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1 Introduction

Column generation is widely regarded as an efficient technique for solving linear programming problems that
have an exponential number of variables. This includes, most notably, combinatorial optimization problems
that are hard to solve, such as cutting stock, vehicle routing and crew scheduling. While the number of
variables in these problems is typically large, a key observation to solve them is that only a small subset
of the variables may be part of the optimal solution (i.e., have non-zero values). Therefore, in principle, it
is possible to find the optimal solution using a small subset of columns. Column generation is an iterative
procedure: starting with a subset of columns, at each iteration, it decides which column(s) to add to the
problem. The procedure stops once the optimal solution is obtained.

Despite the theoretical guarantees of this procedure, in practice, it is often difficult to efficiently converge
to the optimal solution. In particular, unless special care is taken, its vanilla version is likely to add many
columns which do not serve the purpose of reaching the optimal solution. Several classes of methods have
been proposed for alleviating this issue, including interior-point stabilization (see, e.g. Rousseau et al.,
2007), which serves as an inspiration and a point of comparison for our work. Despite those improvement,
convergence and thus solving hard combinatorial optimization problems remains a challenge.

Recently, machine learning technique have been increasingly used to improve the performance of com-
binatorial optimization algorithms (see, e.g. Bengio et al., 2021, for a general overview). Examples include
learning to branch (Khalil et al., 2016; Gasse et al., 2019), learning to select cuts (Tang et al., 2020), and
general learning heuristics (Khalil et al., 2017; Nazari et al., 2018). While there has been a growing interest
in applying machine learning methods to improve classical optimization algorithms, few learning-based tech-
niques exist for column generation. Morabit et al. (2021) learn a classification model to identify promising
columns when the pricing algorithm returns several columns. Shen et al. (2021) learn a heuristic that solves
the pricing subproblem of the graph coloring problem.

In this paper, we take a learning-based approach, which we callColumn Generation by Imitation Learning
(COIL). We formulate column generation as sequential decision making and propose a neural architecture
to predict which column to add at each iteration. As such, our approach explicitly acknowledges the iterative
and sequential nature of Column Generation, and is therefore radically different from existing approaches
that consider iterations separately. The model first encodes the problem (i.e., its variables and constraints)
using a graphical neural network (see, e.g. Gasse et al., 2019). The learned representations (of the rows) are
combined with instance-specific features and a differentiable optimization layer then predicts the optimal
duals. This exact optimization layer guarantees the validity of the duals. In a final step, the predicted duals
are decoded as a distribution over all candidate variables. The model is trained to imitate an expert that
picks high-quality columns to add.

We here use as a case study the Capacitated Vehicle Routing Problem (CVRP), which is is strongly useful
in practice (e.g. among logistics companies) and is one of the most popular combinatorial optimization
problems in the scientific literature (Toth and Vigo, 2014), particularly in the context of Column Gen-
eration (Desrochers et al., 1992). Trained on instances of the CVRP, we demonstrate that our approach
outperforms a strong stabilization method (Rousseau et al., 2007) in terms of number of columns added until
convergence. Further, we validate our design choices using an ablation study and by comparing it to other
neural architectures. The main contributions of our paper can be summarized as follows:

• We formulate column selection as a sequential decision making problem and propose a neural archi-
tecture for it.

• Included in the architecture, we propose a method for dealing with an exponential number of actions
and ensure the correctness of the learning-based method by plugging exact optimization layers into the
deep network.

• We validate the effectiveness of the method on the case of the CVRP and its corresponding problem
instances.

The remainder of this paper is organized as follows. Section 2 reviews the Capacitated Vehicle Routing
Problem and its corresponding Column Generation formulation. Section 3 introduces the Column Generation
framework based on Imitation Learning, providing details on the used expert policy and its architecture.
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Computational experiments to validate and compare the performance of our method to existing approaches
are presented in Section 4. Finally, we conclude and lay out future research directions in Section 5.

2 Column Generation

We now discuss the application of Column Generation for the Capacitated Vehicle Routing Problem. Given
the locations of N customers and one depot, the customer demands di, i ∈ {1, . . . , N}, and vehicle capacity
c, find a set of routes starting and ending at the depot such that every customer is visited on some route,
the sum of demands of customers on each route does not exceed the vehicle capacity, and the total travelled
distance (i.e. the sum of lengths of the routes) is minimized.

This problem can be formulated as an integer linear program with an exponential number of vari-
ables (Desrochers et al., 1992). Each variable in this formulation corresponds to a subset of customers
r ∈ {1, . . . , N} that can form a valid route (i.e.

∑
i∈r di ≤ c). This formulation only considers the shortest

route formed by each such subset. Hence we simply call each subset a route, and denote the set of all routes
by R. The cost of route r, denoted by cr, is the length of the shortest tour that visits all customers in r and
the depot. Let binary variable xr be 1 if route r is selected, and 0 otherwise. Further, for every route r ∈ R
and customer i ∈ {1, . . . , N}, let constant eir be 1 if i ∈ r and 0 otherwise. The CVRP can be formulated
as:

(I) : min
∑
r∈R

crxr (1)

s.t.
∑
r∈R

eirxr ≥ 1 ∀i ∈ {1, . . . , N} (2)

x ∈ {0, 1}|R|. (3)

Objective function (1) minimizes the total costs of the selected routes. Constraints (2) ensure that every
customer is visited at least once. Even though in the optimal solution every customer is visited exactly
once, this constraint is formulated as an inequality for practical reasons. In the rest of this paper, we will
deal with the problem of solving the linear relaxation of this formulation (denoted by problem P ) where
Constraint (3) is replaced by x ≥ 0. The integrality constraints can then be enforced through a branch-and-
bound procedure.

The exponential size of R makes it impossible to explicitly represent the formulation I or P beyond
a certain number of routes. Column generation is a procedure that iteratively adds promising columns
(which, in the case of the CVRP, correspond to routes) until the problem is solved to optimality. For ease
of exposition, we will describe the working principle of Column Generation using the dual formulation of
problem P :

(D) : max
N∑
i=1

λi (4)

s.t.
N∑
i=1

eirλi ≤ cr ∀r ∈ R (5)

λ ≥ 0. (6)

The dual formulation maximizes the sum over variables λi, which represent the marginal cost of serving
customer i. Constraints (5) ensure that for every route r, the sum of marginal costs of the customers in that
route does not exceed the cost of that route. The Column Generation process is equivalent to iteratively
adding constraints to the dual formulation. At each iteration, only a subset of the Constraints (5) (i.e.,
those corresponding to the routes R′ ∈ R) is included in the dual formulation. After solving this restricted
problem, which we will call problem D′, we verify if any of the excluded constrains are violated by the
obtained solution. If this is the case, (some of) the violated constraints are added to the formulation and
the process is repeated. Otherwise, the problem has been solved to optimality.
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Figure 1: The route (depot → 2 → 3 → depot) has reduced costs −5 with λ′ and 5 with λ′′.

Finding the most violated constraint in the dual formulation requires exploring the exponential space
of all possible routes. This can be formulated as a combinatorial optimization problem, called the pricing
problem:

r̂ = argmin
r∈R

(cr −
∑
i∈r

λ̂i). (7)

The degree of violation of the constraint corresponding to route r (i.e. cr−
∑

i∈r λ̂i) in the dual formulation
is equal to the reduced cost of the column corresponding to route r in the primal formulation. In other words,
the pricing problem finds the column with the most negative reduced cost at each iteration of the Column
Generation algorithm.

Problem D′ can have more than one optimal solution, and the choice of this solution can affect the route
obtained by the pricing problem. This, in turn, can significantly influence the speed at which the Column
Generation algorithm converges. Consider the example presented in Figure 1, adapted from Rousseau et al.
(2007), where R′ =

{
{1, 2}, {3, 4}

}
. Given the optimal solution λ′ = (10, 20, 20, 10), the route {2, 3} has a

reduced cost of r̂′ = −5 and is a candidate to be added to D′, even though it is not likely to be selected in
the optimal solution of P . However, the alternative optimal solution λ′′ = (15, 15, 15, 15) yields a positive
reduced cost of r̂′′ = 5 for this route and is therefore not added to D′.

2.1 Stabilization

The importance of choosing the right dual solution and its effect on the convergence of the Column Generation
algorithm has been widely acknowledged, and different classes of techniques have been developed to address
this problem. For a recent discussion on this topic, see Pessoa et al. (2018) and references therein.

Our work is particularly inspired by the stabilization method proposed by Rousseau et al. (2007). The
authors directly tackle the issue that the restricted dual problem tends to have several optimal solutions,
each of which may distribute differently the marginal costs among the customers. Given that these extreme
solutions are sparse by definition, some customers may have large dual values, while others may have zero
dual values. This, in turn, may result in a bad estimation of the marginal costs of the customers. Instead
of using a set of dual values proposed by one of the optimal solutions to the restricted dual problem, this
stabilization method uses an interior point of the convex hull of the extreme solutions to the restricted dual
by averaging over a few of them.

In this work, we follow the above intuition. However, instead of averaging over a set of randomly chosen
extreme solutions, we aim at learning how to identify the extreme point (represented by its simplex tableau)
that provides optimal convergence within the Column Generation procedure.

3 Column Generation by Imitation Learning

In this section, we discuss how to frame the Column Generation procedure as a sequential decision making
problem (Puterman, 1994). At each step (i.e., at each iteration), the task is to choose which column to
include in the restricted problem. Using a collection of problem instances, we aim at learning a policy that
dictates which column to pick. This problem is a Markov Decision Process (MDP).
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An MDP can be defined as a tuple ⟨S,A, p(s′ | s, a), r(s, a), p0⟩ with state space S, the action space A,
the transition probability p(s′ | s, a), the reward function (s′, s ∈ S, a ∈ A), r(s, a), and the initial state
distribution p0.

We represent the state at iteration t of the Column Generation procedure by the pair (z, st), where
z represents the properties of the CVRP instance (vehicle capacity, demands and locations of customers,
etc.) and st encodes the restricted problem, i.e., all the information presented in the final simplex tableau
in that iteration. The most important components of st are the columns (routes), available within the
restricted problem, and the dual values (i.e., the optimal solution of the restricted dual problem). The
action at represents the next column to add to the restricted problem. The transition function p(s′ | s, a)
is deterministic and is evaluated by adding the column corresponding to action a to the restricted problem
encoded in s and solving it. Since our goal is to improve the convergence rate, the reward is set to a constant
(−1) after each action, therefore encouraging a fast convergence. The process terminates when no more
column with a negative reduced cost is found.

A policy πθ(at | st, z) is a probability distribution over actions, conditioned on the state, and parame-
terized by a vector θ. Our goal is to learn this distribution, that is, find the value for θ that maximizes the
expected reward. We learn this policy by imitating an expert. This expert is assumed to know how to select
columns in a way that leads to fast convergence of the Column Generation algorithm, but is potentially too
expensive to be used directly. We record the actions of the expert by solving a collection of N problem
instances using the expert policy (discussed below). For every instance i, we record the properties z(i).

Moreover, at every iteration t, we record st
(i) and the action a∗t

(i) advised by the expert. We then learn the
policy by minimizing the cross-entropy loss:

L(θ) = −
N∑
i=1

Ti∑
t=1

log πθ(a
∗
t
(i) | st(i), z(i)). (8)

Minimizing this loss function is equivalent to maximizing the likelihood of the expert actions.

3.1 Expert Policy

Our proposed method requires an expert that can choose the right columns to make the Column Generation
procedure converge quickly. We will now present such an expert policy. Recall that at each iteration, the
vector of dual values λ′ (the optimal solution of D′ obtained by the simplex algorithm) is an estimate of λ∗,
the optimal solution of D. Motivated by this observation, from the space of optimal solutions of D′, we pick
the λ′ that is closest to λ∗, i.e., the one with the smallest ∥ λ′ − λ∗ ∥22. The problem of finding λ′ can be
formulated as a quadratic optimization problem:

min
λ′

∥ λ′ − λ∗ ∥22 (9)

s.t.

N∑
i=1

λ′
i = Λ (10)

N∑
i=1

λ′
ieir ≤ ci ∀r ∈ R′ (11)

λ′ ≥ 0 (12)

where Λ is the optimal objective value of D′, and constraint (10) enforces the optimality of the solution.
Note that we do not use λ∗ since it is not necessarily an optimal solution of D′ at every iteration.

After solving this problem, we provide these adjusted duals to the pricer, and obtain a route a∗ which
is used as the expert action at this state. Note that the expert requires access to λ∗, which means that we
first need to solve the instance to optimality. After solving a collection of instances offline and collecting the
expert actions, we can train the policy function πθ(at | st, z) which is parametrized as a deep neural network.
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3.2 Policy Network

The policy function takes the state (i.e., a CVRP instance and the restricted problem) as input, and returns
a distribution over all columns (i.e., all feasible routes). Expressing this function as a deep network raises
a number of challenges. First, this distribution is defined over an exponential number of columns which
can be enumerated only for small instances. We should be able to use this distribution without the need
to explicitly represent it. Second, the size of the state varies by instance and iteration. Hence this function
should accept variable-sized inputs. Finally, this function should be aware of certain symmetries in the
input. For example, permuting the columns of the simplex tableau should not change the output, and after
swapping two constraints in the tableau the corresponding output probabilities should also swap.

3.2.1 A Distribution over Actions

We address the first challenge by learning a mapping from st and z to a vector of adjusted duals that is
optimal w.r.t. the restricted dual corresponding to st. After learning this mapping, we use these adjusted
duals in the Column Generation procedure. At each iteration, we provide st and z to this mapping and
obtain the adjusted duals. The pricer then takes the adjusted duals as input and returns a column. The
procedure terminates when the reduced cost of the returned column is non-negative. Note that the optimality
of adjusted duals is essential for the soundness of this approach.

Let us assume for now that there is a function fθ that maps st and z to the optimal duals λ. We can
turn this function into a distribution over all columns (and the termination action) and train it using the
loss function of Equation (8). Since the number of routes grow exponentially, we train the model using small
instances where the columns can be enumerated. Once we have trained the model, we use a pricer to find
the best column, enabling us to apply it to larger instances.

For an instance with n columns, let us represent column i and its cost by vector ei and scalar ci,
respectively. Given the adjusted duals λ, the reduced cost of column i is ci−λTei. We denote the action of
choosing column i by ai (i = 1, . . . , n), and choosing no column (i.e., terminating the procedure) by a0. Our
goal is to define a probability distribution over a0, a1, . . . , an that depends on λ and gives higher probability
to columns with smaller reduced cost. More formally, we require that for every pair of columns i and j,
P (ai) ≥ P (aj) iff ci − λTei ≤ cj − λTej . Moreover, the action a0 should have the highest probability only
if there is no column with a negative reduced cost. We enforce this by requiring that for every column i,
P (a0) ≥ P (ai) iff ci − λTei ≥ 0. These requirements are met by the following distribution:

P (a0) =
1

1 +
∑n

j=1 exp(λ
Tej − cj)

, (13)

P (ai) =
exp(λTei − ci)

1 +
∑n

j=1 exp(λ
Tej − cj)

. (14)

This distribution is obtained by applying the softmax function to the vector (0,λTe1 − c1, . . . ,λ
Ten − cn).

Figure 2 depicts the mapping from st and z to this distribution.

Figure 2: The deep network fθ maps state (z, st) to a vector of optimal duals λ which is then used to define policy
πθ(at | st, z).

Next, we will describe the architecture of fθ, the deep network that maps st and z to the optimal duals
λ.
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3.2.2 Representing the Restricted Problem

We represent state st as a bipartite graph G = (C,V, E), where C corresponds to constraints (customers), V
corresponds to variables/columns (routes), and (c, v) ∈ E iff variable v has a nonzero coefficient in constraint
c. Other state information correspond either to variables (e.g. costs, reduced costs) or constraints (e.g. slacks,
dual values) and can be represented as features of the nodes in V and C.

After encoding st as a bipartite graph G = (C,V, E) with node features ci ∈ RdC , i ∈ {1, . . . , |C|} and
vi ∈ RdV , i ∈ {1, . . . , |V|}, we can apply the graph convolutional layers on this graph and obtain the node
embeddings c′i ∈ Rd′

C , i ∈ {1, . . . , |C|} and vi ∈ Rd′
V , i ∈ {1, . . . , |V|}. We use a graph convolutional layer

similar to the one introduced by Gasse et al. (2019) to process this bipartite graph:

c′i = fC
(
ci ∥

∑
j:(i,j)∈E

gC(ci ∥ vj)
)
, (15)

v′i = fV
(
vj ∥

∑
i:(i,j)∈E

gV(c
′
i ∥ vj)

)
, (16)

where ∥ is the concatenation operator and fC , fV , gC and gV are 2-layer perceptrons with Rectified Linear
Unit (ReLU) activation functions.

Representing this part of the state as a graph enables us to process states with different sizes by the same
model. Moreover, the model maintains the desired permutation invariance and equivariance properties.

3.2.3 Representing the Instance Properties

We include the instance properties z in the model by adding extra information to the constraint embeddings
c′i. Let us represent the properties of customer i (e.g. location and demand) by the vector ĉi. After
concatenating c′i and ĉi, we obtain the feature vector c′′i , which may also include global information (e.g.
the vehicle capacity). Given that this information is represented as a set (i.e., the order of customers is
irrelevant), it must be encoded using a representation that allows to preserve this property. We here apply
set encoder layers (Vaswani et al., 2017) to the set of constraint features and obtain a vector q with size |C|.
Self-Attention is a mechanism that maintains permutation equivariance, and has been used in models that
operate on sets (Lee et al., 2019) or graphs (Velickovic et al., 2018). An attention layer takes n elements
xi ∈ Rdx , i ∈ {1, . . . , n} and outputs zi ∈ Rdz , i ∈ {1, . . . , n}, where each output is a weighted sum of linear
transformations of the input elements:

zi =
n∑

j=1

αij(xjW
V ) (17)

where the weights αij are computed in terms of compatibility scores eij :

αij =
exp eij∑n
k=1 exp eik

(18)

and the compatibility scores compare two input elements using a scaled dot product function:

eij =
(xiW

Q)(xjW
K)T√

dz
. (19)

Parameters WQ,WK ,WV ∈ Rdx×dz are learnable. Similar to Transformers, we create encoder layers which
consist of a self-attention and a position-wise feedforward layer, where each of these sublayers is accompanied
by residual connections and is followed by layer normalization.

3.2.4 Generating the Optimal Duals

Finally, we need to map the vector q to a vector of dual values λ that is optimal w.r.t. the restricted dual.
The space of optimal duals can be represented by a set of linear constraints consisting of the restricted dual
and an optimality constraint, similar to constraints (10)-(12).
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Figure 3: The architecture of policy network in neural Column Generation. The nodes ri and cj correspond to the
routes and customers (i.e. the columns and rows in the restricted problem), respectively.

To this end, we define 1
2λ

TQλ + qTλ as the objective function over the space of optimal duals, where
Q = 0.001I. By solving the resulting optimization problem, we obtain a vector of duals which is a function
of vector q, and also optimal w.r.t. the restricted dual problem.

This optimization problem is differentiable w.r.t. vector q and can be included as a layer in a deep
network. Differentiable optimization layers are computational units that not only solve an optimization
problem, but also calculate the gradient of its solution with respect to the problem parameters. Such layers
make it possible to include an optimization step as part of a deep learning pipeline. We use a modified
version of the OptNet architecture (Amos and Kolter, 2017). OptNet solves Quadratic Programming (QP)
problems of the form:

minz
1

2
zTQz + qT z (20)

s.t. Az = b (21)

Gz ≤ h (22)

Assume that in the backward pass of the backpropagation algorithm, we receive the vector ∂ℓ
∂z∗ ∈ Rn,

and z∗, ν∗ and λ∗ are the optimal primal and dual variables. Moreover, let us denote by D(x) the diagonal
matrix created from the vector x. OptNet first calculates:dzdλ

dν

 = −

Q GTD(λ∗) AT

G D(Gz∗ − h) 0
A 0 0

−1 ( ∂ℓ
∂z∗ )

T

0
0

 , (23)

using which then the gradients with respect to all problem parameters are calculated. In this work, we will
use the gradients with respect to the coefficients of the objective function (i.e., Q and q):

∇Qℓ =
1

2
(dzz

T + zdTz ) ∇qℓ = dz (24)

The coefficient matrices G in our examples are not always full-rank, and this makes it impossible to
perform the matrix inversion in Equation (23). Hence, we replace the inversion operation with pseudo-
inversion: dzdλ

dν

 = −

Q GTD(λ∗) AT

G D(Gz∗ − h) 0
A 0 0

+ ( ∂ℓ
∂z∗ )

T

0
0

 (25)

Figure 3 summarizes the entire architecture of the policy network.

4 Computational Experiments

We now explore the effectiveness of COIL by performing an empirical evaluation. Specifically, we investigate
four research questions: Q1 To what extent do the learned models improve the convergence of the column
generation algorithm?, Q2 How do different architectures compare in terms of loss and accuracy?, Q3 To
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what extent does the removal of the differentiable optimization layer affect the performance of the learned
models?, and Q4 Do the learned models generalize to instances larger than those seen during training?

We train and evaluate our approach using randomly generated CVRP instances. We generate the in-
stances using the method from Uchoa et al. (2017) with 21 customers, a central depot, clustered customer
positioning, and a value of 6 for the r parameter (the desired average number of customers in a route). To
train our algorithm, we require all valid routes for an instance. We therefore generate all valid routes for
a given problem instance based on a dynamic programming algorithm for the Traveling Salesman Problem.
The pseudocode of this procedure is presented in Algorithm 1.

Algorithm 1: Generating all routes for CVRP

1 function GenerateRoutes(n, distances, demands, capacity)
2 for i← 1, . . . , n do
3 path lenght[{i}, i]← distances[0, i]
4 Q.push[{i}]
5 routes← routes ∪ {i}
6 while !Q.empty() do
7 path← Q.pop()
8 d←

∑
i∈path demands[i]

9 for i← max(path) + 1 . . . n do
10 if demands[i] + d ≤ capacity then
11 next path← path \ {i}
12 Q.push(next path)
13 routes← routes ∪ {next path}
14 for u ∈ next path do
15 prefix← next path \ {u}
16 path length[next path, u]← min

v∈prefix
(path length[prefix, v] + distances[v, u])

17 for path ∈ routes do
18 route lengths[path]← min

v∈path
path lengths[path, v] + distances[v, 0])

19 return route lenghts

We solved 300 training and 300 validation CVRP problem instances using the expert policy described
in Section 3.1. Each training/validation instance corresponds to one iteration executed according to the
expert policy. For testing, we solve 1,652 CVRP instances using different policies and record the number
of iterations. Since the stabilization method of Rousseau et al. (2007) is randomized and the number of
iterations can vary significantly, for this method, we compute the average over 20 runs.

We train all models using Adam optimizer (Kingma and Ba, 2015) with an initial learning rate of 3e-4
and minibatches of size 32. After 10 epochs with no validation error improvement, the rate is divided by 5,
and after 20 such epochs the training stops. The runtime of the overall training processes is limited to 10
hours. We train the models using a single thread of CPU using machines with Intel 6148 2.4 GHz processors
with a memory limit of 32 GB. The code and data is publicly available online1.

To answer Q1, we compare the convergence of several models with the Interior-point Stabilization (IPS)
method Rousseau et al. (2007). We use the following methods for learning the linear coefficients q:

• Baseline: learning a fixed q for all training instances, discarding the state and context information.

• MLP: a model with a row-wise two-layer feed-forward network, applied independently to each customer
i with qi as the output.

• COIL-S: a set encoder with customer information as input and q as output.

1https://github.com/Behrouz-Babaki/COIL
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• COIL-G: a graph neural network with state information as input, and q as output.

• COIL-GS: using both graph convolutional and set encoder layers, as depicted in Figure 3.

For the route nodes (used in COIL-G and COIL-GS), we used a single feature, namely the cost of
the route. Initially, the customer nodes have a single feature in the COIL-GS model, which is the original
dual value given by the simplex tableau. After receiving the embeddings of customer nodes from the graph
convolutional layers, they are concatenated with the demands and locations of customers, and the vehicle
capacity (appended to the feature vectors of all customers). In models Baseline, MLP, COIL-S and
COIL-G, all customer features are provided in one feature vector.

IPS Baseline MLP COIL-S COIL-G COIL-GS

#Wins 1 278 296 248 436 695
Ratio 1.581 1.239 1.211 1.232 1.17 1.12

Table 1: Comparing different policies in terms of number of wins and the average ratio of number of iterations w.r.t.
the expert policy.

Table 1 compares the convergence of different methods on the set of 1,652 test instances. The first row
(# Wins) shows the number of times that each method has the smallest number of iterations. Moreover,
for each instance and method, we divide the number of iterations by the number of iterations of the expert
policy. The second row shows the averages of these ratios over all test instances. The results indicate that
all learned models outperform IPS and that using a GCN boosts performance. COIL-GS shows superior
performance and requires only 12% more iterations on average than the expert policy, while IPS requires
58% more iterations on average.

Loss
Top-k Accuracy

1 10 100 1000

Baseline 42.37 0.445 0.773 0.933 0.98
MLP 36.134 0.459 0.8 0.947 0.987
COIL-S 34.609 0.461 0.809 0.949 0.988
COIL-G 29.961 0.499 0.836 0.958 0.989
COIL-GS 25.134 0.537 0.861 0.966 0.990

Table 2: Validation cross-entropy and top-k of the learning models. COIL-GS achieves the best performance consis-
tently.

To answer Q2, in Table 2 we present the cross-entropy loss of different models on the validation set. We
also present the top-k accuracy for different values of k, which is the percentage of times that the target
column appears in the k columns with the highest probability in the distribution generated by each model.
The learning curves of different models are presented in Figure 4. These results clearly indicate the advantage
of model COIL-GS over the alternatives.

We answer Q3 by creating models which directly predict the adjusted duals used by the expert policy.
Both of these models have architectures similar to COIL-GS, except that the layers after set encoders are
removed. In the MSE model, the output of set encoders is used as predicted adjusted duals. This model is
trained by minimizing the mean squared error (MSE) loss between the predicted and target adjusted duals.
Note that the dual vector predicted by this model is not necessarily optimal. We address this problem in
the KLD model, which learns to distribute the optimal objective among the customers. This distribution is
obtained by applying the softmax function to the output of set encoders. The model is trained by minimizing
the KL-divergence (KLD) between the predicted distribution and the actual distribution of total value among
the target adjusted duals.

Table 3 shows the cross-entropy loss and top-k accuracy for these two models. Comparing these val-
ues with those in Table 2 shows that including the OptNet layer is essential for obtaining a reasonable
performance.
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Figure 4: Learning curves for different architectures.

Loss
Top-k Accuracy

1 10 100 1000

MSE 168.313 0.047 0.198 0.535 0.871
KLD 164.295 0.062 0.236 0.586 0.889

Table 3: The effect of removing the differentiable optimization layer on cross-entropy loss and top-k accuracy.
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Finally, our approach is motivated by the assumption that we can learn from small instances to solve
larger ones. This requires generalization to instances larger than those seen during training. We answer Q4
by comparing COIL-GS on two sets of medium-size CVRP instances. The first set consists of 100 instances
generated using the same mechanism as training instances, except that the number of customers is 50, and
the r parameter is set to 5. The second set includes the datasets A, B, E, and P from the CVRP benchmark
library CVRPLIB.2 Since the enumeration of all columns is not feasible for the medium-size instances, we
implemented a pricer using the algorithm of Feillet et al. (2004) in C++.
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Figure 5: Ratio of the performance of COIL-GS over IPS in terms of number of iterations and runtime using larger
instances.

We compare IPS and COIL-GS by taking the ratio of number of iterations when using IPS to that
of COIL-GS. We also calculate similar ratios for runtime. Figure 5 shows histograms of these ratios for
synthetic and benchmark instances. The instances with a ratio less than one (i.e. those on the left side of
the dashed line) are those where COIL-GS outperforms IPS. These experiments demonstrate that when
the larger instances are generated by a distribution similar to the training instances, the learned model
generalizes well. The difference between the performance of the learned model on synthetic and benchmark
instances might be a result of the variety of instances in the latter. It is worth noting that the learned model
always outperforms the unstabilized column generation in all medium-size instances.

5 Conclusion and Future Work

In this paper, we propose and explore several deep-learning architectures for improving the convergence of
the column generation algorithm. The empirical evaluation demonstrates the advantage of encoding the
instance information (using a set encoder), the routes currently included in the problem (using a bipartite
graph convolution layer), and end-to-end learning (using a differentiable optimization layer).

Although column generation is inherently solving a sequential decision making problem, the existing
learning-based methods reduce it to simpler problems, such as classification (Morabit et al., 2021). The

2http://vrp.atd-lab.inf.puc-rio.br/
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novelty of our approach is that we directly aim at solving the sequential decision making problem encountered
in column generation. We present a novel approach for dealing with the exponential action space, by reducing
the problem to that of choosing the best dual value in the space of optimal ones. This introduces the challenge
of embedding an optimization problem in the learned model, which we address using the OptNet layers.

Our research opens up several research directions. Despite the advantages of the OptNet layer, it also
turns into a bottleneck and limits the amount of training data that can be processed. First, it has to solve
a QP for every instance at every forward pass. Second, our implementation of OptNet can only use one
CPU thread, which severely harms the scalability of our approach. An interesting direction for future work
is removing the OptNet layer and train networks with larger capacity using more data.

The convergence of a column generation algorithm depends not only on the number of iterations, but
also on the time taken for solving the pricing problem at each iteration. Incorporating the latter is another
avenue for future research.

The presented neural column generation can generally be applied to other problem classes than the CVRP
here considered, which opens up several future research directions. As we have used some problem-specific
information as features, our general framework would benefit from a more generic method for representing
the instance properties.
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