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Abstract. Dial-a-ride operations consist of door-to-door transportation systems, generally 
designed for users with specific needs. Governments and companies offer such services, 
and due to the flexibility and service level required by the users, it is considerably more 
costly than public transportation, besides emitting higher levels of CO2. Hence, it is crucial 
to analyze alternatives to improve operational costs and efficiency without compromising 
the quality of the service. This paper introduces a variant for the dial-a-ride problem by 
considering the integration with common carriers and public transportation, which we call 
DARP-CCPT. Requests can be served either by the private fleet, the common carrier, or by 
integrating them into the public transportation system. In this case, users are collected at 
the pickup locations and taken to bus stops. After the bus trip, other vehicles serve them 
from the bus stops to their final destination. This entire operation needs to be synchronized 
with the bus schedules. As a methodology, we solve the DARP-CCPT with a hybrid of 
metaheuristics and machine learning by combining a biased random-key genetic algorithm 
with the Q-Learning method (BRKGA-QL) and local search heuristics. This paper introduces 
a new version of this method, called BRKGA-QL v2.0, particularly improving the population 
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Computational experiments on a new benchmark data set with realistic data from Québec 
City show that BRKGA-QL v2.0 outperforms its previous version. In addition, we provide a 
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transportation can save up to 20% in operating costs, besides reducing the traveled 
distances of private vehicles and common carriers. 
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1. Introduction

Dial-a-ride (DAR) problems (DARP) aim to offer responsive door-to-door transportation

services, generally for users with some mobility impairment. From an operational side, a trans-

portation provider serves the requests using its private fleet, subject to constraints such as

vehicle capacity, pairing, and precedence. Regarding the service level, constraints like time win-

dow, duration, and ride time are also considered (Cordeau and Laporte, 2003b). Historically,

the DARP has attracted great attention in the literature, and several algorithms have been pro-

posed for its standard version and variants (Braekers et al., 2014; Cordeau, 2006; Brevet et al.,

2019; Cordeau and Laporte, 2003a; Diana and Dessouky, 2004; Masmoudi et al., 2016, 2018; Qu

and Bard, 2015; Ropke and Cordeau, 2009; Ropke et al., 2007). The survey of Ho et al. (2018)

provides a review and recent developments.

Due to the flexibility required, a DAR operation is high-costly and the vehicles usually travel

with low occupancy. Besides the low operational efficiency, the DAR is also environmentally

inefficient, given the associated high levels of CO2 emissions (Shiraki et al., 2020). An alternative

to improve operational and environmental efficiency is the integration of private fleets with public

transportation, where some legs of the journey are performed by fixed routes of trains and

buses (Posada et al., 2017). On the other hand, an integrated coordinated multi-modal public

transportation system leads to a substantial increase in operational complexity since they must

offer wide coverage, real-time response to demand, quality service, and energy-efficient operations

(Kuo et al., 2022).

From the relevant literature, Chu et al. (2022) point out that designing efficient fixed bus

routes in remote areas is difficult because demand is unstable and scattered. To improve the

service level, the authors propose integrated planning of a fixed bus route with the DAR trans-

portation. A two-stage stochastic programming is introduced, where a set partitioning optimizes

the route and timetable of a bus line, while a DARP is formulated in the second stage. A hybrid

algorithm combining depth-search and heuristic procedures is developed to solve the problem.

Results based on a case study show that the integration of bus and DAR operations considerably

reduces unserved demands and improve the service level.

Addressing the first mile/last mile (FMLM) problem, Kumar and Khani (2021) integrate

peer-to-peer ridesharing with a schedule-based transit system. A matching algorithm is designed

to find an optimal match between riders and drivers and synchronize the vehicle trip with the

rest of the itinerary. To reduce the network search, the study identifies the space-time area a

1

Hybrid Metaheuristic for an Integrated Dial-a-Ride Problem with Common Carrier and Public Transportation

CIRRELT-2022-32



traveler can reach.

Aslaksen et al. (2021) investigate the integration of DAR and ferry transportation systems in

coastal cities. The study considers on-demand services with autonomous small ferry units, and

the authors propose a request assignment ferry routing procedure in a simulation framework.

Computational experiments performed for a case study of Kiel, Germany, assess the relationship

between fleet sizing and demand satisfaction under different demand scenarios. In Posada and

Häll (2020), the integration between a special transportation service with a fixed route public

transportation for rural areas is considered. An adaptive large neighborhood search (ALNS) is

proposed to minimize the distance traveled by the demand-responsive vehicles, reaching around

16% of distance reduction.

Despite promoting better operational and environmental efficiency, the integration of DAR

and public transportation causes a reduction in the quality of service, as the user has to carry

out multiple hop-on hop-off, in addition to being subject to possible delays in buses and trains.

Another type of integration is proposed by Schenekemberg et al. (2022), where the demand can

be served either by the private fleet, mobile-on-demand transportation, or by their combination.

The authors introduce and model the DARP with private fleet and common carrier (DARP-

PFCC), and implement a branch-and-cut (B&C) algorithm to solve it. A hybrid BRKGA-QL

is also designed, where the algorithm parameters are optimized by the reinforcement learning

method. BRKGA-QL successfully solved both the DARP classical instances and DARP-PFCC

instances. The study also provided a real case study showing the benefits for both the provider

and the users.

In order to incorporate better operational and environmental performance from public trans-

portation and promote a better quality of service, this paper integrates common carriers and

public transportation into the DARP framework, which we call DARP-CCPT. Requests can be

served either by the private fleet, the common carrier, or by integrating them into the public

transportation system. In this last case, the middle mile is performed by a bus while the first

and last legs of the trip are performed by a mobile-on-demand vehicle, such as a taxi, Uber,

or equivalent. This entire operation needs to be synchronized with the bus schedules. To solve

this novel problem variant, we introduce BRKGA-QL v2.0, with significant improvements on

the population management. Computational experiments performed on a new benchmark data

set with realistic characteristics of Québec City show that BRKGA-QL v2.0 outperforms its

previous version. The contributions of this paper are to:
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• combine a private fleet, common carriers, and public transportation in a new DARP vari-

ant. Such an approach has several benefits. According to their profile, users can be served

more quickly by common carriers, while providers can reduce their costs by transferring

part of the demand to the buses. Finally, global benefits are generated for society since

fewer vehicles travel long distances with low occupancy, reducing urban traffic, and en-

abling lower CO2 emissions;

• design a BRKGA-QL v2.0 algorithm to solve the DARP-CCPT, which is more efficient

than its previous version, benchmarking it on the instances without public transportation.

We make the source code (problem-independent) of our algorithm available to the research

community;

• present a data pre-processing technique to define the best bus line, timetable, and stops

for integrating each request. Since this task is extremely time-consuming, this procedure

enables evaluating a subset of promising bus stops close to the request nodes (pickup or

delivery), avoiding computing all possibilities from the public transportation database;

• generate a new instance set for the new problem, with all the instances and results available

online;

• apply our BRKGA-QL v2.0 to solve real-case scenarios of the DARP-CCPT, showing that

the middle mile integration with public transportation improves operational performance

by reducing the traveled distances of private vehicles and common carriers.

The remainder of the paper is organized as follows. Section 2 formally describes the DARP-

CCPT and details the synchronization procedure with public transportation. The BRKGA-

QL v2.0 is presented in Section 3, while its encoding, decoding, and local search strategies

are described in Section 4. In Section 5, we present the instances generator and the results

of extensive computational experiments performed. Our conclusions and directions for future

works follow in Section 6.

2. Problem definition

The DARP-CCPT is defined as follows. Let n be the number of requests from a set of pickup

nodes P = {1, ..., n} to a set of delivery nodes D = {n+ 1, ..., 2n}. Each request i represents

a pair of nodes (i, n + i), with i ∈ P and n + i ∈ D, and its demand qi can be satisfied by
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either a private vehicle, a common carrier vehicle, or by integrating common carriers and buses.

A limited fleet of m private vehicles of capacity C is available. All private vehicles depart

from the depot 0, visit a set of pickup and delivery nodes, and return to the depot 2n + 1,

without violating the maximum route duration T . In this transportation option, users share the

same vehicle, which travels among pickup and delivery nodes according to a scheduling plan.

Regarding outsourced vehicles, we assume an unlimited fleet from a common carrier, where

each vehicle has sufficient capacity to satisfy any request. Finally, some users can be served by

integrating common carriers with public transportation. Here, in the first mile, users from node

i are picked up by a common carrier vehicle and transported to a departure bus stop k. In the

middle mile, these users travel from k to an arrival bus stop k′. Finally, the last mile from k′ to

the delivery node n + i is made by another outsourced vehicle. Both bus stops k and k′ must

be visited by the same bus line l.

We consider the following transportation cost scheme. For private vehicles, a routing cost

cij is multiplied by the distance dij traveled along arc (i, j) connecting nodes i and j, where

i, j ∈ P ∪ D ∪ {0, 2n+1}. For the common carrier vehicles, serving a request i incurs a fixed

cost f and a variable cost v, where the total cost is f + v · din+i. Lastly, synchronizing a request

between common carriers and public transportation splits the costs into three parts. For the

first mile, we have an outsourced vehicle traveling from i to bus stop k with cost f + v · dik; for

the middle mile, a ticket cost pl for bus line l is charged; and for the last mile another extra

vehicle is used from bus stop k′ to the delivery node n+ i, incurring a cost f + v · dk′n+i.

As in the DARP, each node i ∈ P ∪ D is associated with a demand qi, a service duration di,

a maximum ride time Li, and a time window [ei, li], with ei and li being the earliest and latest

times to serve i, respectively. For nodes 0 and 2n+1, the time windows [e0, l0] and [e2n+1, l2n+1]

define the working horizon for vehicles of the private fleet. Finally, tij represents the travel time

from i to j, and we also consider d0 = d2n+1 = 0, q0 = q2n+1 = 0, and qi > 0, qi = −qn+i, i ∈ P,

and n + i ∈ D. In order to define a feasible solution for the DARP-CCPT, we also assume

all operational constraints of the DARP, such as pairing, precedence, capacity, time windows,

route connectivity, and ride time. A solution to the DARP-CCPT minimizes the total costs

while determining whether users are served by the private fleet, common carrier, or public

transportation.

Figure 1 presents an example of the DARP variations. We consider three requests (with

pickup nodes {1, 2, 3} and their respective delivery nodes {4, 5, 6}), two depots (0 and 7), and
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two bus stops (k and k′). We also consider the bus cost as pl = 2, and a fixed and a variable cost

for the common carrier given by f = 1 and v = 2, respectively. Figure 1a shows the network and

the distances of each arc. In Figure 1b we have a solution for the classical DARP with a cost

equal to 29. Figure 1c presents a solution to the DARP-PFCC with a cost equal to 28, in which

a common carrier satisfies request 1, while Figure 1d presents a solution for the DARP-CCPT

considering that the user of request 1 is picked up in node 1 and taken to bus stop k; at bus stop

k′ another vehicle picks the user up and travels to delivery node 4. The cost of this solution is

equal to 23.

2 3 5 6

41

0

k k′

7
3 3 3 3 3

5 5 5 5

6
1 1 Distance

Common carrier
Bus

Private vehicle

(a) Network

2 3 5 6

41

0

k k′

7
3 3 3

5 5 5 5

(b) DARP solution (cost = 29)

2 3 5 6

41

0

k k′

7
3 3 3 3 3

6

(c) DARP-PFCC solution (cost = 28)

2 3 5 6

41

0

k k′

7
3 3 3 3 3

1 1

(d) DARP-CCPT solution (cost = 23)

Figure 1: Examples of DARP variants. The depots (0 and 7) are depicted by pink nodes, the pickup nodes of

the requests are green while grey nodes indicate their delivery nodes. The blue nodes represent bus stops. The

colored arcs indicate the path of each vehicle type (the private vehicle is blue, the common carrier is red, and the

bus is green).

We consider all available bus lines, timetables, and bus stops in our DARP-CCPT. However,

finding the best integration at runtime is a task that increases the computational time of the

algorithm. Therefore, we propose pre-processing the data to define the best line/timetable/bus

stops for each request, considering only bus stops within 20 minutes of the pickup/delivery

node. This is done to balance the common carrier costs and bus ticket costs. The cost of the

integration options is calculated by equation (1), where we add the cost of common carriers in

the first and last mile and the cost of the bus in the middle mile.
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costi,n+i = [f + v · dik] + pl + [f + v · dk′n+i]. (1)

In the example of Figure 2, we consider two bus lines (A and B) with two available timetables

(t = 1, 2). For line A we have a bus stop close to the pickup node i (point k′), and a bus stop

close to the delivery node j = n + i (point k′′). For line B we have a bus stop k next to the

pickup node and a bus stop k′′ next to the delivery node. With the distances and travel times

(including service time) presented in the figure (in parentheses) and considering f = 3, v = 2,

and pl = 3 for both lines, we have the following options for integration:

• route [i, k′, k′′, j], using line A from bus stop k′ at timetable 615 and with a total travel

time of 40 minutes. The user has a waiting time upon arrival at the delivery node before

the time window opens. The cost of this integration is 31;

• route [i, k′, k′′, j], using line A from bus stop k′ at timetable 625 and with a total travel

time of 40 minutes but no waiting time at the delivery node. The cost of this integration

is also 31;

• route [i, k, k′′, j], using line B from bus stop k at timetable 610 and a total travel time of

45 minutes without waiting at the delivery node. The cost of this integration is 27;

• route [i, k, k′′, j], using line B from bus stop k at timetable 635. However, this option is

infeasible due to the arrival at node j after the end of the time window.

After enumerating all options for each request, we select the one with the lowest cost. In the

example of Figure 2, the third option has the lowest cost. Therefore, we use line B, bus stops

k and k′′, and timetable 610 if it is economically advantageous to integrate this request with

public transportation.

3. Biased random-key genetic algorithm with Q-Learning

Genetic Algorithms (GAs) (Holland, 1975) can efficiently solve combinatorial optimization

problems. BRKGA (Gonçalves and Resende, 2011) is a recent GA variation that has successfully

solved several routing problems (Schenekemberg et al., 2022; da Silva et al., 2019; Andrade et al.,

2019). BRKGA uses double elitism in the Parameterized Uniform Crossover (PUX) (Spears and

Jong, 1991), selecting a parent from an elite set, and the offspring inherits genes with a higher

probability from this parent.
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k

k′

610

635

(3km, 5min)
i

(5km, 10min)

Line A (20 min)

Line B (30 min)
(6km, 10min)

k′′

j
625

615

665

635

645

640

[650, 660]

Timetable 1

Timetable 2

Figure 2: Example of the integration between request nodes and bus lines. The pickup node i is represented in

green, the delivery node j = n+ i in grey, and bus stops k, k′, and k′′ in blue. The colored arcs indicate the path

of each vehicle type (common carrier in red, bus in green), and timetables are depicted in orange and yellow for

lines A and B, respectively.

BRKGA represents a solution by a random-key vector with dimension n (x ∈ [0, 1]n), and

the decoder function maps these vectors to the solution space of the problem at hand. Thus, the

evolutionary process is independent of the problem, and one can reuse the code to accelerate the

development of new applications. However, a disadvantage of the BRKGA is the large number

of parameters to be configured. It is a difficult task that requires tuning tools (e.g., iRace

or ParamILS) to obtain good results (Andrade et al., 2021). Chaves et al. (2017) proposed an

adaptive BRKGA with deterministic and self-adaptive rules to control the parameters during the

evolutionary process, and Chaves and Lorena (2021) developed a BRKGA with the Q-Learning

algorithm to learn the most appropriate parameter configuration during the evolutionary process.

Q-Learning (Watkins, 1989) is a model-free reinforcement learning algorithm that updates the

value function based on the Bellman equation. The agent uses the parameters ϵ, learning factor

(lf ), and discount factor (df ) to explore the environment and update the Q-Table.

In this paper, we propose a new version of the BRKGA with Q-Learning, called BRKGA-QL

version 2.0, with improvements to perform efficient parameter control and balance intensification

and diversification during the search. BRKGA-QL v2.0 has a set of states S (parameters) and

a set of actions A that represents a parameter value. There is only one state for each BRKGA

parameter, and the value Q(si, aj) represents the quality of using [si, aj ]. At each generation,

we choose each parameter value from Q-Table using the ϵ-greedy policy. The agent aims to

maximize its total reward, with the ϵ-greedy policy selecting the action with the highest Q in
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state si with a probability of 1− ϵ, or any action otherwise.

Figure 3 presents the flowchart of BRKGA-QL v2.0. The decoder and the local search are

the only problem-dependent components. All other components are generic and modular; thus,

we can encapsulate them in a framework. The new elements of version 2.0 are represented by

the adaptive parameter setting of the Q-Learning during the evolutionary process aiming to

balance exploration and exploitation in the agent, the chaotic individuals generated from the

communities, and mainly the mutation operator in the PUX instead of mutants. This new

version of the algorithm is compared against the previous one in Section 5.

Figure 3: View of the BRKGA-QL algorithm version 2.0. Components marked with an ∗ are new in this version.

BRKGA-QL v2.0 starts by initializing the Q-Table values at 0. Table 1 shows the action

list of each parameter. There are four parameters (states): population size (p), elite set size

(pe), mutation probability (pm), and probability that an offspring inherits the gene from its elite

parent (ρe). The parameter values are the ones proposed by Chaves and Lorena (2021), except

for the mutation probability, which is a new feature of this version.

The second step consists of generating the BRKGA-QL population (P ) with p random-key

vectors. Each vector position is generated randomly in the real interval [0, 1]. The value of p
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Table 1: Action list of the BRKGA parameters based on Chaves and Lorena (2021)

Parameter Action List

p {233, 377, 610, 987, 1597, 2584}

pe {0.10, 0.15, 0.20, 0.25, 0.30}

pm {0.0, 0.01, 0.02, 0.03, 0.04, 0.05}

ρe {0.55, 0.60, 0.65, 0.70, 0.75, 0.80}

is set as the largest population size defined in the Q-Table. In each generation, the population

can be reduced or expanded. The first case performs a proportional pruning in the elite and

non-elite solutions. The second case generates new solutions with the PUX.

Different decoders map the solution space in different ways. In the BRKGA-QL it is possible

to implement k decoders. A random-key in position n+ 1 defines the decoder of each solution.

We apply the chosen decoder and calculate the fitness of the solution.

Unlike the first version of the BRKGA-QL, in this version, the Q-Learning parameters are

set during the evolutionary process by deterministic rules. We adopt a cosine annealing decay

(equation (2)) for the value of ϵ (Loshchilov and Hutter, 2017). The value of lf is updated

following equation (3), and df is set to 0.8 looking for a higher, long-term reward (Samma et al.,

2020).

ϵ = ϵmin +
1

2
·
(
ϵimax − ϵmin

)
·
Ç
1 + cos

Ç
T i
cur

I
π

åå
(2)

lf = 1−
Ç
0.9 ·

∑
i T

i
cur

runtime

å
, (3)

where ϵmin = 0 and ϵimax ∈ {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1} are ranges for the values

of ϵ, T i
cur accounts for the run time since the last restart, I is equal to 10% of the maximum

computational time defined by the user (runtime), and i is the index of the restart.

We promote exploration at the beginning of the search process when the agent needs more

information about the environment. Over the generations, the agent gains knowledge about the

most appropriate parameter settings and intensifies the search using this knowledge.

The evolutionary process of BRKGA-QL v2.0 differs from those of BRKGA and BRKGA-

QL. The population is partitioned into two sets (elite and non-elite) based on the parameter
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pe, and the elite partition is copied to the next population. The offspring is created with the

PUX operator using ρe. However, a mutation can occur during the selection of genes with

a probability pm. This characteristic allows the method to have diversity and generate good

solutions. In previous versions, mutants (random solutions) are generated, but these are unlikely

to have good fitness. The new solutions are evaluated by the decoder specified in random-key

n+ 1, and the new population is sorted by fitness.

A reward R is calculated after each generation. We propose the following reward function:

R =

1 + ∆f , if f t
b < f t−1

b

0, otherwise,
(4)

where f t
b is the best fitness in the population at generation t and ∆f is defined by equation (5):

∆f =
1

p

Ç
f t−1
b

f t
b

− 1

å
× 105. (5)

The reward function combines the improvement of the current best fitness and binary rewards

proposed by Karafotias et al. (2015). This function is less scale insensitive than the binary

reward, including the magnitude of the improvement and the population size.

The function Q(si, aj) defines the value associated with the state-action pair (si, aj) and

represents how good the choice of this parameter value is when optimizing the expected total

return. The expression for updating the value of Q is based on equation (6):

Q(si, aj) = Q(si, aj) + lf [R+ df ×Qmax −Q(si, aj)] , (6)

where si is the current state, aj is the action performed in state si, and Qmax is the target

Q-value (the highest value in the Q-Table).

A local search module (Schenekemberg et al., 2022) is also used in the BRKGA-QL v2.0. We

apply the Label Propagation method (Raghavan et al., 2007) on the elite set whenever BRKGA-

QL finds a new best solution (R > 1) or when the number of generations without improvement

is greater than n. This method groups the elite solutions using a weighted graph through the

Pearson correlation measure. The best chromosome from each cluster is sent to the local search.

We do not add the local optima in the population. The Random Variable Neighborhood Search

(RVND) (Penna et al., 2013) is used to select the neighborhood heuristic order to be applied in

each iteration. We also increase the diversity of the elite set by generating chaotic individuals
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(Li and Pei, 2019) using PUX with mutants (random solutions) and similar chromosomes in the

elite set. The chaotic individuals replace these similar individuals in the population.

The BRKGA-QL v2.0 uses the run time (runtime) as a stopping criterion. However, runtime

is considered a parameter and needs to be tuned based on the available computational resources

and the complexity of the decoders and local search heuristics.

4. BRKGA-QL for the DARP-CCPT

In this section, we show how solutions are encoded to a vector of random keys and how they

are decoded from a vector of random keys into a DARP-CCPT solution. We also present some

local search procedures to polish promising solutions.

4.1. Encoding a solution to a vector of random keys

A DARP-CCPT solution is composed of feasible scheduling plans for a set of n requests with

a pickup and delivery pair (i, n+ i). Thus, we adopt a chromosome array of random-keys with

n + 1 genes having values in the range [0, 1] to represent a solution. Each gene i ∈ {1, ..., n} is

associated with a request in the format (i, n + i), while the gene i = n + 1 represents different

decoder functions used to map the chromosome to the DARP-CCPT solution space. Next, we

present all decoders implemented in our paper.

4.2. Decoding a solution from a vector of random keys

Schenekemberg et al. (2022) presented four decoder functions to successfully solve the DARP-

PFCC that can be adapted to handle DARP-CCPT instances. A decoder function is chosen

according to the value of gene n+ 1 to map a random-key vector to the DARP-CCPT solution

space. For values in the range [0.0, 0.25), the first decoder is selected; values in the interval

[0.25, 0.50) choose the second decoder; values in [0.50, 0.75) select the third decoder, while

values within [75, 100) select the fourth decoder. The decoders used to solve DARP-CCPT are:

1. Decoder 1: The first decoder is applied in two stages. Initially, each request i is assigned

to a vehicle ν ∈ {1, ...,m} of the private fleet. The vehicle ν is determined by ν =

⌊(ri) ·m⌋ + 1, where ri is the value of the random-key associated with the request i.

Then, routes are created for each vehicle ν following a list ∆′
ν of requests i sorted by non-

descending order of ri. The users of the first request i ∈ ∆′
ν are added to the route between

depots 0 and 2n+1, obtaining the path Rν = (0, i, n+i, 2n+1). The remaining elements in
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∆′
ν are scheduled one by one in Rν , in a common carrier, or using integration with public

transportation. For that, we evaluate the cost of serving i and n+ i in the best positions in

Rν , considering only the partial path formed from the previously inserted pickup i to the

depot 2n + 1. The cheapest cost for vehicle ν is compared to the costs of scheduling the

request in a common carrier or integrating it with a bus. The most economical option is

chosen to serve each request. We also evaluate the route’s pairing, time window, capacity,

and ride time feasibility. Infeasible solutions are disregarded. Adding a request only after

the pickup previously inserted in ν avoids planning a complete schedule for the entire

route. That is, it is enough to evaluate the vicinity of the insertion and all nodes on the

partial path leading to the depot 2n+ 1.

2. Decoder 2: This decoder is very similar to Decoder 1. The difference is that the cost of

inserting i and n+ i is evaluated over the entire path of the vehicle ν. We emphasize that

the computational effort of this decoder is greater than the previous one, as it is necessary

to plan a schedule for each node along the entire path.

3. Decoder 3: This decoder does not apply the first stage as the previous ones to assign

requests for a specific vehicle. It initially sorts the random-keys by value and tries to

schedule each request considering all private vehicles simultaneously. It also evaluates the

cost of serving i and n+ i by common carriers and integrating with public transportation,

always opting for the lowest cost option. Thus, this decoder is even more general than the

first two decoders.

4. Decoder 4: This decoder aims to maximize the usage of buses and vehicles of the private

fleet. It works as Decoder 3, except that a request is served by an outsourced vehicle

only if a feasible solution cannot be found using a private vehicle or an integration of a

common carrier with a bus. On the contrary, if there is a feasible solution, the cheapest

cost is used to select the transport option.

The four decoders described are specific constructive heuristics and help increase the solu-

tions’ diversity. During the evolutionary process of the BRKGA-QL, decoders that find better

solutions are applied more frequently, although all decoders are invoked periodically throughout

the optimization process, generating different sets of solutions.
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4.3. Local search procedures

We implemented eight local search procedures for the DARP-CCPT based on the heuristics

developed for the DARP-PFCC by Schenekemberg et al. (2022). All procedures are embedded

into the framework described in Section 3 and applied with parallel processing techniques, im-

proving promising solutions without compromising the evolutionary process of the BRKGA-QL

v2.0. These heuristics are:

1. Exchange a request to another private vehicle: This heuristic removes at random

a request i of a vehicle ν of the private fleet. Then, the pickup node i and delivery node

n+ i are added to the route of another vehicle ν ′ ̸= ν according to the cheapest insertion

rule;

2. Swap up to four intra-route nodes: This heuristic randomly chooses a vehicle ν of

the private fleet and a vertex u visited by it such that the partial path [u, v, w, z] of four

successive nodes belongs to the route νR = [0, ..., u, v, w, z, ..., 2n+1]. Then, all 24 possible

permutations in the partial path are computed, and the most economical among the fea-

sible ones is selected. Performing swaps between nodes next to the route endpoints may

not be interesting, as precedence, ride-time, and time windows constraints are frequently

infeasible. This observation justifies using partial paths with four consecutive nodes;

3. Swap two requests inter-route: This heuristic selects two vehicles of the private fleet,

and exchanges two requests, i and i′, between them. Requests i and i′ are selected accord-

ing to the greatest removal savings in their routes and are inserted in the best positions

in the new routes by observing the cheapest insertion rule;

4. Swap partial path inter-route: This heuristic swaps partial paths between two ran-

domly selected vehicles from the private fleet. In this case, partial paths are natural

sequences (see Parragh et al. (2010)) involving arcs where the load of the vehicle is null;

5. Remove 1/3: This heuristic randomly selects up to 1/3 of the requests served by vehicles

of the private fleet and moves them to other vehicles, or in different positions into the same

vehicle. All insertions observe the feasibility of each route and the cheapest insertion rule;

6. Remove a request from a private vehicle: This heuristic selects a request i served by a

vehicle of the private fleet and schedules it to a common carrier vehicle or the integration

with public transportation. The cheapest cost is used to select the option to serve the

request;
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7. Remove a request from a common carrier: This heuristic removes a request i served

by an outsourced vehicle and transfers its service to a vehicle of the private fleet or the

integration with public transportation. Here, the cheapest insertion cost among all private

vehicles is compared to the cost of the integration using common carriers and public

transportation;

8. Remove a request from the public transportation: This heuristic schedules a request

i served by the integration with a bus to a vehicle of the private fleet or a common carrier

vehicle, following the cheapest cost rule.

5. Computational experiments

In this section, we present the results of the extensive computational experiments we per-

formed to evaluate the performance of the new version of the BRKGA-QL algorithm to solve

the DARP integrated with common carriers and public transportation.

We compare the new version of the BRKGA-QL v2.0 against the BRKGA-QL algorithm

developed by Schenekemberg et al. (2022). The authors solved the DARP-PFCC without in-

tegration with public transportation. To allow for comparisons between the two algorithms,

we adapted their code and used all decoder functions and local search procedures presented

in Section 4. The algorithms were implemented in C++ and run on computers with Intel(R)

Xeon(R) E5-2683 v4 @ 2.10GHz CPU.

All data sets and computational results are available at https://tobeinsertedafterreview

and the source code (problem-independent) of BRKGA-QL v2.0 is available at https://tobe.

insertedafterreview.

5.1. Instances generator

To evaluate our algorithm, we use a real data set from a transportation provider that operates

a DAR service in Québec, Canada. For confidentiality reasons, we slightly modify the user

information, so that it is not possible to determine the original pickup and delivery addresses.

Regarding the integration, we generated different scenarios varying the percentage of requests

that can be integrated. In particular, we adopted the values ζ ∈ {0%, 25%, 50%, 75%, 100%},

where ζ = 0% indicates a strict scenario in which no request should be served by bus, while ζ =

100% represents a fully flexible scenario, allowing all requests to be integrated. We emphasize

that when ζ = 0% a DARP-PFCC instance is obtained. Finally, values 25%, 50%, and 75%
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represent moderate scenarios. These scenarios are justified by noting that in real cases the use

of public transportation may be prohibitive for some users.

The DAR parameters were generated as follows. For each instance, Table 2 presents the

number of requests (n), the number of vehicles (m) with identical capacity (C = 5), the maxi-

mum route duration (T ), the maximum ride time duration (Li), the demand (qi), and the service

duration (di) of each request i. The remaining columns in Table 2 show how we generated time

windows ([ei, li]) of outbound requests (from home to a destination) i = 1, ..., n/2 and inbound

requests (return trip to home) i = n/2 + 1, ..., n. The parameters T, Li, di, ei, and li are rep-

resented in seconds, where T = 28800 denotes an eight-hour working day, in which each route

must start only after 8 a.m (28800 seconds) and finish before 4 p.m (57600 seconds).

Given n ∈ {30, 60, 90, 120, 155}, we created one instance for each ζ ∈ {0%, 100%} and five

instances for ζ ∈ {25%, 50%, 75%}, totaling 85 cases. We emphasize that in moderate scenarios

all data are the same for each instance containing the same number of requests, only varying

which requests can be integrated. In addition, travel times and distances were obtained from

the road network and the public transportation database. As for cost values, the distances were

multiplied by 0.4 for the private fleet, while the bus cost was assumed to be 3 for each trip. For

the common carrier, we defined a fixed cost f = 3 and a variable cost v = 2.

Table 2: Dial-a-ride parameters.

n m T Li qi di ei li en+i ln+i

30 1 28800 5400 1 120 [T, 2 · T − 2700] ei + 2700 ln+i − 2700 [T + 2700, 2 · T − 900]

60 2 28800 5400 1 120 [T, 2 · T − 2700] ei + 2700 ln+i − 2700 [T + 2700, 2 · T − 900]

90 3 28800 5400 1 120 [T, 2 · T − 2700] ei + 2700 ln+i − 2700 [T + 2700, 2 · T − 900]

120 3 28800 5400 1 120 [T, 2 · T − 2700] ei + 2700 ln+i − 2700 [T + 2700, 2 · T − 900]

155 3 28800 5400 1 120 [T, 2 · T − 2700] ei + 2700 ln+i − 2700 [T + 2700, 2 · T − 900]

Regarding public transportation, we considered three bus lines, where each line is described

by buses that depart from the starting point at a particular time and travel through all stops

at predetermined times until reaching the final stop. In our experiments, line 1 contains 50

departures with 61 stops each, while lines 2 and 3 have 3 and 47 departures containing 42 and

65 stops, respectively.

5.2. Computational results of BRKGA-QL and BRKGA-QL v2.0

Our experiments were performed adopting runtime = 2 · n as the stopping criterion for the

two algorithms. The runtime parameter denotes the time in seconds for each run and is the only
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parameter that needs to be set.

First, we compare the results between the two versions of BRKGA-QL. Table 3 presents the

computational results for the 85 instances with different levels of integration. Each instance

was run 10 times, and columns “Best Z” and “Average Z” show the values of the best and

average solutions, respectively. Both versions use the maximum running time (runtime) as a

stopping criterion, thus, the “Best Time” column shows the average computational time for the

algorithm to find the best solution in each run. The “∆” column presents the relative percentage

deviation of the best solution obtained by both versions. Negative values indicate that version

2.0 found better solutions. We can observe that BRKGA-QL v2.0 improved the results in all

analyzed scenarios, except for the instances with the lowest number of requests (30). BRKGA-

QL v2.0 obtains objective function values on average 5.75% better than the original version.

The computational time to achieve the best solution is similar in both versions. These times

increase according to the number of requests but are stable for different integration levels. The

data pre-processing presented in Section 2 was fundamental in supporting this computational

time stability.

Figure 4 shows the box plot of the two versions considering the gap between the best and

average solutions to the best-known ones. We can see that BRKGA-QL v2.0 finds the best

solution in almost all instances, while BRKGA-QL has a median of 6.8%. In terms of the

average solutions, the third quartile of BRKGA-QL v2.0 was similar to the first quartile of

BRKGA-QL (7.04% and 6.53%), highlighting the excellent performance of the new components

in version 2.0 of the algorithm. Figure 5 presents the performance profile (Dolan and Moré,

2002) of the BRKGA-QL versions considering tolerance of quality result as a gap of less than

1% to the best-known solution. We can observe that BRKGA-QL v2.0 dominates the previous

version, and obtains the best solutions in terms of computational time and level of accuracy.

BRKGA-QL v2.0 was the fastest algorithm in 92% of the instances, and BRKGA-QL was the

fastest algorithm in 8% of the instances. Version 2.0 found the target solution in 96% of the

instances, while BRKGA-QL found the target only in 26%. We also performed statistical analysis

with the Wilcoxon signed-rank test (Rey and Neuhauser, 2014), proving a significant difference

between the solutions of the two versions (p-value = 3.455e− 13). These results show that the

BRKGA-QL v2.0 is significantly more robust and efficient.
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Table 3: Computational results of the BRKGA-QL and BRKGA-QL v2.0 applied to solve DARP-CCPT.

n
Integration BRKGA-QL BRKGA-QL v2.0

∆ (%)
ζ (%) Best Z Average Z Best Time Best Z Average Z Best Time

30

0 281.50 282.76 50.52 281.50 281.53 28.42 0.00

25 257.02 260.95 38.79 258.04 260.56 24.94 0.42

50 257.11 259.73 34.50 255.54 258.31 24.14 -0.59

75 239.76 241.65 35.10 239.84 240.91 24.20 0.04

100 224.22 224.81 33.55 224.22 224.40 23.96 0.00

60

0 633.27 670.24 97.24 577.22 617.51 107.93 -8.85

25 593.03 623.64 99.26 536.39 566.89 111.28 -9.48

50 558.24 584.61 98.10 510.83 539.40 111.62 -8.51

75 535.91 563.05 94.15 493.21 521.16 107.61 -7.94

100 529.36 547.15 101.40 481.70 499.97 100.82 -9.00

90

0 941.39 977.06 129.54 855.86 918.73 148.07 -9.09

25 881.72 923.15 134.13 778.76 851.75 159.50 -11.68

50 827.84 875.29 136.67 736.83 814.97 161.53 -10.98

75 770.39 807.59 144.74 690.67 753.49 157.54 -10.25

100 701.03 759.54 137.81 660.41 717.30 175.62 -5.79

120

0 1617.92 1675.18 186.79 1480.04 1576.25 221.61 -8.52

25 1471.02 1545.24 205.61 1436.10 1491.39 226.41 -2.30

50 1411.16 1464.07 197.07 1333.82 1402.93 228.71 -5.48

75 1294.00 1361.58 182.19 1266.30 1314.65 226.04 -2.08

100 1218.69 1279.57 211.08 1178.86 1238.29 216.35 -3.27

155

0 2600.56 2704.95 292.08 2407.82 2569.92 292.55 -7.41

25 2385.11 2468.15 273.74 2272.08 2385.28 297.59 -4.74

50 2201.34 2289.52 282.48 2054.71 2189.23 308.87 -6.65

75 2032.72 2099.35 253.62 1924.67 2017.74 294.83 -5.28

100 1871.35 1959.01 277.77 1751.11 1889.27 292.35 -6.43
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Figure 4: Box plot of the gap between the best and average solutions of BRKGA-QL and BRKGA-QL v2.0 to

the best-known solutions.

Figure 5: Performance profile of runtime for BRKGA-QL and BRKGA-QL v2.0.
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5.3. Qualitative analysis of the BRKGA-QL v2.0 results

Table 4 presents the costs related to the routes considering five levels of integration. Costs

are separated into private fleet costs, common carrier costs (fixed and variable), and public

transportation (bus) costs. The Total column shows the total cost to fulfill all requests. The

columns ∆% Distance and ∆% UB0% show the variations in distance and costs concerning the

solution without integration with public transportation (ζ = 0%). We can observe that costs

decrease as the integration with public transportation increases. However, we observe that the

costs of the private fleet remain stable, which shows the efficient use of this fleet in all scenarios

analyzed. Therefore, the cost reduction is related to the decrease in the distances traveled by

the common carrier. For instances with less integration (25%), there is an average savings of

6.6%, and for instances with 100% of integration, there is an average savings of 21.5%. There

was a decrease in the distances traveled by users in two scenarios, and there was a maximum

increase of 3.44% for instances with the highest number of requests.

Tables 5 and 6 show the time and distance components of integrated trips. All integration

scenarios present similar percentages for the first, middle, and last miles. The middle mile

accounted for 44% of ride times and 67% of distances due to longer bus routes. The “Ride

Time” and “Distance Total” columns present the total times and distances of the three miles,

and the “Direct trip” columns present hypothetical values if the trips were carried out point-

to-point with a common carrier. Interestingly, ride times increase considerably, but the total

distance is similar to the integrated bus option. Another interesting observation is that times

and distances decrease as more users can be integrated, allowing the algorithm to select the

most economical users to perform the integration.

Figure 6 shows an analysis of the time components of the private fleet considering each level

of integration. We break down the operating time of all vehicles into i) traveling between two

nodes (Traveling), ii) waiting at a node to perform the service (Waiting), iii) serving a node

(Service), and iv) housed at the depot (Parked). We observe that all scenarios had very similar

values (70% for traveling, 3% for waiting, 19% for service, and 8% for parked). On average, each

vehicle serves users (traveling or service) around 89% of the time. These values indicate good

operational performance for the vehicles of the private fleet.

In Figure 7, we analyze the mileage savings in each scenario. We consider the worst-case

scenario to satisfy all requests with a point-to-point common carrier to measure these savings.

We observed that the DARP-PFCC without bus integration (ζ = 0% of integration) presents
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Table 4: Comparison of route cost distribution.

n
Integration Cost components

Total ∆% Distance ∆% UB0%
ζ (%) Private Fixed Variable Bus

30

0 89.46 24.00 168.04 - 281.50 - -

25 91.83 19.80 121.08 25.33 258.04 2.95 -8.33

50 91.91 18.60 100.09 44.94 255.54 5.14 -9.22

75 92.21 15.60 67.75 64.28 239.84 4.94 -14.80

100 94.04 12.00 22.62 95.56 224.22 7.99 -20.35

60

0 212.18 51.00 314.04 - 577.22 - -

25 213.10 36.60 199.64 87.05 536.39 3.03 -7.07

50 214.22 27.60 141.59 127.42 510.83 4.26 -11.50

75 210.80 21.00 85.18 176.23 493.21 4.44 -14.55

100 216.14 18.00 65.94 181.62 481.70 5.89 -16.55

90

0 332.98 66.00 456.88 - 855.86 - -

25 326.34 50.40 284.13 117.89 778.76 -0.44 -9.01

50 318.30 34.20 162.58 221.75 736.83 0.64 -13.91

75 321.26 25.80 88.67 254.94 690.67 1.64 -19.30

100 295.67 27.00 63.98 273.76 660.41 -4.98 -22.84

120

0 334.88 135.00 1010.16 - 1480.04 - -

25 328.20 108.60 799.16 200.14 1436.10 2.99 -2.97

50 338.44 87.60 557.04 350.74 1333.82 5.73 -9.88

75 314.83 57.60 337.29 556.58 1266.30 4.54 -14.44

100 322.80 45.00 211.90 599.16 1178.86 2.13 -20.35

155

0 360.02 249.00 1798.80 - 2407.82 - -

25 340.15 191.40 1434.87 305.66 2272.08 0.55 -5.64

50 340.10 142.20 887.87 684.54 2054.71 1.17 -14.67

75 338.55 114.00 597.88 874.24 1924.67 3.44 -20.07

100 347.91 102.00 437.18 864.02 1751.11 0.88 -27.27

an average reduction of 14% of the distances traveled by vehicles. As more requests can use the

integration, we observe larger savings. In the scenario with 100%, we have an average saving of

30% of the distances. These savings mean fewer vehicles in traffic and less CO2 emissions.

6. Conclusion

This paper considered the integration of the dial-a-ride problem with common carriers and

public transportation to reduce the operational costs of the pickup and delivery service. A

new version of the BRKGA-QL metaheuristic was developed to obtain good solutions in short

computational time. We also developed a pre-processing method to enable efficient integration

between the transportation modes, considering bus lines, schedules, and bus stop locations.

Two BRKGA-QL versions solved 85 instances with different integration scenarios, where only

some requests can use public transportation integration. The results show that BRKGA-QL
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Table 5: Time components of integrated trips.

Integration Percentage of time Ride Direct

ζ (%) First mile Middle mile Last mile Service Waiting time trip

25 6.26 44.98 8.95 10.57 29.24 3404.31 1268.62

50 5.21 42.66 7.41 10.44 34.28 3447.27 1175.90

75 5.76 43.94 7.45 10.77 32.08 3344.02 1157.51

100 5.40 44.31 7.81 10.83 31.65 3323.93 842.82

Table 6: Distance components of integrated trips.

Integration Percentage of distance Distance Direct

ζ (%) First mile Middle mile Last mile total trip

25 13.49 64.94 21.57 18.31 18.05

50 11.96 69.21 18.83 17.05 16.62

75 13.29 68.02 18.69 16.70 16.17

100 12.94 67.14 19.92 16.31 15.84
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Figure 6: Private fleet operating time breakdown.

21

Hybrid Metaheuristic for an Integrated Dial-a-Ride Problem with Common Carrier and Public Transportation

CIRRELT-2022-32



30 60 90 120 155

Number of transportation requests

P
er

ce
nt

ag
e 

of
 d

is
ta

nc
e

0
20

40
60

80
10

0

88
84 83

80
78

82
79

77
74 74

86

81

76
74

68

85
81

77

71
69

89

82

74

69

64

Percentage of integration (ζ)

0% 25% 50% 75% 100%
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v2.0 had a better performance than the previous version, mainly due to a better balance of

diversification and intensification of the Q-Learning method and the use of mutation in the

evolutionary process of BRKGA to allow diversity and good quality fitness solutions. In terms

of integration, we observed a decrease in trip costs as the number of requests that can use public

transportation increased. In the best case, there were 27% cost savings without a significant

increase in distance. However, the integration led to longer trip times due to the use of buses.

To the best of our knowledge, this is the first paper that considers the optimized use of private

fleets integrated with common carriers and public transportation. Computational experiments

have shown the advantages of this integration in terms of cost savings while maintaining the

service quality for users. Another important issue is the possible savings in CO2 emissions, con-

sidering that the first and last miles vehicles travel shorter distances, while public transportation

is used in the middle mile.

New studies to measure CO2 emissions considering other characteristics may indicate alter-

native public policies for the integration of different transport modes. For future research, we

recommend studying the use of the private fleet and car-sharing in the first and last miles, as

well as the use of other types of transport such as electric mini cars, scooters, and bicycles.
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