londono et al. 2021). We refer the reader
to Halvorsen-Weare and Savelsbergh (2016), Lozano et al. (2016), and Matl et al. (2018) for a
comprehensive list of equity measures.

No solution simultaneously optimizes cost and equity in most situations, especially when con-
sidering equity within a single period. Consequently, equity is often considered within multi-
objective approaches, in which trade-off solutions have to be found between equity and other
objectives such as distance. Many studies along this line refer to the resulting problem as the
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VRP with “route balancing” (Jozefowiez et al., 2007, 2009). Some studies have examined how
equity objectives affect the shape of the Pareto front in a bi-objective context (Baños et al., 2013;
Halvorsen-Weare and Savelsbergh, 2016; Lozano et al., 2016; Schwarze and Voss, 2013; Zhang et al.,
2019). Matl et al. (2018, 2019) extensively discussed six equity measures based on eight desirable
properties. They claim that no measure satisfies every property or is strictly better than the others
for all relevant properties. They also show that a monotonic equity measure such as Min-Max,
which is based on a variable-sum metric such as distance, avoids non-TSP-optimal solutions and
inconsistent solutions and therefore should be an objective of choice. A solution is non-TSP op-
timal if at least one route can be rearranged while improving its distance. Inconsistency occurs
when a given solution is preferred over another solution even though all of its routes are longer. In
both cases, the distance of one or more routes has been artificially increased to improve the equity
objective.

Multi-period planning. Multi-period VRPs are defined over a time horizon of several periods
and generally aim to minimize the total routing cost over all periods. In the periodic VRP (PVRP),
each client is characterized by a visit frequency representing how many visits are requested over the
planning horizon and a list of patterns representing acceptable visit-day combinations. Solving this
problem requires selecting a visit pattern for each client and generating the routes for each period.
As a consequence, the decisions made at each period become interdependent (Coene et al., 2010).
Mourgaya and Vanderbeck (2006) presented several PVRP variants and classified them based on
their objectives, constraints, and solution methods. Equity is one of the objectives discussed in
that study.

Some studies considered multi-period VRPs and measured equity within each period. Papers
in this category generally arise from real-life case studies and involve different workload equity
objectives. Blakeley et al. (2003) studied the problem of an elevator-maintenance company that
assigns technicians to clients. The objective was to minimize a weighted sum of travel time, over-
time, and unbalanced workload in each period. To reach equity, the authors designed heuristics
that optimize a Range measure on the travel times. Groër et al. (2009) studied a multi-period
VRP to balance the workload of meter readers over a month for a utility company. To achieve a
good balance, they set a lower and upper bound on the number of clients and the length of each
daily route. They also constrain the deviation of a client’s bill from one month to the next. Their
three-stage methodology combines heuristics and integer programming. Gulczynski et al. (2011)
presented a PVRP in which an equal workload is sought within each period. The overall objective
is a weighted sum of distance and Range measure over the number of clients served. The problem
was solved with an integer-programming-based heuristic.

Mourgaya and Vanderbeck (2006) designed a hierarchical heuristic to solve an industrial PVRP
application with 16 658 visits over a time horizon of 20 days. At a tactical level, the method allocates
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each client to a combination of days and vehicles. The objective considered at this stage involves
minimizing the maximal workload over the days and vehicles subject to additional geographical
restrictions. At the operational level, the method minimizes the traveled distance.

Mourgaya and Vanderbeck (2007) then studied a tactical planning problem that required
choosing visit days for clients subject to service level constraints. Once the visit days were selected,
the clients were assigned to vehicles to achieve equity among drivers. At this stage, equity was
modeled by a constraint that bounds the workload (served demand) associated with each cluster
of clients. In another work, Linfati et al. (2018) developed a two-phase heuristic to balance the
number of medication deliveries to patients among the drivers for each day of the planning horizon.
They considered a Range measure within a weighted-sum objective that also accounts for extra
hours, extra capacity, as well as daily and client clustering costs. Finally, Messaoudi et al. (2019)
introduced a PVRP with different possible visit frequencies for each client. They relied on objectives
that minimize the total route cost and the number of stops to the same client, and included a
workload balance component between vehicles for each period. This component of the objective
minimizes the maximum service time over the weeks of the planning horizon and the days of the
week. Furthermore, they imposed a maximum route duration for each vehicle. A decomposition
approach was used first to assign clients to weeks, and then to assign them to a day within the
selected week. A variant of the classical VRP was finally solved for each day using a three-phase
adaptive large-neighborhood search. This algorithm was applied in a case study for a hygiene
service company performing more than 69 951 visits for 6000 clients over 12 weeks, leading to
significant practical savings.

Liu et al. (2013) studied a PVRP for home health care in which three types of patients require
services. The primary objective was to reach equity by minimizing the maximum route time for all
vehicle routes over the week. The solution method combined tabu search and local search. Liu et al.
(2020) balanced the workload among routes for a periodic home health care assignment problem by
partitioning the service area into regions. Finally, Schönberger (2016) set upper bounds on route
duration to ensure daily workload balance in a multi-period VRP.

Ribeiro and Lourenço (2001) was, to our knowledge, one of the very few studies considering a
multi-period VRP in which equity is evaluated over multiple periods. The problem is solved with a
weighted sum objective considering cost, equity, and market share. The equity objective minimizes
the standard deviation of the workloads over many periods, where the workload corresponds to the
demand served by each driver. Small instances were solved with a commercial solver. Huang et al.
(2019) studied a PVRP for which the objective function minimizes the total workload of all drivers,
and the maximum workload difference between two drivers cannot exceed a threshold. The equity
metric, in this case, corresponds to the sum of travel and service times. The results show that
workload equity among drivers can be achieved at a reasonable cost. Finally, Mancini et al. (2021)
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recently considered workload balance and service consistency in a collaborative multi-period VRP,
where the number of clients assigned to a carrier over the planning horizon is constrained. They
also examined how workload balance and service consistency impact the total solution cost.

As seen in this review, very few studies have focused on multi-period VRPs that account for
equity, and even fewer studies have considered equity over multiple periods. The present study fills
this critical methodological gap. It proposes a simple solution approach for an equitable vehicle
routing problem defined over multiple periods, and analyses the resulting equity depending on the
planning horizon.

3 Problem Statement

The MVRPB can be formally defined on a complete graph G = (V , E), where V is the set of
vertices and E is the set of edges. Let V = {0}∪C, where C is a set of vertices representing clients
and vertex 0 is the depot. The cost dij corresponds to the length of edge (i, j) ∈ E representing
a direct trip from i to j. For simplicity, we assume that all distances dij are integer. Each client
i ∈ C is characterized by a list of visit days (i.e., periods) within a planning horizon of T periods
and by a demand quantity qti on each of these days (i.e., demand quantities can differ between
days). Finally, m drivers are available through the planning horizon to perform the visits, and we
are given an unlimited fleet of homogeneous vehicles with capacity Q located at the depot.

Solving the MVRPB amounts to finding routes for each day in such a way that (i) each client
is visited on each requested day, (ii) each route for a given day is assigned to a single driver, (iii) no
driver operates more than one route in a day, and (iv) no route exceeds the vehicle capacity. Note
that drivers may not necessarily work during each day of the planning horizon. The objectives are
to optimize distance and balance the drivers’ workloads over the planning horizon.

Matl et al. (2018) discussed different equity metrics (e.g., travel time, distance, demand quan-
tity served, number of clients) and equity measures (e.g., the maximum workload of a driver, the
difference between the smallest and largest workloads, and the standard deviation of workloads). In
this work, we focus on distance-based workload equity among drivers. Therefore, the workload of a
driver is the total distance traveled by the driver over the planning horizon. We use the Min-Max
equity measure, which aims to achieve equity by minimizing the maximum total distance of the
routes traveled by any driver over the planning horizon.
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4 Solution Approach

To solve the MVRPB, we design a two-phase solution approach. As seen in the remainder of
this section, our approach follows a hierarchical objective: it first guarantees a routing solution with
minimum cost (i.e., with minimum total distance over the planning horizon) and then maximizes
workload balance. This permits us to evaluate the extent to which workload equity can be ensured
over a longer planning horizon without sacrificing economic efficiency. Moreover, as seen in the
following, the optimal routes found in the first phase will permit us to calculate a bound on the
best possible workload equity for any solution.

Our method unfolds in two stages. Firstly, it solves a CVRP for each period considering only
the deliveries of this period and minimizing cost (total distance). Then, it solves an allocation
problem to assign routes to drivers on each period, intending to optimize workload balance. The
remainder of this section details the techniques designed to perform each step efficiently.

4.1 First Phase – Distance Optimization

The first phase consists of solving one CVRP per period t ∈ T to obtain high-quality routing
plans minimizing distance. We rely on mixed-integer linear programming (MILP) techniques to
solve these problems. We first present a compact mathematical formulation of the problem and
then discuss its solution by branch-and-price.

Table 1: Notations used in the mathematical models

Sets C Set of clients
E Set of edges
V Set of nodes, V = C ∪ {0}
Ct Set of clients in period t ∈ T
Et Set of edges in period t ∈ T
Vt Set of vertices in period t ∈ T , Vt = Ct ∪ {0}
Rt Set of routes in period t ∈ T

Parameters T Number of time periods
m Number of drivers (i.e., maximum number of vehicle routes in each period)
Q Capacity of each vehicle
qti Demand of client i ∈ Ct in period t ∈ T
dij Distance of edge (i, j) ∈ E

Variables yir Binary variable equal to 1 if client i is on route r, i ∈ C, r ∈ Rt.
xijr Binary variable equal to 1 if edge (i, j) ∈ E is on route r, i, j ∈ V , r ∈ Rt.

r ∈ Rt, t ∈ T

Table 1 summarizes the notations used in the mathematical models. For each period t, the
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resulting CVRPt subproblem can be mathematically formulated using a three-index undirected
formulation, as in Baldacci et al. (2010). In this formulation, the cut set for any S ⊆ Ct is defined
as δ(S) = {(i, j) ∈ Et : i ∈ S, j /∈ S or i /∈ S, j ∈ S}:

(CV RPt) min
m∑
r=1

∑
(i,j)∈Et

dijxijr (1)

s.t.
m∑
r=1

yir = 1 i ∈ Ct (2)
∑
i∈Ct

qtiyir ≤ Q r ∈ {1, . . . ,m} (3)

∑
(i,j)∈δ({i})

xijr = 2yir i ∈ Ct, r ∈ {1, . . . ,m} (4)

∑
(i,j)∈δ(S)

xijr ≥ yir S ⊆ Ct : |S| ≥ 2, i ∈ S, r ∈ {1, . . . ,m} (5)

xijr ∈ {0, 1} (i, j) ∈ Et\{(0, j) : j ∈ Ct}, r ∈ {1, . . . ,m} (6)

x0jr ∈ {0, 1, 2} j ∈ Ct, r ∈ {1, . . . ,m} (7)

yir ∈ {0, 1} i ∈ Ct, r ∈ {1, . . . ,m} (8)

Objective (1) minimizes the total routing cost. Constraints (2) force each client to be served
by exactly one route. Constraints (3) ensure that capacity constraints are respected. Constraints
(4) are flow-conservation constraints for the routes that also link the x and y variables. Constraints
(5) are the sub-tour-elimination constraints. These constraints guarantee that each route contains
the depot.

Previous studies on integer programming approaches for the CVRP indicate that directly
solving Model (1–8) is ineffective for medium instances with more than a few dozen clients and that
combining cuts and column generation generally provides better results. Accordingly, we exploit
the VRPSolver framework (Pessoa et al., 2020) for an efficient solution to this problem. This
solver provides a generic branch-and-cut-and-price (BCP) framework for many classes of MILPs,
including, among others, the considered problem setting. It has achieved a competitive or superior
performance on standard test instances when compared with specialized VRP algorithms and is
currently available at https://vrpsolver.math.u-bordeaux.fr/.

This algorithmic framework relies on the solution of successive pricing subproblems that take
the form of resource-constrained shortest paths (RCSPs) on a path-generator graph (VRPGraph).
A bidirectional-labeling dynamic programming algorithm is then used to solve the RCSPs. VRP-
Solver relies on the concept of packing sets to generalize well-known cuts. Essentially, a packing set
is a subset of arcs such that at most one arc from the given subset appears in the paths that are part
of an optimal solution. Packing sets are defined in accordance with the application considered and
associated model. In our specific case, the packing sets represent limited memory rank-1 cuts (a
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generalization of the subset row cuts – Jepsen et al. 2008) and rounded capacity cuts (Laporte and
Nobert, 1983). The branching rule in VRPSolver is based on accumulated resource consumption
and, if needed to enforce integrality, on a generalization of the branching rule of Ryan and Foster
(1981).

Finally, the performance of VRPSolver depends on the availability of a good initial upper bound
(UB) to limit the search. To find such an initial solution and bound, we use the hybrid genetic
search (HGS – Vidal et al. 2012; Vidal 2022), a state-of-the-art metaheuristic for the CVRP. HGS
could be used as a stand-alone approach for the first phase in time-critical applications, or if the
scale of the problems becomes too large for an exact solution. Still, we opted to additionally rely
on the exact algorithm in this phase, as this will allow us to obtain lower bounds on the best
achievable workload equity (see next section).

4.2 Second Phase – Equitable Workload Allocation

The second phase of the algorithm takes as input the solution R∗ found in the previous phase,
represented as the set of optimal routes R∗t for each period. It seeks to achieve a fair distribution
of these routes among m identical drivers. In this stage, we use a Min-Max objective to minimize
the maximum workload of any driver (i.e., the maximum total distance driven by a driver over all
periods).

4.2.1 MILP formulation and bounds

This allocation problem can also be mathematically formulated as a MILP. Let dr represent
the distance driven on each route r ∈ R∗t found in the first phase, and let ztrk be a binary variable
equal to 1 if route r is assigned to driver k in time period t. Finally, let ∆ be a continuous variable
capturing the maximum distance for a driver over the planning horizon. The best possible workload
equity for the considered set of routes can be found by solving the following model:

min ∆ (9)

s.t.
T∑
t=1

∑
r∈R∗

t

drz
t
rk ≤ ∆ k ∈ {1, . . . ,m} (10)

∑
r∈R∗

t

ztrk ≤ 1 t ∈ {1, . . . , T}, k ∈ {1, . . . ,m} (11)

m∑
k=1

ztrk = 1 t ∈ {1, . . . , T}, r ∈ R∗t (12)

ztrk ∈ {0, 1} t ∈ {1, . . . , T}, r ∈ R∗t , k ∈ {1, . . . ,m} (13)

∆ ∈ R+. (14)
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Objective (9) and Constraints (10) model the minimization of the maximum workload over all
drivers. Constraints (11) ensure that each driver serves at most one route in each period, whereas
Constraints (12) ensure that each route is assigned to exactly one driver in each period. Finally,
Constraints (13) and (14) define the domain of the decision variables. Note that the inequality in
Constraints (11) can be replaced by an equality if the number of drivers matches the number of
routes found in the first phase in any given period t. The resulting formulation can be viewed as a
variant of the bin packing problem (BPP) with conflicts (Capua et al., 2018).

Let ∆opt(R) be the optimal workload produced by solving the allocation problem for a given
first-phase routing solution R, and let D(R) be the total distance of all routes of a solution R over
all periods. The following bounds are valid:

Property 1 The best possible workload allocation for a routing solution R is such that

∆opt(R) ≥
⌈
D(R)
m

⌉
. (15)

Proof. The proof directly derives from the formulation of the assignment problem. Summing
Constraint (10) over k ∈ {1, . . . ,m} gives:

m∑
k=1

T∑
t=1

∑
r∈Rt

drz
t
rk ≤ m∆opt(R). (16)

Next, using Equation (12) leads to:
T∑
t=1

∑
r∈Rt

dr ≤ m∆opt(R) =⇒ ∆opt(R) ≥ D(R)
m

(17)

Finally, since the distances dij are integer, then ∆opt(R) is also an integer, and the right-hand side
of the inequality can be rounded up, giving the announced result.

Property 2 Let ∆opt be the best possible workload equity achievable in any solution of the MVRPB
(including first-stage solutions that are not optimal in terms of distance), then:

∆opt ≥
⌈
D(R∗)
m

⌉
. (18)

Proof. As a consequence of Property 1, the best possible workload equity over all possible routing
solutions R satisfies the following relation:

∆opt = min
R

∆opt(R) ≥ min
R

⌈
D(R)
m

⌉
=
⌈minRD(R)

m

⌉
=
⌈
D(R∗)
m

⌉
. (19)

This relation gives us a lower bound LB = dD(R∗)/me, which permits us to evaluate how
far our MVRPB solutions are from the best possible workload equity, calculated by assuming that
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the total amount of workload from distance-optimal routing solutions is evenly distributed among
drivers. It is important to remark that ∆opt can be smaller than ∆opt(R∗) since the best workload
balance over multiple periods can involve routes that do not belong to any optimal CVRP solution
of a given period. In contrast, the bound announced in Property 2 holds for any MVRPB solution.

4.2.2 Set-partitioning reformulation and solution approach

A direct solution of Formulation (9–14) using standard MILP solvers such as CPLEX is in-
effective. This is partly due to symmetry, given that all drivers are considered identical, and
renumbering them produces equivalent solutions. One way to circumvent this issue is to solve this
problem as a sequence of set-partitioning feasibility problems for different values of ∆ as defined
in Model (20–22). ∑

σ∈Ω∆

λσ = m (20)

∑
σ∈Ω∆

aσrλσ = 1 t ∈ {1, . . . , T}, r ∈ R∗t (21)

λσ ∈ {0, 1} σ ∈ Ω∆ (22)

In this formulation, each element σ ∈ Ω∆ represents an admissible combination of routes (i.e.,
a schedule) that a driver can operate over the planning horizon without exceeding a workload of ∆.
Each constant aσr takes value 1 if and only if r belongs to σ. Each binary variable λσ takes value 1
if this schedule is selected for one driver. Constraints (20) ensure that work schedules are created
for the m drivers, and Constraints (21) ensure that each route appears exactly in one schedule.

Binary search strategy. Finding a feasible solution of Model (20–22) for a given ∆ means that
there exists a feasible allocation of the routes to drivers in such a way that the maximum workload
over the planning horizon does not exceed ∆. Therefore, the optimal workload balance is such that
∆opt(R∗) ≤ ∆. In contrast, proving that this model is infeasible would imply that ∆opt(R∗) > ∆.

With this, we develop a strategy based on a binary search to locate ∆opt(R∗). Initially, we
start with ∆ = LB =

⌈
D(R∗)
m

⌉
and solve Model (20–22). If this model is feasible, then we have

attained the best possible workload equity. Otherwise, this means there is no solution with a
workload balance of ∆ =

⌈
D(R∗)
m

⌉
. In this case, we use a construction heuristic to find an initial

feasible solution and therefore an upper bound (UB) value for ∆. This heuristic consists in ordering
the items (i.e., all the routes over the planning horizon) by decreasing workload (distance) and then
following this order to insert them iteratively into a compatible bin (i.e., a driver that does not
operate a route on that day) that has the current smallest workload. At this point, we have a range
for the optimum (integer) value and locate it by binary search, using Model (20–22) to determine
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feasibility at each step. This process stops when the model for ∆opt(R∗)− 1 is infeasible and the
model for ∆opt(R∗) is feasible.

Solution of each subproblem. Model (20–22) contains an exponential number of variables σ ∈
Ω∆, therefore a direct solution approach is impractical. To solve this problem, we rely once again on
the branch-and-price framework provided by VRPSolver. Pessoa et al. (2021) provides adaptations
of VRPSolver to the classical BPP and other variants such as vector packing, variable-sized BPP,
and variable-sized BPP with optional items. To solve our problem with VRPSolver, we essentially
need to redefine the path-generator graph (VRPGraph).

Figure 1 represents the VRPGraph for the classical BPP, assuming that I items need to be
packed. Each node in this graph corresponds to one item, except node v0, representing a starting
point. Item i of weight wi is loaded in the bin each time we use arc ai+ along the path from the
start node to the end node (conversely, item i is not loaded in the bin if arc a1− is used). Next, each
path generated in this graph that does not exceed the bin capacity defines a new packing (column)
for the column-generation algorithm. Capacity is the only resource consumed in VRPGraph, and
a packing set is made of a subset of arcs with nonzero consumption of the resource.

v0 v1 v2 v3 vI−1 vI

a1+

a1−

a2+

a2−

a3+

a3−

. . .

aI+

aI−

Figure 1: Path-generator graph for the BPP.

Figure 2 provides an adapted path-generator graph for Problem (20–22). In this graph, nodes
correspond to periods, except the first node P0, which represents a starting point. An arc of type
aij+ then goes from Pi−1 to Pi for each possible route j ∈ {1, 2, 3, . . . , ni} in period Pi, where ni is
the number of routes in period Pi. If one of these parallel arcs is used, the corresponding route is
assigned to the driver and contributes to the driver’s total workload (total distance limited to ∆,
which stands as the bin’s capacity). An arc of type ai− is also available to represent the possibility
of assigning no route to the driver in period Pi. With these conventions, a path from the start node
to the end node that does not exceed the workload limit ∆ corresponds to a feasible assignment of
routes to a driver over the planning horizon.

We use the standard parameter setting of VRPSolver with just a minor modification to its
diving heuristic. VRPSolver typically uses a diving heuristic before branching to improve the primal
solution (Sadykov et al., 2019), but only at the root node. In contrast, our implementation allows
strong diving at each node to quickly locate feasible solutions. If such a solution is found, then the
solver can be immediately stopped since the model is known to be feasible.
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P0 P1 P2 P3 P4 P5

a11+

a12+
. . .

a1n1+

a1−

a21+

a22+
. . .

a2n2+

a2−

a31+

a32+
. . .

a3n3+

a3−

a41+

a42+
. . .

a4n4+

a4−

a51+

a52+
. . .

a5n5+

a5−

Figure 2: Path-generator graph for the second-stage model.

5 Computational Study

The goal of our experimental study is twofold: (i) evaluating the performance of the proposed
solution approach and especially the computational effort needed for each of its steps, and (ii)
measuring to which extent workload equity can be achieved over multiple periods without sacrificing
economic efficiency, by simply allocating cost-optimal routes to drivers in an equitable fashion as
done in our two-phases approach.

Our experiments are conducted on a 2.4GHz Intel Gold 6148 Skylake processor with 8GB of
RAM. The VRPSolver interface is implemented in Julia v1.4.2 with JuMP v0.18. VRPSolver uses
BaPCod, a C++ library for implementing a generic BCP, and CPLEX 12.8 to solve the linear and
mixed-integer linear programs. All experiments have been conducted on a single thread.

5.1 Test Instances

To construct test instances for the MVRPB, we rely on a subset of the CVRP instances of
Uchoa et al. (2017), as they include diverse characteristics: distribution and number of clients,
depots locations, and average route length. The complete set contains 100 Euclidean instances
with 100 to 1000 clients. The distances are rounded to the nearest integer as in the original
instances.

Since the MVRPB is defined in a multi-period context, we had to modify the original instances.
Therefore, we selected the instances X-n200-k36, X-n204-k19, X-n209-k16, X-n214-k11, X-n219-k73,
X-n223-k34, X-n228-k23, X-n233-k16, X-n237-k14, and X-n242-k48 including between 199 and 241
clients from Uchoa et al. (2017). We generated three different 10-period MVRPB configurations for
each of these ten instances by randomly selecting 50, 75, or 100 clients in each period. Finally, for
each period and client with demand d in the original instance, we randomly selected a new demand
realization from a uniform integer distribution in {d0.5 × de . . . , d1.5 × de}. This way, clients can
have different demands at different periods. We repeated this generation (customers and demands
selection) ten times for each configuration, leading to 10× 3× 10 = 300 MVRPB instances defined
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over 10 periods. Finally, to obtain instances with fewer periods T ∈ {2, 3, 5, 7}, we retained the first
T periods of each 10-period instance. The number of drivers in each 10-period instance was set to
the maximum number of routes from optimal CVRP solutions over the ten periods. Consequently,
some drivers may be idle for a given period. The number of drivers in the 2-, 3-, 5-, and 7-period
instances is kept identical to the number of drivers in the corresponding 10-period instance.

5.2 Computational Performance

We first evaluate the performance of each of the two steps of the proposed approach: the com-
putational effort needed to find optimal CVRP solutions in each period, and the effort to find an
equitable workload allocation in the second step. We refer to these steps as (1) route optimization
and (2) multi-period workload balancing.

Route optimization. Tables 2 to 4 report the performance of the route-optimization step for
the 10-period instances with 50, 75, and 100 clients in each period. For brevity, the results are
presented in aggregated form, with one line for each original instance of Uchoa et al. (2017), by
averaging over the 10 corresponding MVRPB instances and 10 periods. From left to right, the
columns report the names of the associated original instances, the average traveled distance per
period in the solutions found by HGS and VRPSolver, the average computational time of these two
methods, and finally, the number #k of drivers.

Table 2: Performance of the route-optimization step, for MVRPB instances with 50 clients per period

Instance
Distance T(s)

#k
HGS VRPSolver HGS VRPSolver

X-n200-k36 16284.45 16281.48 15.8 614.1 10.0
X-n204-k19 7200.85 7200.85 14.0 7.8 5.3
X-n209-k16 9699.69 9699.69 14.2 14.2 4.8
X-n214-k11 3782.88 3782.88 14.2 52.1 3.4
X-n219-k73 28562.15 28562.15 13.4 2.3 17.0
X-n223-k34 11464.69 11464.17 13.1 7.3 9.5
X-n228-k23 7652.85 7652.72 14.1 25.5 7.3
X-n233-k16 6704.64 6704.64 12.8 12.9 4.5
X-n237-k14 7980.45 7980.45 13.1 31.4 3.0
X-n242-k48 19970.99 19970.05 15.0 7.6 12.1
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Table 3: Performance of the route-optimization step, for MVRPB instances with 75 clients per period

Instance
Distance T(s)

#k
HGS VRPSolver HGS VRPSolver

X-n200-k36 23388.65 23379.47 28.7 185.5 14.7
X-n204-k19 9294.97 9294.97 22.0 31.6 7.9
X-n209-k16 13272.78 13272.68 24.5 60.1 6.6
X-n214-k11 4881.22 4881.2 25.2 268.2 5.0
X-n219-k73 41826.76 41826.76 20.3 2.8 25.0
X-n223-k34 16035.39 16034.47 20.8 23.4 13.3
X-n228-k23 10379.97 10379.84 21.8 239.4 10.2
X-n233-k16 8480.25 8479.83 19.6 253.3 6.3
X-n237-k14 10870.43 10870.43 21.7 34.9 5.0
X-n242-k48 28644.96 28640.61 27.3 123.6 17.2

Table 4: Performance of the route-optimization step, for MVRPB instances with 100 clients per period

Instance
Distance T(s)

#k
HGS VRPSolver HGS VRPSolver

X-n200-k36 30780.5 30758.06 47.6 979.1 19.6
X-n204-k19 11535.58 11534.75 32.5 470.4 10.0
X-n209-k16 16724.49 16722.15 39.9 420.6 8.3
X-n214-k11 6076.82 6076.64 39.2 1041.6 6.1
X-n219-k73 55473.58 55473.58 27.6 2.7 34.0
X-n223-k34 20522.69 20519.9 31.8 69.3 17.1
X-n228-k23 12888.06 12887.6 32.2 950.6 12.5
X-n233-k16 10288.46 10287.92 27.0 1296.1 8.0
X-n237-k14 13518.71 13518.58 35.0 697.4 6.0
X-n242-k48 37262.13 37247.82 40.9 324.4 22.4
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As seen in these experiments, the computational time used by VRPSolver to optimally solve
the underlying CVRP problem for each period is generally small, with a median value of 25.0
seconds. However, on a handful of cases, the computational time may be long, reaching 12.8 hours
in the worst case (one exceptional case in 3 000 CVRP single-period sub-problems). In contrast,
HGS has a more controllable computational time, ranging from 11.4 seconds to 2.43 minutes, with
a median value of 21.8 seconds. We observe that the initial solutions found by HGS were almost
optimal in terms of their distance, with an average distance over all instances of 16715.0 compared
to 16712.9 for VRPSolver, i.e., with an average gap error of only 0.013% from optimal solution
values. Given this, we recommend using HGS as the underlying solution approach for the route
optimization step in practical time-critical applications. In the context of this study, we decided to
complete the solution process to achieve proven optima with VRPSolver, as this will subsequently
permit us to derive bounds on the best possible workload balance through Equation (18).

Finally, we must observe that the problems associated with each period are independent, such
that it is possible to solve them in parallel. We used this observation in our experiments, as the
multi-core structure of our processor permitted us to independently solve the CVRPs associated
with each period on a different core, therefore maximizing our utilization of available computational
resources and reducing the total time needed to conduct our experiments.

Multi-period workload balancing. In the workload balancing step, the routes of the optimal
CVRP solution for each period are assigned to drivers to minimize the maximum (Min-Max) total
distance traveled by each driver over the entire planning horizon. We build our analysis on three
key workload measurements:

• UB – The initial workload produced by the constructive approach described in Section 4.2.2.
The workload corresponds to the largest total distance for a driver over the entire planning
horizon.

• Opt – The optimal workload obtained after completing the binary search.
• LB – The lower bound of Equation (18), which assumed that distance is optimal and workload

equity is perfect (often this does not match a practical solution).

Tables 5 to 7 report the workload values of UB, Opt, and LB for the different instances, with a
varying number of periods and with 50, 75, and 100 clients in each period, respectively. Each line in
the tables corresponds to an average value over ten different MVRPB instances. These tables also
indicate the average number of binary-search operations in our algorithm and the average solution
time.
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As seen in these experiments, only a few seconds are required in most cases to complete
an optimal multi-period workload balancing step. This confirms the efficiency of our two-stage
solution approach. Generally, instances involving a larger number of routes and drivers (e.g.,
X-n219-k73) lead to more complex workload balancing problems. Again, there is also inherent
variability due to the exact solution process, given that MILP approaches can exhibit substantially
different computation times when solving instances of similar sizes. Overall, the computational
time of the second step ranges from 4.40 to 7600.99 seconds with a median value of 8.53 seconds.

The workload allocation created by the initial construction approach (described in Section 4.2.2)
is optimal (i.e., UB = Opt) for 298 out of 300 MVRPB instances with 2 periods, as well as for
15 out of 300 MVRPB instances with 3 periods. In contrast, as soon as the number of periods
becomes greater than five, the initial construction approach is unlikely to lead to the best possible
workload allocation, and the underlying mathematical model produces much better solutions.

When the planning horizon contains five days or more, we frequently notice cases of “perfect”
workload equity, where the obtained workload balance matches the theoretical lower bound (i.e.,
Opt = LB). The ability to achieve perfect balance comes as a consequence of the increased number
of possible assignment solutions, which grows exponentially with the number of periods. In practice,
in cases with five periods or more, it is sufficient to focus on cost-optimal routing solutions and to
create equitable workloads by careful assignment. Finally, as our binary search strategy includes a
first step to verify if a solution with perfect balance exists, all the cases for which perfect balance
is possible are solved in a single call to the feasibility subproblem. In the other cases, it generally
takes between 7 to 11 steps.

5.3 Planning-Horizon Length and Workload Equity

The previous section showed that near-perfect workload equity is achievable, in practice, for
planning horizons with at least five periods. To visualize more clearly the impact of the number of
periods over workload equity, Figure 3 provides additional boxplot representations of the Gap(%)
between the ideal workload (LB from Equation (18)) and the optimal solution value (Opt) of our
two-phases approach. We used the following calculation: Gap = 100× (Opt−LB)/LB. We provide
separate plots for the cases with 50, 75, or 100 customers per period. Each boxplot corresponds
to the data of a given planning horizon with T ∈ {2, 3, 5, 7, 10} periods, therefore gathering gap
measurements from 100 instances. The whiskers indicate the minimum, first quartile (Q1), median,
third quartile (Q3), and maximum. The minimum corresponds to Q1 − 1.5 × interquartile range,
while the maximum corresponds to Q3 + 1.5 × interquartile range. Outliers that fall beyond the
minimum and maximum range are additionally depicted as small circles.
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Figure 3: Convergence of Opt toward LB as the number of periods increases for instances with 50, 75, and 100 clients
in each period.

These boxplots give another viewpoint on the convergence toward the best possible equity as
the number of periods increases. In the vast majority of the cases (excluding a few outliers), a
planning horizon of five days is sufficient to find equitable solutions with workload discrepancies
below 1% between drivers. In these situations, there is no need to seek a trade-off between routing
costs and workload equity since optimal routing solutions can be used to achieve equity. Another
benefit of our two-stage approach is its flexibility since additional constraints, decisions, and ob-
jectives (i.e., routing attributes – Vidal et al. 2013) only need to be integrated with the first phase
of the solution approach.

Finally, in the cases with very few periods (e.g., 2 or 3 days), we observe that focusing the
search on optimal routing solutions does not permit achieving the best possible workload equity.
In such situations, it would be helpful to consider alternative routing solutions. One possibility
would consist in producing multiple routing solutions for each period and extending the workload
balancing step to include all these alternatives. Another approach, more complex to develop in
practice, would be to solve the routing and driver-allocation problem in an integrated manner,
considering distance and workload equity in a bi-objective solution method. However, in both
cases, the user would need to specify a trade-off between acceptable extra routing costs and the
desired workload equity level.
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6 Conclusion

In this work, we have revisited workload equity in vehicle routing with a longer-term perspec-
tive, considering a planning horizon of several days. We have shown that a two-phase optimization
approach can identify the most equitable solutions with minimal distance. When the planning
horizon exceeds five days, the resulting solutions are optimal in terms of distance and near-optimal
(below 1% gap) in terms of equity. Therefore, workload equity appears to be achievable with-
out integrated approaches and trade-off calibration, and without any compromise on operational
efficiency.

Several important research perspectives are open in connection with this study. Firstly, our
work focused on deterministic settings, where the complete customer demand is known on the
planning horizon. Practical situations often involve dynamically-revealed request information, and
therefore it is an open question to determine to what extent multi-period workload equity is achiev-
able in dynamic contexts. Another important aspect of practical delivery systems concerns delivery
consistency. When the same driver regularly visits the same areas or clients, the service quality
and the satisfaction of drivers and clients generally increases (Kovacs et al., 2014). Our approach
towards equitable workload allocation largely benefits from the exponential number of possible
route-driver allocation combinations. However, consistency may significantly reduce the number of
allocation possibilities, such that new approaches may be needed to conciliate three key aspects in
a multi-period setting: cost efficiency, workload equity, and delivery consistency.
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