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Abstract. This paper addresses the integrated load planning and sequencing problem 

(LPSP) for double-stack trains. This decision problem occurs in intermodal terminals and 

consists in assigning containers from a storage area to slots on railcars of outbound trains 

and in determining the loading sequence of the handling equipment. Even though this a 

relevant operational problem, it has seen no attention in the operations research literature 

so far. Prior models either focus on single-stack railcars or treat the load planning and 

sequencing separately. By extending prior work on load planning, we propose four integer 

linear programming formulations differing in the number of constraints and variables. An 

extensive numerical study identifies two formulations that perform best in our setting with 

respect to the number of optimal solutions found in a given time limit and average solution 

time. With these formulations, we solve instances with up to 50 containers with a commercial 

general-purpose solver in less than 20 minutes. A case study based on real data provided 

by the Canadian National Railway Company highlights that the LPSP can reduce the 

number of container handlings in intermodal terminals compared to sequential solutions by 

on average 11.3% and 16.5% for gantry cranes and reach stackers, respectively.  
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1 Introduction

Intermodal transportation plays an important role in global supply chains and is a growing market.
In this context, load units are transported from origin to destination using at least two different
modes of transportation. When the long-haul leg of ground transportation is carried out by rail,
the load units – usually in the form of standardized containers – must be transferred from one
transportation mode to another. This takes place in intermodal rail terminals, which are important
to the efficiency of the overall transport chain.

In these terminals, containers are temporarily piled in stacks awaiting to be loaded onto out-
bound railcars. Even though containers are standardized load units, they come in different types
and have individual characteristics, such as weight. Similarly, there exists a variety of railcar types,
each characterized, e.g., by the number of platforms, the length of the platforms and whether they
can be double or single stacked. Handling equipment transfers containers from the stacks and
loads them onto railcars. There are different kinds of equipment: vehicles (e.g., reach stackers
[RS]) and cranes (e.g., gantry cranes [GC]). The characteristics of the equipment, such as reach
and lifting capacity, influence the set of containers that are directly accessible at any given point
in time.

This paper addresses an operational planning problem which consists in selecting a set of
containers to be loaded, assigning these containers to specific positions on double-stack railcars
(so-called slots) and determining the order in which the containers are retrieved from the stack
and placed on the railcars so as to maximize the use of the railcars and minimize the handling
effort in the terminal. We refer to this problem as the load planning and sequencing problem
(LPSP). Consistent with the literature, we employ sequencing as opposed to scheduling since we
do not decide on the time, but only on the order of the movements. We consider a static and
deterministic case where all the information about a given problem instance is perfectly known
before the loading starts and it does not change during the loading process. We solve the LPSP
for one given handling equipment and one given block of a train where a block is a consolidation of
railcars and containers with the same destination (e.g., Ahuja et al., 2007, Morganti et al., 2019).

Two observations of the double-stack load planning problem (LPP, Mantovani et al. 2018)
– assignment of containers to positions on railcars – highlight the importance of the LPSP and
associated challenges. First, there can be many optimal solutions to the LPP, each leading to
different load sequence solutions. Consequently, solving the two problems jointly, as opposed to
first solving the LPP and keeping the corresponding solution fixed when optimizing the loading
sequence, may lead to reduced handling costs. Second, the LPP crucially depends on, e.g., the
weight of individual containers as there are constraints on the centre of mass. This detailed
representation makes the LPSP challenging to model and to solve in reasonable time (in our case
30 minutes).

The LPSP is related to other tactical and operational planning problems occurring in inter-
modal terminals: The closest are the planning of the terminal layout (Boysen et al., 2013), the
storage space allocation problem (Zhang et al., 2003) and the scheduling of cranes (Bierwirth and
Meisel, 2010). In this context, we assume a fixed terminal layout where containers are stored
according to their block, i.e., their expected departure date and destination. A train is composed
of a sequence of blocks. Containers that are not loaded on their expected block need to wait for
the following train departure. Consistent with the reality in many terminals, the LPSP can hence
be decomposed by block and handling equipment, making our assumptions acceptable.

Most of the existing literature related to the LPP considers single-stack railcars (e.g., Bruns
and Knust, 2012, Dotoli et al., 2013). However, for the North American market double stacking of
containers is of high relevance. Mantovani et al. (2018) propose a model for the LPP dealing with
a high variety of containers and railcars, including double-stacking. They solve instances with
up to over 1,000 containers to optimality using a generic all-purpose solver. However, the load
sequencing is not considered as part of the problem. A few papers have addressed the single-stack
LPSP, most noteworthy are Corry and Kozan (2006) and Ambrosino et al. (2011). Even though
they consider the simpler single stack case, large instances cannot be solved by exact methods.
Part of the models are based on simplifying assumptions such as pre-set loading sequences, the
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exclusion of rehandling movements, or a fixed set of containers to load (i.e., no overbooking).
The largest instances solved to optimality without those simplifying assumptions comprise 40
containers (Ambrosino et al., 2013).

Contributions The paper makes three main contributions:

1. We introduce the LPSP for double-stack trains along with four integer linear program (ILP)
formulations of two classes adaptable to model the restrictions related to handling equipment
and terminal layout. This problem is of high practical relevance, especially for the North
American market, but has seen no attention in the literature so far. We hereby build on
the work of Mantovani et al. (2018) and extend their mathematical model. The presented
models differ in the number of constraints and variables. This gives interesting insights from
a theoretical point of view and allows practitioners to choose a formulation that works best
in their particular environment.

2. Based on realistic data from one of the largest railroads in North America, we assess the
performance of the ILP formulations by conducting extensive numerical experiments us-
ing a general purpose ILP solver (IBM CPLEX). While the terminal layout is designed for
RS vehicles, we illustrate the generality of the formulations by also reporting results for a
GC. In addition, we evaluate different ways to integrate distance in the objective function
(one/two-way distance or accounting for “detours” only) enabling to solve larger instances
while demonstrably maintaining a high solution quality. The best performing formulations
allow to find optimal solutions for instances of 75 containers when considering detours only,
and instances of 50 containers when considering one-way distance. According to commonly
used aggregate performance metrics (number of optimal solutions found and average solution
time), two formulations of the same class clearly dominate. However, this dominance rela-
tionship may not hold on an instance-by-instance basis. In practice it can therefore be useful
to hedge against variance in solution quality and computing time by solving formulations of
different classes in parallel.

3. We report results comparing the LPSP solutions to those obtained by a sequential solution
approach, i.e., optimizing the load sequence for a fixed LPP solution. In the case of instances
comprising 50 containers and a formulation minimizing one-way distance, we note an impor-
tant reduction in the average number of container moves: 11.3% and 16.5% for the GC and
RS, respectively.

The remainder of this paper is structured as follows: Section 2 gives an overview of the related
literature. Section 3 introduces the problem statement of the double-stack LPSP. In Section 4,
we propose different ILP models for the LPSP and describe the solution procedure. The benefits
and drawbacks of each formulation are discussed in Section 5 where we report extensive numerical
experiments. In Section 6, we conclude the paper and outline some directions for future research.

2 Literature review

There exist several decision-making problems related to the planning and operation of container
terminals (Carlo et al., 2014a,b, Stahlbock and Voß, 2008, Steenken et al., 2004). As shown
by several studies, it can be beneficial to integrate multiple problems (Unsal and Oguz, 2019,
Zhou et al., 2020a). According to a classification of operational problems arising in terminals
provided by Boysen et al. (2010), the LPSP comprises two out of five subproblems: deciding on
the containers’ positions on railcars (load planning) and on the sequence of container moves per
handling equipment (load sequencing). In spite of a multitude of papers on related problems,
there is to the best of our knowledge no model considering the integrated LPSP with double-stack
railcars.
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2.1 Load planning problem

As stated by Mantovani et al. (2018), the LPP for trains can be seen as a special case of the packing-
cutting-knapsack problem (Wäscher et al., 2005). According to a common typology (Dyckhoff,
1990, Wäscher et al., 2005), the LPP is similar to a Multiple Identical Large Object Placement
Problem: the value of weakly heterogeneous small items (standardized containers) assigned to a
defined set of objects similar in size (railcars) needs to be maximized. The main difference to
known packing-cutting-knapsack problems is that the objects and items are of similar dimensions
(Mantovani et al., 2018).

The LPP has been extensively studied with different levels of detail. Some papers focus on
weight restrictions (Bruns and Knust, 2012, Heggen et al., 2016). Others incorporate global restric-
tions, e.g., the unloading effort in other terminals, with the local loading rules in the considered
terminal (Bostel and Dejax, 1998, Cichenski et al., 2017, Dotoli et al., 2013, 2015, 2017, Heggen
et al., 2016). The variety of containers and railcars considered ranges from homogeneous contain-
ers (Bostel and Dejax, 1998, Corry and Kozan, 2006, Wang and Zhu, 2014) to a realistic variety of
container and railcar characteristics (Bruns and Knust, 2012, Mantovani et al., 2018). Common
objectives are the maximization of the value of loaded containers and the minimization of the costs
for preparing the railcars. Other papers concentrate on the number of necessary railcars (Corry
and Kozan, 2008), on the aerodynamic efficiency (Lai et al., 2008a,b) or on the wear of breaking
mechanisms (Corry and Kozan, 2006). In some papers, the minimization of the handling cost is
the aim of the load plan without determining the actual loading sequence of the cranes (Bostel and
Dejax, 1998, Corry and Kozan, 2008). Bruns et al. (2014) focus on robust load plans considering
uncertainties in the input parameters.

Double-stack trains are considered in a few studies (Bruns and Knust, 2012, Corry and Kozan,
2008, Heggen et al., 2016, Lai et al., 2008a,b, Mantovani et al., 2018), but numerical experiments
are only reported in the latter three. Lai et al. (2008a,b) make simplifying assumptions that may
lead to invalid load plans in practice (Mantovani et al., 2018). Pacanovsky et al. (1995) introduce
a decision support tool for assigning containers to double-stack railcars and assess several loading
strategies in a dynamic environment which are compared to hand-made load plans. The loading
logic is based on rules, no optimization model is provided. Wang et al. (2018) propose a tabu
search algorithm for a multi-objective formulation for the double-stack LPP (Lang et al., 2015).
They restrict the model to the Chinese case considering only one type of railcar with one platform.

Due to the complexity of the problem, several heuristic solution methods are proposed (Anghi-
nolfi et al., 2014, Bostel and Dejax, 1998, Corry and Kozan, 2008, Dotoli et al., 2015). The largest
instances solved to optimality contain over 1,000 containers (Mantovani et al., 2018).

2.2 Load planning and sequencing problem

Most of the literature on load sequencing problems is applied to maritime container terminals
(see Bierwirth and Meisel, 2010 for a thorough overview on quay crane scheduling problems and
Boysen et al., 2017 for a classification scheme). Related problems are the Block Relocation Problem
(BRP) and the Pre-Marshalling Problem (PMB). The BRP finds a minimal number of relocation
movements for a given retrieval sequence, whereas the PMB deals with the organization of the
blocks (Expósito-Izquierdo et al., 2015). Zhou et al. (2020b) incorporate the consideration of
rehandlings into the storage allocation problem. For both the BRP and the PMB, the loading
sequence is an input and not subject to optimization. The load sequencing problem itself can be
seen as an NP-hard asymmetric traveling salesman problem (Boysen et al., 2010).

Some sequential settings conduct the load sequencing based on a fixed load plan either by
optimization (Bostel and Dejax, 1998, Souffriau et al., 2009, Wang and Zhu, 2014) or simulation
(Corry and Kozan, 2008). A few studies address the integrated LPSP, but none of them permits
double-stacking of containers on railcars. In addition to the dimensions discussed in the previ-
ous section, the models differ in loading and rehandling policies as well as in the number and
characteristics of the handling equipment.

In all studies apart from Corry and Kozan (2006), the scope of the problem is limited to the
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loading process assuming that the railcars have been unloaded before. Moreover, the vast majority
of studies consider one handling equipment at a time. This relates to the yard partition problem,
which divides intermodal terminals into disjunct areas levelling the workload for cranes (Boysen
and Fliedner, 2010, Boysen et al., 2010). An exception is Ambrosino et al. (2016). They consider
two cranes for LPSP but their formulation can only be solved for small instances (maximum 24
containers). Noteworthy is also the work of Otto et al. (2017) that focuses on crane scheduling.
More precisely, they study the problem of dividing transshipment yards into single-crane areas and
simultaneously sequencing crane jobs with the objective to minimize makespan. Unlike the liter-
ature on LPSP they explicitly consider time in their formulation and aim to minimize makespan
(in their case the time it takes to serve a set of trains). However, as opposed to the core focus of
this paper, they do not deal with load planning.

Some settings restrict the loading sequence of the train from its head to its rear (Ambrosino
and Caballini, 2018, Ambrosino et al., 2011). A few studies investigate the impact of forbidding
non-sequential loading orders and find that the complexity of the problem is considerably reduced
(Ambrosino and Siri, 2014, Ambrosino et al., 2013). As the instances with non-sequential loading
policy could not be solved to optimality, no consequences on the number of rehandlings are re-
ported. Others impose a non-sequential loading of the railcars (Ambrosino et al., 2016, Ambrosino
and Siri, 2015, Corry and Kozan, 2006). All related studies allow rehandlings of containers, yet
the processes differ depending on the considered setting. In Corry and Kozan (2006), a container
is rehandled if it cannot be directly transferred from an inbound truck to an outbound train. In
the other works, rehandlings occur if a needed container cannot be accessed in the storage area
and other blocking containers must be retrieved first. Some computational studies investigate the
consequences of forbidding rehandlings (Ambrosino and Siri, 2014, Ambrosino et al., 2013). Con-
trary to the prohibition of non-sequential loading orders, the complexity of the problem remains
high and it cannot be quickly solved with a general-purpose solver (Ambrosino and Siri, 2014).

Corry and Kozan (2006) treat a dynamic setting with uncertainty in the data. They adapt the
load plan in a rolling horizon environment by solving a deterministic model with updated data
each time an event is triggered.

Typical objectives of the LPSP are the minimization of the handling cost consisting of re-
handlings (Ambrosino et al., 2016, Ambrosino and Caballini, 2018, Ambrosino and Siri, 2014,
Ambrosino et al., 2011, 2013, Corry and Kozan, 2006) and costs for the distance covered by the
handling equipment (Ambrosino and Siri, 2014, Ambrosino et al., 2013, Corry and Kozan, 2006).
The latter costs are interpreted in different ways. Corry and Kozan (2006) only take into account
the costs if the slot assignment of a container is changed compared to a prior load plan, because
they assume that trucks deliver containers straight to the initially assigned railcar. Ambrosino
et al. (2013) consider the distance travelled by a GC along the track, whereas Ambrosino and
Siri (2014) only consider unproductive backward movements of the crane. The latter two studies
exclude the costs for the distance of RSs that place the containers next to the assigned railcar.
Most works additionally incorporate objectives related to the LPP discussed in Section 2.1.

Due to the complexity of the problem, exact algorithms are applied only to small instances.
Some studies develop tailored heuristic solution techniques (Ambrosino and Caballini, 2018, Am-
brosino and Siri, 2015, Ambrosino et al., 2011). The largest instances solved to optimality are
small compared to the LPP. Ambrosino et al. (2013) apply a generic all-purpose solver on instances
comprising 40 containers allowing a non-sequential loading order and rehandling of containers.
Ambrosino and Siri (2015) propose three solution procedures for the LPSP: two make use of a
MIP solver provided with an initial solution either by a tailored constructive method or by an
optimal solution of a simplified model imposing a strict loading order, while the third is a heuristic
solution technique. Even the smallest instances (40 containers) cannot be optimally solved by any
of the solution techniques. Ambrosino et al. (2016) consider two cranes and solve instances with
24 containers to optimality with a MIP solver. Recall that the former models do not consider
double-stacking of containers. None of the discussed papers provides a tailored exact solution
technique.
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2.3 Summary

As this literature review shows, to the best of our knowledge there is no model that treats the
LPSP for double-stack trains. So far, Mantovani et al. (2018) present the only formulation that
takes a high variety of loading patterns dealing with double-stack railcars into account. However,
this model ignores the sequencing part, i.e., the sequencing is done in a later stage. Since the
load planning does not take into account the sequencing constraints – namely the position of
the containers in the stacks and the characteristics of the handling equipment – unproductive
movements can be inevitably part of the loading process even though they could likely be avoided
by an integrated planning and sequencing methodology. All existing models for the LPSP consider
single-stack railcars. Additionally, they either lack in realistic variety of the containers (Corry and
Kozan, 2006) and in flexibility of the loading sequence (Ambrosino and Caballini, 2018, Ambrosino
et al., 2011), or they exclude overbooking (Corry and Kozan, 2006).

In addition to double-stack load planning, with only one exception – number of handling
equipments – we also consider the most difficult setting of each LPSP feature studied in the
literature. Similar to existing LPSP studies, we minimize handling cost expressed as the number
of rehandlings and a distance measure. For the sake of completeness, we consider the most accurate
measure (two-way distance) even though it is known to result in very hard problems. We also
consider the more extensively studied cases of minimizing one-way distance only, or a simple
distance proxy such as the number of “detours”. Similar to all LPSP studies except Ambrosino
et al. (2016), we consider only one handling equipment. Unlike several studies, we do not restrict
the sequencing solution to a given loading order of the railcars (e.g., from head to rear), we allow
rehandling of containers, and we allow overbooking (the set of containers can exceed the available
railcar capacity).

3 The load planning and sequencing problem for double-
stack trains

The LPSP is an integrated operational problem governed by the characteristics of the layout of
the terminal, the containers, the railcars, and the handling equipment. In the following, we use
common terminology in the rail industry. It may differ from the vocabulary used, e.g., in ports.
The LPSP is solved for each block that has a given departure time. A block is a part of a train
containing railcars with a common destination. We assume that the LPSP is solved for one given
handling equipment. This is a weak assumption in practice and is common in the literature as train
blocks are of relatively limited size. If a handling equipment simultaneously loads multiple blocks,
the same methodology applies by considering the union of the sets of containers and railcars for
the different blocks.

3.1 Intermodal rail-road terminals

An intermodal rail-road terminal consists of several areas. This paper considers a terminal layout
that is inspired by a real terminal of our industrial partner (see Figure 1) where RSs are used to
move containers. Trucks arrive at the terminal to unload their containers i ∈ N . The handling
equipment stores the containers in the storage area. Direct rail-road or rail-rail transfers (Boysen
et al., 2011) are not considered in this paper. Cranes and vehicles may move in the gray zones
(Figure 1), but terminal-specific restrictions may apply.

Containers are placed on top of each other up to a given maximum height in stacks. Multiple
stacks are lengthwise contiguously grouped in so-called lots which are located along the track.
Containers are divided into lots according to their block (i.e., destination and train departure)
and size (20 ft containers are stacked separately). The coordinates X, Y and Z indicate the
exact position of each container in the storage area. The X-coordinate numbers the lot. The Y -
coordinate indicates the stack and the Z-coordinate specifies the vertical position of a container.
Depending on the handling equipment, the storage area can be accessed from above, from the
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Figure 1: Aerial view of the considered container terminal layout

front side of the stack (seen from the track), or from the back side of the stack if it is more easily
retrievable (as it is appropriate for the lined container in Figure 1). For the sake of comparability
of the computational experiments, we use the same layout for both types of handling equipment
that we consider.

For loading a container, the handling equipment retrieves it from the storage area, carries it
to a railcar, and places it onto its assigned slot q ∈ Q where Q is the set of all slots on railcars in
a given block. If the container is not directly accessible, it is necessary to rehandle the blocking
containers. We assume that the railcars have already been unloaded, the corresponding decision-
making problem is out of the scope of this paper.

3.2 Containers

A container i ∈ N can be of any of the standardized types and N is the set of outbound containers
for a given block. We note that this set can exceed the available capacity (i.e., we consider
overbooking). Each container is characterized by its length li (in the North American market
sizes h ∈ H are 20 ft, 40 ft, 45 ft, 48 ft and 53 ft, we denote the related subsets Nh), its height
(low-cube or high-cube containers in the sets NLC and NHC , resp.), its weight gi, and its type
(e.g., refrigerated, tank). Depending on the container type, different technical loading restrictions
may apply and depending on the content, the customer, and the due time, each container has
a specific commercial value πi. This can be an actual commercial value, or represent a loading
priority (e.g., reflecting a due date or special service). Last, we define the constant mi that takes
value 0.5 for containers of length 20 ft and 1 for all other containers. This constant is required
to model the property that two 20 ft containers may be assigned to the same slot, while all other
container sizes exclusively require one slot.

3.3 Intermodal double-stack railcars

A block consists of a sequence of railcars j ∈ J where each railcar is defined by its type listed in
a catalogue used in practice (Association of American Railroads, 2017). A railcar j has between
one and five platforms p ∈ Pj . Platforms p ∈ P can be either single-stack or double-stack and are
characterized by various technical features such as the length of the bottom slot Lp, a maximum
weight-carrying capacity Gp, and a set of slots Qp. We denote bottom slots with the parameter
µq = 1 and define the set of all bottom slots as Qµ. The parking position of slot q on the track is
referred to as Xq.

Railcars can be used in several configurations differing in the number and length of loaded
containers (Bruns and Knust, 2012). We refer to these configurations as loading patterns k ∈ K.
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Since loaded containers can influence the feasible set of container combinations on neighboring
platforms of the same railcar, the loading patterns are derived by railcar and not by platform (see
Association of American Railroads, 2017 and Mantovani et al., 2018 for further explanations).
The set of feasible loading patterns for railcar j is denoted Kj . For each pattern k, we define the
number of containers of length h to be put on platform p as nh

k(p). The setup costs for changing
the configuration of railcar j are denoted τj .

Besides the loading patterns, additional constraints related to the weights of the containers
apply. For example, to meet the regulations related to a maximum height of the center of mass
for each loaded platform, a parameter for a maximum weight for top containers is derived per

bottom container and platform: c
LCp

i and c
HCp

i for low-cube and high-cube containers, respectively
(Association of American Railroads, 2017, Mantovani et al., 2018). The weight of each individual
container is important in order to make the best use of the available capacity while satisfying this
constraint.

Finally, 20 ft containers can solely be assigned to bottom slots and a top slot can only be
loaded if either two 20 ft containers or one container measuring at least 40 ft have been loaded
before in the bottom slot of the platform. No restrictions are given on the loading order of the
block, i.e., we consider non-sequential loading.

3.4 Handling equipment

Terminals are equipped with special handling equipment that handle the containers within the
terminal. We consider GCs and RSs (see examples of both in Figure 2), because both can be
present in intermodal rail terminals and both are considered in the literature. GCs are immobile
facilities that pick a container from above. RSs, by contrast, are vehicles that lift containers from
the side. As previously mentioned, the container layout we consider is inspired from a real terminal
that uses RSs only. The focus of this paper is not the optimization of the terminal layout; we
assume the same layout for both GCs and RSs. However, it is only realistic for the latter. We
note that in large terminals, in particular ports, multiple handling equipment may be used to load
high demand blocks.

(a) A gantry crane (Adobe Stock, 2020a) (b) A reach stacker (Adobe Stock, 2020b)

Figure 2: Examples of handling equipment

As not every container can be retrieved by the handling equipment at any given loading stage
t ∈ T , we define accessibility rules for each container. For a GC the rules are simple: a container
can only be retrieved if it is the uppermost container of its stack.

For RSs, however, the rules are more complex. RSs retrieve containers either from the front
side or from the back side of the lot (e.g., for the lined container in Figure 1). For the latter,
the covered distance increases and therefore, we denote this movement as detour. As all container
positions and the possible crane movements are given, impossible sequences between two containers
can be derived a priori. We therefore define pairs of containers (i, i′), such that container i′ must
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be taken out of the stack before container i. In other words, the loading sequence i before i′ is
forbidden.

We define three sets of forbidden loading sequences: one for the GC (MG), one for the RS
retrieving the containers from the front (MRF ), and one for the RS from the back (MRB). The
rules are derived by geometric dependencies and technical limitations of the handling equipment.
We define the container pairs (i, i′) using the following rules (cf. Figure 3):

(a) container i is below container i′: Xi = Xi′ , Y i = Y i′ , Zi < Zi′

(b) container i is hidden by i′: Xi = Xi′ , Y i′ < Y i, Zi ≤ Zi′

(c) container i is more than three positions behind i′: Xi = Xi′ , Y i′ + 3 ≤ Y i

(d) the mass of container i (gi) exceeds the threshold θ1 for being lifted over one container stack:
Xi = Xi′ , Y i′ + 1 = Y i, gi > θ1

(e) the mass of container i (gi) exceeds the threshold θ2 for being lifted over two container
stacks: Xi = Xi′ , Y i′ + 2 = Y i, gi > θ2

(f) – (i) analogously to (b) - (e) restrictions for RSs retrieving a container from the back side.
The rules are rotated with respect to the Y-coordinate.

The set MG comprises all container pairs fitting the rule (a). The set MRF relates to the rules
(a) – (e), and for the set MRB , the rules (a), and (f) – (i) are relevant. These forbidden sequences
are illustrated in Figure 3 and can easily be adapted to local restrictions.

Y

Z

(a) (b) (c)

(d)

gi > θ1

(e)

gi > θ2

i

i’

other container

Figure 3: Overview of forbidden loading sequence i → i′ (for GCs: solely (a), for RSs from the
left hand side (a) and (b) – (e))

If a forbidden sequence is executed, a container is inaccessible. Then, either a detour (if
possible) or a rehandle is necessary. Rehandles are unproductive movements that are necessary
to take out all blocking containers, such that the required container can be reached (Ambrosino
and Caballini, 2018). The blocking containers may stay in the terminal or be loaded to the train
at a later moment and must then be touched again.

3.5 Challenges and objective

The LPSP minimizes the cost for not loaded containers, the setup costs of the railcars, and the
handling costs. The handling costs comprise the distance covered by the handling equipment,
the number of rehandled containers, and the number of detours. As illustrated in Figure 1, the
handling equipment covers a distance expressed by taxicab geometry which is used for both types
of handling equipment in the objective function. In this context, β1

iq represents the distance cost

between the stacking position of container i and slot q, β2 is the cost for rehandling a container,
and in the case of an RS, β3 represents the cost for a detour.

The considered problem comprises numerous interdependent decisions. The decision on the
loading pattern defines how many containers of each size can be loaded on each platform. The
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assignment of containers to slots is made by respecting the loading patterns and additional con-
straints such as weight restrictions. In particular, constraints on the center of mass depend on
individual container weights which makes it inappropriate to simplify the problem by aggregat-
ing containers into types. This assignment imposes restrictions on feasible loading sequences as
containers assigned to top slots can only be loaded once the corresponding bottom slots are filled.

Summarizing, the LPSP is defined as follows: Given a set of containers stored in a terminal
with their characteristics and position, a set of railcars, a handling equipment, and the relevant
constraints, determine the subset of containers to load, the exact way and sequence to retrieve
and load them, such that the value of the containers that are not loaded, the setup costs of the
railcars, and the handling cost is minimized.

4 ILP formulations and solution procedure

In this section, we introduce several formulations for the LPSP with double-stack railcars. All
formulations are based on the ILP for the LPP proposed by Mantovani et al. (2018) (Sec. 4.1). In
Section 4.2, we introduce sets, notation, and decision variables that are used in all formulations.
Next, in Sections 4.3 – 4.6, we define four different ILP formulations (denoted A1, A2, B1, and B2)
that are the best performing formulations among the ones we tested. They differ in the number
of constraints and variables, as well as in the strength of their LP relaxation. The formulations
can most easily be distinguished by the meaning of the variables (see Table 1 for an overview).

Variables ziqt zit, bqt

Process-oriented A1 Sec. 4.3 B1 Sec. 4.5
State-oriented A2 Sec. 4.4 B2 Sec. 4.6

Table 1: Names of the LPSP formulations and references to the subsections where they are delin-
eated.

We start by explaining the difference between the formulations 1 and 2. The sequencing
variables in the formulations A1, and B1 are process-oriented: they indicate the stage at which
a container loading occurs (loaded at stage t). For example, if a container is loaded at stage 1,
the value of the sequencing variable for stage 2 is 0. By contrast, the variables of the remaining
formulations are state-oriented: they indicate if a given container has been loaded at or before a
certain stage (loaded by stage t). Taking the same example, the sequencing variable for stage 2
takes value 1 in these formulations. The latter simplifies the writing of some constraints at the
cost of additional constraints. The distinction between both types of sequencing variables can be
found in the literature in another context. Namely, Expósito-Izquierdo et al. (2015) delineate a
model for the BRP that includes both process- and state-oriented variables.

We now turn our attention to the difference between the A and B formulations: The A for-
mulations contain three-index sequencing variables resulting in a high number of variables and a
rather low number of constraints. These variables tie together a container, a slot, and a stage
(ziqt). The B formulations use two-index sequencing variables which carry less information. These
variables only link a container to a stage. In addition, the B formulations make use of a set of
variables related to the loading state of each bottom slot. These extra variables join a slot to a
stage (zit and bqt). This results in fewer variables but more constraints.

Some variants of the formulations with a simplified cost structure are presented in Section 4.7.
In Section 4.8, we describe the proposed solution procedure.

4.1 Formulation of the load planning problem

A solution to the LPP consists of the assignment, for a given block, of a subset of containers to
slots on a given set of railcars. The railcars in the North American fleet exhibit a high variety
in loading patterns that are crucial to take into account in order to achieve accurate and feasible
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load planning solutions. As the methodology proposed by Mantovani et al. (2018) is the only one
that addresses this situation, we use it as a basis for the LPSP. In this section, we describe the
corresponding ILP formulation. An overview of the parameters and variables is given in Table 2.

Sets N all containers
H container lengths Nh containers of length h
J railcars NHC high-cube containers
K loading patterns NLC low-cube containers
Kj loading patterns of railcar j P all platforms
MG forbidden loading sequences for GCs Pj platforms of railcar j
MRF forbidden loading sequences for RSs from the

front
Q all slots
Qp slots of platform p

MRB forbidden loading sequences for RSs from the
back

Qµ bottom slots
T stages

Indices k loading pattern with k ∈ K
h container length with h ∈ H p platform with p ∈ P
i container with i ∈ N q slot with q ∈ Q
j railcar with j ∈ J t stage with t ∈ T

Parameters tf/tl first stage / last stage

c
LCp

i maximum weight of a low-cube container to be
put onto container i on platform p

Xi X coordinate of container i in storage area
Xq X coordinate of slot q

c
HCp

i maximum weight of a high-cube container to be
put onto container i on platform p

Y i Y coordinate of container i in storage area
Zi Z coordinate of container i in storage area

gi weight of container i β1
iq distance cost between container i and slot q

Gp maximum weight-carrying capacity of platform p
β2 cost for rehandling a container
β3 cost for a detour

li length of container i θ1/θ2 maximum weight of containers being lifted by
an RS over one / two container stack(s)Lp length of the bottom slot of platform p

mi takes value 0.5 if length li is 20 ft, 1 else µq takes value 1 if slot q is a bottom slot, 0 else
nh
k(p)

number of containers of length h to be put on
platform p in pattern k

πi commercial value of container i

τj setup cost of railcar j

Binary variables yip = 1 if container i is assigned to platform p, 0
elsedi = 1 if container i is rehandled, 0 else

uqi = 1 if handling equipment reverses from slot q to
container i, 0 else

wjk = 1 if loading pattern k is assigned to railcar
j, 0 else

viq = 1 if container i is assigned to slot q, 0 else γi = 1 if container i is retrieved from the back,
0 elsexij = 1 if container i is assigned to railcar j, 0 else

Table 2: Notation of sets, indices, parameters, and variables

The LPP presented here differs in one set of constraints (3) from the original model. In
Mantovani et al. (2018), the assignment of a container to a slot on a given platform can be
determined or changed in a post-processing step. Since we define the load planning and sequencing
simultaneously, we add constraints (3) to ensure a feasible slot assignment.

Let us start by introducing the four sets of binary variables that are used in the model: The
decision variables wjk assign loading patterns to railcars and viq take care of the container-slot
assignments. The auxiliary variables yip and xij assign containers to platforms and to railcars,
respectively. The formulation of the LPP is:

min
∑
i∈N

πi

1−
∑
q∈Q

viq

+
∑
j∈J

τj
∑
k∈Kj

wjk (1)

s.t.
∑
q∈Q

viq ≤ 1 ∀i ∈ N (2)

∑
i∈N

miviq ≤ 1 ∀q ∈ Q (3)

yip =
∑
q∈Qp

viq ∀i ∈ N, ∀p ∈ P (4)
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xij =
∑
p∈Pj

yip ∀i ∈ N, ∀j ∈ J (5)

∑
k∈Kj

wjk ≤ 1 ∀j ∈ J (6)

∑
k∈Kj

nh
k(p)wjk =

∑
i∈Nh

yip ∀p ∈ Pj , ∀j ∈ J, ∀h ∈ H (7)

∑
i∈N

∑
q∈Qp

µqviqli ≤ Lp ∀p ∈ P (8)

∑
i∈N

yipgi ≤ Gp ∀p ∈ P (9)∑
i∈NLC

∑
q∈Qp

(1− µq) viqgi ≤
∑
i∈N

∑
q∈Qp

µqviqc
LCp
i ∀p ∈ P (10)

∑
i∈NHC

∑
q∈Qp

(1− µq) viqgi ≤
∑
i∈N

∑
q∈Qp

µqviqc
HCp
i ∀p ∈ P (11)

wjk ∈ {0, 1} ∀j ∈ J, ∀k ∈ K (12)

viq ∈ {0, 1} ∀i ∈ N, ∀q ∈ Q (13)

yip ∈ {0, 1} ∀i ∈ N, ∀p ∈ P (14)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ J. (15)

The objective (1) is to minimize the weighted costs for containers left in the terminal and the
setup costs for each loaded railcar. Constraints (2) make sure that each container is assigned to
only one slot, whereas (3) ensure that at most one container measuring at least 40 ft or two 20 ft
containers are assigned to each slot. Constraints (4) and (5) link the platform variables yip with
the slot variables viq and the railcar variables xij , respectively. Constraints (6) limit the number
of chosen patterns per railcar to 1 (empty railcars have no assigned pattern) and constraints (7)
link the attributes of the pattern to the loading variables of each platform. Constraints (8) and (9)
guarantee a feasible loading with respect to the maximum length and weight of each platform. The
center of mass constraints are formulated in (10) for low-cube containers and in (11) for high-cube
containers, respectively. Finally, we note that Mantovani et al. (2018) additionally introduce six
types of technical restrictions. As these restrictions do not affect the load sequencing, we omit
them in this paper. We refer to Mantovani et al. (2018) for a more in-depth explanation of the
model as well as for an extensive numerical study.

4.2 Notation and variables common to all of the LPSP formulations

We assume one container loading per stage t ∈ T , where we refer to the first stage as tf and to
the last one as tl. We ensure that all loadings are contiguous at the beginning of the time horizon.
We define three sets of binary variables: di takes value 1 if container i is rehandled and uqi takes
value 1 if the handling equipment reverses from slot q to the stacking position of container i. In
the case of an RS an additional variable γi takes value 1 if it makes a detour for container i. These
definitions lead to the following constraints:

di ∈ {0, 1} ∀i ∈ N (16)

γi ∈ {0, 1} ∀i ∈ N (17)

uqi ∈ {0, 1} ∀q ∈ Q, ∀i ∈ N. (18)

As discussed in Section 3.4, we consider two types of handling equipment: an RS and a GC.
Nevertheless, we choose to present the formulations in Sections 4.3 to 4.6 for RS only. There are
several reasons for this choice. First, the RS is our main scenario as the real terminal layout we
consider has been designed for RS movements. Second, it is easy to transform the formulation to
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one corresponding to a GC. In this case, the set of MRF is replaced by MG and the γi variables
are left out both in the objective function and in the constraints. Moreover, all constraints defined
over MRB can be dropped.

4.3 Formulation A1

In the formulations A1 and A2, we consider three-index sequencing variables ziqt. These formu-
lations require a high number of variables but come with a rather low number of constraints. We
define ziqt as a binary decision variable taking value 1 if and only if container i is loaded in slot q
in stage t. The LPSP can be written as follows:

min
∑
i∈N

πi

1−
∑
q∈Q

viq

+
∑
j∈J

τj
∑
k∈Kj

wjk +
∑
i∈N

∑
q∈Q

β1
iq (viq + uqi) + β2di + β3γi

 (19)

s.t. Constraints (2)− (18)∑
t∈T

ziqt = viq ∀i ∈ N, ∀q ∈ Q (20)∑
i∈N

∑
q∈Q

ziqt ≤ 1 ∀t ∈ T (21)

∑
i∈N

∑
q∈Q

ziq,t+1 ≤
∑
i∈N

∑
q∈Q

ziqt ∀t ∈ T \ {tl} (22)

ziqt + viq +
∑
s∈Q

zi′s,t+1 − uqi′ ≤ 2
∀i ∈ N, ∀i′ ∈ N,
∀q ∈ Q, ∀t ∈ T \ {tl} (23)

∑
q∈Q

t∑
ℓ=0

ziqℓ ≤
∑
q∈Q

t∑
ℓ=0

zi′qℓ + di′ + γi ∀(i, i′) ∈ MRF , ∀t ∈ T (24)

∑
q∈Q

t∑
ℓ=0

ziqℓ ≤
∑
q∈Q

t∑
ℓ=0

zi′qℓ + di′ − γi + 1 ∀(i, i′) ∈ MRB , ∀t ∈ T (25)

∑
i∈N

∑
q∈Qp

t∑
ℓ=0

ziqℓ (1− µq) ≤
∑
i∈N

∑
q∈Qp

t∑
ℓ=0

miziqℓµq ∀p ∈ P, ∀t ∈ T (26)

ziqt ∈ {0, 1} ∀i ∈ N, ∀q ∈ Q, ∀t ∈ T. (27)

The objective (19) is to minimize the weighted costs for containers left in the terminal, the
setup costs for each loaded railcar, the travel distance costs of the handling equipment, the costs
for rehandled containers, and the costs for detours of the reach stackers. Each assigned container
must be loaded in its assigned slot (20). The number of loadings per stage is limited to 1 (21).
All loadings must be contiguous, i.e., no stage without loading is allowed between two stages with
loadings (22). Constraints (23) link the assignment variables viq, the sequencing variables ziqt and
the reverse variables uqi: if container i is loaded in slot q at stage t and container i′ is loaded in any
slot s at the following stage t+ 1, the reverse variable uqi′ must take value 1. The accessibility of
the containers must be respected both for containers loaded from the front side (24) and from the
back side (25) of the lot. The forbidden sequence is bypassed if i′ is rehandled. Constraints (24)
are always true if i is retrieved by a detour (γi = 1) and for (25), the reverse holds true (γi = 0).
Constraints (26) ensure that the top slot of each platform is loaded only if the bottom slot has
been filled. The sum of the left-hand sequencing variables for the top slot may only take value 1
if the sum of the right-hand variables equals 1, i.e., either a container measuring at least 40 ft or
two 20 ft containers have been loaded at a prior stage.
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4.4 Formulation A2

In the sets of constraints (24) – (26), we sum over many stages to obtain the information whether
container i has been loaded in slot q. In formulation A2, we redefine ziqt as a state-oriented
variable to decide whether container i is loaded in slot q by stage t. Once container i has been
loaded in slot q, the value of the associated ziqt variables is 1 for all following stages. The model
then becomes:

min
∑
i∈N

πi

1−
∑
q∈Q

viq

+
∑
j∈J

τj
∑
k∈Kj

wjk +
∑
i∈N

∑
q∈Q

β1
iq (viq + uqi) + β2di + β3γi

 (28)

s.t. Constraints (2)− (18) and (27)

ziqtl = viq ∀i ∈ N, ∀q ∈ Q (29)

ziqt ≤ ziq,t+1
∀i ∈ N, ∀q ∈ Q,
∀t ∈ T \ {tl} (30)∑

i∈N

∑
q∈Q

ziqt ≤
∑
i∈N

∑
q∈Q

ziq,t−1 + 1 ∀t ∈ T \ {tf} (31)

∑
i∈N

∑
q∈Q

(ziq,t+1 − ziqt) ≤
∑
i∈N

∑
q∈Q

(ziqt − ziq,t−1) ∀t ∈ T \ {tf , tl} (32)

ziqt − ziq,t−1 +
∑
s∈Q

(zi′s,t+1 − zi′st) + viq − uqi′ ≤ 2
∀i ∈ N, ∀i′ ∈ N, ∀q ∈ Q,
∀t ∈ T \ {tf , tl} (33)

∑
q∈Q

ziqt ≤
∑
q∈Q

zi′qt + di′ + γi ∀(i, i′) ∈ MRF , ∀t ∈ T (34)

∑
q∈Q

ziqt ≤
∑
q∈Q

zi′qt + di′ − γi + 1 ∀(i, i′) ∈ MRB , ∀t ∈ T (35)

∑
i∈N

∑
q∈Qp

ziqt (1− µq) ≤
∑
i∈N

∑
q∈Qp

miziqtµq ∀p ∈ P, ∀t ∈ T. (36)

Constraints (29) make sure that each assigned container is loaded by the end of the time
horizon tl. Each ziqt variable takes value 1 once a container has been loaded (30). Constraints
(31) limit the number of loadings per stage to one. All stages without loadings are contiguous at
the end (32). Constraints (33) make sure that the variables uqi for the reverse movements of the
handling equipment are correctly set. The accessibility of containers must be respected both for
containers loaded from the front (34) and from the back (35). Constraints (36) ensure that the
top slot is only loaded after the bottom slot has been filled.

Comparing the constraints of A1 and A2, those of A2 ensuring a correct loading (34) – (36)
are simplified at the cost of a larger number of additional constraints (30).

4.5 Formulation B1

As the A formulations involve a large number of sequencing variables (|N ||Q||T |), we now present
a formulation requiring fewer decision variables. We define binary variables zit taking value 1
if container i is loaded on the railcar in stage t. The slot to which a container is assigned can
be obtained from the viq variables (13) of the LPP. This leads to a reduction in the number of
zit variables by a factor |Q|. In order to simplify the constraints related to the correct loading
sequence of containers to double-stack railcars, we introduce the auxiliary variable bqt, which takes
value 1 if bottom slot q is fully loaded at stage t, and 0 otherwise. The sequencing variables take
value 1 if container i is loaded at stage t, and 0 otherwise. We formulate the problem as follows:

min
∑
i∈N

πi

1−
∑
q∈Q

viq

+
∑
j∈J

τj
∑
k∈Kj

wjk +
∑
i∈N

∑
q∈Q

β1
iq (viq + uqi) + β2di + β3γi

 (37)
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s.t Constraints (2)− (18)∑
t∈T

zit =
∑
q∈Q

viq ∀i ∈ N (38)

∑
i∈N

zit ≤ 1 ∀t ∈ T (39)∑
i∈N

(zi,t+1 − zit) ≤
∑
i∈N

(zit − zi,t−1) ∀t ∈ T \ {tf , tl} (40)

zit + viq + zi′,t+1 − uqi′ ≤ 2
∀i ∈ N, ∀i′ ∈ N,
∀q ∈ Q, ∀t ∈ T \ {tl} (41)

t∑
ℓ=0

ziℓ ≤
t∑

ℓ=0

zi′ℓ + di′ + γi ∀(i, i′) ∈ MRF , ∀t ∈ T (42)

t∑
ℓ=0

ziℓ ≤
t∑

ℓ=0

zi′ℓ + di′ − γi + 1 ∀(i, i′) ∈ MRB , ∀t ∈ T (43)

t∑
ℓ=0

ziℓ +
∑
q∈Qp

viq (1− µq) ≤
∑

q∈Qp∩Qµ

t∑
ℓ=0

bqℓ + 1 ∀p ∈ P, ∀i ∈ N, ∀t ∈ T (44)

bqt ≤
t∑

ℓ=0

ziℓ − viq + 1 ∀i ∈ N, ∀q ∈ Qµ, ∀t ∈ T (45)

zit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (46)

bqt ∈ {0, 1} ∀q ∈ Qµ, ∀t ∈ T. (47)

Constraints (38) make sure that each assigned container is loaded during the time horizon,
whereas (39) limit the number of loadings per stage to 1. All stages without loading are shifted to
the end (40). Constraints (41) ensure that the variables uqi take value 1 if the handling equipment
reverses from slot q to container i. Constraints (42) ensure that either i′ is moved before i, i′ is
rehandled or i is picked from the back side. Constraints (43) work equivalently for the containers
that are retrieved from the back side. Constraints (44) manage the correct loading sequence of
each platform: i can only be loaded in the top slot in stage t if the bottom slot of the same platform
has been filled before. The additional constraints (45) ensure the synchronization between the zit
and the bqt variables. Remark that if two 20 ft containers are assigned to the bottom slot q, bqt
can only take value 1 after the second loading.

4.6 Formulation B2

Similar to the formulation A2 (Section 4.4), this formulation aims at simplifying the constraints
(42) - (44) and therefore defines the decision variable zit to to be 1 if container i has been loaded
by stage t. Analogously to the formulation B1, the auxiliary variable bqt is introduced and takes
value 1 if slot q has been (fully) loaded by stage t. These definitions lead to the following model:

min
∑
i∈N

πi

1−
∑
q∈Q

viq

+
∑
j∈J

τj
∑
k∈Kj

wjk +
∑
i∈N

∑
q∈Q

β1
iq (viq + uqi) + β2di + β3γi

 (48)

s.t Constraints (2)− (18) and (46)− (47)

zitl =
∑
q∈Q

viq ∀i ∈ N (49)

zit ≤ zi,t+1 ∀i ∈ N, ∀t ∈ T \ {tl} (50)∑
i∈N

zit ≤
∑
i∈N

zi,t−1 + 1 ∀t ∈ T \ {tf} (51)
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∑
i∈N

(zi,t+1 − zit) ≤
∑
i∈N

(zit − zi,t−1) ∀t ∈ T \ {tf , tl} (52)

zit − zi,t−1 − zi′t + zi′,t+1 + viq − uqi′ ≤ 2
∀i ∈ N, ∀i′ ∈ N, ∀q ∈ Q,
∀t ∈ T \ {tf , tl} (53)

zit ≤ zi′t + di′ + γi ∀(i, i′) ∈ MRF , ∀t ∈ T (54)

zit ≤ zi′t + di′ − γi + 1 ∀(i, i′) ∈ MRB , ∀t ∈ T (55)

zit ≤
∑
q∈Qp

(µqbqt − viq (1− µq)) + 1 ∀p ∈ P, ∀i ∈ N, ∀t ∈ T (56)

bqt ≤ zit − viq + 1 ∀i ∈ N, ∀q ∈ Qµ, ∀t ∈ T. (57)

Constraints (49) ensure that each assigned container has been loaded in the last stage. Con-
straints (50) ensure that variables zit stay at value 1 once i has been loaded, whereas constraints
(51) limit the number of loadings per stage to 1. Constraints (52) forbid stages without loading
between two with loadings. Constraints (53) make sure that the variables viq, zit, and uqi are
correctly synchronized. Constraints (54) and (55) take care of the accessibility of the containers
in the stack and constraints (56) guarantee the right order of loading with respect to the bottom
and the top slot of each platform. Constraints (57) synchronize the bqt with the zit variables.

4.7 Different variants of the formulations

The above presented four general formulations all consider two-way distance cost. Based on results
reported in the literature (Boysen et al., 2010), one can expect those formulations to be intractable
for realistic size instances. We therefore consider two simplified objective functions that allow to
reduce the complexity of the model and yield a larger number of optimal solutions.

The first one considers solely the cost when the handling equipment is loaded (one-way dis-
tance). This simplifying assumption is motivated by the fact that one-way cost strongly correlates
with the cost of the overall loading effort (Boysen et al., 2010). In this case, we can fix the value
of the variables uqi to 1 and remove these variables from the objective function. Accordingly, the
constraints (23), (33), (41), and (53) are obsolete.

The second objective function makes an even stronger simplifying assumption. Namely, the
distance cost is completely ignored in the objective function. In this case, we remove the term
from the objective function and obtain:

min
∑
i∈N

πi

1−
∑
q∈Q

viq

+
∑
j∈J

τj
∑
k∈Kj

wjk +
∑
i∈N

(
β2di + β3γi

)
. (58)

This may be an appropriate objective function for small and dense intermodal terminals where
the cost associated with distance is negligible compared to the rehandling cost. We note that this
formulation still allows to penalize detours.

4.8 Solution procedure

Preliminary experiments showed that the models are too hard to be efficiently solved with a
general-purpose solver without additional support. Therefore, we use a heuristic to find an initial
feasible loading sequence based on an optimal load plan and use it to warm start the general-
purpose solver. The solution procedure is illustrated at a high level in Figure 4 and proceeds as
follows:

1. Solve the LPP described by Mantovani et al. (2018) to optimality using a general-purpose
solver.

2. Append the term for the one-way distance cost to the objective function and add a cut
ensuring that the commercial value found in Step 1 is met.

16

The Load Planning and Sequencing Problem for Double-Stack Trains 

CIRRELT-2022-31



3. Using a general-purpose solver, solve to optimality the problem of Step 2 providing the
solution found in Step 1.

4. Calling Algorithm 1, determine a feasible loading sequence for the solution found in Step 3.

5. Add the sequencing constraints to the model, the additional costs to the objective function,
and a cut for the minimum distance found in Step 3.

6. Solve the model of Step 5 providing the solution found in Step 4 as a warm start.

Figure 4: High-level view of solution procedure

Data: Load plan
Result: Loading sequence
while not all assigned containers loaded do

if from front side accessible container found whose assigned slot is ready then
load container ;

else if from back side accessible container found whose assigned slot is ready then
load container by making a detour ;

else
load random container from front side whose assigned slot is ready and rehandle all
blocking containers ;

update state of slots ;

Algorithm 1: Algorithm for obtaining a feasible loading sequence based on a load plan

5 Numerical experiments

The aim of the numerical experiments is to analyze the impact of the different formulations on
the performance of a general-purpose solver. We report the results of an extensive numerical
study demonstrating the strengths and weaknesses of the formulations. Prior to these numerical
experiments, our industrial partner (the Canadian National Railway Company) has been involved
in an in-depth validation process of modeling assumptions and resulting solutions. We separate
the results according to the definition of the objective function as the formulations with two-
way distance are only tractable for small instances. First, we report results for experiments with
the formulations considering full distance cost. Second, in Section 5.3, we report results with
formulations considering the one-way distance cost for the loaded moves. Third, in Section 5.4, we
examine the impact of the distance term in the objective function by ignoring the related costs.
In Section 5.5, we analyze the performance of the best performing formulations without distance
cost on larger instances. Finally, in Section 5.6, we analyze the benefit of solving the integrated
LPSP compared to a sequential solution approach. For all experiments, we compare the results
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for two types of handling equipment: a GC and an RS. The experimental setup and test instances
are described in the following section.

5.1 Test instances and experimental setup

The results are based on five sets of 50 instances each that are generated based on real data from
our industrial partner.

Terminal layout and handling equipment We consider a fixed storage area layout depicted
in Figure 1: The containers are stacked at a maximum height of three containers and there is a
maximum of six lots in total. Depending on the number of containers in a given instance, the
number of stacks in each lot varies (it can take the values 1, 3, 5, 7, and 9). This is the layout
of one of the industrial partner’s terminals and it has been designed for RS vehicles. The results
are computed for one specific make of RS and the actual restrictions related to reach and weight
lifting capacity. For the sake of illustration, we also compute results for a GC. Note, however, that
the layout remains the same and has hence not been designed for that type of handling equipment.

Instances We generate 50 instances of different sizes. Each instance corresponds to one block.
The size ranges from what we refer to as extra small (XS) comprising only 15 containers to extra
large (XL) comprising 150 containers. Table 3 provides an overview. Each instance is defined by
the set of containers (each container is characterized by its size, height, weight and position in the
yard) and the set of railcars (each railcar is characterized by its type and position on the track).
For each of the set of instances of a given size, the generation is done in the same way. We start
by describing the generation of sets of containers.

In the North American domestic market 53 ft containers are used while the international market
is limited to mostly 20 and 40 ft containers. We therefore create two types of container sets: one
with only 40 ft containers and one with a mix of 40, 45 and 53 ft containers. We note that we
exclude 20 ft containers as they need to be stacked separately and also must be loaded in bottom
slots. Hence, they are not challenging to deal with from a loading perspective. Moreover, we
exclude 48 ft containers as they are treated like 53 ft ones. Similar to Mantovani et al. (2018), we
draw instances at random from empirical distributions: We draw five instances of 40 ft containers
and five instances with a mix of sizes. The latter leads to an average mix of 78% 40 ft, 8% 45 ft and
14% 53 ft. Container weights are drawn from an empirical distribution conditional on container
size, and the position in the terminal is drawn at random. This results in 10 sets of containers for
each instance size (50 in total).

The generated sets of containers are combined with five railcar sets, which leads to a total of
50 instances of each size. The railcars are drawn from the real North American fleet of railcars
according to the same stratified random sampling protocol as in Mantovani et al. (2018). More
precisely, the sequence of railcars is generated by adding a randomly drawn railcar until the given
block length is reached.

Set name # containers Block length [ft] # instances # instances # instances
40 ft cont. 40, 45, 53 ft cont. total

XS 15 200 25 25 50
S 50 667 25 25 50
M 75 1,000 25 25 50
L 113 1,500 25 25 50
XL 150 2,000 25 25 50

Table 3: Overview of the instances
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Cost parameters Making sure that the commercial value of a container always exceeds its
loading cost, we set the cost parameters as follows: The commercial value (πi) is 200 for all
containers i ∈ N as we do not focus on assessing the impact of container priorities. Costs for
rehandlings (β2) and detours (β3) are set to 80 and 60, respectively. The setup costs (τj) are
1 for j ∈ J and the distance cost between the stacking position of container i and slot q is
β1
iq = |Xq − Xi| + Y i. The values of the parameters have been selected through a solution

validation process with the industrial partner. These values have been selected so that they
produce solutions with the desired trade-off between, e.g., rehandling, distance and detours. The
values do not correspond to actual costs.

Implementation and solver For the experiments, we use the general-purpose solver IBM
ILOG CPLEX 12.8 on one thread of a 3.07 GHz processor equipped with 96 GB of RAM. The
computational time limit is set to 36,000 seconds. This time limit exceeds the time budget for
our problem which is maximum 30 minutes. However, we use this value for the sake of a better
comparison of the models. The C++ language has been used for data handling, building the
model, calling CPLEX, and running the algorithm. The reported computational times refer only
to Step 6 of Algorithm 1 as the other times do not exceed a few seconds.

5.2 Experiments with full distance cost

In this section, we report results for the most challenging formulations with full consideration
of distance cost (Sections 4.3 - 4.6) for the smallest instances (XS). The numerical results for
the optimization are reported in Table 4. The computational time (CPU) indicates the average
solution time for the instances that are solved to optimality. The average optimality gap is reported
for instances that cannot be solved to optimality in the given time limit. For all formulations, no
optimal solution can be found for any of the GC instances. For the RS instances, a small share
can be solved to optimality. The average optimality gap is large (44.2%) even after ten hours
of computation time. In 395 cases out of the total of 400 runs, a solution is found without any
unproductive movement (rehandlings and detours). The remaining terms of the objective function
are responsible for the large gaps.

Formulation A1 A2 B1 B2 A1 A2 B1 B2
Handling equipment GC GC GC GC RS RS RS RS

# opt. solved instances 0 0 0 0 1 1 7 5
Avg. CPU [s] - - - - 333 590 553 683
Avg. opt. gap [%] 43.6 44.1 44.0 43.7 44.5 46.9 42.6 43.8

Table 4: Computational results for 50 XS instances (full distance)

These results show that even for small instances, the problem taking into account the full
distance cost is intractable for a general-purpose solver. In the next section, we simplify the
objective function and consider one-distance cost as proposed in Section 4.7. Boysen et al. (2010)
show the cost for the loaded one-way moves strongly correlates with the cost of the overall effort,
thus making this simplification reasonable. In our case, we observe a difference in transportation
costs varying between 0.0% and 21.4% with an average of 6.6% when comparing the solutions of
the XS instances solved to optimality with the two-way formulations to those obtained with the
one-way formulation completed by the costs for unloaded moves in a post-processing step. While
this number is based on few data points, it is in accordance with the findings of Boysen et al.
(2010).

5.3 Experiments with one-way distance cost

In this section, we report results for the formulations with simplified one-way distance cost as
described in Section 4.7 for instances of size XS and S. We start by analyzing the results for
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the smallest instances. Table 5 displays the average number of constraints and variables for all
formulations, both one-way and two-way. We note that the number of constraints is drastically
reduced by simplifying the distance cost.

Size
Distance

cost
Handling
equipment

A1 A2 B1 B2 A1 A2 B1 B2
Variables Constraints

XS one-way GC & RS 5,787 5,744 3,680 3,680 1,275 3,487 3,409 3,610
XS two-way GC & RS 5,906 5,906 3,842 3,842 34,288 36,499 34,153 34,354

S one-way GC 86,148 86,148 14,367 14,367 6,077 79,384 78,638 80,918
S one-way RS 86,215 86,215 14,434 14,434 20,817 94,123 93,378 95,658

Table 5: Average number of variables and constraints per formulation depending on size, distance
cost, and handling equipment

The results for XS instances are reported in Table 6 showing that all instances can be solved to
optimality within short computational time (average 11 and 29 seconds for GC and RS movements,
resp.). Three out of 50 RS instances require one rehandled container, one of them additionally a
detour. All other instances are solved without any unproductive movement.

Formulation A1 A2 B1 B2 A1 A2 B1 B2
Handling equipment GC GC GC GC RS RS RS RS

# opt. solved instances 50 50 50 50 50 50 50 50
Avg. CPU [s] 3 31 6 4 18 86 6 7

Table 6: Computational results for the 50 XS instances (one-way distance)

We now turn our attention to S instances. To give an idea about the sizes of the different
formulations, we report the average number of variables and constraints in Table 5. The number
of variables is much higher for the A formulations (average 86,182) than for the B formulations
(14,400). The difference in the number of variables related to the handling equipment is small.
The number of constraints is the lowest for the formulation A1 (6,077 for GC, and 20,817 for RS)
and ranges between 78,638 and 95,658 for the other formulations. Comparing the RS to the GC
movements, the number of constraints increases by roughly 15,000 on average.

We report the results for S instances in Table 7. In addition to computing times and optimality
gap, we report the average number of rehandlings and detours for instances that could not be solved
to optimality. The results show that the problems with RS movements are harder to solve than
those with GC movements: the average number of optimally solved instances drops from 41 to
32, the average computational time rises from roughly 70 minutes to 160 minutes and the average
optimality gap increases from 8% to 18%. This is related to the higher number of forbidden loading
sequences. For both types of handling equipment, all optimal solutions are without unproductive
movements.

Formulation A1 A2 B1 B2 A1 A2 B1 B2
Handling equipment GC GC GC GC RS RS RS RS

# opt. solved instances 42 37 43 42 26 22 41 40
Avg. CPU [s] 5,418 9,268 1,423 821 16,897 19,462 1,388 1,041
Avg. opt. gap [%] 25.5 5.0 0.6 0.6 61.4 7.7 0.6 0.6
Avg. # rehandlings (timeout) 1.5 0.2 0.0 0.0 4.5 0.1 0.0 0.0
Avg. # detours (timeout) - - - - 2.4 0.2 0.0 0.0

Table 7: Computational results for the 50 S instances (one-way distance)

For the GC, the number of instances solved to optimality varies between 37 and 43 out of a total
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of 50. The formulation B1 finds the highest number of optimal solutions, followed by formulations
A1 and B2. Concerning the computational times, the B formulations clearly outperform the
others. Regarding the optimality gaps, the formulation A1 is the worst. The average number of
rehandled containers for instances that are not optimally solved at timeout is rather low for all
formulations.

The RS instances, however, show a different picture. Whereas the number of optimally solved
instances decreases significantly for the A formulations, the numbers remain almost stable for the
B formulations. The latter clearly surpass the other formulations with respect to computational
time and optimality gap. Comparing the average number of unproductive movements at timeout,
they are reasonable for all formulations and lowest for A2, B1, and B2.

We now examine whether and how the container characteristics have an impact on the compu-
tational results. Figure 5 shows a comparison of the number of optimally solved instances for the
two settings of container characteristics (40 ft only and mixed 40, 45 and 53 ft). With only one
exception (A1 formulation and RS), the share of solved instances with a mix of container sizes is
higher or equal (average of 24 for GC, 18 for RS). Due to the symmetry of load plans, the solution
space for containers of equal size is larger. We also note the difference between the two types of
handling equipment when dealing with containers of equal size: On average 18 out of 25 instances
can be solved to optimality in the case of GCs. The average number for an RS is 15.
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Figure 5: Number of solved S instances with respect to container characteristics for each formu-
lation (1 size: 40 ft, 3 sizes: 40 ft, 45 ft and 53 ft)

In summary, the B formulations generally exhibit the best performance on S instances in terms
of average computational time (below the 30 minute time budget) and number of optimally solved
instances. The reduction in the number of variables at the expense of more constraints seems to
be the best trade-off we could find. Interestingly, these formulations seem to be hardly affected by
the higher complexity caused by the RS movements. Even though the B formulations work best
on average in terms of computational time and number of optimally solved instances, there is no
clear dominance relationship between the formulations. Depending on the actual settings of the
terminal where the model can be applied, e.g., gantry crane and homogeneous containers, one or
the other formulation may be the best choice. The two different definitions of the z variables (i
loaded at or by t) seem not to affect the performance strongly, but with respect to the solution
quality at timeout, A2 dominates A1.

5.4 Experiments ignoring distance cost

In this section, we present experiments ignoring cost for distance (as described in Section 4.7)
and the results are reported in Table 8. Similarly to the results presented in Section 5.3, the
RS instances are harder to solve. While all GC instances could be solved to optimality, there
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are 2 (resp. 3) instances that cannot be solved to optimality by the formulation A1 (resp. A2).
Compared to the results with one-way distance cost (41 and 32 optimally solved instances), these
figures are considerably higher.

Formulation A1 A2 B1 B2 A1 A2 B1 B2
Handling equipment GC GC GC GC RS RS RS RS

# opt. solved instances 50 50 50 50 48 47 50 50
Avg. CPU [s] 1,091 3,969 651 995 8,935 11,546 1,210 1,361
Avg. opt. gap [%] - - - - 100.0 95.5 - -
Avg. # rehandlings (timeout) - - - - 16.5 1 - -
Avg. # detours (timeout) - - - - 10 1 - -

Table 8: Computational results for the 50 S instances (no distance)

For the GC, the average computation time drops from roughly 90 (resp. 155) to 18 (resp. 66)
minutes for the formulation A1 (resp. A2) compared to the prior experiments (Section 5.3). The
computational times for the formulations B1 and B2 are on average 11 and 17 minutes, respectively.

The RS movements intensify the differences between the formulations. The B formulations are
the only ones for which one can solve all 50 instances to optimality. The average computation
time is 20 minutes for B1 and 23 minutes for B2, respectively. The formulations A1 and A2 solve
48 and 47 instances, respectively. The computational times are 149 and 192 minutes, and hence
much higher compared to B1 and B2.

The optimality gap for instances without proven optimum is large (> 95%). The number
of unproductive movements at timeout is reasonable for the instances solved by formulation A2.
In terms of computational time, the B formulations clearly outperform the others, but the A
formulations can still deal with the instance size.

The figures show that the cost for the distance in the objective function makes the optimization
problem considerably harder. Therefore, in a terminal where distance is not a major concern, it
can be valuable to discard this term from the objective function. We note that it does not prevent
the use of other proxies for distance, such as the one we use for detours.

5.5 Experiments with larger instances

The computational experiments reported in Sections 5.3 and 5.4 indicate that the formulations
B1 and B2 work best with respect to the number of optimally solved instances in the given
time limit and computational time. We now use these formulations without consideration of the
distance on larger instances (sizes M, L, and XL) to examine which instance size can be solved in
reasonable time. The results are reported in Table 9. Recall that the largest instances that are
solved to optimality for the LPSP for single-stack trains in a similar setting comprise 40 containers
(Ambrosino et al., 2013).

The share of instances solved to optimality within ten hours drops significantly with increasing
size. For all sizes, no unproductive movements are part of the solutions of those instances that are
solved to optimality. All 50 GC instances of size M (75 containers) can be solved to optimality. For
the RS instances, however, only 28 of the instances can be solved to optimality for the B1 and 36
for the B2 formulations. The computational times are above five hours and thus not appropriate
for operational problems.

Larger instances (size L) comprising a block of at least 1,500 ft length and 113 containers are
hard. Only 11 (resp. 15) instances are solved optimally with the formulation B1 (resp. B2) within
the given time limit. None of the RS instances can be solved to optimality. Note that the average
optimality gap by the end of the computational time is large (> 95%). The solution quality in
terms of unproductive movements at timeout is poor except for the B2 formulation with instance
size M.

The largest instances that we test (size XL) comprise 2,000 ft and 150 containers. Only few
instances can be solved to optimality. In those cases, the surprisingly fast computational times are
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Instance size (# containers) S (50) M (75) L (113) XL (150)
Formulation B1 B2 B1 B2 B1 B2 B1 B2

GC
# opt. solved instances 50 50 50 50 11 15 1 0
Avg. CPU [s] 651 995 3,333 2,688 31,000 22,777 15 -
Avg. opt. gap [%] - - - - 99.6 95.8 99.9 99.8
Avg. # rehandlings (timeout) - - - - 25.5 16.3 39.6 38.9

RS
# opt. solved instances 50 50 28 36 0 0 5 0
Avg. CPU [s] 1,210 1,361 19,727 17,450 - - 20 -
Avg. opt. gap [%] - - 98.2 95.9 100.0 99.8 100.0 100.0
Avg. # rehandlings (timeout) - - 14.3 3.7 65.6 60.6 88.0 82.8
Avg. # detours (timeout) - - 2.0 2.9 7.0 7.2 7.5 6.7

Table 9: Computational results for the large instances (50 of each size) without consideration of
distance cost

related to the fact that the heuristic provides an initial optimal solution (without any unproductive
movements) and CPLEX quickly proves the optimality of the solution. In none of the cases could
the solver find the optimal solution without the initialization.

5.6 Savings achieved by solving the integrated LPSP

Last, we report results from a study investigating whether the integrated LPSP can reduce the
handling cost compared to the sequential solution as suspected in our motivation. We therefore
solve twice the same S instances with consideration of the one-way distance cost. In the first run,
we optimize the load plan. In the second run, we optimize the load sequencing taking the fixed
load plan as an input. Accordingly, the result of the first run corresponds to the outcome of the
methodology presented by Mantovani et al. (2018) with an additional summand in the objective
function related to the distance cost.

As not all instances can be solved to optimality with the integrated model (Table 7), we only
compare instances that are optimally solved with at least one of the four formulations (49 GC
instances, 41 RS instances). The distribution of the number of rehandled containers obtained by
the sequential model is displayed in Figure 6.
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Figure 6: Distribution of the number of rehandled containers for the sequential solving of the
LPSP

For the GC experiments, up to 8 containers (average 4.1) must be rehandled in the sequential
model, whereas the number of rehandlings can be reduced to 0 with the integrated model. For
the RS instances, the number of rehandled containers varies between 2 and 9 (average 5.9) and
drops to 0. The number of detours varying between 0 and 2 (average 0.4) can be lessened to 0. In
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other words, the integrated model could find for every single instance a loading sequence without
using any unproductive movement at all. On average, the load plans comprise 32 containers
corresponding to 32 handlings for the integrated model. Compared to 36.1 and 38.3 handlings,
a saving of 11.3% can be achieved for the GC and 16.5% for the RS instances, respectively. The
average improvement on the objective function is 7.6% and 8.1%, respectively. Recall that the
solution of the integrated model is in no case worse than the solution found in the sequential
procedure in terms of penalty for not loaded containers.

The integrated model tends to choose load plans that either include all containers of one stack
or those that are most easily accessible. Contrarily to the load plans found without consideration
of the handling cost, containers whose neighboring load units in the pile are not loaded are rarely
part of the load plan.

These results underline that, from an operational point of view, the solution quality can be
significantly improved with an integrated model. Hence, terminal operators could clearly benefit
from a lower handling cost. These benefits become even clearer if we consider that the loading
is executed for many blocks a day and that the handling equipment is one of the most critical
resources in terminals.

6 Conclusions and future research

In this paper we introduced the load planning and sequencing problem for double-stack trains.
We modeled the movements of the handling equipment in a preprocessing step, such that a set of
forbidden retrieval sequences is obtained. Starting from the model for the load planning problem
for double-stack trains proposed by Mantovani et al. (2018), we have introduced four different ILP
formulations.

The computational results showed that the instances considering reach stackers instead of
gantry cranes are more difficult to solve. This is due to more complex accessibility rules of the
reach stackers yielding more dependencies between the movements, which finally results in a higher
number of constraints. Furthermore, we found that, on average, the formulations B1 and B2 work
best for our instances. Both of them introduce two sets of decision variables: one is related to the
perspective of the containers zit and the second one to the perspective of slots of the train bqt.
These models are less affected by the higher number of forbidden sequences caused by the reach
stacker.

While formulations B1 and B2 dominate A1 and A2 when comparing average performance
and the number of instances solved to optimality, this conclusion does not necessarily hold in an
instance-by-instance comparison. Indeed, there are instances where A1 performs better than B1
and B2. Even though it is standard to analyze average performance, we note that it may also be
relevant to seek solution methods with low variance in both computing time and solution quality.
In practice it can therefore be beneficial to solve several formulations (in our case B1/B2 and A1)
in parallel.

Additionally, we showed that by ignoring the costs for the distances occurring in the terminal,
as it may be suitable for terminals with a compact layout, we could solve instances with a block
length of 1,000 ft and 75 containers with a commercial solver to optimality. This is a significant
improvement compared to the literature, where the largest optimally solved instances in a sim-
ilar setting for single-stack railcars comprise 40 containers (Ambrosino et al., 2013). For larger
instances, however, the computational times are too high for an operational problem. Comparing
the computational results to those reported by Mantovani et al. (2018), the remarkable increase
in complexity by integrating the load planning and the load sequencing problem becomes clear.

Finally, we highlighted that the integrated model can significantly reduce the handling cost
in terminals compared to the sequential solving. In our case study comprising 50 containers, the
number of rehandled containers drops from 4.1 to 0 for gantry crane movements and from 5.9 to
0 for reach stacker movements. As the problem is solved many times per day in a terminal, this
can lead to a significant decrease in handling costs.

There are several avenues for future research. First, an alternative approach to model the
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two-way distance to achieve a more tractable formulation. Second, the sequencing of rehandles
is a relevant extension of the model as, in rare cases, the rehandling of blocking containers may
involve further rehandlings. Third, bridging the gap with respect to crane scheduling problems
and focusing on minimizing makespan instead of handling cost and allowing for more than one
handling equipment. This is particularly relevant in high-density terminals and where there is
possible interference between handling equipment. Last, tailored solution methods and valid
inequalities for the models are an additional subject for future research.
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