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Abstract. The design and operation of humanitarian supply chain networks (HSCN) after natural 

disasters have progressively attracted interest from academia over recent years. We propose an 

optimization methodology to solve the HSCN planning problem occurring after a natural disaster. 

Considering the crucial role accurate modeling of the operations plays in the decision-making 

process, we aim to analyze the effect of unmet demand accumulating over the planning horizon in 

order to better understand and respond to natural disasters. To this end, we explicitly consider the 

impact of unmet demand through time under uncertain conditions by introducing a spread factor. 

We develop a two-stage stochastic model that retains the uncertainty pertaining to the demand 

along with the transportation and storage capacities of the HSCN. Then, we address a case study 

with real-world data from the 2018 earthquake in Indonesia. Various aspects of the problem are 

studied over a set of experiments, including the importance of modeling uncertainty, the effect of the 

budget on the solution performance, and the role of the spread factor in the accurate understanding 

of the crisis. The results obtained from the designed experiments verify the importance of 

considering uncertainty in the HSCN design problem. Furthermore, according to the obtained 

results, considering lower values for the spread factor parameter can irreparably misguide the 

decision-makers by an inaccurate presentation of the crisis' depth and consequently increase the 

damage caused to people's health. 

Keywords: Stochastic programming, humanitarian relief network, tactical planning, humanitarian 

supply chain, post-disaster. 
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1 Introduction 

The United Nations Office for Coordination of Humanitarian Affairs (OCHA) annually reports the global 
appeals and the annual funding for disasters and emergencies. The global appeals present the financial 
requests of humanitarian organizations around the world each year. As for the annual funding, it refers to 
the overall value of the appeals that are fulfilled. The highest percentage of covered appeals in the last decade 
has been 65 percent (OCHA, 2021b). Furthermore, OCHA reports that the total amount of annual appeals 
has increased from 8.9 billion US dollars in 2011 to 38.5 billion US dollars in 2020 (OCHA, 2021b) thus 
indicating that humanitarian organizations are facing serious challenges regarding their budget to prepare 
and respond to natural disasters. Moreover, it has been observed that 75 percent of the available funding 
to perform disaster response is allocated to the design and the management of relief supply chains (Besiou 
and Van Wassenhove, 2020; Van Wassenhove, 2006; Stegemann and Stumpf, 2018). Therefore, improving 
the overall planning processes that define how the limited resources available to humanitarian organizations 
(e.g. budget, staff, means of transportation) are used to provide relief to affected populations after a natural 
disaster occurs is an important and pressing issue. 

Emergency Management. Emergency Management (EM) is a field of study that has received an 
ever-increasing amount of attention from scientists, motivated by the desire to improve the efficiency of 
relief efforts provided to affected populations following natural disasters. EM is a multidisciplinary field 
that focuses on how humanitarian organizations should prepare for and respond to disasters to distribute 
the required aid (Anaya-Arenas et al., 2014). EM activities can be divided into two groups: pre-disaster 
and post-disaster. Pre-disaster activities include mitigation and preparedness. The goal of pre-disaster 
activities is to reduce the negative impacts of a possible disaster by pre-positioning critical supplies (i.e., 
mitigation) and developing response plans in advance of the events happening (i.e., preparedness). As 
for post-disaster activities, they include three different phases: response, short-term recovery, and long
term recovery (Holguin-Veras et al., 2012). The response phase occurs in the first 72 hours that follow 
the occurrence of a natural disaster (OCHA, 2021a). During this phase, the necessary equipment, critical 
supplies, and material necessary for both the search-and-rescue operations and the emergency repairs to be 
performed on critical infrastructure are transported to the affected region. The short-term recovery activities 
include damage and impact assessments, debris removal, distribution of critical supplies, restoration of critical 
infrastructure, and managing both the donations received and the work performed by volunteers (Holgufn
Veras et al., 2012). These activities must be coordinated, which makes the short-term recovery a challenging 
phase in the post-disaster period. For example, the design of a network to distribute the critical supplies 
requires the information obtained from the damage and impact assessments performed. Furthermore, the 
priority choices made regarding debris removal must be coordinated with the selection of specific routes to 
be used for the distribution of critical supplies. Planning all of these activities in an integrated manner 
thus defines important challenges to be resolved. As for the activities performed in the long-term recovery 
phase, they include restoring infrastructure, providing psychological counseling to the affected population, 
and delivering overall humanitarian assistance to the region that may be ongoing for multiple years. 

Distribution of critical supplies. In this study, our focus is on the short-term recovery phase, which 
is conducted at a crucial point in the overall timeline of the humanitarian activities performed post-disaster. 
lt is important to note that the short-term recovery phase occurs in an emergency state during which critical 
supplies are not sufficiently available to satisfy the demand, critical infrastructure is not fully operational 
and the demand is at its extreme point (i.e., the affected population's demand for aid will peak following a 
natural disaster) (Holgufn-Veras et al., 2013). The choices made by humanitarian organizations regarding 
how the available resources are used to perform this phase are paramount to the ultimate success and positive 
impact of the aid that will be provided. 

Once a natural disaster occurs, the distribution of critical supplies to vulnerable populations defines some 
of the most challenging, vital, and complex operations that are conducted by humanitarian organizations. 
First, the management of such operations is particularly challenging because it involves various stakehold
ers, whose actions need to be coordinated to successfully perform the required critical supply distribution. 
The stakeholders include governments, military, humanitarian organizations, donors, media, and volunteers 
(both local and international). Coordination among stakeholders occurs at different levels. For example, 
when a disaster happens, the affected region is oftentimes divided into subregions where different humani
tarian organizations will operate, thus enabling the overall affected region to be better covered in terms of 
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the aid provided. For security reasons, military personnel are often called upon to protect humanitarian 
organizations, their staff, and volunteers when they are deployed in the field to distribute the aid. Com
munication and coordination between the military and humanitarian organizations is thus a pivotal part of 
the distribution of critical supplies. Lastly, a coordinated effort between humanitarian organizations and 
the media is also required to bring attention to the crisis that occurred which, in turn, can be helpful to 
fundraise and collect the required budget for the necessary operations to be performed. Second, the dis
tribution of critical supplies is also vital to the health conditions of the affected population post-disaster. 
Critical supplies may include, for example, medical supplies, which are required to treat life-threatening 
injuries that directly occurred following the natural disaster. Finally, distribution planning is particularly 
complex in post-disaster humanitarian settings. The complexity stems from the fact that decisions related to 
the investments in the required infrastructure, the selection of logistical services, and the use of such services 
to perform the necessary distribution need to be made in an informational environment that involves a high 
level of uncertainty. 

Humanitarian Supply Chain Network. The distribution of critical supplies is performed via the use 
of a Humanitarian Supply Chain Network (HSCN) (Tavana et al., 2018; Hong and Jeong, 2019). An HSCN 
consists of a physical network of hubs that are used to store, transport, and distribute critical supplies among 
the vulnerable population post-disaster. In an HSCN, hubs are physical locations that receive and store 
critical supplies in the network. Critical supplies are then transported between the hubs using transportation 
services. For brevity, we refer to these as services from now on. In this paper, we are interested in solving 
the problem of designing an HSCN in the short-term recovery phase that will operate (i.e., receive, store 
and distribute critical supplies) over a given planning horizon. Specifically, our aim is to design such a 
network, while explicitly considering the various sources of uncertainty that directly affect the informational 
context in which these relief operations are planned and executed. Sources of uncertainty may include a lack 
of information regarding the needs assessments of the affected population ( e.g. uncertainty regarding the 
demography in the affected zone preventing an exact evaluation of the demand for specific critical supplies), 
damage levels to the infrastructure ( e.g. road conditions, available vehicles, etc.) and overall effects of 
possible secondary impacts (e.g. landslides following floods, aftershocks following an earthquake, etc.). 

Contributions. In this paper, we propose a two-stage stochastic post-disaster HSCN design model, 
that enables the uncertainty related both to the demand for aid and the available capacities for the chosen 
infrastructure and services to be formulated. Moreover, in the short-term recovery phase, it is paramount 
to service the demand for critical supplies quickly. The reason being to limit the harm that may spread and 
cumulate over the affected population. Our model thus proposes a novel formulation to account for the effects 
that unmet demands have over time. Our model also expresses the correlated effects of unmet demands for 
different critical supplies which to the best of our knowledge has not been considered in the existing literature 
of network design, facility location, and other supply chain related planning problems. The goal is then to 
design an HSCN that minimizes the expected total harm caused by the unmet demands for the considered 
critical supplies over the planning horizon. To assess the efficiency of our proposed stochastic model, we 
develop a dataset linked to the 2018 Indonesia earthquake and conduct a thorough numerical analysis. First, 
the importance of considering uncertainty in the HSCN design problem is investigated by comparing the 
solutions obtained by solving the proposed stochastic model when compared to its deterministic counterpart. 
Then, the effects of explicitly incorporating the residual demands over the planning horizon into our stochastic 
HSCN design model are evaluated in terms of the overall performance of the humanitarian relief operations 
conducted. Finally, to study the impacts that restrictive budgets may have on the performance of the 
designed HSCN, a series of experiments are conducted where the stochastic model is solved using different 
budget levels. 

Outline. The remainder of this paper is structured as follows. In Section 2, we provide a literature 
review on the topic. In Section 3, we describe the problem setting. Section 4 details the two-stage stochastic 
post-disaster HSCN design model that is developed. The numerical experiments and analyses are presented 
in Section 5. Finally, we close the paper with the conclusion in Section 6. 

2 Literature review 

We now position our study within the existing literature. We review the related work on both the considered 
problem and the optimization method that is proposed to solve it. Thus, the focus of Subsection 2.1 is on 
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supply chain network design for humanitarian relief, where we review what aspects of the problem have been 
studied in the context of designing and operating a supply chain to receive and distribute humanitarian relief 
to an affected population. In Subsection 2.2, we review the studies dedicated to the development of Service 
Network Design (SND) optimization methods. Specifically, we present the literature on both deterministic 
SND models and SND models under uncertainty, which present the formulations previously proposed to 
model and solve similar problems. 

2.1 Humanitarian Supply Chain Network 

Early attempts to solve HSCN design problems focused on directly applying the optimization methods 
originally developed for commercial supply chain applications (Van Wassenhove, 2019). However, these 
two general settings have significant differences (Balcik and Beamon, 2008). For instance, the aims and 
objectives of the supply chains can be quite different. In a humanitarian setting, the goal is to lessen 
the harm to people's health by reducing the delivery time (Diabat et al., 2019), expanding the coverage 
of the relief network (Hasani and Mokhtari, 2019), and optimizing the usage of budget in the design and 
operation of HSCN (Hasani and Mokhtari, 2018), as opposed to commercial supply chains, which aim to 
minimize the cost of distribution and delivery (Pishvaee and Razmi, 2012). Furthermore, as previously 
evoked, when planning post-disaster operations, humanitarian organizations are pressed for time and need 
to design the supply chain quickly, using limited available resources, while facing high levels of uncertainty in 
the informational planning context. Although these issues are also important in commercial settings, their 
intensity might not reach the same levels as observed when delivering humanitarian aid. Therefore, these 
differences have motivated a separate line of research specifically dedicated to solving humanitarian supply 
chain design problems (Anaya-Arenas et al., 2014; Campbell et al., 2008). 

Various optimization methods have been developed to formulate and solve a wide gamut of humanitarian 
relief planning problems (e.g. Anaya-Arenas et al. (2014); Balcik et al. (2016); Behl and Dutta (2019)) 
to improve the performance of HSCNs. As previously mentioned, the scientific literature <livides into two 
categories: optimization methods to solve problems related to either the pre-disaster or post-disaster planning 
phases (Anaya-Arenas et al., 2014). Most studies in the pre-disaster phase are dedicated to improving 
preparedness for possible catastrophic events that would require the deployment of humanitarian aid. In 
this phase, the main focus is on developing methods that support the decision-making processes involved 
in the location of warehouses and the stockpiling of critical supplies as a preventive measure to react in a 
more efficient manner whenever humanitarian organizations are called upon to provide aid (e.g. Yahyaei and 
Bozorgi-Amiri (2019); Bozorgi-Amiri et al. (2013, 2012); Alem et al. (2016)). ln the post-disaster planning 
phase, candidate warehouses are assumed known (i.e., humanitarian organizations work with the existing 
infrastructure, which might have been, in part, designed in the pre-disaster phase). Hence, the main focus 
tends to support (via the use of optimization methods) the decision-making processes involved in the location 
of temporary facilities (e.g. distribution centers), determining the number of required vehicles to perform 
the distribution operations, the assignment of beneficiaries to the distribution centers, and the management 
of the flow of critical supplies (e.g. Afshar and Haghani (2012); Tzeng et al. (2007); Noyan et al. (2016)). In 
the post-disaster planning phase, when designing the HSCN, the overall goal is to distribute the aid in such 
a way as to alleviate the harmful effects of the catastrophic event on the affected people's health. 

Network Structure and Parameter Uncertainty. The post-disaster HSCN design problem is both 
complex and challenging to solve, especially while facing various sources of uncertainty in the planning 
context. Its inherent complexity directly stems from the multiple decisions that need to be made at the 
different levels that define the distribution operations. A level being defined here as a set of locations with 
specific and similar infrastructure ( e.g. comparable storage capacities, locations serving the same purpose in 
the supply chain, etc.) that are used for the storage and distribution of the critical supplies. When reviewing 
the literature, some studies propose models that integrate these decisions, while others only focus on one level. 
Afshar and Haghani (2012) proposed an integrated model for the HSCN that considers both the network 
design problem and the vehicle routing problem that needs to be solved to distribute the critical supplies 
to the affected population. The network design problem included the facility location decisions and the 
capacity constraints imposed on both the facilities and the transportation services performed between them. 
The proposed model is in compliance with the FEMA supply chain structure that consists of three layers 
of permanent facilities and four layers of temporary facilities. Furthermore, the vehicle routing component 
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of the model includes both the routing and the pick-up and delivery schedules performed by the vehicles. 
One of the most challenging parts of planning an HSCN is the last-mile delivery (Balcik et al., 2008). In 
an attempt to model the last-mile relief network design problem, Noyan et al. (2016) proposed a two-stage 
stochastic model to select the locations and the capacities of the distribution centers with the overall aim to 
maximize the accessibility for the affected population while also considering distribution equity. The decisions 
regarding the location of the distribution centers and their capacities are made in the first stage. In the 
second stage, the allocation of the beneficiaries to the distribution centers, as well as the quantity of supplies 
sent to each distribution center are established. Tzeng et al. (2007) proposed a model to design a three-layer 
HSCN using three objective fonctions to consider the financial, effectiveness, and fairness aspects of the 
problem. The first objective fonction aims to minimize the total cost, including the setup and operational 
costs of the distribution centers and the transportation services. The goal of the second objective fonction is 
to improve the effectiveness of the designed network by minimizing the total travel time by the vehicles from 
the distribution centers to the demand points. Finally, the third objective function maximizes the worst 
satisfaction level (i.e., the ratio of satisfied demand to total demand) for each critical supply at each period. 
Indeed, fairness and equity in the distribution of critical supplies to a vulnerable population are important 
aspects when solving an HSCN design problem. Anaya-Arenas et al. (2018) discussed the importance of 
fairness and equity in the context of humanitarian relief and proposed four measures to quantify the fairness 
both across and within operational periods. The first two measures calculate the average gap between the 
minimum and maximum levels of unsatisfied demand over both points (i.e., locations) and periods, while 
the last two measures evaluate the dispersion of the aid provided using the overall variance of unsatisfied 
demand computed over the periods and points considered. 

HSCN design problems are also challenging to solve, given that they naturally appear in settings that 
involve a high level of uncertainty. Thus, different aspects of the informational context (i.e., parameters) have 
been considered uncertain in the literature on HSCN design problems. Ad1var and Mert (2010) considered the 
procurement costs of critical supplies and the delays in the delivery times to be uncertain and then formulated 
them as fozzy parameters. In another paper, Vitoriano et al. (2011) studied the relief distribution problem 
while considering the uncertainty in the level of damage to the infrastructure. The authors used reliability 
analysis to model uncertainty. They defined reliability parameters as the probability of successfolly crossing 
each arc in the relief network. They then model the problem using goal programming. However, considering 
demand level uncertainty is most common. Here, Balcik et al. (2016); Behl and Dutta (2019) both provide 
a survey and classification of the different studies dedicated to such problem variant. 

Demand satisfaction. Two approaches have been employed in the literature to model demand sat
isfaction. The first approach requires all demands to be fully satisfied (e.g. Balcik and Beamon (2008); 
Jabbarzadeh et al. (2014); Berkoune et al. (2012)). ln these studies, which considered pre-disaster planning 
problems, the need to meet the expressed demands is formulated as hard constraints in the optimization 
models. Berkoune et al. (2012) studied the last-mile delivery problem in the humanitarian relief setting. 
They proposed a model that minimizes the total transportation time by selecting both the best route for 
each vehicle and the proportion of delivered critical supplies to each demand point. They also defined demand 
satisfaction as a constraint that needs to be folly satisfied in their model. Balcik and Beamon (2008) studied 
the facility location for humanitarian relief problems. They proposed a stochastic optimization model that 
maximizes the expected covered demand over the defined set of scenarios. The decisions in this model are the 
location of the warehouses, the quantity of stockpiled critical supplies, and the allocation of critical supplies 
from each selected warehouse to the points of demand. Again, proposed model enforces each warehouse to 
have enough critical supplies to fully satisfy the demand of the assigned points. Jabbarzadeh et al. (2014) 
used robust optimization to model the supply of blood both during and after disasters in a multi-period 
setting. The model seeks to establish the locations and the required quantities of blood at facilities for 
each period in the considered horizon. The authors include a control constraint in their model that leads to 
infeasibility if the total level of provided supply is less than the level of demand. 

In a post-disaster planning phase, the high level of uncertainty in the affected region, the elevated levels of 
the demands, and the limited resources may make it difficult to ensure the satisfaction of the entire demand. 
Thus, the second approach to model demand satisfaction relies on the use of soft constraints that apply a 
penalty for the unmet demands (e.g. Ahmadi et al. (2015)). When used in a multi-period setting, the unmet 
demands at a current period may be carried over to the next period (e.g. Lin et al. (2011)). 

In the existing literature, the effects of unmet demand for one critical supply on the level of demand 
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for other critical supplies have not been explicitly studied. However, such effects are clearly important 
considering the nature and urgency of the demand that is considered when solving the HSCN design problem 
in the post-disaster planning phase. In particular, insufficient treatment of a disease in one time period may 
cause a spread of the disease in the subsequent time periods. Therefore, we propose to explicitly model such 
cumulative effects, solving the problem in a multi-period setting. Furthermore, when generally formulating 
the limited resources that are available to humanitarian organizations to distribute aid post-disaster, either 
fixed budget limits are added as hard constraints in the models, or, the objective fonction simply aims to 
minimize the costs incurred by the operations conducted (thus assuming that a sufficient budget is available). 
We are not aware of studies that explicitly consider the effects that varying donations received over time 
have on the considered design problem. In this study, we thus formulate the pattern of receiving varying 
donations to define the available budget over multiple time periods and their overall effect on both the design 
and distribution decisions to be made. Finally, we consider the combined effects of solving the HSCN design 
problem when facing both demand and capacity uncertainty. Depending on the nature and intensity of the 
catastrophic event, these sources of uncertainty can certainly be simultaneously observed when planning the 
aid in the post-disaster phase. 

2.2 Service Network Design 

SND problems refer to a general class of network design problems that focus on the supply-related resources 
and activities of transportation systems (Crainic and Hewitt, 2021). A wide range of decisions are involved 
in SND optimization models. These decisions can be grouped in two general categories: the design and the 
flow decisions (Crainic and Hewitt, 2021). Design decisions involve: the selection of services, i.e., the routes 
connecting the origins and destinations of the commodities to be transported (which may either be direct 
links or paths involving the use of intermediary terminals) and their schedules, which are either fixed based 
on the service itself or, decided upon (i.e., frequency, timing, etc.). As for the flow decisions, they involve 
setting the itineraries for the different commodities, which establish how and when they are transported from 
their respective origins to their final destinations. Typically, the objective is to design a service network that 
is efficient and profitable while satisfying the demand. The literature on SND models can be classified in two 
classes: deterministic (all relevant parameters assumed known) or under uncertainty (at least one parameter 
being assumed to randomly vary). In the following, we briefly review the literature on these two classes of 
SNDs. 

2.3 Deterministic Service Network Design 

In the present Subsection, we review the different proposed modelling approaches that properly formu
late SND problems that appear in deterministic settings. These include: static, time-dependent, dynamic, 
frequency, and time-space SNDs (Crainic and Hewitt, 2021). Static SND models seek to design a service 
network in a static setting where the problem characteristics remain fixed and, therefore, the time dimension 
is not explicitly considered in the formulation (Chouman and Crainic, 2021). The school bus service network 
is an example of a static SND where all problem characteristics remain the same for each day of operation. 
In a time-dependent SND, the quantity of available supply, the level of demand, and other problem char
acteristics can change over time. For instance, the demand for transporting agricultural goods will increase 
during the harvest season compared to the rest of the year. Thus, the time dimension needs to be explicitly 
considered (see, e.g. Andersen et al. (2009)). 

It should also be noted that SND problems can appear at all planning levels (i.e., strategic, tactical, and 
operational). Strategic planning defines a general guide for the management of an organization based on 
stakeholders' long-term priorities and goals. Tactical planning focuses on shorter periods of time (i.e., yearly 
or monthly) and provides an action plan to achieve the organization's objectives in the defined planning 
horizon. Finally, operational planning is performed on the short-term (i.e., weekly or day-to-day). In 
(Crainic, 2000), SND problems are divided according to their planning level and grouped into frequency or 
dynamic models. The strategic and tactical SND problems are the tapie of study in frequency formulations, 
e.g. Duan et al. (2019); Rothenbacher et al. (2016). Frequency SND problems seek to find the best type 
of service and their frequencies for the considered planning horizon, the itineraries, and the workload and 
policies to be implemented at the terminals involved (Crainic, 2000). In contrast, dynamic SND models are 
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applied at the operational level (see, e.g. Wieberneit (2008)), where the focus is on the scheduling of the 
services and their departure times (Crainic, 2000). Lastly, in some applications, the explicit management of 
resources may be an integral part of the SND problems. Resources to perform the services, such as vehicles or 
workforce, can be located in different geographical points at different time periods throughout the considered 
planning horizon. Thus, services that are selected and need to be performed on a given schedule, must also 
include the required resources. To efliciently formulate both the flow of the commodities and the management 
of the resources, a time-space representation of the network, e.g. as developed in Andersen et al. (2009); 
Crainic et al. (1984, 2016b)), is required. 

2.4 Service Network Design under Uncertainty 

Researchers have investigated the importance of considering uncertainty when formulating and solving SND 
problems (see, e.g. Crainic and Hewitt (2021); Lanza et al. (2021); Lium et al. (2009, 2007)). The problem 
variant most studied in the literature assumes that demands are uncertain (see, e.g. Lium et al. (2007); Bai 
et al. (2014); Crainic et al. (2016a); Ng and Lo (2016)). For this problem variant, Lium et al. (2007) compared 
the solutions obtained by solving a deterministic SND model when compared to its stochastic variant. This 
study clearly showed that by applying an optimization approach that explicitly considers uncertainty in 
demand, the designed networks included characteristics that improved their overall adaptability to varying 
demand realizations. Specifically, it was observed that networks obtained by solving a stochastic model 
included the options of: 1) alternative paths to connect the origins and destinations of commodities and 
2) consolidation options for multiple commodities over specific arcs, which better hedged against random 
demand variations (i.e., commodity volumes). 

Lanza et al. (2021) studied the importance of considering travel time uncertainty when solving an SND 
problem involving service quality targets. Again, solution differences were observed when comparing the 
networks obtained by applying deterministic optimization versus stochastic optimization. Specifically, it was 
observed that the solutions obtained by solving the deterministic model prioritized the one-stop services 
over the non-stop (or direct) services in an effort to lower the fixed costs incurred. In contrast, when the 
stochastic model was solved, the solutions obtained would select direct services as a means to reduce the risk 
of paying additional costs due to possible operational delays. Overall, the use of the stochastic optimization 
approach produced networks that were more cost-eflicient (i.e., reducing the sum of both the set-up costs and 
the penalties incurred due to delays in the deliveries) when compared to their deterministic counterparts. 

Both stochastic programming and robust optimization have been applied to model and solve SND prob
lems that involve uncertainty (Bai et al., 2014; Wang and Qi, 2020). Considering that our problem setting 
assumes that a set of scenarios ( that capture how the uncertain parameters may randomly vary) is available, 
the selected approach is stochastic programming. When formulating stochastic SND problems that appear at 
the tactical planning level, as highlighted in the scientific literature, two-stage formulations are the approach 
of choice, e.g. Bai et al. (2014); Crainic et al. (2016a). Thus, the process by which uncertain parameters 
become known is approximated by assuming that the values of all stochastic parameters are observed in a 
single stage (i.e., the second). Such an approach results in a model that is easier to solve, when compared to 
a multi-stage formulation, while still providing the means to find a tactical planning solution (i.e., network) 
that efliciently performs in the context of a randomly changing informational context. 

3 Problem description 

In this section, we present the here considered HSCN design problem that we will solve. First, Subsection 3.1 
describes the general characteristics of the problem, including the network structure, uncertain parameters, 
and both the tactical and operational decisions involved. Then, Subsection 3.2 explains how budget require
ments are imposed in the present setting and how they affect the HSCN design problem. Furthermore, this 
section also presents the various costs that are incurred from the different decisions made in the problem. 
Finally, Subsection 3.3 defines the concept of demand, which includes the cumulative effect of unmet demand 
over time, and its correlated effects on the critical supplies. 
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3.1 HSCN Design Problem 

We study a multi-period HSCN design problem that involves tactical planning decisions made by organiza
tions in the short-term recovery phase of EM. We consider a three-layer structure, as exemplified in Figure 1, 
which is a common structure for real-world HSCNs (Séguin, 2019). Each layer consists of a set of hubs with 
different characteristics, including the ports of entry, the warehouses, and the Distribution Centers (DCs). 
A port of entry is the physical location where the organization receives critical supplies, e.g. an airport, 
a seaport, or a train station. A warehouse is a hub that relies on storage resources that can hold critical 
supplies over several time periods. For instance, storage resources could be classrooms in a school or a set of 
containers located on land. The warehouses are more numerous than the ports of entry and are located doser 
to the affected region. Finally, a DC is a physical location within walking distance from beneficiary groups 
(i.e., a group of people relocated to a temporary site that could be a school, a temporary camp, or any other 
building) that is used to hand over the critical supplies to beneficiaries. We assume that each beneficiary 
group is assigned to a single DC that is dedicated to the transfer of all the critical supplies to satisfy ( as 
much as possible) the expressed demand. The critical supplies are transported between consecutive layers 
using services. We assume there are no services connecting the hubs in the same layer (i.e., no transhipments 
are allowed). In addition, it is assumed that there are no direct services between the ports of entry and the 
DCs. 

Crttical Supplies 

Beneficiary Group w 
Warehouse Giiil 

u::z--~~ Disbibution Cenler l!liil!J 
l!liil!J 

~ î\ l!liil!J 

Port or Entry ·~ J, 
Transportation ---Service 

l!liil!J Assignmenl ---+ 

\ w 
w~ 

Aflected area 

Affected area 

Figure 1: top: all available hubs, services, and assignments. bottom: selected hubs, services, and 
assignments in an example HSCN. 

The planning of the considered HSCN involves making a series of decisions that determine the capacities of 
the network (i.e., the design decisions) and the use of these capacities to perform the required humanitarian 

CIRRELT-2022-27 7

A Two-Stage Stochastic Post-Disaster Humanitarian Supply Chain Network Design Problem 



aid (i.e., the operational decisions). To design the HSCN, one needs to select hubs and services capable 
of transporting the critical supplies from the ports of entry to the DCs, select resources for warehouses 
and services, and assign beneficiary groups to the DCs. Specifically, we first select a set of hubs and a 
set of services to connect them that will be available for the considered time horizon. We then assign 
transportation resources to the selected services ( e.g. number of vehicles) and the storage resources for 
the selected warehouses (e.g. available space to be used or the number of containers). Thus, the storage 
capacity of a warehouse is a decision made by choosing the number of units of storage resources to be made 
available. Likewise, the transportation capacity of a service is a decision made by selecting the number of 
transportation resource units that define the operational capabilities of the service (i.e., how much quantity 
of critical supplies can be transported). Each transportation resource unit provides a fixed amount of 
capacity, and it is possible to assign multiple transportation resources to each selected service. However, it 
is assumed that there is a limit on the total number of resources available for each service (i.e., the locally 
available transportation supply is not infinite). Each service has a pair of hubs as origin and destination. 
Furthermore, performing a service entails loading the critical supplies at the origin hub, transporting them 
to the destination hub, and then returning to the origin hub to be able to repeat the process. Finally, we 
assign each beneficiary group to a single DC to ensure that the beneficiaries are able to pick up their critical 
supplies and know exactly where to do so. A DC should be within a predefined walking distance from a 
beneficiary group to be considered as a possible assignment to it. It is thus assumed that at least one DC 
is within walking distance from each beneficiary group. While each beneficiary group must be assigned to a 
single DC, each DC can provide the critical supplies for multiple beneficiary groups. We assume the design 
of the HSCN remains unchanged throughout the planning horizon. We next define the operational decisions 
made over the considered horizon. 

To properly characterize the relief operations, we first define the concept of a time period in the HSCN 
design problem. Specifically, a time period is defined as the time required to perform the following operations: 
1) receive a shipment of critical supplies into the port of entry hubs, 2) transport these critical supplies 
through the network until they reach the DCs, and 3) transfer the critical supplies to the beneficiary groups 
to satisfy demand. Therefore, a period is assumed to be the required time (e.g. a full week) to distribute 
the received shipment from the entry points of the HSCN to the final destinations, which are the beneficiary 
groups. Using this definition, the time horizon is discretized to produce a set of periods that span the 
planning context. Therefore, the operational decisions made at each time period include selecting the 
quantity of critical supplies transferred through the selected services, the desired inventory levels of the 
warehouses, and the quantity of the critical supplies allocated to the beneficiary groups at the DCs. 

The decision-making process requires access to the value of a series of parameters, including the demands 
for the critical supplies, the locations of the beneficiary groups, the available budget, the set of available 
hubs, available services, and their resources. While some of these parameters are known in advance ( e.g. the 
locations of the beneficiary groups, the available hubs, the available budget, etc.) and thus are deterministic, 
the values of other parameters ( e.g. the demands) are uncertain at the moment the HSCN is designed. 
Vitoriano et al. (2011) highlighted the importance of considering the damage to the infrastructure after 
the main event caused by the secondary impacts (e.g. fires, landslides, and aftershocks). The occurrence 
of secondary impacts increases the levels of uncertainty on different aspects of the HSCN design problem. 
Specifically, the selected warehouses and their storage capacities might not be fully available (i.e., due to 
damages) in subsequent periods. A similar observation can be made regarding the selected transportation 
services and their capacities. Therefore, in this problem, we consider these three sets of parameters as 
uncertain (i.e., the demands, the available inventory resource of warehouses, and the available transport 
resource of services). In this case, an efficient HSCN should ideally provide a higher level of flexibility (i.e., 
scheduled or planned adaption of the distribution operation to possible external circumstances affecting the 
influential components of the problem) in light of the secondary impacts that may occur in the affected region 
(Sahebjamnia et al., 2017). In addition to the decrease of available warehouse capacity due to secondary 
impacts, the damaged resources may also lose critical supplies stored in the damaged part of the warehouses. 
Naturally, at each period, the total amount of critical supplies stored at a warehouse cannot be greater than 
the remaining capacity of that warehouse. This clearly motivates the need to explicitly consider the usable 
inventories of critical supplies that are available, both at the beginning and end of each period, over the 
considered horizon. 
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3.2 Budget 

In this subsection, we first introduce the costs related to the decisions made in both the design and the 
operations conducted through the HSCN. We then discuss how the overall budget requirements are imposed 
in the present problem. In this case, there are two general types of costs, the fixed-costs, and the flow
costs. The fixed-costs include those associated with the selection decisions: a) of hubs (e.g. accounting for 
staff salary and maintenance), b) inventory resources (e.g. security guards and rent), and c) transportation 
resources (e.g. drivers, staff for loading and unloading the vehicles and security guards). The fixed-costs 
are assumed to be paid only once at the moment when the selection decisions are made. Regarding the 
transportation services, some expenses occur every time they are used and are proportional to the quantity 
of critical supplies that are transported (e.g. fuel cost). These expenses are referred to as the flow-costs of 
the services. 

As for the budget involved in the HSCN design problem, it is assumed to include two general parts: 
a) the initial budget and b) donations. The initial budget is the amount available at the beginning of the 
planning horizon. It is often made up of the amount that was planned in the preparedness phase of the 
pre-disaster planning performed by the humanitarian organization. As for donations, they represent the 
financial support that is received over the subsequent time periods considered on the horizon. These will 
vary according to different aspects related to the specific disaster (i.e., how much journalistic coverage it 
receives, the severity of the event, the fund-raising activities of the organization, etc.). The amount of 
donations received following a given disaster could be considered an uncertain parameter. However, we 
assume that humanitarian organizations are realistically able to estimate this amount using historical data. 
In all cases, our proposed optimization model easily enables scenario analyses to be performed on the budget 
parameters (as illustrated in Subsection 5.2.4). To impose the budget constraints, it should first be observed 
that the amount of available budget is dependent on the specific time period considered. Thus, the budget 
requirements and the limits that they impose should directly apply to the decisions made at each time 
period. Following this principle, the incurred fixed-costs are limited by the initial budget, while the incurred 
flow-costs in each period are limited by the remaining budget from the previous period and the donations 
received at the current period. 

3.3 Demand 

We now define how the level of demand is calculated over the considered horizon. The demands of each 
beneficiary group for specific critical supplies are assessed based on the population in the considered zone, 
which is oftentimes uncertain at the time when the design decisions are made (Council, 2007). However, 
these numbers can be estimated based on various data sources, such as the number of residences, the 
number of beneficiaries, the intensity of the natural disaster, and the overall resistance of the urban or 
rural infrastructure (Council, 2007). A distinctive feature of our proposed model, when compared to those 
developed in the related scientific literature, is how the cumulative adverse effects of unmet demand of 
beneficiary groups are evaluated. Specifically, while operating the HSCN, we might not be able to fully 
satisfy the demand of the beneficiary groups at each considered time period. ln turn, this may negatively 
affect the population's health for the beneficiary groups involved. For example, mosquito nets are pivotal 
items in controlling malaria epidemics. If the demand for mosquito nets is not fully satisfied, the epidemic 
spreads, and in turn the subsequent demand for mosquito nets is further increased. Additionally, one may 
observe an increase in the demand for malaria tests and medication. Therefore, unmet demands for a given 
critical supply will cumulate and possibly worsen overtime, but they are also likely to affect the demand for 
other critical supplies (i.e., there are correlated adverse effects). 

To evaluate the adverse effects of unmet demands, we first assume that each unit of unmet demand for 
a given critical supply carries over to the following time period along with a negative penalty representing 
its negative effects. Furthermore, we introduce a series of spread factor parameters to measure how one 
unit of unmet demand for a specific critical supply negatively affects the demand for the other items in the 
following period. Specifically, let sk'k represent the effect of one unit of unmet demand of critical supply k' 
on the demand for the critical supply k in the subsequent time period. To formulate the effects of unmet 
demands on the demand level at the beginning of period t, we define the total demand, represented by dft, 
for the critical supply k and for the beneficiary group l, as the sum of the base demand and the residual 
demand carried over from t - 1. The base demand, formulated as parameter ar, represents the demand for 
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the critical supply k, at period t, expressed by the beneficiary group l, and it is considered uncertain. As for 
the residual demand, it captures the negative effects on the level of demand in the current period that are 
directly linked to the unmet demands carried over from the previous period. Therefore, to obtain the total 
demand value, the following formula is applied in the case of the critical supply k, at period t and for the 
beneficiary group l: 

J,kt _ J,kt + '""" 8k'k(Jk't-1 _ '""" 0k't-1) 
1-1 L.., l L.., il· (1) 

k'EK iEVvc 

As defined in Equation (1), d~'t-l represents the total demand of the beneficiary group lat period t-1 and 

a~;t-l defines the decision prescribing the amount of critical supply k' that is delivered to the beneficiary 
group l from the DC i at period t - 1. Therefore, the spread factor sk' k is proportionally applied to the 
amount of unmet demand of critical supply k' at period t - 1. Finally, the overall objective pursued is to 
design an HSCN that minimizes the total expected penalties of unmet demands over the defined planning 
horizon. 

4 Optimization model 

We begin this section by explaining our reasoning for choosing a two-stage model to formulate the HSCN 
design problem. We then present the proposed mathematical model. A stage refers to a specific moment 
within the time horizon at which decisions are made while considering the informational context of that 
point of time, i.e., the known parameters and the parameters that still remain uncertain (stochastic). When 
formulating a tactical planning problem, it is common to apply an approximation of the informational process 
by considering a two-stage setting. The reasoning behind this choice being that one is primarily interested in 
determining what should be the tactical plan (i.e., the a priori or first-stage decisions), while the operational 
decisions (i.e., the recourse or second-stage decisions) are used to evaluate how the tactical plan can be 
implemented. The latter can thus be defined as an approximation of the operators occurring in practice 
(i.e., decisions in the second stage being made under the assumption that all stochastic parameters become 
known). Moreover, in humanitarian relief planning, one typically cannot assume that all information will be 
perfectly revealed at the end (i.e., the exact value of some parameters can remain unknown). This further 
justifies the use of an approximation regarding how operations are conducted. 

In the considered HSCN design problem, the value associated with the uncertain parameters will be 
revealed as time elapses (e.g. demands become known as more information arrives from the field). However, 
organizations cannot wait to obtain all the contextual information before designing the HSCN, e.g. services 
may not remain available if they are not booked in advance. Furthermore, the cost of booking the hubs and 
the services may increase if their booking is delayed. On the other hand, postponing the operational decision
making process will result in better decisions being made considering that there will be less uncertainty 
regarding the parameter values. Therefore, as advocated in the related literature (Grass and Fischer, 2016), 
we use a two-stage model where, in the first stage, the design decisions of the model are made whereas, in 
the second stage, we include the operational decisions for all periods. 

We propose a model to design an HSCN that receives, stores and distributes critical supplies, i.e., set K, 
among the beneficiary groups, i.e., set L, over a given planning horizon, i.e., set T. We design the HSCN 
by selecting a set of hubs that are represented by set V, and a set of services, represented by set A. The 
designed HSCN is then used to transport the critical supplies from ports of entry to DCs over a known 
number of periods (i.e., t E T). To model the uncertain parameters, we use a set, W, of scenarios. Each 
scenario is a realization of random events associated with uncertain parameters. Table 1 introduces the sets 
used to define the model. 
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Set 
v, 

Vw 
Vnc 

V 
A 
L 
K 
q, 
T 

Definition 
Set of ports of entry i E Vr. 
Set of warehouses i E Vw. 
Set of DCs i E Vnc-
Set of ail hubs i EV, where V= Vr LJVw LJVnc
Set of ail services ( i, j) E A. 
Set of beneficiary groups ! E L. 
Set of critical supplies k E K. 
Set of scenarios ,p E \Jf. 
Set of periods t E T. 

Table 1: Sets used in the optimization model. 

Deterministic Parameters 
Parameter Definition 

f;; Cost of selecting one unit of transportation resource of service ( i, j) E A. 
Îi Cast of selecting one unit of inventory resource for warehouse i E V. 
f; Cost of selecting a hub i E V. 

c~; Cost of transporting one unit of critical supplies k E K, by service (i,j) E A. 
Uij Capacity of one unit of transportation resource of service ( i, j) E A. 
Ui Capacity of one unit of inventory resource of warehouse i E Vw. 
mi Maximum number of inventory resources available for warehouse i E Vw. 
m;; Maximum number of transportation resources available for service ( i, j) E A. n:• Maximum quantity of critical supplies k E K that can be delivered to the port 

of entry i E Vr at period t E T. 
bk The penalty for one unit of unmet demand of critical supply k E K. 
z0 The initial budget. 
z' The received donation amount at the beginning of period t ET. 

8 kk' Spread factor of one unit of unmet demand of critical supply k E K on critical 
supply k' E K. 

Parameters of the scenario-based stochastic mode! 
Parameter Definition 

Probability of scenario ,p E \Jf. 
Percentage of available inventory resources of hub i E V, at period t E T, in 
scenario ,p E \Jf. 
Percentage of available transport resources of service ( i, j) E A, at period 
t ET, in scenario ,p E W. 
The base demand of beneficiary group ! E L, for critical supplies k E K, at 
period t E T, in scenario ,p E \Jf. 
Total demand of beneficiary group ! E L, for critical supplies k E K, at period 
t ET, in scenario ,p E W. 

Table 2: Model input parameters. 

The input parameters of our model are presented in Table 2. The total demand for supply k E K for 
the beneficiary group l E L in period t E T in the scenario 1/; E '11 is given by parameter dfJ. The total 

demand value, as defined by Equation (1), consists of the sum of the uncertain base demand, dfJ, and the 

unmet demand from the previous period. Parameter skk' represents the spread factor, indicating the impact 
of one unit of unmet demand of critical supply k on the demand of critical supply k' in the subsequent time 
period. We define a penalty parameter bk that indicates the penalty for one unit of unmet demand of critical 
supply k. The penalty for each critical supply needs to be adjusted with regard to the specific catastrophic 
event that occurred, the geographical characteristics of the affected region, the current weather, and other 
components affecting the demands. For instance, the penalty for food is more than shelter in the dry season, 
but this balance may change during the rainy season as shelter becomes more valuable when compared to 
the dry season. The model then minimizes the total expected penalty for all beneficiary groups over all time 
periods, computed using the defined scenarios. 

As shown in Table 1 the set of all hubs V is divided into three subsets: the set of the ports of entry V1, 
the set of warehouses Vw and the set of DCs VDC· There is a fixed cost fi for selecting a hub. Furthermore, 
there is a fixed-cost Ji to select each unit of inventory capacity resources for each hub. The capacity of one 
unit of inventory in the warehouse i E Vw is represented by Ui. The effects associated with the secondary 
impacts on the hubs are modelled as uncertain capacity parameters. Specifically, the uncertain parameter 
fif,t, represents the percentage of the available storage resources of the warehouse i E Vw, at period t E T, 
in scenario 1/; E '11. At the beginning of each time period, damaged inventory capacity is discarded, given 
that it is not usable anymore. To consider this change in the inventory level, we use two inventory variables: 

CIRRELT-2022-27 11

A Two-Stage Stochastic Post-Disaster Humanitarian Supply Chain Network Design Problem 



one at the beginning and the other at the end of each time period. The inventory level of a warehouse at 
the beginning of period t is denoted by variable rf; and the inventory level of a warehouse at the end of the 

period is given by variable rf;. We represent the import capacity of each port of entry by the parameters 

nft, \fi E Vi, k E K, t ET, which limits the output flow of each port of entry, for each critical supply at each 
time period. In addition, the parameter zt denotes the financial donations received in period t ET, with z0 

representing the initial budget. 
Parameter Îij is the fixed-cost for selecting one unit of transportation capacity resource for service 

(i,j) E A. Parameter Uij indicates the capacity of one unit of transportation resource for service (i,j) E A. 
ln addition, parameter cfj indicates the flow-cost of the service (i,j) E A for a unit of critical supply k. 

The list of decision variables are presented in Table 3. ln the first stage, we model tactical decisions 
including the selection of hubs, represented by the binary decision variables Yi,i EV, and the selection of 
services, represented by the binary decision variables Xij, ( i, j) E A. We also select the capacity of ware
houses and services, represented by the integer decision variables Yi, i E Vw and Xij, ( i, j) E A, respectively. 
Furthermore, the binary decision variable ail represents the assignment of beneficiary group l E L to DC 
i E Vve- In the second stage, three groups of continuous decision variables are used. The flow decision 
variables, xfJ.,, ( i, j) E A, 1/J E W indicate the quantity of critical supplies k E K transported through each 

service in each period t E T, and the allocation decision variables a7z~, i E Vve, l E L, k E K, t E T, 1/J E \li 
determine the amount of each critical supply that will be delivered to each beneficiary group. The continuous 
decision variables rf; and rf; indicate the inventory level of warehouse i E Vw for critical supply k E K in 
scenario 1/J E W at the beginning and end of period t E T, respectively. 

ln the following, the first and second stage (i.e., recourse) models are introduced. The first stage model 
seeks to design an HSCN minimizing the expected penalty of the recourse function over the set of scenarios 
W. The recourse function, represented by Q,i,(i:, y, a), defines the second stage that selects the operational 
decisions for a specific scenario 1/J E W to minimize the penalty of unmet demand over the planning horizon. 

s.t. 

First Stage 
Variable 

Xij E o, 1 
Yi E {O, l} 
Xij EN° 
fi, EN° 

a;z E {O, 1} 
Second Stage 

Variable 

x:J., 2': o 

a:,~ 2': o 

rf; 2': 0 

r" > o ',t, -

Definition 
1 if service i, j E A is selected to be part of the HSCN; 0 otherwise. 
1 if hub i E V is selected to be part of the HSCN; 0 otherwise. 
N umber of units of transport resources selected for service ( i, j) E A. 
Number of units of inventory resources selected for hub i E Vw. 
1 if beneficiary group ! EL is assigned to DC i E Vve; 0 otherwise. 

Definition 
Quantity of critical supply k E K transferred through service i, j E A at 
period t E T in scenario ,J, E '11. 
Quantity of critical supply k E K at period t E T allocated to beneficiary 
group I EL from DC i E Vve in scenario ,J, E '11. 
Inventory level (in number of units) of critical supply k E K at warehouse 
i E Vw at the end of period t ET in scenario ,J, E '11. 
Inventory level (in number of units) of critical supply k E K at warehouse 
i E Vw at the beginning of period t ET in scenario ,J, E '11. 

Table 3: Decision variables of the two-stage stochastic model. 

min :~:::>,i,Q,i,(i:,fl,a) 
,j,E'1' 

2Xij :S Yi+ Yj 'v(i,j) E A, 

Xij :S mijXij V( i, j) E A, 

L liYi + L Îi'Yi + L ÎijXij :S z 0 ' 

iEV iEW (i,j)EA 

L ail = 1 Vl E L, 
iEVve 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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s.t. 

ail S Yi \li E VDc, \Il E L, 

Xij EN°, Yi EN°, Xij E {0, 1}, Yi E {0, 1}, 

ail E {O, 1}, Vi EV, V(i,j) E A. 

Where Q,i,(x, y, a) is defined as follows: 

tETkEK lEL iEVvc 

V(i,j) E A, Vt ET, 

Vi E VDc, \Il E L, \/k E K, \/t E T, 

-kt < d'kt 
ail,i, - 1,i,, Vi E VDc, \Il E L, \/k E K, \/t E T, 

Lat~ s L xjf"', \li E VDc,Vk E K, \/t ET, 
!EL jEW 

J,kt - dkt + """' sk'k(Jk't-1 - """' ak't-1) \Il E L, \/k E K, Vt E T, l,j, - l,j, L.., l,j, L.., il,i, ' 
k'EK iEVvc 

t 

LfiYi + L ÎiYi + L ÎiJXiJ + L L L cfJxft s 
iEV iEW (i,j)EA t'=l (i,j)EA kEK 

t 

z0 + L zt', \/t E T, 
t'=l 

rj! S rJ;- 1 \/j E Vw, \/k E K, \/t ET, 

L rj! S UJ9J,i,'Yi \/j E Vw, \/t ET, 
kEK 

'vjEVw, 'vkEK, 'vtET, 

L xfJ"' s nft Vi E Vi, \/k E K, \/t E T, 
(i,j)EA 

-kt > 0 -kt > 0 kt > o ,kt > o \.J( · ·) A xij,i, _ , ail,i, _ , ri,i, _ , ri,i, _ , v i, J E , 

Vi E V, \/k E K, \/t E T. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

The Objective Function (2) minimizes the expected recourse value (i.e., the expected total penalty for 
unmet demands). Constraints (3) ensure that a service can only be selected if its origin and destination 
hubs are part of the HSCN. Constraints (4) indicate that inventory resources at a warehouse can only be 
selected if that warehouse is also part of the HSCN. Similarly, Constraints (5) indicate that the selection of 
transportation resources for a service is conditional to it being included in the HSCN. The initial budget, 
which limits the total cost incurred for the selected hubs and services and their resources in the first stage, 
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is imposed by Constraints (6). Constraints (7) indicate that each beneficiary group should be assigned 
to a single DC, whereas Constraints (8) prohibit assigning beneficiary groups to DCs that are not part of 
the HSCN. Finally, the necessary integrality requirements and bounds imposed on the first stage decision 
variables are included by Constraints (9). 

In the second stage, the operational decisions are made. The Objective Function (10) minimizes the 
total penalty associated with the unmet demands for all beneficiary groups over the entire planning horizon. 
Constraints (11) are the service capacity Constraints, ensuring that, at each period, the quantity of critical 
supplies transported by each service is limited to its assigned transportation capacity. After transferring 
the critical supplies to the DCs, they are allocated to the beneficiary groups. Constraints (12) impose the 
critical supply limits that are available at each DC to serve the beneficiary groups that are assigned to it. To 
impose the non-anticipativity requirements in each period, the allocated quantity of critical supplies to each 
beneficiary group is limited by its demand at that period which is enforced by Constraints (13). Constraints 
(14) ensure that in each DC, the total quantity of allocated critical supplies is limited by the quantity that 
is available at that DC. Constraints (15) compute the total demand at each period as the summation of 
the base demand and the residual demand multiplied by the spread factor. Constraints (16) are the budget 
Constraints that limit the cumulative expenses at a given time period to be less than equal to the sum of 
the initial budget and the donations received up to that time period. 

Constraints (17) indicate that the inventory level at the beginning of each period is limited by the 
inventory level at the end of the previous time period. At each period, the inventory level for a warehouse 
cannot exceed its inventory capacity. These limits are imposed by Constraints (18) and (19). The inventory 
level for a hub at the end of a period is computed based on its inventory level at the beginning of the period 
plus the quantity of critical supply that is received at the hub minus the quantity of critical supply that 
is delivered from it. Constraints (20) calculate the inventory level for each warehouse at the end of each 
period. The ports of entry do not have inventory capacity, therefore all received critical supplies at a period 
must be sent to the warehouses. Since we have a limit on the maximum level of critical supplies that can be 
received at each port of entry from international humanitarian organizations and other donors, the output 
flow of critical supplies at each port of entry must not exceed such level. Constraints (21) ensure that these 
limits are imposed in all periods. Finally, Constraints (22) define the bounds of the variables used in the 
second stage. 

5 Experimental results 

In this section, we design and apply a series of numerical experiments to study the performance of the 
proposed model on a practical HSCN design problem (derived using a particular case study). Subection 5.1 
introduces the considered case study, obtained using real-world data from lndonesia's 2018 earthquake. In 
Subsection 5.2 we present the numerical experiments that are conducted and the detailed results obtained 
on the case study. Subsection 5.2 reports lower and upper bounds when the introduced optimization model 
is used to solve the considered problem instances, as well as stability results related to the size of the used 
scenario samples. This subsection also investigates the importance of explicitly considering the uncertainty 
when solving the problems, as well as the impact of the available budget and the spread-factor on the 
performance of the designed HSCN over the planning horizon. 

5.1 Data generation for the case study 

Our case study focuses on the 2018 earthquakes in Indonesia. On the 29th of July 2018, a 6.4 magnitude 
earthquake occurred on the island of Lombok. This earthquake had more than 1,500 aftershocks, three of 
which were particularly strong: a 7.0 magnitude earthquake on the 5th of August 2018, a 5.9 magnitude 
earthquake on the 9th of August 2018, and a 6.4 magnitude earthquake on the 26th of August 2018. These 
earthquakes caused 564 deaths, 1,584 injured, and 445,343 people displaced into more than 2,700 camps (i.e., 
beneficiary groups) (IFRC, 2021a). Immediately after the earthquakes, Indonesia's government announced 
astate of emergency, which ended on the 26th of August 2018, by declaring the transition to the long-term 
recovery phase. We here consider this period of 28 days as the short-term recovery phase of our planning 
problem. The planning horizon is then divided into four periods, each period being one week-long. To model 
the demands associated with the locations of the beneficiary groups, we used a data set made available by 
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the International Organization for Migration (IOM, 2019), which indicates the number of individuals and 
households associated with the beneficiary group locations. Our study focuses on a specific part of the 
island of Lombok (Pringgabaja, Suela, and south of Aikmel), where 13,177 individuals were displaced into 
71 beneficiary groups. 

The International Federation of Red Cross and Red Crescent Societies (IFRC) and its local partner 
Palang Merah lndonesia (PMI) are among the active humanitarian organizations in the region. We ana
lyzed the "Emergency Plan of Action Operation" reports and "Operation Update" provided by the IFRC 
(IFRC, 2021a) to better understand the region's state and the challenges it faced regarding the humanitarian 
operations after the earthquake. Based on these reports, we located the ports of entry and the warehouse 
locations that IFRC and PMI used in their HSCN. Furthermore, we also learned that PMI signed agreements 
with third-party logistics companies to use their fleets to transport critical supplies over their HSCN (IFRC, 
2021a). The airport on the island was damaged, which allowed only small airplanes to land. Hence, the 
larger aircrafts transporting supplies would land at the Surabaya airport, located on the Java island (IFRC, 
2021a), and most of the critical supplies were then shipped to Lombok by boats. The IFRC used four points 
of entry, including: Serang port, Gresik port, and Juanda International Airport on Java island, and Lombok 
airport on the Lombok island. It further had six warehouses on Lombok. According to the IFRC reports, 
water was provided to beneficiaries via 21 water trucks operated from a single location on the island. Con
sidering that the water supply came from a different relief network (which did not share resources with the 
rest), this study focuses on the following critical supplies: shelter, food, and hygiene items (e.g. soap, toilet 
paper, and sanitary pad) (IFRC, 2021a). 

ln order to standardize and harmonize the critical supplies in emergency operations, the International 
Federation and the International Committee of the IFRC have published the standard products catalog 
(IFRC, 2021b). This catalog presents the details regarding all critical supplies, including weight, volume, 
and the number of beneficiaries each unit can support during a given time frame (if applicable). Using this 
catalog, we were able to calculate the amount of critical supplies required for each individual or household 
during each period. 

Although we extracted the values of multiple parameters from the IFRC reports, accurate values for some 
parameters were missing. Additional sources were thus needed to complete our data set. To evaluate the 
service capacities and associated costs, we consulted local vehicle rental websites. We first chose two types 
of trucks (i.e., medium duty trucks for services between ports of entry and warehouses and pick-up trucks 
for services between warehouses and DCs) from the available trucks and calculated the fixed-cost and the 
flow-cost for renting the trucks using the pricing information from the website. However, since the reported 
costs on the website were priced for one delivery between each origin and destination, we defined a service 
resource between an origin and destination pair to operate only one delivery per period. Specifically, for 
the flow-cost, we multiplied the per kilometer cost of transporting the critical supplies obtained from the 
local website by the distance between the hubs. To calculate the distances between the different locations, 
we used an online routing engine (Luxen and Vetter, 2011) that operates on the OpenStreetMap data. We 
were thus able to evaluate both the walking and the driving distances between the different geographical 
locations (i.e., the driving distance between the ports of entry and warehouses, the driving distance between 
warehouses and DCs, and the walking distance between the DCs and beneficiary groups). 

Another set of parameters that were not mentioned in the IFRC reports are the locations of the DCs. 
Hence, we generated a set of possible DC locations to complete our data set as follows. It is first assumed 
that beneficiaries will, most likely, have to walk to the DCs to acquire their critical supplies. Therefore, 
the best candidate locations for the DCs are those that are close to the beneficiary groups. Hakimi (1964) 
showed that in a given graph if one is interested in finding the specific location that minimizes the total 
distance between the selected location and all nodes in the graph then the location will necessarily be 
one of the nodes. When applying this result to the present case, the location that minimizes the total 
distance from all beneficiary groups is necessarily among the beneficiary group's location. Therefore, all 
beneficiary group locations are potential candidates for the DC locations. ln order to reduce the number of 
candidate locations for the DCs, we clustered the beneficiary groups using the DBSCAN algorithm (Ester 
et al., 1996). DBSCAN is a density-based clustering algorithm that clusters the beneficiary groups based 
on two parameters: a parameter indicating the neighbourhood radius for the DCs to be included in the 
same cluster and a parameter specifying the minimum number of neighbours within each cluster, impacting 
the cluster's density. Different values for these two parameters result in different clusters. As typical in 
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clustering analysis, a domain expert then selects the cluster most useful in practice (Mendes and Cardoso, 
2006). Figure 2 presents the locations of the beneficiary groups and the four candidate locations for the DCs 
that were obtained following the cluster analysis that was performed using the DBSCAN algorithm. 

Scenario generation 

In order to approximate the two-stage stochastic programming and, to study the performance of the ob
tained solution, we require a set of scenarios that properly captures the probable variations of the uncertain 
parameters' values. Since each natural disaster is a unique event that is often different from previous ones 
(Chen et al., 2011), relying on experts' opinions is a common approach to formulate the uncertainty that 
humanitarian organizations face when planning operations (Karimi and Hüllermeier, 2007). The experts' 
opinions are obtained based on the damage assessments conducted after a natural disaster occurs. Since 
the damage assessments are time-consuming, the affected region is often divided into smaller sub-regions 
where the assessments are conducted in a sample set of locations (Balcik and Yan1koglu, 2020; Balcik, 2017). 
Considering that we did not have access to specific assessments, we decided to simulate the experts' opinions 
to characterize the parameter uncertainties. Specifically, we simulated the experts' predictions regarding 
the values of the uncertain parameters using the three-point estimating technique (Hakimifar et al., 2021). 
Following this technique, the experts are asked to provide three values for each uncertain parameter: an op
timistic value, a pessimistic value, and a most likely value, i.e., a triangular probability distribution (Benini 
et al., 2017). To generate scenarios for this problem, we thus considered that a total of three experts would 
provide their assessments for each uncertain parameter ( thus providing a specific triangular probability dis
tribution for each stochastic parameter assessed by each expert). The explicit values provided by each expert 
were randomly generated using the available dataset. Specifically, we assume that the available dataset of the 
uncertain parameters obtained from the humanitarian organizations' websites is a realization of the triangu
lar distributions provided by the experts. Therefore, while the characteristics of the triangular distributions 
are chosen randomly, the minimum and maximum values of distributions embrace this realization. Finally, 
we assume that the same confidence level was associated to each expert's assessments. We thus generated 
an equal number of scenarios from the expert-specific distributions. 

Ground Truth 

A total of 1000 scenarios sampled from the triangular distributions provided by the three experts (334 first 
expert, 333 second expert, 333 third expert) were used to represent the ground truth (i.e., an accurate 
approximation of how the stochastic parameters can randomly vary). However, given the complexity of 
the proposed model, solving it using all the scenarios that define the ground truth is not computationally 
tractable. Therefore, we use the Sample Average Approximation (SAA) (Kleywegt et al., 2002) method to 
generate more manageable scenario sets which can be used to efficiently solve the two-stage stochastic model. 
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Figure 2: Original beneficiary groups and their respective clusters presented on the OpenStreetMap 
(OpenStreetMap contributors, 2022). The blue circles represent the beneficiary groups and the red circles 

indicate the distribution centers. 
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Yet, it is crucial to assess the effects of the sample size on the in-sample stability and out-of-sample stability 
of the solutions obtained (Kaut and Wallace, 2003). After choosing an appropriate sample size (i.e., one 
that provides a satisfactory level of stability), the problem can be solved by generating a scenario set with 
the prescribed size and then evaluating the obtained solution using the ground truth to assess its expected 
performance in practice. 

5.2 Computational Results 

In this subsection, we report the numerical results for the two-stage stochastic model in the context of the 
considered case study. We start by studying the effects of varying the number of scenarios on the solutions 
obtained by solving the two-stage model by performing in-sample stability and out-of-sample stability anal
yses (Kaut and Wallace, 2003) in Subsection 5.2.1. Then in Subsection 5.2.2, we obtain lower and upper 
bounds for the planning solution over the considered ground truth. Since that capacity and demand are the 
uncertain parameters, we separately study the effects of each of these parameters on the obtained solution. 
In Subsection 5.2.3, we compare the performance of the solution obtained from our two-stage model with its 
counterpart models in which the uncertain parameters are replaced with their deterministic counterparts. 
In our problem, we assume that the available budget is known beforehand. In Subsection 5.2.4, we evaluate 
the effects of the available budget. Finally, in Subsection 5.2.5, we study the effects of the spread factor and 
compare the different solutions induced by changing the values of the spread factor. The implementations 
are clone using the Pyomo software package (Hart et al., 2017, 2011) on a machine with Intel e5-2630 v4 2.2 
GHz CPU and 256 GB of memory. 

5.2.1 In- and Out-of-Sample Stability 

In this subsection, we explore the impact of the number of scenarios used to salve the HSCN problem 
on the obtained solution. When solving a two-stage model, increasing the number of scenarios obtained 
using an appropriate sampling method improves the approximation of the uncertain parameters. However, 
in practice, the resulting optimization problem should remain solvable in a reasonable amount of time. 
Solving an optimization problem with distinct sets of scenarios (even of the same size) may lead to different 
solutions. We now consider both the in-sample and out-of-sample stability to analyze the effect of sample 
size on the final solution quality. An in-sample stability test evaluates the stability of the obtained solutions 
over different scenario sizes in terms of their reported objective function value. Likewise, an out-of-sample 
stability test evaluates the stability of the expected objective function value of the obtained solutions over 
the ground truth. 

To evaluate the in-sample stability, we salve our two-stage model with a specific number of scenarios 
with 15 different randomly generated scenario sets. Then, we calculate the average and standard deviation 
of the objective fonction values. By repeating this process for different scenario numbers, we study the 
effect of the number of scenarios on the in-sample stability of the studied problem. Table 4 represents the 
results obtained, indicating that, as the number of scenarios increases, the standard deviation significantly 
decreases, which translates as an increase in the in-sample stability. As the number of scenarios increases 
from 10 to 50, the Coefficient of Variation (CV) (i.e., the ratio of the standard deviation to the average) 
is reduced from 5.72% to 3.36%. However, as the number of scenarios increases from 50 to 200, the CV 
decreases to 2.03%. Considering the computational cost of using 200 scenarios compared to 50 and the 
slight reduction over the CV value, 50 is the best candidate for the following experiments. Since the average 
objective fonction values in this table are calculated over small scenario sets (not the ground truth), they are 
not indicative of the quality of the obtained solutions. The abbreviation 0.F. in the following tables stands 
for the objective function. 
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number of 
scenarios 

10 
20 
30 
50 
100 
200 

average of O.F. value 

7,168.60 
7,210.70 
7,315.50 
7,138.60 
7,466.50 
7,258.90 

standard deviation of O.F. value 

410.70 
439.40 
370.34 
240.25 
285.35 
147.73 

Table 4: The in-sarnple stability analysis results. 

In addition to the in-sarnple stability, we also study the out-of-sarnple stability of the problem over 
different scenario sizes. In a similar process, we apply the first-stage solutions obtained from the in-sarnple 
stability test on the entire ground truth and calculate the average value and the standard deviation of the 
objective fonction over all 15 solutions obtained for each scenario size. Table 5 presents the results obtained 
by repeating this process for different scenarios sizes. Here the objective fonction value refers to the entire 
ground truth and therefore indicates the quality of the solutions. According to the presented data in Table 
5, by increasing the scenario size from 10 to 50, CV decreases from 2.34% to 0.03%. However, by increasing 
the scenario size to 200, CV decreases to 0.00%, which is negligible compared to the computational cost of 
using 200 scenarios. Based on the results of these two tables, we select 50 as the number of scenarios for our 
problem and use it in all following experiments, given its acceptable standard deviation both in in-sample 
and out-of-sarnple stability tests. 

number of 
scenarios 

10 
20 
30 
50 
100 
200 

average of O.F. value 

7,419.40 
7,303.57 
7,302.88 
7,299.70 
7,299.09 
7,298.76 

standard deviation of O.F. value 

173.92 
7.55 
8.50 
2.33 
0.42 
0.19 

Table 5: The out-of-sarnple stability analysis results. 

5.2.2 Bounds and Value of Stochastic Information 

We now compute both an upper and a lower bound for the HSCN problem. To obtain a lower bound, the 
Wait-and-See (WS) variant of the problem is solved (Tintner, 1955; Madansky, 1960). In the WS, the value 
of the uncertain parameters is considered known (i.e., the implicit assumption being applied here is that one 
can wait until all uncertain pararneters become known before optimization is applied). We therefore obtain 
the WS objective fonction value by solving each scenario of the ground truth individually and then averaging 
over their optimal solution values. 

As an upper bound, we solve the deterministic version of the problem by replacing the uncertain pararne
ters with their expected values (Madansky, 1960; Dantzig, 1955). Then we apply the solution to the ground 
truth scenarios to calculate the expected objective fonction value of the deterministic solution, represented 
by EEV. Table 6 indicates the calculated upper and lower bounds over the ground truth. 

Concept 
EEV upper bound 
WS (lower bound) 

Value 
7,954.42 
7,298.36 

Table 6: Upper and lower bounds for our problem. 

We now calculate the Expected Value of Perfect Information (EVPI) (Birge and Louveaux, 2011), rep
resenting the possible improvement of the objective fonction value if the exact realizations of the uncertain 
pararneters were known. We use the objective fonction value obtained in Subsection 5.2.1, on the ground 
truth as follows: 

EVPI = RP- WS = 7299.70- 7298.36 = 1.34. 
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Such a small value ofEVPI indicates that the two-stage stochastic problem optimized on the 50 considered 
scenarios finds a solution that performs quite well on average, and having access to perfect information only 
marginally reduces the penalty in the objective function. Next, we investigate whether it is worth solving the 
stochastic problem instead of its deterministic counterpart. We therefore calculate the Value of Stochastic 
Solution (VSS) (Birge and Louveaux, 2011), representing the objective function gain by explicitly considering 
the uncertainty in the model: 

VSS = EEV - RP = 7954.42 - 7299.70 = 654.72. 

Such a high VSS value suggests that solving the stochastic variant may significantly improve the solution 
quality and is certainly worthwhile, considering that the objective function value is linked to population 
health. 

5.2.3 Importance of modeling uncertainty 

To study the effects of the considered uncertain parameters on the solutions, we now salve our two-stage 
model under three different settings. The first setting replaces the uncertain capacity parameters with 
their expected values. Therefore, the only remaining uncertain parameters in the model are the demands. 
In the second setting, we replace the uncertain demand parameters with their expected values, but the 
capacity parameters remain uncertain. ln the third setting, both parameters are considered uncertain. 
Table 7 presents the average objective function values and their standard deviations over 15 runs for each 
setting. Analyzing the objective function column, the best results are obtained on the setting where both 
the capacity and demand parameters are uncertain. Particularly, considering the capacities as uncertain 
parameters leads to a considerable improvement in the average value of the objective fonction. Next, by 
comparing the standard deviation of these three settings, we conclude that considering the uncertainty of 
demand and capacity in the optimization model considerably improves the out-of-sample stability of the 
solution. 

Capacity Demand Average Value of O.F. Standard Deviation of O.F. 
uncertain expected value 7,319.49 29.21 

expected value un certain 7,730.76 194.69 
uncertain un certain 7,299.70 2.33 

Table 7: Effect of modeling uncertainty on the optimal solution of the stochastic model (using 50 scenarios 
over 15 runs). 

5.2.4 Impact of available budget 

lt is expected that the available budget plays a pivotal role in the quality of the final solution obtained as 
it limits the design and operational costs that are paid for each stage and time period. As we mentioned 
in the introduction, the final amount of donations received is often less than the amount initially requested. 
Therefore, we now analyze the impact of a possible budget shortage on the performance of the designed 
HSCN. Such analysis helps decision-makers to evaluate the robustness of the designed HSCN. To this end, 
we define two parameters for the budget: the amount the decision-makers anticipate, which is denoted Zexp 

(i.e., the expected budget), which we distinguished from the actual budget Zact (i.e., the amount actually 
received). The questions that we are investigating through this experiment are: (1) How does a HSCN 
perform if we expect a budget of Zexp, but the actual budget turns out to be Zact? (2) How would the HSCN 
perform if we knew the actual budget value at the design time and the HSCN is thus designed using Zact? 

To answer the first question, we investigate the case where we design the HSCN using Zexp, but the 
available budget in practice is Zact· ln this part of the experiments, we first salve the two-stage model using 
the Zexp as the budget. We then update the budget to Zact and apply the designed HSCN on the ground 
truth. Table 8 summarizes the results obtained in this experiment. ln order to be able to track the expected 
penalty over the planning horizon, it is calculated separately for each time period. ln the first row of Table 
8, the value of the expected budget is equal to the actual budget (i.e., the expected budget at design time 
is received during the operation). As represented in the per period penalty column, unlike in other periods, 
the second period has a very low penalty, indicating that almost all the demand in this period is satisfied. 
In the second row, the actual budget is set to 80 percent of the expected budget leading to an increase in 
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the expected penalty over all periods. The per-period penalty for this budget has a similar pattern as in 
the first row. When comparing the total penalty of the first two rows, one observes that: when the actual 
budget is reduced by 20 percent the increase in the overall penalty is only marginal. This observation proves 
very useful to decision-makers in the present setting. For example, in the context of our specific case study, 
this amount ( corresponding to 20 percent of the original budget) may find a more effective use in other 
operations of the short-term recovery phase not considered in this planning problem. In the third row, the 
actual budget is reduced to 60 percent of the expected budget, resulting in a high increase in the expected 
penalty of the HSCN. It is also observed that most of this increase belongs to the first two periods. ln order 
to reduce the impact of the spread factor on subsequent periods, the planning solution prefers to satisfy the 
demand in the early periods as much as possible, when the budget is limited. Finally, in the last row, with 
an actual budget equal to 40 percent of the expected budget, there is an even higher increase in the expected 
penalty on the HSCN performance. 

actual O.F. value Zexp per period total 0.F. value Zexp 
budget Zact First Perioct :cieconct Period Third Period Fourth Perioct 

Zexp 2,116.92 10.30 2,850.16 2,322.78 7,300.16 
0.8Zexp 2,147.75 10.57 2,871.15 2,333.28 7,362.75 
0.6Zexp 13,903.64 6,042.45 2 , 986.34 2,608.43 25,540.86 
0.4Zexp 134,238.84 134,843.53 3,065.40 3,330.40 275,478.17 

Table 8: Effect of budget on the optimum solution of the stochastic model (average over 15 runs using 50 
scenarios). 

ln the second part of the experiment, the value of the actual budget at the design time is assumed known. 
Therefore, we solve the two-stage model using different values of Zact and apply the obtained HSCN to the 
ground truth. Figure 3 compares the obtained results of the two parts of the experiment. The impact of 
using Zexp at design time on the objective function value is negligible compared to the effect of the budget 
deficit indicating that a lack of budget cannot be compensated by a more prudent planning. 
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Figure 3: Penalty (objective function value) of the designed HSCN using Zexp as budget (blue) and using 
Zact as budget (red) over the ground truth with budget Zact· 

5.2.5 Impact of the spread factor 

In this subsection, the effects of the spread factor value (representing, e.g. the contagion level of diseases) 
on the performance of the obtained solution are studied. 

We consider two different budget values, z and 2z . For each budget level we evaluate three values for 
the spread factor: 0 (i.e., no spread), the identity matrix (represented by I) , and 21. For the sake of the 
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experiment, we assume that the unmet demand of each critical supply only impacts itself (but not other 
supplies) in the subsequent time periods (as represented by the identity matrix). 

Table 9 represents the results of this experiment. To better analyze the effect of the spread factor on the 
HSCN's performance, we present the expected penalty separately per period and in total. An interesting 
pattern in the results is that, as the spread factor increases, the expected penalty shifts from early time 
periods to the end of the planning horizon. This is explained by the model's effort to avoid unmet demand 
early in order to avoid excessive spread over time. The results of this experiment are also visualized in Figure 
4. As the spread factor increases, the impact of a higher budget on improving the objective function value 
decreases. An important observation in this experiment is that considering a lower value for the spread 
factor parameter can irreparably misguide the decision-makers on the performance of the designed HSCN. 

Objective Function Objective Function Value {per period 
Spread Budget Value(Total) First Period Second Period Third Period Fourth Period 
Factor 

0 z 2,093.54 2,085.57 7.97 0.00 0.00 
0 2z 0.90 0.90 0.00 0.00 0.00 
I z 7,300.16 2,116.92 10.30 2,850.16 2,322.78 
I 2z 3,881.29 0.00 0.00 1,989.06 1,892.23 
2J z 14,858.83 7.32 0.00 5,078.27 9,773.23 
2J 2z 13,540.26 0.15 0.00 4,516.25 9,023.86 

Table 9: Effect of spread factor on the performance of the HSCN performance (average over 15 runs using 
50 scenarios). 

Second Stage Expenses ( per period) 

Spread Budget 
First Stage 

First Period Second Period Third Period Fourth Period 
Factor 

Expenses 

0 z 60,098.44 12,682.30 10,896.03 10,913.85 10,809.37 
I z 58,628.16 12,428.91 11,500.73 11,417.99 11,424.22 

2J z 57,794.27 12,428.92 11,521.51 11,909.61 11,745.70 

Table 10: Effect of spread factor on the expenses of the optimized HSCN (average over 15 runs using 50 
scenarios). 

Table 10 represents the expenses in each stage in this experiment. The first stage expenses represent 
the HSCN design costs and the second stage expenses represent the operational costs in each period. The 
results indicate the importance of the spread factor as the first stage expenses of the designed HSCN with 
a spread factor value of O are considerably higher than models with a non-zero spread factor parameter. ln 
other words, while the model can afford to spend more on the HSCN design when the spread is low, it tends 
to spend more on controlling disease (i.e., unmet demand) when the spread is high. 
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Figure 4: Impact of spread factor and available budget on the performance of the HSCN. 

Finally, Table 11 characterize the best HSCNs obtained using different values for the spread factors. 
As the spread factor increases, the number of selected hubs and services reduces. The same holds true for 
the number of inventory and transport resources as the spread factor increases. These results support the 
previous conclusion obtained from Table 10, showing a decrease in the first stage expenses as the spread 
factor values increase. However, as represented in Figure 4, the changes in the obtained solution cannot fully 
compensate for the increase in the expected penalty caused by the increase of the spread factor values. 

spread factor point of entry warehouse 
warehouse DC service 

service 
resources resources 

0 3 3 17 4 15 116 
I 2 3 14 4 12 106 

2J 2 3 14 4 12 100 

Table 11: Characteristics of the best HSCNs obtained by different spread factor values. 

6 Conclusion 

A fast and effective humanitarian response post-disaster is essential to avoid lasting negative effects on the 
affected communities. Effective use of the available response budget is therefore of the utmost importance. 
ln this work, we have proposed a two-stage stochastic model to solve the HSCN design problem after a 
natural disaster to cover the aid provided over a given planning horizon. We propose a new approach to 
model the demand in a multi-period HSCN design problem setting that is more realistic. Our approach 
introduces a spread factor, which addresses the effects of each critical supply's unmet demand on all critical 
supplies' demand in the subsequent time periods. 

The proposed two-stage stochastic optimization model was numerically evaluated in a case study based 
on the 2018 earthquake that occurred in lndonesia. The instances used for this case study were derived using 
real-world data gathered from the grey literature published by IFRC and PMI following this catastrophic 
event . This data was further complemented by information collected via local commercial websites to 
estimate the missing parts of the dataset . The stochastic optimization model was then used to formulate 
the considered problem while explicitly accounting for both demand and available capacity (both logistical 
infrastructure and transportation services) uncertainty. In order to provide an accurate representation of 
the uncertainty, we generated a ground truth consisting of 1000 scenarios sampled from the distributions of 
the uncertain parameters. 

Multiple experiments were designed and conducted using the proposed model. The results demonstrate 
the importance of considering uncertainty and the proposed spread factor in the HSCN design problem. 
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Compared to its deterministic counterpart, the proposed stochastic model provided improved solution quality 
in terms of the objective fonction value as evaluated on the ground truth and its out-of-sample stability. The 
experiments also highlight the benefits of using the spread factor to provide decision-makers with insights 
regarding the crisis' depth and potential development over time in the affected region. 

Furthermore, we studied the effect of budget shortages on the expected performance of the designed 
HSCN. In the investigated case study, the results suggest that the designed HSCN may be able to resist a 
certain level of budget shortage. However, as the shortage level increases the HSCN's expected performance 
may quickly decrease to an unacceptable level. Such experiments may help decision-makers to identify a more 
appropriate amount for the budget. The additional budget, which does not lead to a noticeable reduction 
in the unmet demand penalties considered, may therefore be allocated to other operations for more efficient 
use. The methodology introduced in this paper can thus assist the decision-makers by providing them with 
a better understanding of the crisis and how aid can be efliciently distributed. 

In future work, one may extend the proposed methodology by considering other relevant aspects of 
the problem setting. Specifically, introducing concepts of fairness and equity when formulating the objective 
fonction would appear as a particularly impactful and challenging avenue of research to pursue. Additionally, 
investigating how ambiguity, which may affect the formulation of the uncertain parameters, would also appear 
as a relevant path of investigation. 
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