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Abstract. Bike-sharing systems have been implemented in multiple major cities, offering a low-cost 
and environmentally friendly transportation alternative to vehicles. Due to the stochastic nature of 
customer trips, stations are often unbalanced, resulting in unsatisfied demand. As a remedy, 
operators employ trucks to rebalance bikes among unbalanced stations. Given the complexity of the 
dynamic rebalancing planning, this topic has received significant attention from the Operations 
Research community. However, the planning problem requires significant simplifications such that 
optimization models remain computationally tractable. As a result, existing models have used a large 
variety of modeling assumptions and techniques regarding decision variables and constraints. 
Unfortunately, the impact of such assumptions on the solutions’ performance in practice remains 
generally unexplored. Indeed, existing simulation models to evaluate the performance of planning 
strategies also rely on simplifications, such as the aggregation of trips within the same time-period, 
therefore ignoring the original chronological sequence of trip demand. In this paper, we first 
systematically survey the literature on rebalancing problems and their modeling assumptions. We 
then propose a general modeling framework for multi-period dynamic rebalancing problems that can 
be easily adapted to different assumptions, including trip modeling, time discretization, trip 
distribution, and event sequences. We develop an instance generator to synthesize realistic station 
networks and customer trips, as well as a more realistic simulator to evaluate the operational 
performance of rebalancing strategies. Finally, extensive numerical experiments are carried out to 
analyze the effectiveness of various modeling assumptions and techniques. In this way, we identify 
the assumptions that empirically provide the most effective rebalancing strategies in practice. In 
particular, a set of specific trip distribution constraints as well as event sequences ignored in the 
previous literature seem to provide particularly good results.  
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1. Introduction

Bike-sharing systems (BSSs) are quickly gaining popularity worldwide, as they help to reduce traffic

congestion and vehicle CO2 emissions. Over the past few years, BSSs were implemented in most

major cities such as New York, Boston, London, Sydney, Beijing, Paris, Toronto, and Montreal.

We focus on station-based BSSs, where stations with specific capacities are installed among the

city, holding an inventory of rentable bikes. Users may rent available bikes from these stations and

return their bikes to available docks.

Throughout the day, BSS stations are often unbalanced, which leads to demand unsatisfaction,

given that rental demand may not be satisfied when a station is empty, and return demand may

not be satisfied when the station is full (i.e., no empty docks are available). As a remedy, BSS

operators employ trucks to rebalance bikes among stations, both during the night and during the

day (especially during trip peak hours). However, due to the uncertain rental and return demand, as

well as the complexity of the dynamic planning problem, manual planning tends to be sub-optimal.

To provide decision support, the scientific community has provided a large variety of predictive

and prescriptive models, aiming at improving station rebalancing. To this end, several Mixed-

integer Linear Programming (MILP) models have been proposed (see e.g. Ghosh et al. 2015,

Kloimüllner et al. 2014, Lowalekar et al. 2017, etc.). However, due to the dynamic nature of the

planning problem, casting the planning problem into a MILP requires modeling assumptions that

greatly vary within the literature. These assumptions range from the planning objective to the

actual decisions and practical constraints used within the models. Further, customer demands may

occur continuously in time. To remain computationally feasible, the planning horizon is typically

divided into a set of time-periods, which raises questions concerning the sequence of occurring rental

and return demands, as well as the moment of the planned rebalancing operations. As a result, both

the planning problems and the mathematical optimization models proposed in the literature are

highly diverse. Unfortunately, most of those works have been proposed isolated from the remainder

of the literature, which therefore lacks consensus on which assumptions and modeling techniques

are best to use. Thus, operators are rather uncertain about which modeling assumptions should

be used in the context of their specific BSS and which modeling techniques provide solutions that

perform best in practice.

Objective, scope and contributions. The objective of this paper is to provide guidelines to

both practitioners and academics on which assumptions and techniques are most appropriate and

likely to produce rebalancing solutions that perform well in practice.

To this end, we provide a systematic review of the modeling assumptions and techniques pre-

sented in the literature and propose a general modeling framework that encapsulates most of the
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relevant modeling assumptions. While several modeling assumptions have been used in the litera-

ture without further justification or comparison, we explicitly discuss the alternatives and provide

intuitive insights on which assumptions may be more appropriate in practice. We then provide

extensive numerical results to empirically evaluate the realism of the various assumptions and

modeling techniques, such as the variable domains, the time discretization, the distribution of trip

demand, and the assumed sequence of bike rentals, bike returns, and rebalancing operations.

We develop a realistic simulator that emulates customer trips and the given rebalancing strategy

on a minute-to-minute basis. This simulator evaluates the quality of a proposed rebalancing plan-

ning solution and hence the realism of the modeling assumptions and techniques of the associated

optimization model. Throughout our experiments, the most relevant combinations of modeling

assumptions and techniques are then empirically tested on a large set of synthetically generated

problem instances that have been carefully designed to represent different BSS settings and fit the

demand patterns observed in real-world trip data from BIXI Montreal.

Based on our modeling framework and empirical results, practitioners can derive an optimization

model tailored to their BSS environment. In particular, our empirical results suggest that (i) both

variable domain and type strongly impact the realism and tractability of the model, (ii) time-

related constraints are particularly important when time-periods are short, (iii) a new set of trip

distribution constraints performs better than those previously considered in the literature, and (iv)

the sequences of trips and rebalancing operations used in the literature are outperformed by new

event sequences proposed in our paper.

Outline. The rest of this paper is organized as follows. Section 2 reviews related literature

in BSS rebalancing problems and summarizes the assumptions and objectives. Section 3 describes

the modeling framework for the multi-period rebalancing problem, including a basic model that

can be extended by several constraints according to the various modeling assumptions. Section 4

presents the general framework used to evaluate the practical performance of a given multi-period

rebalancing strategy. Numerical tests and analyses are illustrated in Section 5. This is followed by

the conclusions in Section 6.

2. A Systematic Review of BSS Rebalancing Modeling

The literature mainly focuses on two types of rebalancing in BSSs (Vallez et al. 2021). User-based

rebalancing incentivizes users to rent or return bikes at specific stations. Such an approach is more

common in dockless BSSs. In contrast, operator-based rebalancing involves the active management

of a rebalancing fleet (e.g. trucks) that relocates bikes from one station to another. Such approach is

specific to station-based BSSs (Hu et al. 2021b). Station-based systems are, by far, more common.

We therefore here focus on operator-based rebalancing.
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Operator-based bike-sharing rebalancing problems can be divided into static bicycle repositioning

problems (SBRP) and dynamic bicycle repositioning problems (DBRP) (Raviv et al. 2013). SBRP

typically rebalance stations overnight, while the operations during the day are not considered.

Static rebalancing, therefore, prepares the station inventories for the next day. However, it cannot

explicitly react to the demand fluctuation occurring during the day. In contrast, DBRP focus on

intraday rebalancing, where customer trips carried out during the day heavily affect the availability

of bikes and docks (Espegren et al. 2016). Indeed, the demand satisfaction highly depends on the

real-time status of the stations and customers’ stochastic rentals and returns, which poses practical

challenges (Shui and Szeto 2020). We here focus on dynamic rebalancing planning, which has a

higher impact in practice since it considers continuous rebalancing throughout the day. Given

that DBRP consider trip demand and rebalancing operations over the day (typically, up to 16

hours), the models proposed in the literature either approach this problem using a repeatedly

solved single-period model or a multi-period model.

Single-period rolling vs. multi-period planning. A single-period model generally spans a

duration between 10 and 60 minutes. Single-period models are typically solved in a rolling horizon

fashion throughout the day, while multi-period models are either solved once at the beginning of

the planning horizon or several times throughout the day.

Solving a single-period model is computationally easier than a multi-period one. However, single-

period models tend to be myopic, i.e., the decisions made at the current time-period cannot take into

consideration the consequences in future time-periods. Such models therefore greedily maximize

demand satisfaction at the current time-period, even if this results in station inventories that

cannot satisfy demand well in the next time-periods. In contrast, multi-period models benefit

from integrated planning over all time-periods and avoid suffering from myopic behavior. On the

downside, these models may be more difficult to solve, given that they consider several sets of

decision variables and constraints for each time-period.

Since we are concerned with finding the model that performs best in practice, we focus on the

multi-period planning model. In the following, we summarize the main assumptions made in multi-

period planning models proposed in the literature, review existing alternatives and propose some

that might not have been considered yet.

2.1. Time Discretization and Time Constraint

To represent the change in stations’ status and vehicles, the planning horizon is discretized into

time-periods. One mainly has two possibilities to discretize the planning horizon:

• Time-periods of equal length. The planning horizon is discretized into a set of evenly-

spaced time points and the length of each period is the same, which is employed in most multi-period
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models. In the multi-period planning framework, we could obtain the changes of stations for each

time-period and gain the lookahead information. However, it is hard to define the optimal length of

the time-period. It should depend on the model complexity and the length of the planning horizon

we focus on.

• Time-periods of different lengths. Here, the length of each period in the planning horizon

can be different. Kloimüllner et al. (2014) split each cumulated demand function into weakly-

monotonic segments with extreme values that are regarded as end-of-segment events. Further, the

arrival of a vehicle at a station to rebalance bikes is referred to as a station-visit event. These two

types of events are sequentially considered to separate the planning horizon.

For multi-period dynamic rebalancing, time-period with equal length is most common in the

literature (see e.g. Chiariotti et al. 2018, Zheng et al. 2021, Ghosh et al. 2015, Lowalekar et al.

2017). Typically, it is assumed that each vehicle rebalances at most one station during one time-

period. Selecting an appropriate length of time-period is crucial to the rebalancing strategy and

its performance. A short time-period allows vehicles to carry out more rebalancing operations,

typically allowing for more demand satisfaction. However, when the time-period is short, a time

constraint may be required to ensure that the required time for rebalancing and transiting to the

next station fits into the length of the time-period. Time constraints, therefore, interdict truck

relocations that are unrealistic in practice. Shu et al. (2013), Ghosh et al. (2015), and Ghosh et al.

(2017) do not use time constraints, while follow-up work Ghosh et al. (2016, 2019) apply time

constraints within a single-period rolling planning framework. Contardo et al. (2012) and Lowalekar

et al. (2017) used time constraints considering only vehicle traveling time, while the handling time

at stations is ignored. Kloimüllner et al. (2014) and Zhang et al. (2021) consider both traveling

and handling time, where the latter is computed as an average value regardless of the number of

loading/unloading operations. A summary of how time constraints are handled in the literature,

along with other model characteristics, is presented in Table 2.

Note that the introduction of time constraints may make the model difficult to solve. It is

therefore crucial to select a proper time-period length that can lead to a reasonable solution time,

while providing high-quality rebalancing strategies.

2.2. Trip Modeling and Variable Domains

Each customer trip contains one bike rental demand and one bike return demand. To model suc-

cessful trips, mainly two types of variables have been considered:

• Origin-destination (O-D) variables xt1,t2
s1,s2

, contain departure station s1, arrival station s2,

departure time t1, and arrival time t2.

• Station-based variables represent the departure of a trip, i.e., a satisfied rental demand by

x+,t1
s1

and the arrival of a trip, i.e., a satisfied return demand x−,t2
s2

.
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Station-based variable models require fewer variables but lack the connection between rentals and

returns. The O-D variable models avoid this issue at the expense of a large number of variables,

which may complicate the solutions of the model. Again, a classification of existing models can be

found in Table 2.

Next to the type of variables, the variable domains may also impact the performance of the

induced solutions. In the rebalancing model, variables represent three main actions: routing, rebal-

ancing, and the above-discussed user trips. The routing variables typically indicate the location

of a vehicle along the planning horizon and the route taken. These variables are always binary.

Rebalancing variables represent the inventory of vehicles and the number of bikes to be rebalanced.

Most models define them as continuous variables (see e.g. Contardo et al. 2012, Ghosh et al. 2015,

Kloimüllner et al. 2014, Lowalekar et al. 2017, Shu et al. 2013, Ghosh et al. 2016, etc.). Zhang et al.

(2021) use integer rebalancing variables. User trip variables for rentals and returns also interact

with the inventories of stations. Most models in the literature use continuous variables, except for

Zhang et al. (2017), who use integer O-D variables.

2.3. Trip Distribution

If the rental/return demand exceeds the current inventory of bikes/docks, a basic optimization

model (such as the one in Section 3.1) may select the rentals/returns opportunistically according to

the objective function. In reality, however, demand will be satisfied based on a first-come-first-serve

rule. Several works therefore aimed at enforcing a more realistic distribution of the trips by adding

specific constraints. We review the existing assumptions on demand distribution below:

• Station-based variables without distribution. Two variables are created to present

rentals and returns for each station and each period (see e.g. Kloimüllner et al. 2014). Similarly,

Contardo et al. (2012) use two variables to represent the shortage and excess of bikes, which is

equivalent to the use of station-based variables. Demands will be greedily satisfied in the optimiza-

tion model without considering the link between rentals and returns. As a result, the lost demand

tends to be underestimated.

• Station-based variables with proportional distribution. Lowalekar et al. (2017) enforce

a trip distribution proportional to the O-D trip demand as: x−,t2
s2

≤
∑t2−1

t=0

∑
s x

+,t
s

F
t,t2
s,s2

f
+,t
s

. Specially,

the proportion is given by the ratio between the number of trips starting at station s in time-

period t and ending at station s2 in time-period t2 (F t,t2
s,s2

) and the total number of trips starting

at station s in time-period t (f+,t
s ). The authors also assume that the number of bikes returned

during a specific time-period is not higher than the number of bikes rented in the previous periods

multiplied by the corresponding proportion. Similarly, You (2019) consider a return ratio on the

number of returns at station s divided by the total number of bikes currently used by customers
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during the time-period t. The return demand at station s in period t is assumed to be the product

of the return ratio and the total number of bikes being used.

• O-D variables without distribution. In this case, O-D variables will be created to represent

the number of trips starting from one station and ending at another station during one particular

time-period.

• O-D variables with proportional distribution. Ghosh et al. (2015), Ghosh et al. (2017),

and Zheng et al. (2021) apply a similar proportional distribution as Lowalekar et al. (2017). The

constraints xt1,t2
s1,s2

≤ abt1s1
F

t1,t2
s1,s2

f
+,t1
s1

imply that the trips rentals from a specific station are limited by the

distribution ratio multiplied with the number of currently available bikes (abt1s1).

• Poisson distribution. Legros (2019), Shu et al. (2013), and Chiariotti et al. (2020) model

the arrival of rentals and returns as a Poisson process, which implicitly models trip uncertainty.

These trip distribution constraints, as well as other alternatives, will be discussed in detail in

Section 3.2.

2.4. Sequence of Rebalancing, Bike Rental and Bike Return Events

In station-based BSSs, where the operator carries out station rebalancing using trucks, both cus-

tomers and vehicles interact with the station inventories: customers may rent or return bikes, while

trucks may drop off or pick up bikes. While in reality, customers and trucks interact with the

station inventory at a specific moment in time, an optimization model aggregates these operations

within each time-period.

Different assumptions can be made to deal with this issue. Some or all of these events can

be assumed to happen simultaneously, allowing rentals and pick-ups to compensate for returns

and drop-offs occurring within the same time-period. Such a generous assumption may achieve a

high demand satisfaction within the optimization model. In practice, however, this may be overly

optimistic and not perform well, i.e., rentals may occur at empty stations before returns and

drop-offs, or returns may occur at full stations before rentals and pick-ups. Alternatively, one may

assume that these events occur in a pre-defined chronological sequence within each time-period; for

example, bike rentals occur first, then bike returns, and finally, the rebalancing operations. While

such an assumption is more restrictive concerning demand satisfaction, it assumes that rentals can

only be performed if sufficient bikes are available before the returns, and customer demands cannot

benefit from the rebalancing operations that are assumed to happen at the end of the time-period.

Let us denote by (r) the event of vehicle rebalancing, (a) the event of customer arrival to

return bikes, and (d) customer departure, i.e., bike rental. While models in the literature have

assumed different event sequences, theoretically, any combination of these three event types is

possible.

Dynamic Rebalancing Optimization for Bike-sharing Systems: A Modeling Framework and Empirical Comparison
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Table 1 Potential sequences of events

Three separate events
(r)(a)(d) (a)(d)(r) (d)(r)(a)
(r)(d)(a) (d)(a)(r) (a)(r)(d)

Two events simultaneously
(r)(a+d) (a+d)(r)
(a)(d+r) (d+r)(a)
(d)(r+a) (r+a)(d)

All events simultaneously (r+a+d)

Table 1 summarizes the possible combinations, where events within the same parentheses are

assumed to happen simultaneously. For example, (r)(a)(d) assumes that rebalancing is performed

first, then customer arrivals, and then customer departures. In contrast (r+a+d) assumes that all

three events happen at the same time. Note also that all sequences reported within the same row in

Table 1 have the same order of events, but not necessarily within the same time-period. For example,

both (r)(a)(d) and (a)(d)(r) assume that arrivals occur after rebalancing and departure occur after

arrivals, if the sequence is observed over several time-periods, e.g. (r)(a)(d)(r)(a)(d)(r)(a)(d), etc.

However, such similarity does not guarantee a similar performance of the obtained solutions.

Within the existing literature, Kloimüllner et al. (2014) use a series of station-visit events and

extreme values of cumulated demand to discretize the planning horizon. Since the time required

to pick up and drop off bikes is neglected, there is no particular order of events. However, their

model essentially assumes (a+d)(r), which means that customers first rent and return bikes before

vehicles rebalance. Zhang et al. (2021) assume that rebalancing happens first and then customers

rent and return bikes. Ghosh et al. (2016) use sequence (a)(r)(d), while Lowalekar et al. (2017)

use sequence (a)(d+r). Several other works (e.g. Contardo et al. 2012, Ghosh et al. 2017, Mellou

and Jaillet 2019, Yuan et al. 2019, Calafiore et al. 2019, Zheng et al. 2021) ignore the issue of

event sequences, which is equivalent to assuming a simultaneous event sequence (r+a+d). Finally,

a different approach is taken by You (2019), who subdivide each time-period into smaller time-

segments and associate rental and return demand to such fine-grained time-segments. Bike pick-ups

from rebalancing operations are assumed to happen at the first segment of each time-period,

while drop-offs occur at the end. Such assumption does not fit our classification scheme, but the

discretization into time-segments resembles the operating mode of our simulator.

Unfortunately, no studies are available exploring the degree of realism and effectiveness of the

different event sequences. In Section 3.2.3, we will therefore explicitly review the modeling of the

various alternatives and empirically evaluate their effectiveness.

2.5. Other Assumptions in the Problem Definition

Initial location and inventory of vehicles. At the beginning of the planning horizon, vehicles

are located at specific stations or a depot with a predefined inventory. Existing works assume that
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the initial locations and inventories of vehicles are always known and fixed (see e.g. Contardo et al.

2012, Ghosh et al. 2015, 2017, Lowalekar et al. 2017). The total number of available bikes for

rebalancing may be uniformly or arbitrarily assigned to each vehicle. In contrast, some studies,

such as Kloimüllner et al. (2014) and Zhang et al. (2021), consider a depot and use it as the initial

location of the vehicles.

Intuitively, better solutions may be obtained if the model can explicitly decide on the initial

location and inventory of the vehicles (see e.g. Shu et al. 2013).

We numerically explore the impact of these initial settings. Given that these settings rather con-

cern the definition of the planning problem, but not the modeling assumptions, the surrounding

discussions can be found in Appendix 4.1 of the online supplement. Throughout all other experi-

ments, we applied fixed vehicle location and inventory as it has been common in the literature.

Objective Functions. Decision-makers may have different objectives for their rebalancing

strategies. We summarize the aspects considered in the existing literature in Appendix 1 of the

online supplement. The most common objective for dynamic rebalancing is to minimize lost

demand, which is used within our experiments. Again, the objective is part of the problem defini-

tion and not within the scope of our paper. Further, models with different objectives are difficult

to compare directly. Therefore, we refrain from evaluating the impact of using different objectives

in this paper.

Table 2 Modeling assumptions in MIP-based multi-period rebalancing models

References
Time
Constraints

Initial Location
and Load of Trucks

Trip
Distribution

Sequences
of Events

Variable
Type

T
ra
ve
lin
g

H
an
dl
in
g

F
ix
ed

F
le
xi
bl
e

P
ro
p
or
ti
on
al
it
y

P
oi
ss
on

Contardo et al. (2012) ✓ ✓ (r+a+d) Station-based
Ghosh et al. (2015, 2017) ✓ ✓ (r+a+d) O-D
Ghosh et al. (2016, 2019)✓ ✓ ✓ (a)(r)(d) Station-based
Kloimüllner et al. (2014) ✓ ✓ ✓ (a+d)(r) Station-based
Lowalekar et al. (2017) ✓ ✓ ✓ (a)(d+r) Station-based
Shu et al. (2013) ✓ ✓ (r+a+d) O-D
Mellou and Jaillet (2019)✓ ✓ ✓ ✓ (r+a+d) O-D
Zhang et al. (2021) ✓ ✓ ✓ (r)(a+d) Station-based
Zheng et al. (2021) ✓ ✓ (r+a+d) O-D

Finally, to summarize the various modeling assumptions used for the existing multi-period models

in the literature, Table 2 classifies the existing works by their various alternatives.
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3. Multi-period Rebalancing Modeling Framework

We now present a general modeling framework that can be adapted to the various assumptions

discussed in Section 2. To this end, we first propose a basic multi-period optimization model for

dynamic rebalancing. We then formulate the different assumptions, which can be easily incorpo-

rated into the basic model.

3.1. Formulation of the Basic Model

We first consider a basic multi-period model with minimal assumptions. Its input parameters are

summarized in Table 3. Namely, S denotes the set of stations, while V denotes the set of available

vehicles. Each station s∈ S has a total of Cs docks, referred to as its capacity. Each vehicle v ∈ V

has a bike capacity Ĉv. Parameters Di,j and Rt
s,s′ denote respectively the distance and transit time

between stations i and j at time-period t. We consider a planning horizon with |T | time-periods,

where each time-period t∈ T has a duration of Lt minutes.

Table 3 Input parameters of the optimization model

Input Definition
S The set of stations.
V The set of vehicles.
T The set of discretized time-periods.
Di,j The distance between station i∈ S and j ∈ S.
Cs The capacity of station s∈ S.

Ĉv The capacity of vehicle v ∈ V .
Lt The length (in minutes) of time-period t∈ T .
d1s The initial number of bikes in station s∈ S.

d̂1v The initial number of bikes in vehicle v ∈ V .
z1s,v 1, if vehicle v ∈ V is at station s∈ S at the beginning of the planning; 0, otherwise.
f+,t
s The expected rental demand at station s∈ S in period t∈ T .
f−,t
s The expected return demand at station s∈ S in period t∈ T .
Rt

s,s′ Transit time required for vehicles from station s∈ S to station s′ ∈ S in period t∈ T .

F t,t′

s,s′ The number of bike trips from station s∈ S at period t∈ T to s′ ∈ S at period t′ ∈ T .

Table 4 Decision variables of the optimization model

Variable Definition
r+,t
s,v The number of bikes picked up at station s by vehicle v in period t

r−,t
s,v The number of bikes dropped off at station s by vehicle v in period t

zt
s,v 1, if vehicle v ∈ V is at station s∈ S at period t∈ T ; 0, otherwise.

dts The number of bikes available in station s∈ S at the beginning of period t

d̂tv The number of bikes in vehicle v ∈ V at the beginning of period t
pts,s′,v 1, if vehicle v is at station s in period t and at station s′ in period t+1;

0, otherwise
x+,t
s The number of successful bike trips starting from station s in period t

x−,t
s The number of successful bike trips ending at station s in period t

Dynamic Rebalancing Optimization for Bike-sharing Systems: A Modeling Framework and Empirical Comparison
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We formulate the rebalancing problem as a MILP and assume that each vehicle can only visit

one station at each period. The decision variables are summarized in Table 4. Variables r+,t
s,v /r

−,t
s,v

represent the number of bikes picked up/dropped off at station s by vehicle v during period t.

Variable zts,v takes value 1 if station s visited by vehicle v at period t; 0 otherwise. For each

time-period, intermediate variables are used, such as the number of bikes available at stations/in

vehicles, successful trips, and the routes of the vehicles. We employ rental and return demand

without enforcing trip distribution, and use station-based trip variables x+,t
s and x−,t

s .

Then, the basic MILP model reads as follows:

min
∑
s∈S

∑
t∈T

(f+,t
s −x+,t

s )+
∑
s∈S

∑
t∈T

(f−,t
s −x−,t

s ) (1)

s.t. d̂t+1
v = d̂tv +

∑
s∈S

(r+,t
s,v − r−,t

s,v ) ∀ v ∈ V, t∈ T (2)

dt+1
s = dts −

∑
v∈V

(r+,t
s,v − r−,t

s,v )−x+,t
s +x−,t

s ∀ s∈ S, t∈ T (3)∑
s∈S

zts,v = 1 ∀ v ∈ V, t∈ T (4)

r+,t
s,v + r−,t

s,v ≤ Ĉvz
t
s,v ∀ s∈ S, v ∈ V, t∈ T (5)

0≤ d̂tv ≤ Ĉv,0≤ dts ≤Cs ∀ s∈ S, v ∈ V, t∈ T (6)

0≤ x+,t
s ≤ f+,t

s ,0≤ x−,t
s ≤ f−,t

s ∀ s∈ S, t∈ T (7)

0≤ r+,t
s,v , r

−,t
s,v ≤ Ĉv ∀ s∈ S, v ∈ V, t∈ T (8)

zts,v ∈ {0,1} (9)

Objective function (1) minimizes the total lost rental and return demand in the planning horizon

over all stations and time-periods. If required, it can be modified according to the preferences of the

BSS operators (see Appendix 1 of the online supplement). Constraints (2) ensure that the number

of bikes in each vehicle is synchronized with the vehicles’ bike pick-ups and drop-offs. Constraints

(3) manage the station inventory along time, considering the rebalancing operations and successful

customer trips (i.e., rentals and returns). Constraints (4) ensure that each vehicle is at exactly one

station at each time-period, which forms the flow of vehicles sequentially. Ghosh et al. (2015, 2016)

use an alternative constraint:
∑

s′ p
t
s,s′,v −

∑
s′ p

t−1
s′,s,v = 0 (∀ s, t, v), which directly ensures that the

flow out of station s for vehicle v at time-period t is equivalent to the flow of v into the station s

at time t−1. Both of them indicate the relocation of vehicles along time. Note that, in our model,

the vehicle can stay at the same station in the next time-period, i.e., zts,v = zt+1
s,v = 1. Constraints

(5) ensure that a vehicle only operates at the station where it is currently located. Constraints

(6) enforce that the number of bikes in each vehicle is limited by its capacity and the number of
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bikes at each station is within the station’s capacity. Constraints (7) impose that the number of

successful trips is bounded by the expected demand for rentals and returns. Constraints (8) force

the number of picked up/ dropped off bikes to respect the vehicle capacity.

The model can easily be reformulated usingO-D variables xt,t′

s,s′ instead of station-based variables.

In this case, all occurrences of x+,t
s within (1)–(3) simply have to be replaced by

∑
s′,t′ x

t,t′

s,s′ , while

Constraints (7) have to be replaced by xt,t′

s,s′ ≤ F t,t′

s,s′ .

3.2. Formulating Different Modeling Assumptions

We now show how to extend the basic model in order to account for the additional modeling

assumptions discussed in Section 2.

3.2.1. Time Constraints. The basic model assumes that vehicles can relocate to any other

stations and carry out the rebalancing operations within the duration of a time-period. When the

duration of the time-period is short, the resulting planning solution may become infeasible in prac-

tice. Since vehicles may not have sufficient time to relocate and rebalance bikes, time constraints

(as discussed in Section 2.1) may be added to restrict the vehicle relocation between stations and

rebalancing operations to the time available. We formulate time constraints as follows. First, for

each pair of stations s and s′, vehicle v, and time-period t, Constraints (10) enforce variable pts,s′,v

to take value 1 if both variables zts,v and zt+1
s′,v are have value 1. Then, time constraints (11) guar-

antee that the transit time between stations and the operation time for picking up/dropping off

bikes for each period will not surpass the available time Lt.

zts,v + zt+1
s′,v − 1≤ pts,s′,v ∀ s, s′ ∈ S, v ∈ V, t∈ T (10)∑

s∈S

∑
s′∈S

pts,s′,vR
t
s,s′ + op

∑
s∈S

(r+,t
s,v + r−,t

s,v )≤Lt, ∀ v ∈ V, t∈ T (11)

pts,s′,v ∈ {0,1}, (12)

where op is the average operational time to pick up/drop off a single bike. Parameters |T | and Lt

can be altered by the decision-maker. In Section 5.3, we will test different lengths of time-periods

along with the time constraints to explore their impact on the solution performance.

3.2.2. Trip distribution constraints. We now discuss the proportionality distribution for

both station-based trip variables and O-D variables.

Using station-based trip variables. Consider a trip starting at station s1 in period t1 and

ending at station s2 in period t2. The station-based trip variables related to this trip are x+,t1
s1

and

x−,t2
s2

. The proportional distribution can be written as:

x−,t2
s2

≤
t2−1∑
t=0

∑
s∈S

x+,t
s

F t,t2
s,s2

f+,t
s

∀ s2 ∈ S, t2 ∈ T (TD1)
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x+,t1
s1

≤
|T |∑

t=t1+1

∑
s∈S

x−,t
s

F t1,t
s1,s

f−,t
s

, ∀ s1 ∈ S, t1 ∈ T (TD2)

where, as discussed,
F

t,t2
s,s2

f
+,t
s

represents the transition probability of bikes rented from s at time-period

t to be returned to s2 at time-period t2. Constraints (TD1) impose that the number of bikes

returned to station s2 during period t2 is no more than the bikes rented in the previous periods

with a proportion of
F

t,t2
s,s2

f
+,t
s

. Conversely, constraints (TD2) impose that the number of bikes rented

in station s1 during period t1 is no more than the bikes returned in the later periods with the

transition probability
F

t1,t
s1,s

f
−,t
s

.

Similarly, instead of considering the number of rented/returned bikes, we can consider the number

of available bikes/docks. To this end, we rewrite (TD1) and (TD2) to (TD3) and (TD4) by replacing

x+,t
s with abt1s1 and x−,t

s with adt1s1 .

x−,t2
s2

≤
t2−1∑
t1=0

∑
s∈S

abts
F t,t2

s,s2

f+,t
s

∀ s2 ∈ S, t2 ∈ T (TD3)

x+,t1
s1

≤
|T |∑

t=t1+1

∑
s∈S

adts
F t1,t

s1,s

f−,t
s

, ∀ s1 ∈ S, t1 ∈ T (TD4)

where abts and adts are the number of available bikes and docks respectively at station s in period

t.

Given that station-based variables do not entertain the link between bike rental and return,

we may use Constraints (TD5) below to enforce that the total number of rentals equals the total

number of returns. When all trips are assumed to take no longer than one time-period, one may

use Constraints (TD6) below to enforce a stronger relationship. Under the same assumption, Con-

straints (TD6) can also be derived by summing (TD2) all over s1.∑
t

∑
s

x+,t
s =

∑
t

∑
s

x−,t
s , (TD5)∑

s

x+,t
s =

∑
s

x−,t+1
s ∀t∈ T. (TD6)

Using O-D variables. In the case where O-D variables xt1,t2
s1,s2

are used to represent successful

trips, Constraints (TD5) are automatically guaranteed. The proportional distribution can then be

written as

xt1,t2
s1,s2

≤ abt1s1
F t1,t2

s1,s2

f+,t1
s1

∀ s1, s2 ∈ S, t1, t2 ∈ T. (TD7)

Constraints (TD7) imply that rentals from a station have to respect the transition probability

when rental demand exceeds the number of available bikes at that station. Ghosh et al. (2015,

2017) use such constraints with abt1s1 = dt1s1 .
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Note that summing (TD7) over t1 and s1, the left-hand side becomes x−,t2
s2

, which results in

(TD3). Thus, station-based trip variables with proportional distribution and O-D variables with

proportional distribution essentially represent the same type of trip distribution within the model.

Practical toy example. To develop an intuition of the impact of the trip distribution con-

straints, we consider the following toy example. We consider two time-periods with four stations,

each of which has a pair of [abts, ad
t
s] indicating the current number of bikes available for rentals

and docks for returns, visualized in Figure 1. The value of abts is equal to dts−
∑

v(r
+,t
s,v −r−,t

s,v )+x−,t
s

and it is analogous for the value of adts. The numbers circled in red along the arcs represent the trip

demands for each station pair. Stations s1 and s2 may either have a sufficient (S) or insufficient (I)

number of bikes to satisfy rental demand. Further, station s3 and s4 may either have a sufficient

(S) or insufficient (I) number of empty docks to satisfy return demand. This leads to 4 different

configurations shown in Figure 1.

Figure 1 Toy example with 4 different situations of bike/dock availability

Ideally, for scenario I-I, a BSS operator would expect to see 4 trips to station s3 and 2 trips to

station s4 to fill their empty docks, and will not mind whether the trips come from station s1 or

station s2 as long as they have sufficient bikes. The ideal distribution is similar for scenario S-I. In

contrast, in the case of scenario I-S, the operator would expect to see 4 trips from station s1 and 3

trips from station s2 such that all the available bikes can be used. However, there is no preference

for the destinations of the 4 trips from station s1. Clearly, scenario S-S is irrelevant since all trip

demand is satisfied.

In order to compute the successful trips under different trip distribution constraints, we solved

the basic model with each of them. For station-based trip variables, based on Constraints (3),
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Table 5 Trip distribution for 3 different demand scenarios under different trip distribution constraints

[x+,t1
s1

, x+,t1
s2

, x−,t2
s3

, x−,t2
s4

] Constraints I-I I-S S-I

Ideal solution [*, *, 4, 2] [4, 3, *, *] [*, *, 4, 2]

Station-based

Variables

without TD [4, 3, 4, 2] [4, 3, 5, 6] [8, 3, 4, 2]

(TD1) [4, 3, 3, 2] [4, 3, 3, 4] [8, 3, 4, 2]

(TD2) [4, 22
15
, 4, 2] [4, 3, 5, 6] [ 68

15
, 22

15
, 4, 2]

(TD6) [x+,t1
s1

+x+,t1
s2

= 6, 4, 2] [4, 3, x−,t2
s3

+x−,t2
s4

= 7] [x+,t1
s1

+x+,t1
s2

= 6, 4, 2]

(TD1)+(TD2) [8
3
, 1, 5

3
, 2] [4, 3

2
, 5

2
, 3] [ 8

3
, 1, 5

3
, 2]

(TD1)+(TD6) [4, 0, 2, 2] [4, 3, 3, 4] [4, 0, 2, 2]

(TD2)+(TD6) [4, 4
3
, 10

3
, 2] [4, 2, 0, 6] [ 68

15
, 22

15
, 4, 2]

(TD3) [4, 3, 3, 2] [4, 3, 3, 4] [8, 3, 4, 2]

(TD4) [4, 22
15
, 4, 2] [4, 3, 5, 6] [ 68

15
, 22

15
, 4, 2]

(TD3)+(TD4) [4, 22
15
, 3, 2] [4, 3, 3, 4] [ 68

15
, 22

15
, 4, 2]

(TD3)+(TD6) [4, 1, 3, 2] [4, 3, 3, 4] [x+,t1
s1

+x+,t1
s2

= 6, 4, 2]

(TD1)+(TD4) [4, 22
15
, 112

45
, 2] [4, 3, 3, 4] [ 68

15
, 22

15
, 124

45
, 2]

(TD2)+(TD3) [56
15
, 19

15
, 3, 2] [4, 29

15
, 3, 4] [ 68

15
, 22

15
, 4, 2]

O-D Variables
Without

(TD7)
[4, 2, x−,t2

s3
+x−,t2

s4
= 6]

[4, 3, x−,t2
s3

+x−,t2
s4

= 7]

xt1,t2
s2,s3

= 1, xt1,t2
s2,s4

= 2
[x+,t1

s1
+x+,t1

s2
= 6, 4, 2]

With

(TD7)

[x+,t1
s1

+x+,t1
s2

= 5, 3, 2]

xt1,t2
s1,s3

= 2, xt1,t2
s2,s3

= 1

[4, 3, 3, 4]

xt1,t2
s1,s3

= 2, xt1,t2
s1,s4

= 2
[x+,t1

s1
+x+,t1

s2
= 6, 4, 2]

(6), and (7), we have x+,t1
s1

≤min{f+,t1
s1

, abt1s1} and x−,t2
s3

≤min{f−,t2
s3

, adt2s3}. For O-D variables, the

constraints enforcing the flow to be no more than the demand of each route and the returns to be

less than the available docks can be combined as xt1,t2
s1,s2

≤min{F t1,t2
s1,s2

, adt2s2}.

Minimizing the lost demand for cases I-I, I-S, and S-I in Figure 1 under the different trip distri-

bution constraints results in the departures and arrivals indicated in Table 5. Here, all ideal trip

distribution as expected by the BSS operator is indicated in the first row (an ‘*’ refers to any

coherent allocation). Note that all trip distribution constraints result in the same solution for case

S-S since all trip demands can be satisfied. The solutions that are considered coherent with an

ideal solution are indicated in bold. To facilitate the comparison of the solutions, we present the

solution [xt1,t2
s1,s3

, xt1,t2
s1,s4

] of the O-D variables model in the equivalent format of station-based trip

variables, e.g. x+,t1
s1

= xt1,t2
s1,s3

+xt1,t2
s1,s4

.

According to the observed trip distribution, (TD3)+(TD6) and (TD3)+(TD4) have the potential

to produce trips that are close to an ideal solution. The combination of (TD1) and (TD2) will be

tight for the feasible region, especially for full/empty stations. Constraints (TD1)+(TD6) introduce

strict proportional limitations for rentals when the docks are insufficient for returns, which deviates

from the ideal solution. Using only (TD1) may result in solutions with more rentals than the returns.

For O-D variables, constraints (TD7) mainly work for the case, where the rental demands cannot

be satisfied. Contardo et al. (2012) applied station-based variable without any trip distribution

constraints. Ghosh et al. (2015, 2017) use (TD7). Lowalekar et al. (2017) use constraints that are

similar to Constraints (TD1).
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Based on this analysis, within our empirical evaluation in Section 5, we will consider the station-

based variable model without trip distribution constraints, with (TD1), (TD6), (TD3)+(TD6),

and (TD3)+(TD4), and the O-D variable model with and without (TD7).

3.2.3. Sequences of events. The basic station-based model (1)–(9) implicitly uses event

sequence (r+a+d), where the three events are assumed to occur simultaneously. We now show how

this model can be modified to take into account the different sequences of rebalancing, rental, and

return events. We first consider the class of event sequences reported in the first row of Table 1.

• (r)(a)(d): Since the rebalancing operations performed by the vehicles occur at the beginning

of each time-period, Constraints (13)–(16) need to be added, in order to ensure that arrivals

consider the rebalancing and departures consider both rebalancing and departures.∑
v

r+,t
s,v ≤ dts ∀ s∈ S, t∈ T (13)∑

v

r−,t
s,v ≤Cs − dts ∀ s∈ S, t∈ T (14)

x+,t
s ≤ dts −

∑
v

r+,t
s,v +

∑
v

r−,t
s,v +x−,t

s ∀ s∈ S, t∈ T (15)

x−,t
s ≤Cs − dts +

∑
v

r+,t
s,v −

∑
v

r−,t
s,v ∀ s∈ S, t∈ T (16)

• (a)(d)(r): Here, rebalancing operations occur at the end of each time-period, which is enforced

by Constraints (17)–(20).∑
v

r+,t
s,v ≤ dts +x−,t

s −x+,t
s ∀ s∈ S, t∈ T (17)∑

v

r−,t
s,v ≤Cs − dts −x−,t

s +x+,t
s ∀ s∈ S, t∈ T (18)

x+,t
s ≤ dts +x−,t

s ∀ s∈ S, t∈ T (19)

x−,t
s ≤Cs − dts ∀ s∈ S, t∈ T (20)

• (d)(r)(a): Rebalancing operations occur between rentals and returns, which is enforced by

Constraints (21) and (22). Bike rentals occur at the beginning of the period and are only restricted

by the current capacity of the station, as indicated by Constraints (23). Bike returns occur at the

end and are limited by x−,t
s ≤Cs−dts+

∑
v r

+,t
s,v −

∑
v r

−,t
s,v +x+,t

s , which can be achieved by replacing

dt+1
s in Constraints (6) (dt+1

s ≤Cs) with the right hand side of Constraints (3).∑
v

r+,t
s,v ≤ dts −x+,t

s ∀ s∈ S, t∈ T (21)∑
v

r−,t
s,v ≤Cs − dts +x+,t

s ∀ s∈ S, t∈ T (22)

x+,t
s ≤ dts ∀ s∈ S, t∈ T (23)
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For the class of event sequences reported in the second row of Table 1, the corresponding modi-

fications are as follows:

• (r)(d)(a): Since rebalancing occurs first, we require Constraints (13) and (14). In order for

bike rentals to consider the previous rebalancing, we further require Constraints (24). Finally, bike

returns are already correctly implemented due to Constraints (3) and (6).

x+,t
s ≤ dts −

∑
v

r+,t
s,v +

∑
v

r−,t
s,v ∀ s∈ S, t∈ T (24)

• (d)(a)(r): We first use Constraints (23) since rentals occur first. Then, to implement correct

returns, we add Constraint (25). Finally, given that the vehicles are assumed to rebalance after

bike rentals and returns, we also use vehicle constraints (17) and (18).

x−,t
s ≤Cs − dts +x+,t

s ∀ s∈ S, t∈ T (25)

• (a)(r)(d): Returns occur at the beginning of the period and consider the current inventory,

as ensured by Constraints (20). We also add Constraints (26) and (27), since vehicles rebalance

bikes after returns. As customers rent bikes at the end of each time-period, we have to enforce

x+,t
s ≤ dts−

∑
v r

+,t
s,v +

∑
v r

−,t
s,v +x−,t

s , which is explicitly satisfied when replacing dt+1
s in Constraints

(6) (0≤ dt+1
s ) by the right hand side of Constraints (3).∑

v

r+,t
s,v ≤ dts +x−,t

s ∀ s∈ S, t∈ T (26)∑
v

r−,t
s,v ≤Cs − dts −x−,t

s ∀ s∈ S, t∈ T (27)

We now consider event sequences in which rentals and returns are assumed to happen simulta-

neously (see the third row in Table 1):

• (r)(a+d): Here, we use Constraints (13) and (14) since vehicles operate at the beginning of

each period. The restrictions related to the rentals and returns are already satisfied by Constraints

(3) and (6).

• (a+d)(r): The constraints for rebalancing are the same as for (a)(d)(r) and (d)(a)(r), i.e.,

Constraints (17) and (18). The restrictions for rentals and returns are enforced by using Constraints

(19) and (25).

Finally, two more classes of event sequences allow for rebalancing to occur simultaneously with

either rentals or returns (see the fourth and fifth rows respectively in Table 1).

• (a)(d+r): Customers return bikes first, requiring the use of Constraints (20). Rebalancing

then simultaneously occurs with rentals, which can be implemented using Constraints (17) and

(18).
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• (d+r)(a): Here, employing Constraints (21) and (22) is sufficient.

• (d)(r+a): Customers rent bikes first, requiring Constraints (23). Rebalancing then simulta-

neously occurs with returns, requiring Constraints (17) and (18).

• (r+a)(d): It suffices to add Constraints (26) and (27).

4. Dynamic Rebalancing Evaluation Framework

This section presents the general framework used to evaluate the planning solutions provided by the

dynamic rebalancing models. Section 4.1 explains the general evaluation set-up, while Section 4.2

elaborates on the simulator used.

4.1. Evaluation Framework for Rebalancing Strategies

We describe the framework used to obtain rebalancing strategies for various problem instances and

to evaluate their estimated performance in practice.

Figure 2 Evaluation framework for dynamic rebalancing strategies

The framework is visualized in Figure 2. First, we generate problem instances with adequate

station networks along with trip data over a specified time horizon (typically one day). The trip

data will be divided into two sets: the training and the test set. The training set is used by the

optimization model to produce the rebalancing strategy that minimizes lost demand. Note that the

optimization model uses a single demand scenario, which is obtained by averaging over the demand

(for each time-period and station) of all days in the training set. The rebalancing strategies are

then applied to a simulated BSS, which aims at realistically estimating the performance (i.e., the

lost demand) of the planning solutions. The simulator then returns various performance metrics,

such as the average lost demand values for both the training set and test set.
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We also define an optimization-simulation-gap, representing the difference between the number

of successful trips in the optimization model and that in the simulation model, therefore estimating

the deviation from reality. Such a deviation is largely explained by the temporal aggregation of

the optimization model versus a FIFO policy that applies in reality. Specifically,
|
∑

t,s x
+,t
s −

∑
t,s x̂

+,t
s |∑

t,s x̂
+,t
s

and
|
∑

t,s x
−,t
s −

∑
t,s x̂

−,t
s |∑

t,s x̂
−,t
s

compute the relative gaps of rentals and returns, respectively, over the

entire planning horizon and all stations, where x+,t
s / x−,t

s are rentals/returns as computed by the

optimization model and x̂+,t
s / x̂−,t

s are the number of successful rentals/returns within the simulator.

4.2. Simulator to Evaluate Solution Quality

We now elaborate on the simulator used to execute the rebalancing strategies and evaluate their

performance as realistically as possible using the first-arrive-first-serve policy.

Simulators in the literature. Using a simulator to evaluate the performance of the proposed

rebalancing strategies has been a common approach in the literature. Ghosh et al. (2015, 2016, 2019)

use simulators that aggregate all rentals, returns, and rebalancing operations that occur within the

same time-period. For each station, the inventory available at the beginning of the next time-period

is calculated as the sum of the current inventory, the cumulative returns (i.e., the actual returns

minus actual rentals) and the rebalancing operations. Rental demands will be fully served if they

do not exceed the number of available bikes. If rental demand exceeds the available inventory, the

actual rentals are distributed based on the relative ratio of the trips observed in the historical trip

data, which corresponds to a proportional trip distribution as detailed in Section 3.2.2. However,

aggregating events over the same time-period assumes that rentals wait for returns and vice versa.

This is overly optimistic and deviates from the fact that, in practice, the success of rentals and

returns strongly depends on the sequence in which these events and the rebalancing occur. It is

therefore likely that the real lost demand is underestimated. In reality, bikes will be rented or

returned by the customers who arrive first (i.e., under a first-arrive-first-serve policy), determining

the actual flow of bikes.

Most of the existing simulators also ignore the operating time required for rebalancing. Each

rebalancing operation requires a minimum of time and may occur at the same time as user rentals

and returns. For example, in practice, a station may not have enough bikes for the truck to pick up

if customers rent bikes during the rebalancing operations. In contrast, a simulator that ignores the

time required for such operations assumes that the truck picks up the bikes all at once, resulting

in a less realistic estimation of the lost demand.

Proposed fine-grained simulator. Aiming at a more realistic evaluation, we develop a

discrete-event simulator taking into account more realistic operational BSS mechanisms. Each time-

period used in the optimization model (spanning typically 30 or 60 minutes) is further discretized
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into 1-minute time-slots (which is sufficiently fine-grained to be considered real-time in practice).

We consider both users’ behaviors (rentals and returns) and trucks’ operations (pick-ups and drop-

offs) as discrete events, each of which is associated to a specific 1-minute time-slot. Rebalancing

operations may occur in parallel to rentals and returns and depend on the time the truck arrives

at the station. Customer trips and rebalancing operations are therefore considered in chronological

order.

For the ease of presentation, the operation mode of the simulator is now described verbally. First,

the simulator initializes as follows:

• Station and vehicle inventories are initialized according to the input data.

• Each rental demand is associated to its respective 1-minute time-slot.

• Pick-up and drop-off attempts for the first time-period are associated to their respective time-

slot, taking into consideration the time to load/unload bikes on/from the truck.

The simulator then scrolls through the time-slots minute by minute, attempting to perform all

events scheduled for that time-slot. The operating rules in this iterative process can be summarized

as follows:

• A rental demand is satisfied if the station holds at least one bike. In this case, a return demand

is created for the destination station and associated to a future time-slot based on an estimated

travel time. If station inventory is insufficient, the rental demand is counted as lost.

• Analogously, a return demand is satisfied if a free dock is available. Otherwise, the bike is

returned to the nearest station with an available dock. However, this return demand is then counted

as lost. Note that lost returns can only occur if the corresponding rental demand was successful.

• Drop-off and pick-up attempts from rebalancing operations are carried out as best as the

available inventory and available docks at the stations and the vehicles allow for.

• Once a truck has finished the rebalancing attempt, it departs to the next station as prescribed

by the planning solution for the next time-period. The arrival event is scheduled for a future

time-slot based on the estimated travel time of the vehicle.

• Once a truck arrives at a new station, it is assumed to immediately start the rebalancing

operations. However, rebalancing will not start before the first time-slot associated to the current

time-period.

A pseudo-code of the simulator, along with a technical description can be found in Appendix 3

of the online supplement.

5. Computational Experiments

We now report on different sets of computational experiments in order to systematically explore

the impact of the various modeling assumptions, based on the evaluation framework we proposed

in Section 4.
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In Section 5.1, we first elaborate on the problem instances used throughout our experiments.

In Section 5.2, we compare dynamic and static rebalancing, as well as the usage of different vari-

able types. Section 5.3 focuses on the impact of time discretization and time-related constraints.

Section 5.4 analyzes the importance of the various trip distribution constraints. In Section 5.5, we

cross-test whether the previous findings still hold when different variable domains are used. Finally,

Section 5.6 focuses on the impact of the assumed event sequence.

5.1. Generation of Synthetic Data and Computing Environment

Even though we have access to real-world trip data from different BSSs, such data is insufficient

for the purpose of our study due to several reasons. First, the unobserved demand makes it difficult

to obtain accurate rebalancing strategies and evaluate their performance. Second, existing data

often contains errors and noise concerning trip and station inventory. Third, rebalancing operations

carried out in the BSS alter station inventories, but existing data sets do not provide reliable data

on the rebalancing carried out. We therefore develop an instance generator that aims at generating

realistic instances with BSS networks of different sizes and characteristics, as well as trip data that

is coherent with trips observed in reality (see details in Appendix 2 of the online supplement).

For the purpose of our study, we only focus on weekdays, since they have similar demand patterns

for work-related trips and demand tends to be much higher than on weekends. We divide the entire

daily trip demand into four types. People who live outside city centers and work inside city centers

typically use similar origin (outside city centers) and destination stations (within city centers)

during peak hours. These trips are denoted as OI trips. Trips of people who live and work outside

the centers are referred to as OO trips. In contrast to work-related OI and OO trips, RD trips refer

to random trips occurring during the day and RN trips refer to random trips during the night.

Such random trips do not have the same origin and destination stations. The departure time for

each trip type is characterized by a Beta distribution (see Appendix 2.2 of the online supplement).

The average demand per 30-minute duration for weekdays of one week in July 2019 at BIXI is

visualized in Figure 3(a). For comparison, the trip demand averaged over 500 days as generated by

our instance generator is displayed in Figure 3(b) and shows a similar pattern as the trip demand

observed at BIXI.

We generate 3 ground truths with different station networks. For each ground truth, we generate

5 instances with different proportions for the four trip types. For each instance, we generate 5000

weekdays of trip data for the training set, from which a single average demand will be computed for

each time-period and station as input for the optimization model. We then generate 1000 weekdays

of trip data for the test set, on each of which the planned solution will be simulated. Table 6

shows the characteristics of the 3 ground truths. The percentage of stations within the city centers
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Figure 3 Total rental and return demand over 24 hours (48 time-periods) : (a) Average weekday demand at

BIXI ; (b) Average demand in synthetic instance.

and those associated with each trip type are indicated in rows 2 to 5. Ground Truth 2 (GT2) has

more work-related trips, compared to Ground Truth 1 (GT1). Ground Truth 3 (GT3) has two city

centers under the same trip pattern as GT1. A detailed description can be found in Appendix 2.3

of the online supplement.

Table 6 The parameters for the ground truths

GT1 GT2 GT3
Station
Network

Number of city centers 1 1 2
City center capacity 26% 26% 35%

Trip
Pattern

OI 32% - β(3,8) 55% - β(3,8) 32% - β(3,8)
OO 32% - β(3,7) 25% - β(3,7) 32% - β(3,7)
RD 23% - β(3,7) 15% - β(3,7) 23% - β(3,7)
RN 13% - β(6,8) 5% - β(6,8) 13% - β(6,8)

Our optimization models are solved by IBM ILOG CPLEX on 2.70 GHz Intel Xeon Gold 6258R

machines with 8 cores. The stopping criterion for the optimization model is a MIP optimality gap

of 0.01% and a maximum running time of 24 hours.

5.2. Impact of Initial Station Inventory and Trip Variable Types

To quantify the impacts of the initial inventory at stations, we define two baselines as the pre-

allocated inventory.

• Baseline 1: Inventory proportional to rental demands without rebalancing. This

baseline sets the initial inventories of stations at the beginning of a day to predefined levels pro-

portional to the rental demands of the first time-period in the planning horizon. We round the

values to the closest integer, ensuring the total number of bikes is fixed and the inventory of each

station is guaranteed to be within its capacity.
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• Baseline 2: Static Rebalancing only. The optimal static rebalancing is obtained by solving

the problem given by (28)–(32) below, where the inventories for the first time-period are decision

variables that sum to the total number of available bikes in the system.

min
∑
t,s

(f+,t
s −x+,t

s )+
∑
t,s

(f−,t
s −x−,t

s ) (28)

dt+1
s = dts −x+,t

s +x−,t
s ∀ s, t (29)∑

s

d1s = n (30)

0≤ dts ≤Cs ∀ s, t (31)

0≤ x+,t
s ≤ f+,t

s ,0≤ x−,t
s ≤ f−,t

s , ∀ s, t (32)

where n is the total number of bikes in the system.

In the following, we set the initial inventory of the stations according to these two baselines in

the optimization model and run our simulator without dynamic rebalancing for all 3 ground truths.

We consider a planning horizon from 6 a.m. to 1 p.m. (7 hours) and divide the planning horizon

into 14 time-periods with a length of 30 minutes each. We calculate the average rental and return

demands for each instance over the training set at each station of each time-period. Rebalanc-

ing strategies are obtained through the optimization model and then applied in the simulator to

estimate the lost demand on the test set.

Table 7 summarizes the results. We report the optimal value of the objective function as ‘O.F.

Value’ and the running time of the optimization model as ‘Opt. Time’ in minutes. The ‘MIP gap’

refers to the optimality gap as reported by CPLEX when the stopping criterion is reached. The

lost demand is computed as the relative gap between successful trips and the original demand

specified in the problem instances. To be specific,
∑

s,t(f
+,t
s −x̂

+,t
s )∑

s,t f
+,t
s

defines the lost rental demand over

the entire planning horizon. Similarly, the lost return demand is computed as
∑

s,t(x̂
+,t
s −x̂

−,t
s )∑

s,t x̂
+,t
s

. Since,

in practice, return demand does not exist when the corresponding rental demand is unsuccessful,

the lost returns are only associated with successful rentals x̂+,t
s . Lost return demand has to be

interpreted critically since the relative lost return may be high when the lost rental is low (which

doesn’t indicate a low-quality planning solution). In our result analysis, we, therefore, emphasis on

the lost rental.

For each ground truth, the initial inventory observed from Baselines 1 and 2 is directly applied

to the simulator without any rebalancing operations, whose average lost demand over 5 instances

is reported as ‘Baseline 1/2 without rebal.’.

According to the first two rows for each GT in Table 7 (baselines without rebalancing), the initial

station inventory seems important to the performance of the BSS. Compared to Baseline 1, static
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Table 7 Station-based model with baseline 1 and baseline 2 (60 stations, 4 trucks, 30 mins)

Baselines,

Rebalancing Configuration,

Trip Modeling

O.F.

Value

Opt.

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)

Training Set Test Set

Rental Return Rental Return

GT1

Baseline 1 without rebal. - - - 26.06 10.30 26.05 10.27

Baseline 2 without rebal. (static) - - - 10.43 11.82 10.40 11.79

Baseline 1 dyn.rebal. station-based 44.2 1440 0.10 11.14 2.12 11.11 2.12

Baseline 2 dyn.rebal. station-based 0.8 <1 0.00 8.79 8.02 8.78 7.99

Baseline 2 dyn.rebal. O-D 52.8 <1 0.00 8.02 6.00 7.98 5.97

GT2

Baseline 1 without rebal. - - - 33.25 33.79 33.26 33.83

Baseline 2 without rebal. (static) - - - 28.43 33.00 28.42 33.02

Baseline 1 dyn.rebal. station-based 232.0 1440 2.60 23.25 18.19 23.24 18.24

Baseline 2 dyn.rebal. station-based 179.1 1440 2.46 20.32 21.63 20.33 21.67

Baseline 2 dyn.rebal. O-D 227.2 1440 2.44 19.79 21.28 19.79 21.33

GT3

Baseline 1 without rebal. - - - 21.21 6.85 21.22 6.85

Baseline 2 without rebal. (static) - - - 11.60 3.18 11.61 3.18

Baseline 1 dyn.rebal. station-based 6.4 294 0.01 11.21 1.80 11.22 1.78

Baseline 2 dyn.rebal. station-based 0.5 <1 0.00 9.45 1.79 9.46 1.78

Baseline 2 dyn.rebal. O-D 51.5 288 0.00 9.93 2.28 9.95 2.27

rebalancing (Baseline 2) can significantly improve the lost demand. However, static rebalancing is

still insufficient to meet customer demand, especially in the case of more work-related trips (i.e.,

GT2).

Based on the initial station inventory from Baselines 1 and 2, rows 3-4 for each GT compare

the impact of the two different strategies with additional dynamic rebalancing. For the dynamic

rebalancing, we use model (1)–(9) without trip distribution and time constraints.

The lost rental on both the training set and the test set is improved when dynamic rebalancing

is applied. The performance of dynamic rebalancing varies substantially between the two baselines,

which highlights the importance to optimize the initial station inventory before the dynamic rebal-

ancing. For GT1, the lost rental for dynamic rebalancing with Baseline 1 is higher, leading to a

decrease in actual return demands. Given that we only consider lost returns for successful rentals,

it is possible that the relative lost return is small when the relative lost rental is high (i.e., only a

few successful rentals).

Since strategies based on Baseline 2 outperform those based on Baseline 1, in the following

experiments, we will use Baseline 2 to define the initial inventory of each station. Note that we use

pre-defined initial locations and inventories for trucks because previous experiments have shown

that such assumptions do not affect the performance (see Appendix 4.1 of the online supplement

for details).
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Finally, the O-D variable model seems to provide slightly less lost demand, but at the cost of

larger computing time due to increased model size. In the following sections, we mostly focus on

the station-based variables and later back-test some configurations for the O-D variables.

5.3. Impact of Time Discretization and Time Constraints

We now explore the impact of the length of time-periods and the use of time constraints. We con-

sider two lengths of time-periods: 30-minute and 60-minute, and with or without time constraints.

The comparative results for station-based trip variables are summarized in Table 8. The results of

similar experiments using O-D variables can be found in Appendix 4.2 of the online supplement.

Table 8 Station-based model with/without time constraints in 30/60 mins (60 stations, 4 trucks)

Time

Period

(mins)

Time

Cons-

traints

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%) Opt-sim-gap

(%)Training Set Test Set

Rental Return Rental Return Rental Return

GT1

30 No 0.8 <1 0.00 8.79 8.02 8.78 7.99 9.62 15.88

30 Yes 0.9 69 0.00 8.14 6.08 8.13 6.06 8.84 12.69

60 No 9.5 <1 0.00 8.52 4.41 8.50 4.39 8.52 11.24

60 Yes 9.5 2 0.00 8.76 5.85 8.73 5.85 8.80 13.27

GT2

30 No 179.1 1440 2.46 20.32 21.63 20.33 21.67 16.56 49.23

30 Yes 272.5 1440 4.69 19.29 20.54 19.29 20.57 12.58 38.29

60 No 408.4 1440 1.00 21.27 22.62 21.28 22.65 11.57 34.98

60 Yes 409.0 1440 1.73 21.65 22.38 21.66 22.40 12.00 35.28

GT3

30 No 0.5 <1 0.00 9.45 1.79 9.46 1.78 10.42 9.21

30 Yes 0.5 28 0.00 8.47 1.92 8.48 1.90 9.24 8.18

60 No 10.4 <1 0.00 9.71 1.21 9.72 1.20 9.88 8.90

60 Yes 10.5 1 0.00 9.62 1.41 9.63 1.40 9.76 9.02

As shown in Table 8, 30-minute time-periods allow for more rebalancing operations within the

optimization model, leading to smaller optimal objective function values than those for cases with

60-minute time-periods. Note again, that in our simulator, we postpone the rebalancing operations

if the truck cannot reach the station in time due to long relocation distances. Using 30-minute

time-periods, the lost rental without time constraints may therefore be worse than in the case of

60-minute time-periods. Coherently, time constraints with 30-minute time-periods give the best

overall performance.

Thus, if we have a tolerance for optimization time and the distances between stations tend to

be large, a short time-period (30 mins) with time constraints seems beneficial. For longer time-

periods, time constraints do not seem necessary. Using the model with O-D variables, we reach

similar conclusions (see Appendix 4.2 of the online supplement).
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5.4. Impact of Trip Distribution Constraints

We implement optimization models with various TD constraints as discussed in Section 3.2 for

both station-based trip variables and O-D variables over the 3 Ground Truths with Baseline 2.

The results of station-based trip variables and O-D variables are shown in Table 9 and Table 10

respectively.

Table 9 Station-based model with different trip distribution constraints (60 stations, 4 trucks, 30mins)

Constraints
O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%) Opt-sim-gap

(%)Training Set Test Set

Rental Return Rental Return Rental Return

GT1

(TD1) 600.3 1440 1.41 3.66 6.27 3.65 6.34 0.56 40.07

(TD6) 137.7 <1 0.00 9.96 11.25 9.94 11.22 5.89 14.28

(TD3)+(TD6) 240.3 <1 0.00 8.62 6.59 8.61 6.56 0.01 2.35

(TD3)+(TD4) 170.5 1440 0.13 6.19 1.57 6.15 1.57 0.11 1.82

None 0.8 <1 0.00 8.79 8.02 8.78 7.99 9.62 15.88

GT2

(TD1) 875.8 1440 5.21 17.70 26.15 17.71 26.18 3.19 13.49

(TD6) 205.7 1440 1.75 19.93 22.18 19.93 22.20 16.31 46.16

(TD3)+(TD6) 304.0 1440 2.71 19.62 20.90 19.62 20.94 11.61 37.83

(TD3)+(TD4) 373.7 1440 4.03 20.42 22.47 20.42 22.48 8.67 39.39

None 179.1 1440 2.41 20.32 21.63 20.33 21.67 16.56 49.23

GT3

(TD1) 588.6 1440 1.48 4.77 1.76 4.78 1.76 1.20 40.70

(TD6) 101.3 <1 0.00 10.85 3.21 10.86 3.21 8.40 7.45

(TD3)+(TD6) 165.0 <1 0.00 8.68 2.08 8.68 2.08 3.14 0.94

(TD3)+(TD4) 150.0 1440 0.06 7.34 1.20 7.34 1.18 2.05 0.56

None 0.5 <1 0.00 9.45 1.79 9.46 1.78 10.42 9.21

According to Table 9, the use of Constraints (TD1) performs best in terms of lost rental for both

the training set and test set even if optimality has not been proven within 24h. This suggests that

(TD1) reflects the flow of rentals more realistically, which is also supported by the low rental Opt-

sim-gap. Since (TD1) imposes a strict restriction for returns, the lost return within the optimization

model is quite high, and lost rental is low. That leads to a small opt-sim-gap for rental but a large

one in return. Constraints (TD3)+(TD4) also provide a good performance. Both sets of Constraints

(TD1) and (TD3)+(TD4) include the proportionality characteristics of the trip flow. While they

improve the performance, they also require longer computing times.

Concerning the model with O-D variables as shown in Table 10, adding trip distribution con-

straints is even harder to solve due to a large amount of variables and constraints. For GT3, only

two out of five instances have been solved to optimality. Using Constraints (TD7) reduces both

the lost rental and the opt-sim-gap. However, the running time is significantly longer.
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Table 10 O-D model with different trip distribution constraints(60 stations, 4 trucks, 30mins)

Constraints
O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%) Opt-sim-gap

(%)Training Set Test Set

Rental Return Rental Return Rental Return

GT1
(TD7) 55.3 1440 4.90 6.89 6.54 6.86 6.50 3.65 10.90

None 52.8 <1 0.00 8.02 6.00 7.98 5.97 5.03 11.73

GT2
(TD7) 248.7 1440 4.90 19.78 22.03 19.79 22.06 12.94 44.85

None 227.2 1440 2.42 19.79 21.28 19.79 21.33 13.89 44.67

GT3
(TD7) 53.3 869 0.07 7.93 2.12 7.94 2.10 4.84 7.11

None 51.5 288 0.00 9.93 2.28 9.95 2.27 7.24 9.75

Based on these experimental results, in the following, we will restrict our analysis to station-based

variables with (TD1), (TD3)+(TD4), and (None).

5.5. Impact of Variable Domains

If the variable domains were selected such that they represent more realistically the BSS opera-

tions, trip variables would be binary, while station and vehicle inventory, as well as the rebalancing

variables, would be integer. However, using such variable domains may result in models that may

be difficult to solve and restricted by certain trip distribution constraints, severely underestimating

successful trips. We now explore the impact of using different variable domains. In our models,

routing variables zts,t are always binary. Let variables dtv, r
+,t
s,v , and r−,t

s,v be referred to as rebalanc-

ing variables and variables dts, x
+,t
s , and x−,t

s be referred to as station variables. In the previous

experiments, both rebalancing and station variables have been continuous, which we denote as

an All-continuous model. Here, we also consider the other two cases: the All-integer model and

the Partially-integer model. In the All-integer model, both rebalancing and station variables are

integer. In the Partially-integer model, the station variables are continuous, while the rebalancing

variables are integer.

Since the optimization models with 60 stations and trip distribution constraints (TD1) and

(TD3)+(TD4) cannot be solved within the given time limit, we also carry out experiments with the

30-station network to reliably explore the impact of such constraints coupled with different variable

domains. Specially, we consider two ground truths with 30 stations using the same configurations

as GT1 and GT2 (see Table 6).

The results of the corresponding experiments for GT1 under different trip distribution constraints

are summarized in Table 11. Surprisingly, the All-integer model is more tractable, possibly since

CPLEX is able to more aggressively generate cuts based on the integer variable domains. Under

Constraints (TD1), three of the five instances are solved to optimality within 24 hours. For the

All-continuous and Partially-integer models under Constraints (TD1), none of the instances has
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Table 11 Station-based model with different variable domains and trip distribution constraints for GT1 (30

stations, 2 trucks, 30 mins)

Variable

Domains
Constraints

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)
Opt-sim-gap(%)

Training Set Test Set

Rental Return Rental Return Rental Return

All-

conti-

nuous

(TD1) 262.7 1440 0.18 2.93 1.89 2.93 1.86 0.82 43.73

(TD3)+(TD4) 82.7 19 0.00 6.02 0.87 6.00 0.87 1.62 2.86

None 0.5 <1 0.00 8.96 4.71 8.95 4.73 9.83 11.80

Partially-

integer

(TD1) 263.6 1440 0.33 2.94 1.31 2.95 1.29 0.75 44.11

(TD3)+(TD4) 82.8 50 0.00 5.80 1.48 5.78 1.47 1.96 2.32

None 0.5 <1 0.00 6.72 3.56 6.72 3.56 7.20 7.81

All-

integer

(TD1) 656.5 140 0.08 3.88 4.63 3.89 4.62 30.43 81.39

(TD3)+(TD4) 408.3 <1 0.00 9.23 1.96 9.22 1.96 29.56 29.60

None 380.5 <1 0.00 10.52 7.65 10.50 7.65 24.88 22.36

been solved to optimality within the time limit. However, the MIP gaps are relatively small. As

previously concluded from Table 9, we again observe that Constraints (TD1) provide the lowest

lost demand, and this is consistent for all types of variable domains. In terms of the performance

for different variable domains, even though it is fast to solve, the All-integer model provides the

worst performance, which indicates that restricting station variables to integer values may result in

too conservative trips. The Partially-integer model introduces an improvement and performs best

in most of the cases, especially with constraints (TD3)+(TD4) and (None). The results for similar

experiments using O-D variables can be found in Appendix 4.3 of the online supplement.

5.6. Impact of Event Sequence

Recall that using no particular event sequence, which equals (r+a+d), within the All-continuous

station-based model without trip distribution constraints yields an average rental loss of 8.78% on

the test set of the 60-station network instances (see Table 9). Based on the model (1)–(9) with

continuous variables and the event sequences reviewed in Section 3.2.3, we now analyze the impact

of such event sequences for problem instances on the 60-station network in Table 12.

For all three GTs, sequences (d)(r)(a), (r)(d)(a), and (d)(a)(r) perform best for lost rental and

return with a small opt-sim-gap. Although GT2 instances are hard to solve, these three sequences

still perform well. In contrast, the sequences used in the literature (i.e., (r+a+d), (a)(r)(d), and

(a+d)(r), see Table 2) have performed less well in our experiments. Instead, sequences (d)(r)(a),

(r)(d)(a), and (d)(a)(r) may be a better choice, reducing lost rental by an additional 1%-2%.

Table 13 shows the results of the same experiments for the problem instances on a 30-station

network and 60-minute time-periods. Here, all instances have been solved to optimality and lead

to the same conclusions. Particular sequences help reduce the lost rental. Especially, sequences

(d)(r)(a) and (r)(d)(a) reduce the lost rental to around 7.45% from 9.12% in the test set.

Dynamic Rebalancing Optimization for Bike-sharing Systems: A Modeling Framework and Empirical Comparison

CIRRELT-2022-28 27



Table 12 Station-based model with different sequences of events (60 stations, 4 trucks, 30 mins)

Sequences

of events

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)
Opt-sim-gap(%)

Training Set Test Set

Rental Return Rental Return Rental Return

GT1

(r)(a)(d) 1.0 288 0.00 7.94 5.23 7.91 5.22 8.62 1.39

(a)(d)(r) 3.3 298 0.00 7.66 4.65 7.64 4.63 8.19 11.83

(d)(r)(a) 13.4 1399 0.04 6.04 5.84 6.02 5.81 5.38 9.89

(r)(d)(a) 8.2 1013 0.03 5.63 3.28 5.61 3.26 5.36 6.53

(d)(a)(r) 15.1 879 0.01 6.44 3.48 6.40 3.48 5.70 7.65

(a)(r)(d) 2.0 <1 0.00 7.51 2.79 7.51 2.79 8.12 8.04

(r)(a+d) 0.8 <1 0.00 8.50 6.89 8.49 6.86 9.28 14.12

(a+d)(r) 1.6 <1 0.00 7.44 6.95 7.42 6.92 7.98 12.87

GT2

(r)(a)(d) 246.9 1440 2.35 19.57 21.98 19.57 21.99 15.14 41.38

(a)(d)(r) 295.4 1440 2.32 20.58 20.62 20.59 20.63 14.24 39.82

(d)(r)(a) 302.8 1440 3.22 19.21 21.65 19.22 21.70 8.94 41.28

(r)(d)(a) 280.3 1440 2.94 19.58 20.65 19.60 20.68 11.93 39.47

(d)(a)(r) 318.8 1440 3.12 19.22 19.70 19.23 19.74 8.57 36.62

(a)(r)(d) 259.6 1440 1.91 19.45 21.86 19.45 21.89 15.08 39.42

(r)(a+d) 236.7 1440 2.39 19.41 22.57 19.41 22.60 15.27 42.86

(a+d)(r) 285.0 1440 2.24 19.86 19.65 19.87 19.70 13.46 38.00

GT3

(r)(a)(d) 3.2 288 0.00 8.04 3.61 8.05 3.61 8.71 9.35

(a)(d)(r) 1.9 864 0.49 8.31 5.09 8.33 5.11 8.98 11.55

(d)(r)(a) 17.5 1440 0.16 6.74 5.50 6.75 5.51 5.88 10.14

(r)(d)(a) 11.9 1440 0.08 6.39 3.78 6.39 3.79 5.93 7.77

(d)(a)(r) 20.0 1341 0.13 6.38 3.77 6.38 3.77 5.26 7.74

(a)(r)(d) 3.8 <1 0.00 7.87 1.95 7.87 1.93 8.50 7.25

(r)(a+d) 0.7 <1 0.00 8.40 3.29 8.40 3.29 9.15 9.63

(a+d)(r) 1.9 576 0.03 7.97 3.67 7.98 3.66 8.53 9.56

Table 13 Station-based model with different sequences of events (30 stations, 2 trucks, 60 mins)

Sequences

of events

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)
Opt-sim-gap(%)

Training Set Test Set

Rental Return Rental Return Rental Return

GT1

(r)(a)(d) 10.4 <1 0.00 8.96 2.10 8.95 2.09 8.83 7.94

(a)(d)(r) 15.0 <1 0.00 9.39 1.36 9.38 1.37 8.47 7.63

(d)(r)(a) 37.7 <1 0.00 7.46 1.23 7.43 1.23 1.22 6.01

(r)(d)(a) 33.1 <1 0.00 7.48 1.11 7.45 1.10 1.93 6.10

(d)(a)(r) 42.1 <1 0.00 7.90 1.80 7.89 1.81 1.04 7.00

(a)(r)(d) 11.3 <1 0.00 8.64 1.91 8.62 1.92 8.29 7.34

(r)(a+d) 5.3 <1 0.00 9.83 2.08 9.81 2.08 9.89 9.94

(a+d)(r) 9.8 <1 0.00 9.57 2.46 9.53 2.48 8.72 10.05

(r+a+d) 5.3 <1 0.00 9.15 2.56 9.12 2.55 9.07 9.76
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Table 14 Station-based model with (TD1) and sequences of events (30 stations, 2 trucks, 60 mins, GT1)

Sequences

of events

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)
Opt-sim-gap(%)

Training Set Test Set

Rental Return Rental Return Rental Return

All-

continuous

(r)(d)(a) 499.4 22.9 0.00 6.62 4.09 6.62 4.09 14.36 65.34

(d)(a)(r) 515.1 7 0.00 6.78 5.67 6.78 5.66 16.50 65.35

(a+d)(r) 503.4 6 0.00 7.10 5.14 7.10 5.14 14.33 65.12

(r+a+d) 485.5 237.16 0.00 6.32 3.87 6.32 3.87 12.37 65.22

Partially-

integer

(r)(d)(a) 500.1 18 0.00 6.71 3.22 6.72 3.22 14.41 65.62

(d)(a)(r) 515.6 5 0.00 6.73 6.33 6.73 6.32 16.69 65.08

(a+d)(r) 504.1 7 0.00 6.97 6.59 6.97 6.59 14.57 64.65

(r+a+d) 485.9 440.67 0.00 6.65 3.74 6.64 3.74 12.15 65.13

In Section 5.4, we have concluded that it is beneficial to use trip distribution constraints (TD1)

when no particular event sequence is used. The results discussed above suggest that it is beneficial

to use a specific event sequence, such as (r)(d)(a) when no trip distribution constraints are used. We

now explore the combination of those two modeling assumptions and further backtest on different

variable domains. To this end, Table 14 summarizes the results for GT1 problem instances on

the 30-station network using trip distribution constraints (TD1) and various event sequences for

All-continuous and Partially-integer variable domains. The models for both variable domains seem

to perform similarly well in terms of lost rentals, while the All-continuous models tend to be solved

faster. When comparing with the results in Table 13, the introduction of Constraints (TD1) further

decreases the lost rental for any of the event sequences.

However, the improvement for (r+a+d) is the highest, indicating that using Constraints (TD1)

without any specific event sequence may be the best option if the longer computing time is accept-

able.

Operators may therefore opt for event sequence (r)(d)(a) with all-continuous variables without

trip distribution constraints if a quick solution is required, or Constraints (TD1) without a specific

event sequence if higher computing times can be tolerated.

6. Conclusions

In this paper, we aim at disentangling and structuring the various modeling assumptions and

constraints used in the literature on BSS rebalancing optimization. To this end, we first surveyed

the literature according to its used modeling techniques and assumptions. We then introduced a

modeling framework, rooted in a basic model, and showed how to adapt this model to the various

modeling assumptions.

We evaluated the performance of the planned solutions induced from the different model variants

as realistically as possible. Specifically, we generated different ground truths which propose BSS
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networks and trip patterns that match historically observed trip patterns at BIXI Montreal. We

then developed a fine-grained discrete-event simulator that simulates the movement of the trucks,

the rebalancing operations, as well as bike rentals and returns on a minute-to-minute basis.

6.1. Summary Recommendation

Based on these simulations results on a large set of test instances, we focused on two performance

measures to analyze the appropriateness of the various modeling assumptions: the lost rental

and return demand observed throughout the simulation, and the sim-opt-gap that indicates the

deviation between the lost demand observed as estimated by the optimization model and by the

simulator.

Extensive numerical experiments on problem instances with networks including 30 and 60 sta-

tions and three different ground truths were carried out. Based on these results, our principal

conclusions can be summarized as follows:

(i) Adding dynamic rebalancing to static rebalancing reduces the lost rental demand by an

additional 2% (e.g. from 10.43% to 8.79% in Table 7).

(ii) Using station-based trip variables instead of more detailed trip variables based on origin-

destination pairs generally appears to be competitive and results in faster solution times.

(iii) Shorter time-periods tend to allow for planning more rebalancing operations but may require

time constraints to ensure that the resulting rebalancing is time-feasible in practice.

(iv) Trip distribution constraints, especially (TD1), reflect more realistically the trip flow

observed in practice and may strongly improve the lost demand (e.g. from 8.78% to 3.65% in

Table 9); further, the best performing trip distribution constraints are not necessarily those used

in the literature.

(v) Using integer variables exclusively for truck routes, while keeping all other variables continu-

ous (even the pick-up and drop-off decisions in the rebalancing operations) generally approximates

reality sufficiently well; in some specific cases, it is beneficial to impose integrality on the rebal-

ancing variables, while it does not seem beneficial to use integer variables for all decisions that, in

reality, would be integer decisions.

(vi) Exploring the various sequences in which bike rentals, bike returns, and rebalancing oper-

ations may occur yields interesting conclusions. In particular, event sequences that have not been

studied in the existing literature perform particularly well and tend to reduce lost rental by an

additional 2% - 3% ( see Table 12 and 13). Not using any specific event sequence coupled with our

proposed trip distribution constraints (TD1) provides the lowest lost rental, but requires higher

solution times. Using a combination of these trip distribution constraints with one of the newly pro-

posed event sequences provides a competitive lost demand, while also requiring shorter computing

times (see Table 14).
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Table 15 Summary of configurations with good performance

Variables
Time
Period

Time
Constraints

Trip
Distribution

Variable
Domain

Event of
Sequences

Infinite Resources Station-based 30 mins ✓ (TD1)
All-
continuous

(r+a+d)

Limited Resources
(Small BSS)

O-D 30 mins - (TD7)
Partially-
integer

(r+a+d)

Limited Resources
(Medium BSS)

Station-based 30 mins - -
All-
continuous

(r)(d)(a)

According to the conclusions we draw from the experimental results, we highlight three sets

of configurations in Table 15. With unrestricted resources for computing time and memory, we

would recommend applying trip distribution constraints with a short time-period. When computing

resources are limited and quick decisions are required, we recommend two sets of configurations

for small-scale BSSs (e.g. 30 stations) and medium-scale BSSs (e.g. 60 stations). Note that we

have used a time limit of 24h in order to be capable of solving the models to optimality, allowing

us to draw conclusions on their degree of realism and potential performance in practice. Solving

models multiple times throughout the day (albeit over a smaller time horizon) in sufficiently short

computing times may require the use of parallel computing, specialized solution methods (e.g.

mathematical decomposition), or a combination of both.

6.2. Future Work

Having explored the different modeling assumptions and techniques both from a methodological and

empirical standpoint, this work aimed at shedding light on the modeling jungle and guiding both

practitioners and academics in future research in the area of multi-period rebalancing optimization.

It is worth noting that concepts such as the sequences of events are specific to BSSs rebalancing

problems and cannot be found in most of the related classical optimization problems, such as the

Pickup-and-Delivery Problem (PDP). However, our general evaluation framework may be easily

applied to test different modeling assumptions for similar problems.

Certain future research directions may be particularly worthwhile. First, while we have identified

the models that are likely to provide well-performing planning solutions, solving those models in

real-time throughout the day may be challenging; therefore, decomposition algorithms may be

employed to speed up the solution time. Second, the proposed models minimize total lost demand.

Certain BSS operators consider target intervals, which may be interesting to consider within the

objective function. Finally, our optimization model is deterministic, using expected values over

a training set as an input. Models explicitly modeling the underlying uncertainty and demand

probability distribution may be explored for the model variants here concluded to be the most

realistic ones.
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Appendix

1. Objective Functions used in the Literature

Even though we do not empirically compare different objective functions, for the sake of completeness,

we here review the objectives used in the literature. We summarize the various objectives in Table 16,

classifying the measurements into several main aspects and marking with ’✓’ when the objective function

of the corresponding reference contains a particular aspect. We also emphasize the modeling techniques the

analyzed papers used to respect the rebalancing problem, mainly including Linear Programming (LP), MILP,

Mixed-integer Nonlinear Programming (MINLP), Constraint Programming (CP), Neural Networks (NN),

and Markov Decision Process (MDP). Some models may be non-linear since they have non-linear terms in

the objective function or in some constraints.

Concerning the criterion used within the objective function, distance-based metrics are associated with the

traveling distance of vehicles, mainly including traveling cost, traveling time, and fuel consumption. Loading-

based metrics are associated with the number of handling (loading/unloading) operations. Researchers nor-

mally consider handling costs or time in the objective functions, which reflects the required workload of such

operations. Two metrics aim at representing the dissatisfaction of customers: one minimizes the deviations

from a target value, while another minimizes the lost demand (or, equivalently, maximizes the successful

trips). Besides these popular metrics, some other factors have been considered, such as the cost of holding

bikes by the rebalancing vehicles, parking costs, CO2 emissions, costs of using trucks (related to the num-

ber of trucks employed), and the number of visits of full vehicle loads. For example, Erdoğan et al. (2014)

consider the number of bikes held by the trucks during each rebalancing movement and included the total

holding cost in the objective function. Arabzad et al. (2018) add to the objective the usage cost of employing

each truck for rebalancing. Espegren et al. (2016) add to the objective a parking time for each station visit

using the instances from an operator in Norway. Kloimüllner and Raidl (2017) consider only full rebalancing

vehicle loads among stations and maximize the total number of full vehicle loads picked up and delivered to

the stations, which is indicated as the number of visits in Table 16.
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ğa

n
et

al
.
(2
01

5)
✓

M
IL
P

E
sp
eg
re
n
et

al
.
(2
01

6)
✓

✓
✓

✓
M
IL
P

F
or
m
a
et

al
.
(2
01

5)
✓

✓
M
IL
P

K
lo
im

ü
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Given that SBRP mainly focus on night-time operation scenarios, where the dynamic demand is less

important, their objectives mainly aim at minimizing the costs of the rebalancing operations based on trav-

eling distance, the number of loading/unloading operations, and deviations from pre-defined target numbers

of bikes (see Table 16. Note that some works exclude the deviation from target values or satisfied demand

from the objectives, but implement particular constraints to guarantee the satisfaction of user demand to

some degree (Chemla et al. 2013, Dell’Amico et al. 2014, Schuijbroek et al. 2017, et al.).

In DBRP, rebalancing operations are performed multiple times during the day and real-time trip flow is

considered when rebalancing takes place. Due to the more complex nature of DBRP, their objectives tend to

include more aspects considered by operators, especially concerning the demand unsatisfaction. Generally,

the existing objective functions quantify the distance-based metrics and customers’ satisfaction, including the

traveling cost, handling cost, and lost demand. Some focus on maximizing the profits of successful trips (e.g.,

Ghosh et al. 2015, 2017). Mellou and Jaillet (2019) consider jointly traveling cost and handling operations,

which adds immediate value to the rebalancing. Among the studies considering more than one aspect in

their objective functions, Kloimüllner et al. (2014) and Mellou and Jaillet (2019) attribute a weight to each

of them.

2. Generation of Problem Instances

In this appendix, we provide more details on the generator for the synthetic problem instances.

2.1. Station Network and Operating Settings

We first generate the station network. The parameters are defined in Table 17. We consider a rectangular

study area defined by the latitude and longitude values for each of its 4 vertices. This area is divided into

a total of num grid grids, each of which can be assigned to at most one station. In our studies, we use a

rectangular study area with 150× 150 grids (i.e., num grid= 22500) with latitude values from 45.4 to 45.65

and longitude values from -73.71 to -73.49 (approximating the Montreal island area). The total number of

stations, the number of city centers, and the total capacity of the station network can be set and changed

according to what kind of instances we focus on.

We assume that there are either one or two city centers in the study area, including stations that have

high return demands during morning peak hours and high rental demands during afternoon peak hours. If

there is only one city center, its central grid is randomly selected within a square spanning grids 53 to 98

on both the x- and the y-axis of the study area. If there are two city centers, one central grid is selected

randomly within the square spanning grids from 30 to 75, and the other one within the square spanning

grids from 75 to 120 on both the x- and the y-axis of the study area. Each city center is then defined as an

area of ran cc× ran cc grids around its central grid.

Each station network has a total of num station stations (set either to 30 or 60). Regular stations are

assumed to have a capacity of cap os= 20 docks. Given that city center stations typically have a much larger

capacity, we here assume a capacity of cap cs= 40 docks for each city center station. We consider that the

total capacity of all the stations (i.e., the number of docks in the entire network) is roughly proportional to

the total number of stations num station, as observed within the network of BIXI Montreal which had a
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Table 17 The input and output of station generation

Input

Study area:
minimum longitude and latitude, maximum longitude and latitude
num grid: the number of grids
num station: total number of stations
num cc: the number of city centers
total c: the total capacity of all the stations
ran cc: the range of city centers (in number of grids)
per cc: the proportion of the total network capacity located within city centers
cap cs: capacity of a city center station
cap os: capacity of a regular station

Output
Locations of stations
Distances between station pairs
Number of city center stations
Number of regular stations

total capacity of 14,078 with 617 stations in 2019. Therefore, we set the total capacity total c to 1,369 for 60

station networks and 685 for 30 station networks. Note that total c will be used only to compute the number

of regular and city center stations. The number of city center stations is set to ⌊total c× per cc/cap cs⌉

(where per cc is defined in Table 6 for each of the ground truths). The remaining stations are assumed to be

regular (i.e., out of the city center) stations. We then randomly assign stations to the grids as follows:

• City center stations: We randomly select grids inside the city center area as locations for city center

stations. We show an example with 60 stations and two city centers in Figure 4. The dotted boxes are the

range of city centers and the blue dots are the city center stations.

• Regular stations: The remaining stations will be randomly assigned to the grids outside the city center

areas, indicated as green dots in Figure 4.

Once the locations of stations are fixed, we compute the distance between each station pair.

Table 18 The settings of BSSs and rebalancing fleet

n bikes the total number of bikes in the stations
n trucks the number of trucks available for rebalancing
cap truck the capacity of each truck
n bikeT the total availble number of bikes for rebalancing trucks at the beginning

For the operating settings, we define the parameters in Table 18.

Finally, the total number of available bikes in the system, n bikes, is 608, which is proportional to those

observed at BIXI Montreal in 2019. We assume that 4 trucks (n trucks) are available to rebalance the bikes.

The capacity of each truck, cap truck, is set to 40 and the number of available bikes for trucks to employ,

n bikeT , is set to 80.

2.2. Bike Trips

Based on the generated station information, we generate the trip data. Analyzing the trip data from BIXI,

we found that the demand has a similar pattern on weekdays with a morning peak and an afternoon peak
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Figure 4 Visualization of station network used by GT3 with 2 city centers, indicating regular stations (green

dots), city center stations (blue dots), and the city center central grid (red rectangle). Note that each

grid has a rectangular form.

that are mainly caused by work-related trips. At weekends, there is less regularity and trips seem more

random. We therefore here focus on weekdays only. To provide adequate but diverse problem instances and

to fully explore the impacts, we generate trips based on real-world data with adaptable parameters, instead

of directly applying real-world data.

Parameters to define trip demands. The parameters used for the trip generation are defined in

Table 19. Each trip contains an origin station, a destination station, a departure time, and an arrival time.

We set an average total number of trips avg trips per weekday, which can be estimated from historical trip

data in real BSSs. Note that per io+ per oo+ per rd+ per rn= 100. After having the fixed number of trips

of different types, we generate the trip data according to their characteristics. We assume that the departure

time of each trip type follows a particular distribution (Dis), specifying the probability that a trip starts at

a specific time. This allows us to model demand changes throughout the day while preserving uncertainty.

Table 19 The input and output of trips generation

Input

avg trip: The average number of trips per weekday
per oi: The percentage of OI trips
per oo: The percentage of OO trips
per rd: The percentage of RD trips
per rn: The percentage of RN trips
per w: The percentage of work-related trips (OI and OO) expected to happen
Dis: The set of distributions for different types of trips
dur trip: The interval for the length of trips

Output All trips with origin stations, destination stations, departure time and arrival time

The rules for trip generation are as follows:
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• RD and RN trips We choose the origin station and destination station randomly among all stations for

each random trip. The departure time is sampled from the corresponding distribution (one distribution for

RD trips and one for RN trips). The duration of the trip is selected from the interval dur trip at uniformly

random, allowing us to also compute the arrival time for this trip. RD and RN trips are assumed to be

one-way without any corresponding returns, as opposed to work-related trips. We repeat this process to

obtain all required trips for each day. The total number of RD and RN trips will be avg trips ∗ per rd and

avg trips ∗ per rn for each weekday.

• OI trips and OO trips Work-related trips normally have stable O-D pairs that include one trip from

home to work and another one back to home with the same origin/destination stations. For each O-D pair,

we first generate one trip from home to work. The stations are selected randomly according to the type of

trips. For example, the origin station of an OI trip is selected randomly among the stations outside city

centers and the destination station is chosen from city center stations. Then, a corresponding return trip is

generated with origin and destination stations reversed. The process is the same for OO trips, except that

both of the origin and destination stations need to be selected among the stations outside city centers. The

departure time obeys the assumed distribution. Differently from random trips, work-related trips happen

during morning peak hours and afternoon peak hours. Thus, we use two different distributions for OI trips

and two distributions for OO trips to imitate the two peaks. Using the departure time under the particular

distribution and duration dur trip, the arrival time is computed.

Random trips RD and RN may vary a lot from one day to another, so we generate them from scratch

for each weekday. However, work-related trips have distinctive characteristics. They do not vary too much

since users tend to commute between the same O-D pairs. Nevertheless, the demand for each weekday may

change slightly because users may choose alternative means of transportation or not go to work for some

personal reason on certain days. Thus, we consider an additional processing step for work-related trips. We

generate a total of avg trips ∗ per oi OI and avg trips ∗ per oo OO trips that form a work-related trip set

and we fix this set for all weekdays of a given problem instance. We then consider a probability per w that a

person is actually taking the bike for a route. For each day, the final demand for work-related trips is based

on this fixed set. We then uniformly sample a random value between 0 to 1 for each work-related trip in the

set. If the value is smaller than or equal to per w, we select the corresponding trip with its rental and return

demand. The actual number of work-related trips OI and OO at each weekday will slightly vary, but will

average to about avg trips ∗ per oi ∗ per w and avg trip ∗ per oo ∗ per w, respectively.

Parameter values to generate trips. Since BIXI has a total number of around 33,300 trips per weekday

on a 617 stations network, we set avg trip to 3,240 for our 60 station network. The probability per w for

work-related trips is set to 0.85, which means that a user has an 85% chance to choose the bike and its

demand is generated. We assume that the duration of each trip is within [5,30] minutes (dur trip).

We now describe the settings of the distributions in Dis. We illustrate the weekday average demand

of one week at BIXI Montreal from July 2019 in Figure 5(a). An example of generated synthetic data is

demonstrated in Figure 5(b)–(f), averaging over 500 days for 24 hours discretized into 48 time-periods. Since

our work mainly focuses on rebalancing optimization, we use Beta distributions and linear transformations
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Figure 5 Demand Information for 500 days in 24 hours (48 time-periods)

to fit our demand curve to the one of BIXI. We apply two Beta distributions (α= 3, β = 8) for the departure

time of OI trips in morning peak hours and afternoon peak hours. The random value x generated by the

Beta distribution is shifted into departure time using a linear transformation ax+ b. For example, we set

a= 530 and b= 340 for the OI trips during the morning hours to shift random numbers into the interval

of [340, 870] minutes. After transformation, we obtain Figure 5(c) with two peaks representing the morning

and evening rush hours. Similarly, two Beta distributions (α = 3, β = 7) with a = 550 and b = 900 for OO

trips are employed, as shown in Figure 5(d).

For RD trips happening around 10 a.m. - 9 p.m., we use a Beta distribution (α= 3, β = 7) with a= 900

and b = 560, as illustrated in Figure 5(e). A Beta distributions (α = 6, β = 8) with a = 1200 and b = 750

is shifted to represent RN trips, mainly during 4 p.m. - 5 a.m., as depicted in Figure 5(f). Summing the

demand of the four trip types, Figure 5(b) illustrates the total average demand over 500 days.
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2.3. Ground Truths for Experiments

To test the models under different station environments and trip patterns, we generate 3 ground truths

(named GT1, GT2, and GT3) based on the above-explained settings of parameters. Some of the parameters

have the same values in the three ground truths, namely:

• num grid: 150x150

• num station: 60

• n trucks: 4

• cap truck :40

• n bikeT : 80

• avg trip: 3630

• per w: 85%.

The parameters specified for each of the ground truths are defined in Table 6 in Section 5.1.

3. Pseudo-Code for the Simulator

The pseudo-code for our simulator is given in Algorithm 1. The initial inventory of each station d0s and each

truck d0v are given as inputs, along with the capacity for each station Cs and each truck Ĉv. Rebalancing

strategies r pick(s, t, v) and r drop(s, t, v) are obtained from the optimization model. Trip sequence N is

composed of individual trips {[td(n), sd(n), ta(n), sa(n)], n ∈N}, including rental and return demands with

td(n) ascending. For a trip n, td(n) is the time of departure, sd(n) is the departure station, ta(n) is the arriving

time, and sa(n) is the arrival station. A waiting set of M events W = {[wt(m),ws(m),wi(m),wv(m)],m∈M}

stores the upcoming demands and rebalancing operations. The elements of W change with real-time system

status. Each element w ∈W has an indicator wi(m) that either represents a rental demand (wi(m) = d), a

return demand (wi(m) = a), a pick-up operation (wi(m) = p), or a drop-off operation (wi(m) = f). Moreover,

wt(m) is the departure time of the event, ws(m) is the station, and wv(m) is the truck. Note that the value

of wv(m) has no impact on demand events and is set to 0. The waiting set will be sorted in non-decreasing

order of wt(m) and its first element is the event that will be processed next. Parameter Ds,s′ represents the

distance between two stations s and s′. The transit time (in minutes) between two stations during time-

period t is given by Rt
s,s′ and the average operation time for picking up or dropping off one bike is given by

op.

We denote the inventory of the station s as Avails bike(s) and the inventory of the vehicle v as

Availv bike(v). The lost demand during a period t for a station s will be counted in Lost rental(t, s) and

Lost return(t, s) respectively. We first initialize W with all rental demands from N with wi = d and wv = 0.

The corresponding returns of successful rentals and rebalancing events are created and added to W in

simulated real-time. For each truck and time-period, we create r pick(s, t, v)/r drop(s, t, v) consecutive events

with (wi = p or wi = f respectively). Rebalancing starts as soon as the truck arrives at the station, but

not before the first minute associated to time-period t. A truck leaves for the next station as soon as it

finishes the rebalancing operations at the current station. If the truck reaches the next station before the

end of the current time-period, it waits until the beginning of the next time-period before starting the

rebalancing operations. Since rebalancing and relocation may be scheduled continuously one after another,

some rebalancing operations may be delayed due to the previous operations.
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Algorithm 1: Simulator for the rebalancing strategy r pick(s, t) and r drop(s, t)

Input : {[td(n), sd(n), ta(n), sa(n)], n∈N}, Ds,s′ , r pick(s, t), r drop(s, t), d0s, d
0
v, Cs,

Ĉv, R
t
s,s′ , and op. T is the planning horizon.

Initialization: Lost rental(t, s) = 0; Lost return(t, s) = 0; Avails bike(s) = d0s;
Availv bike(v) = d0v; W = {[wt(m),ws(m),wi(m),wv(m)],m∈M} with all
the rental demands from N and the operation events of the first time-period
sorted; time=wt(1); s=ws(1); indicator=wi(1); and v=wv(1).

1 n= 1;
2 while time≤ T and W ̸= ∅ do
3 Find corresponding time-period t based on time;
4 sign= 0;
5 if indicator= d then
6 if Avails bike(s)> 0 then
7 Avails bike(s) =Avails bike(s)− 1;
8 W =W ∪{[ta(n), sa(n), a,0]};
9 else

10 Lost rental(t, s) =Lost rental(t, s)+ 1;
11 n= n+1;
12 else if indicator= a then
13 if Cs −Avails bike(s)> 0 then
14 Avails bike(s) =Avails bike(s)+ 1;
15 else
16 Lost return(t, s) =Lost return(t, s)+ 1;
17 Find s′ closest to s with available docks based on Ds,s′ ;
18 Avails bike(s′) =Avails bike(s′)+ 1;
19 else if indicator= p then

20 if Avails bike(s)> 0 and Availv bike(v)< Ĉv then
21 Avails bike(s) =Avails bike(s)− 1;
22 Availv bike(v) =Availv bike(v)+ 1;
23 if All the rebalancing operations are done for s then
24 sign= 1;
25 else
26 Remove the elements in W whose ws = s,wi = p,wv = v;
27 sign= 1;
28 else
29 if Availv bike(v)> 0 and Avails bike(s)<Cs then
30 Avails bike(s) =Avails bike(s)+ 1;
31 Availv bike(v) =Availv bike(v)− 1;
32 if All the rebalancing operations are done for s then
33 sign= 1;
34 else
35 Remove the elements in W whose ws = s,wi = f,wv = v;
36 sign= 1;
37 if sign= 1 then
38 Create W ′ of v for t+1 based on Rt

s,s′ , and op;
39 W =W ∪W ′;
40 W =W\{[time, s, indicator, v]};
41 time, s, indicator, v=wt(m),ws(m),wi(m),wv(m) where wt(m) is the minimum in W ;
42 end

Output : Lost rental(t, s) and Lost return(t, s)
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As in reality, the simulator processes the events in W in chronological order. When a rental demand occurs

and the station holds at least one available bike, we update the station inventory and add the corresponding

return demand to the waiting set W . Otherwise, the customer is assumed to leave the system and a lost

rental demand is counted. When a return demand occurs but the station has no available docks, we assume

that the customer returns the bike at the nearest station with available docks. However, a lost return demand

will be counted. For pick-up/drop-off rebalancing operation events, we verify whether sufficient bikes/docks

at the station and space/bikes within the truck are available. Rebalancing is carried out as close as possible

to the originally planned operations. The inventories of the station and the truck are updated accordingly.

After partially/fully successive rebalancing, the truck departs for the next station.

4. Complimentary Experiments

4.1. Initial Settings for Vehicles

In our basic model, the initial location and inventory of each vehicle are fixed. The fixed initial locations

are at stations 1, 16, 31, and 46. Each truck has the same amount of bikes, i.e., 20 bikes. However, the

operator may have the possibility and desire to specify an initial location and inventory for the trucks. To

this end, Constraints (33) and (34) are created. Constraint (33) implies that the number of vehicles located

at specific stations at the first time-period is equal to the number of vehicles num v in the system, which,

along with the Constraints (4), means that the trucks can be assigned to any station at the beginning of

rebalancing. Constraint (34) indicates that the total number of bikes in all vehicles equals the total number

of bikes av bike initially available in vehicles. Here, av bike is set to 80, while the inventory at each vehicle

is optimized.

∑
s,v

z1s,v = num v (33)∑
v

d̂1v = av bike (34)

Note that, if we need to consider a central depot in our system, this depot can be represented as an

additional station with a particular capacity in our optimization model.

For experiments, we consider 30-minute time-periods in the station-based model without trip distribution

constraints. Table 20 summaries the results for 3 Ground truths. Compared to the initial inventory, the

initial location has obvious impacts on lost demand for dynamic rebalancing. The case with fixed initial

inventory and flexible location has the best performance for lost rentals. The results highlight that the initial

location of the trucks is important, assuming that each truck holds sufficient bikes. For GT2 with too many

work-related trips, the models are hard to be solved to optimality. The trip demand is highly concentrated

during the peak hours, which makes MIP gaps hard to reach 0.01%. Under these MIP gaps, the system can

still benefit from the flexibility of initial locations.

When the BSSs network is small, a fixed initial setting is easier for the operators with an acceptable

performance since no adjustment is needed for trucks before the beginning of dynamic rebalancing. However,
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Table 20 Station-based Model with different initial vehicle settings (60 stations, 80 available bikes for 4 trucks,

30 mins)

Initial

Location

Initial

Inventory

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)

Training Set Test Set

Rental Return Rental Return

GT1

Fixed Fixed 0.8 <1 0.00 8.79 8.02 8.78 7.99

Fixed Flexible 0.8 <1 0.00 8.41 8.10 8.39 8.07

Flexible Fixed 0.1 <1 0.00 8.28 5.90 8.26 5.89

Flexible Flexible 0.1 <1 0.00 8.33 5.62 8.30 5.60

GT2

Fixed Fixed 179.1 1440 2.46 20.32 21.63 20.33 21.67

Fixed Flexible 177.1 1440 2.33 19.96 20.83 19.89 20.86

Flexible Fixed 162.1 1440 2.52 17.46 16.61 17.46 16.66

Flexible Flexible 161.3 1440 2.37 17.79 17.17 17.78 17.19

GT3

Fixed Fixed 0.5 <1 0.00 9.45 1.79 9.46 1.78

Fixed Flexible 0.5 <1 0.00 9.58 2.37 9.59 2.37

Flexible Fixed 0.2 <1 0.00 8.50 1.94 8.50 1.93

Flexible Flexible 0.1 <1 0.00 8.91 1.59 8.92 1.58

if the station network is complex, the flexible initial setting may be beneficial to obtain a better performance

of lost demand.

A similar conclusion is observed in Table 21 for the O-D variable model. The flexible initial location and

fixed inventory give the best performance for GT1 and GT2. For GT3, the flexible location and flexible

inventory obtains the best results. Since there are more city center stations in GT3 and the network is more

complex, the flexibility of the rebalancing fleet has more advantages over the fixed one. In general, O-D

variables seem to work better than the station-based trip variables for GT1 and GT2 with only one city

center.

4.2. Time Constraints and Time Discretization

We now explore the impacts of time constraints and time-period length for the O-D variable model.

The results for the model with O-D variables are summarized in Table 22. The conclusion is similar to

the station-based trip variable model. However, when time constraints are applied, the running times for the

models are much longer and the experiments for GT3 run out of memory.

We also carry out the same experiments on a 30 stations network. The results for them are shown in

Table 23. Given that most of the stations can be reached within 30 minutes, time constraints are less effective.

Compared to Table 8, a short time-period and time constraints are a good combination to guarantee enough

rebalancing operations and timely arrivals for a larger studying area. However, for small-scale BSSs, like 30

densely distributed stations, it is not worth applying time constraints, resulting in a marginal improvement

and a long optimization time.

4.3. Trip Distribution and Variables Domains for O-D Model

We finally present the results for trip distribution constraints with different variable domains for the O-D

model in Table 24. Two instances out of five cannot be solved in the All-continuous model within 24 hours
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Table 21 O-D model with different initial settings (60 stations, 80 available bikes for 4 trucks, 30 mins)

Initial

Location

Initial

Inventory

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)

Training Set Test Set

Rental Return Rental Return

GT1

Fixed Fixed 52.8 <1 0.00 8.02 6.00 7.98 5.97

Fixed Flexible 52.8 <1 0.00 8.33 8.43 8.31 8.40

Flexible Fixed 52.4 <1 0.00 7.74 4.79 7.73 4.76

Flexible Flexible 52.5 <1 0.00 8.40 7.71 8.38 7.68

GT2

Fixed Fixed 227.2 1440 2.44 19.79 21.28 19.79 21.33

Fixed Flexible 223.2 1440 2.53 19.90 21.17 19.92 21.19

Flexible Fixed 207.5 1440 2.74 16.17 18.69 16.00 18.72

Flexible Flexible 208.6 1440 2.64 17.07 18.30 17.08 18.32

GT3

Fixed Fixed 51.5 288 0.00 9.93 2.28 9.95 2.27

Fixed Flexible 51.6 289 0.00 9.80 2.35 9.82 2.35

Flexible Fixed 50.9 <1 0.00 9.35 2.08 9.36 2.07

Flexible Flexible 50.8 <1 0.00 9.32 2.04 9.33 2.02

Table 22 O-D model with/without time constraints in 30/60 mins (60 stations, 4 trucks)

Time

Period

(mins)

Time

Cons-

traints

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)
Opt-sim-gap(%)

Training Set Test Set

Rental Return Rental Return Rental Return

GT1

30 No 52.8 <1 0.00 8.02 6.00 7.98 5.97 5.03 11.73

30 Yes 53.0 465 0.00 7.96 6.45 7.95 6.43 4.95 12.18

60 No 71.9 1440 0.09 8.42 4.77 8.40 4.74 4.69 9.94

60 Yes 71.9 1440 0.10 8.47 4.06 8.44 4.03 4.75 9.17

GT2

30 No 227.2 1440 2.44 19.79 21.28 19.79 21.33 13.89 44.67

30 Yes 328.0 1440 6.05 20.58 21.18 20.85 21.22 10.60 40.32

60 No 494.3 1440 3.44 22.51 21.67 22.52 21.69 5.70 34.94

60 Yes 496.0 1440 3.88 22.49 20.58 22.50 20.61 5.57 32.92

Table 23 Station-based variable model with/without time constraints in 30/60 mins (30 stations, 2 trucks)

Time

Period

(mins)

Time

Cons-

traints

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)
Opt-sim-gap(%)

Training Set Test Set

Rental Return Rental Return Rental Return

GT1

30 No 0.5 <1 0.00 8.96 4.71 8.95 4.73 9.83 11.80

30 Yes 0.5 <1 0.00 8.90 4.24 8.90 4.21 9.76 11.17

60 No 5.3 <1 0.00 9.15 2.56 9.12 2.55 9.07 9.76

60 Yes 5.3 <1 0.00 8.97 1.34 8.93 1.35 8.85 2.03

GT2

30 No 23.4 5 0.00 12.24 8.08 12.30 8.11 9.80 22.13

30 Yes 42.3 1440 1.00 11.32 3.78 11.37 3.79 7.31 13.40

60 No 116.8 <1 0.00 16.22 11.37 16.23 11.40 9.22 19.53

60 Yes 116.8 <1 0.00 16.21 11.21 16.22 11.23 9.21 19.31
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under constraints (TD7) for both the All-continuous model and the Partially-integer model. The Partially-

integer model outperforms the All-continuous model with an obvious improvement on lost demand with or

without (TD7). Since the MIP gap is really close to 0.01%, we can conclude that trip distribution constraints

(TD7) give the best performance. The All-integer model for O-D variables is not considered here since its

integer requirement for trip variables xt,t′

s,s′ are too strict.

Table 24 O-D model with Different variable domains and trip distribution constraints for GT1 (30 stations, 2

trucks, 30 mins)

Variable

Domain
Const-

raints

O.F.

Value

Time

(mins)

MIP

Gap

(%)

Lost Demand(%)
Opt-sim-gap(%)

Training Set Test Set

Rental Return Rental Return Rental Return

All-

continuous

(TD7) 23.0 585 0.03 8.37 4.11 8.37 4.11 5.37 9.89

None 22.7 288 0.00 10.07 4.61 10.07 4.60 7.39 12.58

Partially-

integer

(TD7) 23.0 864 0.03 4.14 1.41 4.12 1.40 0.72 2.16

None 22.7 288 0.00 7.24 4.41 7.26 4.40 4.12 8.92
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