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Abstract. Hydrogen is considered a solution to decarbonize the transportation sector, an 
important step to meet the requirements of the Paris agreement. Even though hydrogen 
demand is expected to increase over the next years, the exact demand level over time 
remains a main source of uncertainty. We study the problem of where and when to locate 
hydrogen production plants to satisfy uncertain future customer demand. We formulate our 
problem as a two-stage stochastic multi-period facility location and capacity expansion 
problem. The first-stage decisions are related to the location and initial capacity of the 
production plants and have to be taken before customer demand is known. They involve 
selecting a modular capacity with a piecewise linear, convex short-term cost function for the 
chosen capacity level. In the second stage, decisions regarding capacity expansion and 
demand allocation are taken. Given the complexity of the formulation, we solve the problem 
using a Lagrangian decomposition heuristic. Our method is capable of finding solutions of 
sufficiently high quality within a few hours, even for instances too large for commercial 
solvers. We apply our model to a case from Norway and design the corresponding hydrogen 
infrastructure for the transportation sector. 
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1 Introduction

According to the emission targets set in the Paris agreement, greenhouse gas emissions (as by 1990) must
be decreased by 40% until 2030 (United Nations, 2015). The Norwegian government has set even more
ambitious goals regarding the emissions within the transportation sector (Regjeringen, 2019). Specifically,
the transition towards zero-emission fuels is a key step in order to meet these targets. The transition from
fossil fuels towards hydrogen gained even more importance as countries with diversified energy carrier mix
can better handle the current energy crisis in Europe (Crew, 2022). IEA (2022) further states that the global
energy crisis accelerates the urgency to use hydrogen, as it contributes to emission reduction targets as well
as energy stability. With 92% electricity produced from hydropower, Norway is well positioned to produce
green hydrogen, which is required to be produced exclusively from renewable sources using electrolysis (EL).

In Norway, the sector of high-speed passenger ferries and car ferries is operated based on public contracts,
and when renewing these contracts, hydrogen can be required as zero-emission fuel (Ocean Hyway Cluster,
2020a). The demand from sectors that are operated based on public contracts may therefore be easier to
predict and has a deterministic character as the transition can be forced based on the contracts. There
are also alternative zero-emission energy carriers that are relevant in Norway, such as electric batteries and
ammonia. However, the future market shares among these fuels are uncertain. Since demand from other
relevant sectors such as land-based transport and the offshore sector is highly uncertain, having the ability
to expand the production infrastructure is crucial to meet future demand (DNV GL, 2019).

The above motivates our work on the real-world problem of locating hydrogen production facilities in
Norway under uncertain demand. The decisions regarding opening location, time and capacity must be
taken before the future demand is known. After uncertain demand is disclosed, decisions regarding capacity
expansion and production, as well as demand allocation can be taken. The problem formulates as a large
mixed-integer programming problem that is, in general, hard to solve. Specifically, as shown in Štádlerová
et al. (2022a), the problem can be solved with a commercial solver only for a few scenarios. In this paper,
we, therefore, solve this problem using a solution method based on Lagrangian relaxation.

Our contributions are threefold. First, we provide a solution method based on Lagrangian relaxation
for the hydrogen facility location and capacity expansion problem under uncertainty that allows for solving
problems with a sufficiently large number of scenarios within reasonable computing time. We compare the
performance of the method to the one of Gurobi and discuss the quality of the Lagrangian bound. We
further analyze the out-of-sample performance and discuss the value of the stochastic solution. Second,
we study the hydrogen production infrastructure for different demand distributions and compare the first-
stage solutions to the solution from the expected value problem. The computational results show that the
Lagrangian relaxation provides tight lower bounds and that our solution method finds solutions of sufficiently
high quality for all tested instances. We further analyze the value of the stochastic solution, indicating that
for most problems, the solution of the expected value problem is of no practical use. Third, we analyze
the solution obtained for the case of Norway, illustrating the practical usefulness and importance of our
approach.

The remainder of this paper is structured as follows: The relevant literature is reviewed in Section 2.
The mathematical model is introduced in Section 3. The solution method is detailed in Section 4. The case
study is presented in Section 5 and the computational results are discussed in Section 6. Finally, we conclude
in Section 7.

2 Literature review

We split the literature review in two main parts. In Section 2.1, we provide a brief literature review on
modelling deterministic and stochastic capacitated facility location problems with piecewise linear costs
and/or capacity expansion. We also review facility location and supply chain design problems in the context
of hydrogen infrastructure. Solution methods for facility location and supply chain design problems with a
focus on two-stage stochastic problems are reviewed in Section 2.2.
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2.1 Capacitated facility location

For an overview on deterministic multi-period facility location and capacity expansion models, we also refer
to the reviews by Melo et al. (2009) and Nickel and Saldanha-da Gama (2019).

Deterministic multi-period facility location and capacity expansion problems are often modelled with
modular capacities. The expansion is then modelled as a jump between available capacity levels and leads to
modification of existing facilities (Jena et al., 2015, 2016, 2017; Sauvey et al., 2020; Štádlerová and Schütz,
2021; Štádlerová et al., 2022b). Štádlerová and Schütz (2021) and Štádlerová et al. (2022b) study a problem
with modular capacities and piecewise linear short-term production costs (which can be seen as a combination
of the problems studied by Correia and Captivo (2003) and Van den Broek et al. (2006)). Similar to Correia
and Captivo (2003), they split investment and operational costs and provide specific operational costs to each
modular capacity level. However, instead of one unit price for each capacity level, they model a capacity-
specific piecewise linear short-term costs function similar to Van den Broek et al. (2006). Van den Broek
et al. (2006) combine operational costs depending on installed capacity from Correia and Captivo (2003)
with the linear staircase cost approximation from Holmberg (1994). Our modelling approach is identical
to Štádlerová and Schütz (2021) and Štádlerová et al. (2022b), as it enables us to model economies and
dis-economies of scale in the investment and production processes having modular capacities.

Introducing demand uncertainty is a natural extension of deterministic problems. An early literature
review on dynamic facility location and supply chain problems with stochastic parameters can be found in
Owen and Daskin (1998). A review on facility location problems under uncertainty is provided by Snyder
(2006) and recent summaries on facility location and supply chain problems under uncertainty are presented
by Govindan et al. (2017), and Correia and Saldanha-da Gama (2019).

Traditionally, two-stage stochastic facility location problems are formulated as single-period problems.
An early paper discussing a single-period capacitated facility location problem with random demand and
non-linear cost function to model economies of scale is presented by Balachandran and Jain (1976). A
generalization of their model is proposed by Schütz et al. (2008) who differentiate between general long-term
costs for opening facilities and piecewise linear convex short-term costs for operating facilities. Correia and
Melo (2021) study a two-stage multi-period facility location model with capacity expansion and reduction.
Due to the complexity of the model, the problem can be solved for only 5 scenarios. The authors further
show that using valid inequalities to strengthen the model improves computation times and optimality gaps.

Some supply chain design problems are characterized by a decision structure similar to two-stage facility
location problems, as first-stage decisions are related to investments, while the second-stage decisions are
related to demand allocation (Lucas et al., 2001). For a review on deterministic, as well as stochastic
hydrogen supply chain design problems, we refer to Li et al. (2019). Kim et al. (2008) formulate the model
of designing a hydrogen supply chain as a two-stage stochastic mixed-integer problem. Here, the first stage
decision is related to investment in production facilities and storage while the second stage decision is related
to demand allocation. The work by Almansoori and Shah (2012) and Nunes et al. (2015) can be seen as
an extension of Kim et al. (2008) as the authors consider multiple time periods. Dayhim et al. (2014)
present a two-stage stochastic problem for minimizing the total expected daily costs of the hydrogen supply
chain facing uncertain demand. Unlike Kim et al. (2008) and Nunes et al. (2015), the authors consider also
emission, risk and energy consumption costs. Similar to Nunes et al. (2015), Štádlerová et al. (2022a) present
a two-stage multi-period stochastic model to formulate the problem of locating hydrogen facilities. However,
the authors extend the model by allowing capacity expansion in the second stage.

2.2 Solution methods

Deterministic multi-period facility location and capacity expansion problems are in general hard to solve. The
stochastic formulation might be closer to the real-world decision process, but also increases the complexity
of the problem, especially when considering integer variables in the second stage. To find quality solutions
for large instances, efficient solution algorithms need to be applied.

Lagrangian relaxation combined with heuristics for finding feasible solutions has performed well for
deterministic multi-period facility location and capacity expansion problems (see, e.g., Shulman, 1991; Jena
et al., 2016, 2017; Štádlerová et al., 2022b). Lagrangian relaxation has also been successfully used to solve
single-period stochastic two-stage facility location problems with continuous second-stage variables (see, e.g.,
Schütz et al., 2008).
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Sample average approximation (SAA) improves computational tractability by solving the problem re-
peatedly with a smaller number of scenarios (Kleywegt et al., 2001). Santoso et al. (2005) combine Benders
decomposition with SAA to solve a supply chain design problem with uncertain demand and continuous
second-stage variables. Sherali and Zhu (2006) and Angulo et al. (2016) study the application of Benders
decomposition for stochastic problems with integer first and second-stage variables.

Nunes et al. (2015) and Štádlerová et al. (2022a) apply SAA to solve the problem of locating hydrogen
facilities. Nunes et al. (2015) solve the SAA problems with 15 scenarios. The number of scenarios in
Štádlerová et al. (2022a) is limited to 10 as the integer variables in the second stage make the problem
harder to solve than the one studied in Nunes et al. (2015). SAA is often used in combination with other
solution methods to further improve the quality of the solution (see, e.g., Santoso et al., 2005; Schütz et al.,
2009; Li and Zhang, 2018).

3 Mathematical model

We formulate the problem of designing hydrogen production infrastructure as a two-stage stochastic multi-
period facility location and capacity expansion problem with modular capacities. In the first stage, we decide
where and when to open new facilities along with their initial capacity levels. Once the demand is known
in the second stage, we take decisions related to capacity expansion and demand allocation. The goal is to
minimize the expected discounted total costs of satisfying the demand in each scenario.

3.1 Problem definition

Candidate locations for hydrogen production facilities are given by set I. The investment costs Cik for a
new facility depend on location and installed capacity. The feasible production quantity at a facility depends
on the installed capacity. The short-term production costs Fibkt then depend on location, installed capacity
and its utilization, as well as time period. Customer locations generating hydrogen demand in each scenario
from the set S are given by the set J . For each customer, a specific demand, Ds

jt, is defined for each time
period. A customer may be served from one or more facilities. However, there are restrictions on which
facility can serve which customers. For possible facility-customer combinations, unit distribution costs are
based on distance. If the customers’ demand Ds

jt cannot be satisfied, penalty costs MD apply for each
unit of unsatisfied demand, denoted by dsjt. Penalty costs for unsatisfied demand can also be interpreted
as additional costs for importing hydrogen. If the quantities demanded from a facility are lower than the
minimum production quantity for the installed capacity level, penalty costs MQ for a capacity excess unit
qsit apply. Similar to the penalty cost for unsatisfied demand, the capacity excess costs can be understood
as costs for storing or exporting excess hydrogen.

Once a facility has been opened, it cannot be closed. However, its capacity may be extended at a later
time period to a higher capacity level. The expansion is allowed up to the highest available capacity K.
Capacity expansion leads to facility modification and it represents an expensive strategic decision. Thus,
having a relatively short planning horizon, capacity expansion is allowed only once and then, the capacity
cannot be changed until the end of the planning horizon T . Investment costs Cik and expansion costs Eikl
represent long-term costs and are separated from short-term production costs. For each capacity level, a
specific convex piecewise linear short-term production cost function defines both the cost and the feasible
production quantities for the installed capacity. Figure 1a exemplifies the link between long-term facility
costs and short-term production costs. The short-term production cost function fk(q) for a specific capacity
level k is illustrated in Figure 1b, where Fkb represents the production costs at a given breakpoint b of the
piecewise linear cost function. The lowest breakpoint of the short-term production costs function represents
the minimum production requirements for a given capacity level, while the highest breakpoint Bk corresponds
to the installed capacity and thus to the upper production limit at capacity level k. The upper limit can only
be increased by expansion towards a higher capacity level k+n. These capacity limits reflect the technological
limitations of hydrogen production through electrolysis. This modelling approach is identical to Štádlerová
et al. (2022a), except for the addition of penalties for unsatisfied demand and excess production.
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Figure 1: Long-term and short-term production cost functions

3.2 Mathematical formulation

All used sets, parameters and decision variables are summarized below:

Sets

Bk Set of breakpoints of the short-term cost function connected to capacity level k, Bk = {1, 2, ..., Bk};
I Set of candidate locations for hydrogen production facilities;
J Set of customer locations;
K Set of available discrete capacity levels, K = {1, 2, ...,K};
S Set of scenarios;
T Set of time periods, T = {1, 2, ..., T};
T1 Set of time periods corresponding to the first stage, T1 ⊂ T .

Parameters and coefficients

Cik Investment costs at location i ∈ I for capacity level k ∈ K;
Ds
jt Demand at customer location j ∈ J in period t ∈ T and scenario s ∈ S;

Eikl Costs of expanding at facility i ∈ I from capacity level k ∈ K to capacity level l ∈ K : l > k;
Fibkt Production costs at facility i ∈ I at breakpoint b ∈ Bk at the short-term cost function of capacity

level k ∈ K in period t ∈ T ;
Lij 1 if demand at location j ∈ J can be served from facility i ∈ I, 0 otherwise;
Qbk Production volume at breakpoint b ∈ Bk of the short-term cost function, for capacity level k ∈ K;
Tij Distribution costs from facility i ∈ I to customer j ∈ J ;
MD Penalty costs for one unit of unsatisfied demand;
MQ Penalty costs for one excess unit;
yikk0 1 if a facility is opened at location i ∈ I with capacity level k ∈ K at the beginning of the

planning horizon, 0 otherwise;
δt Discount factor in period t ∈ T ;
ps Probability of scenario s ∈ S.

Decision variables

The mathematical model uses the following decision variables:
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dsjt Shortfall variable: amount of not satisfied demand at customer location j ∈ J in period t ∈ T for
scenario s ∈ S;

qsit Capacity excess variable: amount of production excess units from facility location i ∈ I in period
t ∈ T for scenario s ∈ S that is not distributed to customers;

xsijkt Amount of customer demand at location j ∈ J satisfied from facility i ∈ I operating at capacity
level k ∈ K in period t ∈ T in scenarios s ∈ S;

ysiklt 1 if facility is operated at location i ∈ I, originally opened at capacity level k ∈ K, and operating
at capacity level l ∈ K : l ≥ k in period t ∈ T and scenario s ∈ S, 0 otherwise;

µsbilt Weight of breakpoint b ∈ Bl at location i ∈ I for capacity level l ∈ K in period t ∈ T and scenario
s ∈ S.

We present a two-stage stochastic multi-period Mixed-Integer-Programming (MIP) model. The model is
similar to Štádlerová et al. (2022a), but additionally provides relatively complete recourse, as we introduce
variables for unsatisfied demand and capacity excess. The model is given as:

min
∑
s∈S

ps

[∑
i∈I

∑
k∈K

∑
t∈T

δtCik

(
ysikkt − ysikk(t−1)

)
+

∑
i∈I

∑
k∈K

∑
l∈K:l>k

∑
t∈T

δtEikl

(
ysiklt − ysikl(t−1)

)
+∑

b∈B

∑
i∈I

∑
l∈K

∑
t∈T

δtFibltµ
s
bilt +

∑
i∈I

∑
j∈J

∑
l∈K

∑
t∈T

δtTijx
s
ijlt

∑
j∈J

∑
t∈T

MDdsjt +
∑
i∈I

∑
t∈T

MQqsit


(1)

subject to:∑
k∈K

∑
l∈K:l≥k

ysiklt ≤ 1, i ∈ I, t ∈ T , s ∈ S, (2)

∑
k∈K

∑
l∈K:l>k

ysiklt = 0, i ∈ I, t ∈ T1, s ∈ S, (3)

t−1∑
t′=1

ysikkt′ ≥
∑

l∈K:l>k

ysiklt, i ∈ I, k ∈ K, t ∈ T , s ∈ S, (4)

∑
l∈K:l≥k

ysiklt ≥
∑

l∈K:l≥k

ysikl(t−1), i ∈ I, k ∈ K, t ∈ T , s ∈ S (5)

ysiklt − ysikl(t−1) ≥ 0, i ∈ I, k ∈ K, l ∈ K : l > k, t ∈ T , s ∈ S, (6)∑
b∈Bl

µsbilt =
∑
k∈K

ysiklt, i ∈ I, l ∈ K, t ∈ T , s ∈ S, (7)

∑
j∈J

xsijlt + qsit =
∑
b∈Bl

Qblµ
s
bilt, i ∈ I, l ∈ K, t ∈ T , s ∈ S, (8)

∑
i∈I

∑
l∈K

xsijlt + dsjt = Ds
jt, j ∈ J , t ∈ T , s ∈ S, (9)

xsijlt ≤ LijDs
jt

∑
k∈K:k≤l

ysiklt, i ∈ I, j ∈ J , l ∈ K, t ∈ T , s ∈ S, (10)
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1

|S|
∑
s′∈S

∑
l∈K:l≥k

ys
′

iklt =
∑

l∈K:l≥k

ysiklt, i ∈ I, k ∈ K, t ∈ T , s ∈ S, (11)

ysiklt ∈ {0, 1}, i ∈ I, k ∈ K, l ∈ K : l ≥ k, t ∈ T , s ∈ S, (12)

xsijlt ≥ 0, i ∈ I, j ∈ J , l ∈ K, t ∈ T , s ∈ S (13)

µsbilt ≥ 0, b ∈ Bl, i ∈ I, k ∈ K, t ∈ T , s ∈ S, (14)

qsit ≥ 0, i ∈ J , t ∈ T , s ∈ S, (15)

dsjt ≥ 0, j ∈ J , t ∈ T , s ∈ S. (16)

Objective (1) minimizes the expected discounted sum of investment, expansion, production, and distri-
bution costs as well as the penalty costs for unsatisfied demand and excess capacity. Constraints (2) state
that for each time period and scenario, at most one facility can be operated at a given location. Constraints
(3) ensure that in the first stage, facilities can be only opened, but not expanded, while Inequalities (4) only
allow expansion of opened facilities. Constraints (5) ensure that once a facility is opened, it cannot be closed,
but only expanded, while Constraints (6) require that an open facility can only be expanded once during the
planning horizon. Equalities (7) link capacity level k with the appropriate short-term cost function and en-
sure that only opened facilities can be used for production. Constraints (8) ensure that the whole production
is either distributed to customers or allocated to the capacity excess variable. The constraints also implicitly
assure the minimum production requirements through the quantity Qbl given by the smallest breakpoint
b. Note that this formulation is also applicable for problems without minimum production requirements,
as we can define the quantity belonging to the smallest breakpoint as zero. Equations (9) ensure that de-
mand is satisfied or registered as demand shortfall. Restrictions (10) are formulated in the form of strong
inequalities. They limit which facility can satisfy which customer and link the distribution variable to the
operated capacity level. Such linking constraints provide stronger bounds and lead to lower integrality gaps
from linear relaxation than aggregated linking constraints (see, e.g., Jena et al., 2016). Constraints (11) are
the non-anticipativity constraints that ensure that the opening capacity level k is the same for all scenarios
while the operating capacity level l is scenario specific. Constraints (12)–(16) are the non-negativity and
binary requirements.

4 Lagrangian relaxation

In the domain of facility location, Lagrangian relaxation has mostly been applied in deterministic settings
(see, e.g., Shulman, 1991; Jena et al., 2016, 2017; Štádlerová et al., 2022b). Given the similar structure of
the here considered facility location problem, Lagrangian relaxation remains an attractive candidate, even
when considering multiple demand scenarios. We now present the Lagrangian heuristic used to solve our
stochastic problem. Specifically, we relax demand constraints (9) which are the only constraints connecting
the decision variables among the different facility locations and have been a popular choice in the literature
(Shulman, 1991; Schütz et al., 2008; Jena et al., 2016). We define λjt as the matrix of Lagrangian multipliers
and we obtain the following Lagrangian subproblem:
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LR(λ) = min
∑
s∈S

ps

∑
i∈I

∑
k∈K

∑
l∈K:l≥k

∑
t∈T

δtCik

(
ysiklt − ysikl(t−1)

)
+

∑
∑

i∈I k∈K

∑
l∈K:l>k

∑
t∈T

δtEikl(y
s
iklt − ysikl(t−1))+∑

i∈I

∑
b∈Bl

∑
l∈K

∑
t∈T

δtFibltµ
s
bilt +

∑
i∈I

∑
t∈T

MQqsit+∑
i∈I

∑
j∈J

∑
l∈K

∑
t∈T

(δtTijt − λsjt)xsijlt+

∑
j∈J

∑
t∈T

λsjt(D
s
jt + dsjt) +

∑
j∈J

∑
t∈T

MDdsjt

 ,

(17)

subject to Constraints (2)–(8) and (10)–(15). As variable dsjt appears in the objective with a large positive
coefficient and is bounded only from below by 0 in the Lagrangian subproblem, its value becomes zero in
any optimal solution and can hence be omitted. Further, given that all constraints are defined separately
for each facility location i ∈ I, we can decompose the problem and solve it independently for each facility
location. The objective function (17) can be then written as:

LR(λ) =
∑
i∈I

gi(λ) +
∑
s∈S

∑
j∈J

∑
t∈T

psλsjtD
s
jt, (18)

where for given multipliers λsjt, the expression
∑
s∈S

∑
j∈J

∑
t∈T p

sλjtD
s
jt is constant. The problem of

finding the optimal opening schedule for facility i ∈ I can then be simplified as:

gi(λ) = min
∑
s∈S

ps

∑
k∈K

∑
l∈K:l≥k

∑
t∈T

δtCik

(
ysiklt − ysikl(t−1)

)
+

∑
k∈K

∑
l∈K:l>k

∑
t∈T

δtEikl(y
s
iklt − ysikl(t−1))+∑

b∈Bl

∑
l∈K

∑
t∈T

δtFibltµ
s
bilt +

∑
t∈T

Mqq
s
it+

∑
j∈J

∑
l∈K

∑
t∈T

(δtTijt − λjt)xsijlt

 ,

(19)

subject to constraints (2)-(8) and (10)-(15) defined for the specific facility i ∈ I.

4.1 Solving the Lagrangian subproblem

The optimal solution to the Lagrangian subproblem represents the optimal opening and expansion schedule
and capacity level for all scenarios and each facility such that the expected total costs (19) are minimized.
In deterministic settings, such schedules have been found by solving a shortest path problem via dynamic
programming (see, e.g., Shulman, 1991; Jena et al., 2016; Štádlerová et al., 2022b). Given that, in our
two-stage stochastic problem, the expansion schedule (i.e, the second-stage decisions) may be different for
each scenario, shortest path networks including all opening and expansion decisions would be too complex
and computationally intractable. Our approach, therefore, evaluates the optimal expansion schedule for all
possible opening decisions separately. Specifically, for each opening capacity level and time period (i.e, the
first-stage decisions), the shortest path problem is solved via dynamic programming independently for each
scenario starting from the defined opening time period and capacity level, similar to Shulman (1991), Jena
et al. (2016) and Štádlerová et al. (2022b). For each scenario, at most one capacity expansion is allowed.
The shortest path problem for solving the Lagrangian subproblem is detailed in Section 4.1.2. For a given
capacity level, time period, and scenario, the problem of customer allocation then becomes a continuous
knapsack problem which is explained next.
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4.1.1 Continuous knapsack

The costs of the optimal demand allocation for a given capacity level l ∈ K, time period t ∈ T and scenario
s ∈ S can be computed by solving a continuous knapsack problem with piecewise linear costs (Amiri, 1997;
Christensen and Klose, 2021). The costs of the continuous knapsack for a given capacity level l consist of
production costs, penalty costs for capacity excess and reduced distribution costs. The costs are calculated
for a given facility i ∈ I, capacity level l, time period t and scenario s. Since the continuous knapsack is
calculated for a given capacity level l, the strong inequalities (10) are considered in the calculation of the
knapsack costs. We formulate the continuous knapsack problem as:

Ks
ilt(λ) = min

∑
b∈Bl

Fibltµ
s
bilt +Mqq

s
it +

∑
j∈J

(Tij − λsjt)xsijlt, (20)

subject to:

xsijlt ≤ LijDs
jt, j ∈ J , (21)∑

j∈J
xsijt + qsit =

∑
b∈Bl

Qblµ
s
bilt, (22)

∑
b∈Bl

µsbilt = 1, (23)

qsit ≥ 0, (24)

xsijlt ≥ 0, j ∈ J , (25)

µsbilt ≥ 0, b ∈ Bl. (26)

The problem (20) – (26) is similar to the one solved by Schütz et al. (2008). However, in contrast to
Schütz et al. (2008), we have a minimum production requirement for each capacity level and allow for capacity
excess. For a given capacity level l ∈ K, period t ∈ T and scenario s ∈ S, we calculate the unit production
costs as uilbt = Fib+1lt−Fiblt

Qb+1l−Qbl
. We further define the marginal costs of serving one additional demand unit as:

ms
ijlbt = Tij−λsij+ uilbt. Note that the marginal costs are dependent on the line-piece of the short-term cost

function. For each customer, we calculate the reduced costs Tij − λsij and start allocating customers with
the lowest reduced costs until ms

ijlbt > 0 for the first time or until the capacity limit of the line-piece Qb+1l

is reached. For the next line-piece, the marginal costs must be updated. However, the ordering of customers
according to their reduced costs remains unchanged. We continue adding customers until ms

ijlbt > 0 or until
the capacity limit QBl

is reached.
If the minimum production requirement for a given capacity cannot be fulfilled with customers with

negative reduced costs, we may also have to add customers with positive reduced costs. Assuming that
penalty costs are always higher than the costs of satisfying customers with positive reduced costs, we prefer
customers with positive reduced costs to using variables qsit. However, if there are no more customers that
could be added and the minimum production requirement is still not satisfied, we can use variables qsit that
allow satisfying the minimum production requirement for penalty costs. If the penalty costs are sufficiently
high, a capacity decision leading to qsit > 0 will most likely not be optimal since demand does not need to
be satisfied in the relaxed problem.

4.1.2 Formulating the shortest path problem

As previously mentioned, in deterministic problems, the problem of finding the optimal opening and ex-
pansion decision can be formulated as a shortest path problem in a single graph and solved via dynamic
programming (Shulman, 1991; Jena et al., 2016; Štádlerová et al., 2022b). In our scenario-based stochastic
problem, such a single graph formulation is not suitable, since the opening decision has to remain the same
for all scenarios, but the expansion decision can be different for each scenario. Therefore, we define one
shortest path problem for each tuple (k0, t0) of opening capacity level k0 ∈ K∪{0} and opening time period
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t0 ∈ T . For each given (k0, t0), the second stage problem is then separable in scenarios and we can calculate
the shortest path problem separately for each scenario. Finally, we choose the first-stage opening decision
that leads to the lowest expected costs over the shortest path problems.

For given opening decision (k0, t0), let CE(k0, t0) denote the costs of the expected shortest path. The
costs of opening and operating a facility during the opening period are equal to the investment costs and
the expected costs of the continuous knapsack: δt0Ck0t0 +

∑
s∈S δt0p

sKs
ik0t0

(λ). The total costs can then be

written as: δt0Cik0t0 +
∑
s∈S δt0p

sKs
ik0t0

(λ) + CE(k0t0).

For given opening decision (k0, t0) and given scenario s ∈ S, the graph structure is illustrated in Figure
2. Let lT denote the capacity level at the end of the planning horizon. The graph shows that after investing
in capacity level k0, we can either keep the capacity at level k0 or we can expand once during the planning
horizon towards a higher capacity level lT ∈ K : lT > k0. Note that all capacities larger than k0 are available
for expansion. However, we are not allowed to reduce the capacity level below the level given by k0.

Time

Capacity

Figure 2: Structure of the shortest path problem for a given investment decision and scenario

The costs for an arc from node (k, t− 1) to node (k′, t) in our graph are given as:

C(k, t− 1)(k′, t) =


Eikk′ +Kik′t(λ) if k = k0 ∧ k′ = lT , (27)

Kik′t(λ) if k = k′, (28)

+∞ else. (29)

Equation (27) calculates the costs of expanding a facility as the sum of expansion costs Eikk′ and the
costs of continuous knapsack Kik′t(λ). Equation (28) calculates the costs of operating the facility if there
is no change in the installed capacity level. The short-term production costs are then given as the costs of
the continuous knapsack Kik′t(λ). We define the costs of all other combinations as +∞ (29) as these are
infeasible and hence can be omitted in the graph structure.

4.2 Updating the Lagrangian multipliers

The lower bound on the Objective (1) is given by solving (18) subject to Constraints (2)–(8) and (10)–
(15) for given multipliers λsjt. In order to find the highest possible lower bound, we have to find a λ that
maximizes the Lagrangian dual problem: LD = maxλ LR(λ). To solve the LD problem, we iteratively use
the box step method (Marsten et al., 1975) similar to Schütz et al. (2009) and Štádlerová et al. (2022b),
as this method allows us to update the multipliers without computing an upper bound. We calculate the
subgradient ∇msjt as ∇msjt = Ds

jt −
∑
i∈I x

s
ijt in each iteration m and for each scenario s. We then define
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Lm = LR(λm) −
∑
j∈J

∑
t∈T

∑
s∈S p

sλmsjt ∇msjt and find the updated multipliers by solving the following
linear optimization problem:

maxφ (30)

φ ≤ Li +
∑
j∈J

∑
t∈T

∑
s∈S

ps∇isjtλ
m+1,s
jt i = 1, ...,m, (31)

λm+1,s
jt ≤ λmsjt + ∆ms

jt j ∈ J , t ∈ T , s ∈ S, (32)

λm+1,s
jt ≥ λmsjt −∆ms

jt j ∈ J , t ∈ T , s ∈ S, (33)

φ ∈ R, λm+1,s
jt ∈ R. (34)

We limit how much the Lagrangian multipliers can change in each iteration using box constraints (32)
and (33). These boxes are specific for each variable λsjt. If the sign of the subgradient ∇msjt changes from

the previous iteration m− 1, we decrease the box size as: ∆ms
jt = α∆ms

jt , where 0 < α < 1 (Štádlerová et al.,
2022b). The aim of reducing the box size is to speed up the procedure of finding the optimal multipliers
(Marsten et al., 1975). If the multipliers do not change for three consecutive iterations, we reset the box size
and allow large changes of the multipliers again in order to escape a local optimum.

4.3 Upper bound

We use a greedy heuristic to build a feasible solution based on the solution of the relaxed problem (i.e., the
LD). Due to capacity excess and shortfall variables, the solution to the relaxed problem is always feasible.
However, these variables may imply high penalty costs. In our upper bound heuristic, we aim to find first-
stage solutions that are feasible in all scenarios without or with minimal penalty costs. The heuristic is an
extension of the deterministic solution method presented by Štádlerová et al. (2022b). The main steps of
the heuristic are illustrated in Figure 3.

For each period

Solution of the LD

No

Yes
All demand 
satisfied?

Open new facilities
based on reference

scenario

For all periods and 
for all scenarios

Assign customers

Expand facilities

Assign customers 

Open new facility
based on max

demand scenario

Yes
Solution better 
than average?

Fix integer variables:
solve distribution and
capacity utilization 

Reduce 
capacity

Assign customers

No

Yes

Demand 
satisfied 

OR max scenario 
tested?

Reduce 
capacity

Figure 3: Upper bound structure

We initialize the solution using the installed capacity from the Solution of the LD, i.e., the capacity level
of opened facilities. The allocation and distribution decisions from the relaxed problem are ignored when we
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assign customers to facilities. Note that the solution of the relaxed problem satisfies the non-anticipativity
constraints, so customers can be assigned to facilities separately for each scenario.

In step Assign customers, for a given scenario and time period, we create pairs of available facilities i ∈ I
and unsatisfied customers j ∈ J . These pairs are sorted in increasing order of their reduced transportation
costs Tij−λsjt. We start with the pair with the lowest reduced transportation costs and serve the unsatisfied
customer from the corresponding facility. We repeat this step until all available capacity is used or the
demand of all customers is satisfied.

Within step Assign customers, we also verify the minimum production requirements and try to fix them.
If the minimum production requirements of facility B are not satisfied, the heuristic selects a facility with
high utilization A. If there are customers that can be satisfied both from A and B, the heuristic uses facility
A to shift some of its production to facility B until the production is sufficient. Otherwise, we have to find
facility C, which has common customers with both A and B. Then, we shift some production from facility
A via auxiliary facility C to facility B. The heuristic uses up to three auxiliary facilities to shift production
between A and B. When shifting the production quantities from A to B, customers are sorted in increasing
order based on their reduced transportation costs from facility B. We start reallocating customers with the
lowest reduced transportation costs. After reallocation, the spare capacity in facility A is used to satisfy
additional unsatisfied customers.

The capacity obtained from the solution of the relaxed problem is most likely not sufficient to satisfy
demand in all scenarios. If there are unsatisfied customers after step Assign customers considering Solution
of the LD, the upper bound heuristic increases the capacity to satisfy all customers or to minimize the
penalty costs for demand shortfall. These steps are illustrated in Figure 3 in the bold frame.

In general, a new facility can be opened at a location without a facility. Expansion is allowed only at a
location with an existing facility that has not been expanded yet. When selecting the facility that has to be
opened or expanded, there are usually several candidates. We choose the candidate that can satisfy most of
the unsatisfied customers. In case of a tie, we prioritize the facility with lower production costs. The chosen
capacity for opening or expanding a facility is the lowest possible capacity level that can satisfy the demand.

We execute the upper bound heuristic repeatedly for 4 different reference scenarios: maximum, minimum,
mean and median demand scenarios and then, we select the solution with the lowest objective. Since the
opening decision has to be equal for all scenarios, we start with step Open new facilities based on reference
scenario and implement the first-stage decisions based on the chosen reference scenario for all other scenarios
before executing routines that are specific for each scenario. Considering only 4 reference scenarios enables
shorter computation times compared to evaluating first-stage decisions of each scenario. Simultaneously,
first-stage decisions provided by one of the reference scenarios have shown to be sufficiently good for our
upper bound.

After the opening decisions are fixed, step Assign customers can be again performed for each scenario
independently as well as the expansion decisions in the step Expand facilities since these are the second-stage
decisions. If the installed capacity is still not sufficient and our reference scenario differs from the maximum
demand scenario, the heuristics performs the step Open new facility based on max demand scenario, where
the opening decisions are taken based on unsatisfied customers in the scenario with maximum demand.
Then, the capacity installed in the first stage increases in all scenarios. Note that these new facilities can
later be expanded as well.

The upper bound heuristic aims to install sufficient capacity to avoid penalties for demand shortfall.
However, the solution of the LD as well as in the upper bound heuristic may have installed more capacity
than necessary. Therefore, we try to reduce the installed capacity or remove some facilities in order to
improve the total costs. We first try to remove facilities with capacity excess. Specifically, we identify a
facility that causes penalties for capacity excess and check whether the allocated customers can be served
from other opened facilities in all time periods and scenarios. These facilities need to have some spare
capacity and satisfy the distance limit to the customers. If all customers can be reallocated, we remove the
facility. Further, we extend the deterministic procedure from Jena et al. (2016) to our stochastic problem.
We fix the demand allocation decisions, and use a dynamic programming algorithm, to find optimal opening
and expansion capacities and time periods to satisfy the given quantities.

If the obtained solution is better than the average of the previously found solutions, we fix all integer
variables and solve a problem consisting of demand allocation and facility utilization with Gurobi. When
evaluating the average costs, we consider objectives before re-optimizing distribution and facility utilization.
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This enables us to save time, as we do not need to re-optimize all available solutions and reduce the risk of
ignoring a potentially good solution.

5 Case study

In this section, we introduce the input data for our case study from Norway. The case reflects the real-world
problem of producing hydrogen for the Norwegian transport sector.

5.1 Candidate locations and production costs

We consider 17 ports along the Norwegian coast as candidate locations derived from the interactive map
provided by Ocean Hyway Cluster (2020b). For testing purposes, we further extend the number of candidate
locations to 34. All these locations are Norwegian ports and contain the original 17 locations as a subset.

In our case study, we assume that investment costs are the same for all facility locations. We approximate
the long-term production cost function with 8 and 16 modular capacity levels, each with specific investment
costs. For 16 capacity levels, each of the original 8 capacity levels is split into two levels. The investment
costs for 8 capacity levels are shown in Table 1. All investment costs are calculated based on the model by
Jakobsen and Åtland (2016).

Discrete capacity 1 2 3 4 5 6 7 8
Capacity [tonnes/day] 0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9

Investment [mill. AC] 1.4 6.0 11.2 20.5 46.5 87.2 197.7 371.5

Table 1: Investment costs for electrolysis (Štádlerová and Schütz, 2021)

Electrolysis production costs are highly dependent on electricity prices. Even though Norway is split
into 5 electricity price regions, the prices differ mainly between the northern part and the southern part of
Norway. We, therefore, use different production costs dependent on whether the candidate locations are in
northern Norway (N) or southern Norway (S). All candidate locations situated in and north of Trondheim
are considered to belong to the northern region.

To calculate the production costs in periods 1 to 9, we use the 2021 yearly average electricity prices
for the two regions. On average, the prices in the southern region were 1.8 times higher than prices in the
northern region in 2021 (Nord Pool AS, 2022). For periods 10 to 14, we use the electricity price based on the
forecast from NVE (2021) that predicts a smaller difference between the northern and the southern region.
According to this forecast, the price in the southern region should be about 1.2 times higher than in the
northern region. The production costs are calculated using the model by Jakobsen and Åtland (2016). The
production costs at 100% capacity utilization for southern (S) and northern Norway (N) are shown in Table
2.

Discrete capacity 1 2 3 4 5 6 7 8
Capacity [tonnes/day] 0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9

Production S[AC/kg] 4.26 4.21 4.20 4.18 4.16 4.14 4.13 4.11
Production N[AC/kg] 2.54 2.50 2.47 2.46 2.44 2.42 2.40 2.39

Table 2: Production costs for EL at 100% capacity utilization

For each capacity level, we approximate the short-term production cost function by a piecewise linear
function with 4 breakpoints. The production range for electrolysis is 15% − 100% (NEL Hydrogen, 2018).
Thus, we define breakpoints of the short-term cost function at 15%, 50%, 80%, and 100% of the installed
capacity level. For each capacity level, the 15% breakpoint represents the minimum production requirement.

5.2 Penalty costs

We define penalty costs for each unit of demand shortfall and capacity excess. Since the focus of this case
study is on domestic hydrogen production for domestic customers, we set high penalties for both demand
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shortfall and capacity excess of 109 AC/kg to avoid both import and export of hydrogen.

5.3 Distribution costs

Hydrogen is distributed in trucks as pipelines are not a suitable distribution solution for Norway. Distribution
costs per kilometer and kilogram of hydrogen are based on the hydrogen distribution study provided by
Danebergs and Aarskog (2020) and taken from Štádlerová and Schütz (2021). The distribution costs are
defined for different distance intervals as shown in Table 3. The maximum distance between production
facilities and customers is 1000 km.

Distance [km] 1-50 51-100 101-200 201-400 401-800 801-1000

Costs 0.00498 0.00426 0.00390 0.00372 0.00363 0.00360

Table 3: Hydrogen distribution costs in [AC/km/kg H2] (Štádlerová and Schütz, 2021)

5.4 Demand

The total hydrogen demand consists of three components:

� Maritime demand (Ocean Hyway Cluster, 2020a),

� Land-based demand (DNV GL, 2019),

� Offshore demand (Aglen and Hofstad, 2022).

The maritime demand is based on public contracts for high-speed passenger ferries and car ferries. This
component is considered to be deterministic and is present in all demand scenarios. In the land-based and
offshore sectors, the future demand share among competing zero-emission carriers is highly uncertain. Thus,
the demand share, and as such the total demand for hydrogen, from these sectors differs in each scenario.
Figure 4 shows the evolution of the maximum potential demand for all demand components over the planning
horizon.

Figure 4: Annual daily demand

We assume that the share of each of the demand components is independent and given by a specific
distribution. To study the impact the demand distribution has on the solution, we solve our model for a
uniform (unif) distribution, a normal (norm) distribution, as well as three different triangular distributions,
see Figure 5. The uniform and the normal distributions have identical expected values, whereas the expected
value of the triangular distributions depends on their shape. The left-skewed triangular distribution (trg-L)
assumes demand to consist mainly of maritime demand and a low share of land-based and offshore demand,
while the right-skewed triangular distribution (trg-R) assumes a high overall demand level. Finally, we
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(a) Continuous uniform distribu-
tion X ∼ U(min,max)
= U(0, 1)

(b) Truncated normal distribu-
tion X ∼ Na≤x≤b(µ, σ

2) =
N0≤x≤1(0.5, 0.04)

(c) Triangular distribution X ∼
Trg(a, b, c) = Trg(0, 1, 0.3)

(d) Triangular distribution X ∼
Trg(a, b, c) = Trg(0, 1, 0.7)

(e) Triangular distribution X ∼
Trg(a, b, c) = Trg(0, 1, 0.0)

Figure 5: Probability density function of demand share distribution

present a left-skewed triangular distribution with the expected value equal to the maritime demand level
with a zero share of the Land-based and Offshore demand (trg-min).

We consider aggregated daily demand in 70 and 390 demand points located in Norway. For the maritime
and offshore sectors, there are 51 demand points located in Norwegian ports. For the instances with 70
customers, we consider additional 19 municipalities with the highest road traffic volumes (Statistics Norway,
2018). Road traffic demand is then divided among the 70 customers according to the relative traffic volume.
For the instances with 390 demand points, we divide road traffic demand among the 390 municipalities.
Note that municipalities with a daily hydrogen demand from road traffic of less than 10 kg are neglected.

6 Computational results

All calculations have been carried out on a Linux cluster with two 3.6 GHz Intel Xeon Gold 6244 CPU (core)
processors and 384 GB RAM. We use commercial software Gurobi Optimizer 9.5. to solve the demand
allocation and facility utilization problem in our algorithm, as well as the LP relaxation of the problem and
the original MIP to optimality. We implemented our algorithm in Julia 1.6.5. and enable parallelization on
up to 32 threads.

We define the names of the problem instances by indicating the number of candidate facility locations (F),
customers (D) and available capacity levels (C). For example, the problem instance F17D70C8 is a problem
instance with 17 candidate facility locations, 70 customers and 8 available capacity levels. F17D70C8 also
represents the real-world case of designing the hydrogen production infrastructure in Norway.

6.1 Comparison with the expected value problem

For instance F17D70C8, we calculate the solution to the deterministic expected value problem (EVP) and
compare the results with the stochastic problem (SP) using 3, 50, and 100 scenarios. We study the per-
formance of first-stage solutions on a reference sample with 1000 scenarios for each distribution. When
solving the EVP, the different scenarios are replaced by a single scenario where all customers request their
expected demand. The expected demand level is illustrated in Figure 6. Note that the normal and uniform
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distributions have identical expected demand and thus, identical EVPs, while each triangular distribution
has different expected demand.

Figure 6: Expected demand level

The expected value of the EVP solution (EEV) is calculated by evaluating the first-stage solution from
the EVP over the reference sample with 1000 scenarios. We further evaluate first-stage decisions from solving
the SP using 3, 50, and 100 scenarios over the reference sample with 1000 scenarios. The objective value is
then denoted RP. Note that problems with 3 scenarios are solved to optimality using Gurobi (the Lagrangian
heuristic provides solutions with a proven optimality gap < 2%). The problems with 50 and 100 scenarios
are solved with a proven optimality gap < 4% using the Lagrangian heuristic, while Gurobi cannot find any
feasible solution within three days of computing time. The value of the stochastic solution (VSS) given as
V SS = EEV − RP (see, e.g., Birge and Louveaux, 2011), provides a lower estimate of the true VSS since
we do not solve the problem with 1000 scenarios to optimality.

3 scen 50 scen 100 scen
dist. EEV [106] RP [106] VSS [%] RP [106] VSS [%] RP [106] VSS [%]
norm 37, 531.9 3, 134.3 91.65 2, 958.6 92.12 2, 945.5 92.15
unif 139, 380.4 3, 359.2 97.59 2, 935.5 97.89 2, 925.6 97.90
trg-L 2, 742.5 2, 726.8 0.57 2, 695.0 1.73 2, 692.1 1.84
trg-R 27, 339, 684.7 3, 702.1 99.99 3, 347.1 99.99 3, 279.6 99.99
trg-min 2, 565.8 2, 502.0 2.49 2, 318.6 9.63 2, 274.3 11.36

Table 4: Out-of-sample evaluation for F17D70C8

Results in Table 4 show the EEV and the RP considering first-stage solutions obtained for 3, 50, and
100 scenarios. For each RP solution, we calculate the relative VSS to EEV. The EVP solution for normal,
uniform and right-skewed triangular distribution is feasible only when using penalties for capacity excess for
scenarios with low demand. Both left-skewed triangular distributions (trg-L, trg-min) have sufficiently low
expected values so that the penalties for capacity excess are avoided. Simultaneously, capacity expansion
in the second stage provides sufficient flexibility to always avoid penalties for demand shortfall. This also
applies if only maritime demand is considered when determining the locations and initial capacity of the
production facilities to be opened (i.e., the first-stage decisions).

When increasing the number of scenarios from 50 to 100, first-stage decisions based on a solution to
SP with 100 scenarios lead to lower RP. The improvement in RP when using 100 scenarios instead of 50 is
at least 5.9%, 14.4%, 1.2%, 10.6%, 7.9% for the normal, uniform and triangular distributions, respectively.
Therefore, we focus on the results for 100 scenarios in our further evaluations.

In general, the installed capacity in symmetric and right-skewed EVPs is considerably higher than the
highest installed capacity among SPs (see Figure 7) and therefore penalties for capacity excess apply in
low-demand scenarios. The exceptions are the left-skewed distributions. The solution to EVP for trg-L
installs slightly less capacity than the solution to SP in the first time periods while from period 9 onwards
the installed capacity is higher. Note that in period 9, there is the most significant jump in the expected
demand level for trg-L. The solution to SP leads to more conservative opening decisions to avoid low capacity

Designing Hydrogen Production Infrastructure under Uncertainty

CIRRELT-2022-33 15



utilization in scenarios where demand is realized below the expected value. Considering the distribution trg-
min, the solution to SP installs more capacity to save expansion costs in scenarios where demand is realized
above the expected value.

Figure 7: Installed capacity in the first stage (100 scenarios)

We can further observe (with exception of trg-min) that the installed capacity in SP is considerably lower
than the expected demand while in the EVP, the installed capacity is close to the expected demand level.
The reason is that capacity expansion is more expensive than opening a big facility right away. For a known
demand level, the aim is to satisfy demand with very few expansions. Among the results for the SP, solutions
for the uniform and the trg-min distributions lead to the lowest installed capacity. The uniform distribution
is characterized by the highest variance among scenarios. Since the capacity level can be easily increased by
expansion, the solution installs less capacity in the first stage to avoid low capacity utilization in scenarios
with a low demand level.

When sampling multiple times, 3 scenarios are not always sufficient to avoid penalties even if the problem
with 3 scenarios can be solved to optimality using Gurobi. In order to avoid penalties for capacity excess,
at least one of the three scenarios has to be a scenario with a relatively low demand level which forces the
solution to install less capacity. The solution to EEV for trg-min has shown that capacity expansion enables
to increase the capacity, if necessary, and to avoid penalties for demand shortfall. Considering 50 and 100
scenarios, the probability of having a low-demand scenario in a sample is sufficiently large.

6.2 Solution structure

To analyze the opening decisions for different demand distributions, we study the structure of the first-stage
decisions for instance F17D70C8, solved with 100 scenarios with a proven optimality gap < 4%. We focus
on the normal, left-skewed triangular, and uniform distributions as these are considered to reflect plausible
demand scenarios for Norway. The geographical locations of opened facilities in different time periods are
shown in Figure 8. We visualize the opened facilities in periods 1, 5, and 9, which allows us to analyze
the main investment steps. Note that the solutions open the last new facility in period 9. From period 10
onwards, there are no additional first-stage opening decisions and demand increase is only compensated by
capacity expansion.

In the first period (see Figure 8a), the facilities are located in the middle of the southern and northern
regions. These are strategic locations which can satisfy all customers without the necessity to open small local
facilities. Surprisingly, the highest installed capacity is in the trg-L distribution, which is the distribution
with the lowest expected demand. At the same time, this distribution is characterized by the lowest variance
among scenarios. Therefore, the solution aims to install sufficient capacity to satisfy demand in more
scenarios without expansion since opening right away a bigger facility is cheaper than expansion. These
savings in investment costs compensate for higher production costs in low-demand scenarios with low capacity
utilization. Figure 8b illustrates the opened facilities in period 5. We see that the solution opens most
facilities when considering the trg-L distribution, while the fewest facilities are opened for the uniform
distribution. The locations of the opened facilities are spread out along the entire coastline, irrespective of
distribution. In period 9 (see Figure 8c), 16 out of 17 possible facilities are opened. Hydrogen production
is characterized by economies of scale. However, high distribution costs dominate economies of scale in
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Investment norm
Investment trg-L
Investment unif

(a) Opened facilities in time period
1

Investment norm
Investment trg-L
Investment unif

(b) Opened facilities in time period
5

Investment norm
Investment trg-L
Investment unif

(c) Opened facilities in time period
9

Figure 8: First-stage decisions: Investment in the SP

production and therefore the solution chooses to open many relatively small facilities.
For all distributions, the largest facilities are opened in Kollsnes and Trondheim. Kollsnes has a strategic

position on the west coast of Norway as most of the maritime customers and road traffic customers in the
southern part of Norway are located within 1000 km distribution distance. Trondheim is an important
location as it is the only location in the northern region that can supply road traffic customers in the
southern part of Norway. A facility in Trondheim can therefore exploit both lower production costs due
to lower electricity prices and economies of scale in production due to supplying municipalities with high
demand.

Most of the production is located in the southern region. Even if production is cheaper in the northern
region, distribution costs are high. If the distance travelled from a facility in the southern region is about
470km shorter than from a facility in the northern region, it is favourable to use the facility located in the
southern region. It would therefore be cheaper to supply all coastal customers south of Florø from local
facilities rather than from Trondheim, even though the latter has cheaper production.

6.3 Solution quality

To analyze the quality of our lower bound, we compare it with the optimal solution to the MIP and with the
LP relaxation bound and calculate the optimality gap. Given the complexity of the problem, Gurobi can find
optimal solutions and solve the LP relaxation only for a few instances with 3 scenarios even when allowing
four days of computing time. In Table 5, we provide the results for two different samples and demand
distributions for the instance F17D70C8, the instance F25D70C16 for the left-skewed triangular distribution
and the instance F17D70C16 for the normal distribution since Gurobi can find an optimal solution within
four days of computing time only for these instances. When increasing the size of the problem size, neither
the MIP nor the LP relaxation can be solved within the time limit. Table 5 shows the objective value of the
LP relaxation and the Lagrangian bound as well as the time needed to solve the LP relaxation to optimality.
Since the MIP optimal solution is known, we calculate the optimality gaps. Our Lagrangian heuristic finds
good lower bounds within three hours with an optimality gap only slightly higher than the one of the LP
relaxation (about 0.5%). For larger instances, the LP relaxation cannot be solved within four days which
highlights the importance of scalable methods such as our Lagrangian heuristic.

To discuss the performance of our algorithm and the quality of our solution, we show the results of our
algorithm for 100 scenarios after 1 hour and after 5 hours of computing time in Table 6. We show the lower
and upper bound, as well as the resulting gap and provide the computing time required to achieve a gap
lower than 5%. For instance F17D70C8, we also show the results of our algorithm for 10, 25, 50, and 100
scenarios to assess the scalability of our algorithm when the number of scenarios increases.
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Gurobi LR bound Opt. gap [%]
Instance dist. LP relax. 3h LP LR

Obj.[106] time[s] Obj.[106] relax. bound
F17D70C8 norm 3563.4 1290 3561.7 0.47 0.52
F17D70C8 trg-L 2789.5 1378 2789.3 0.44 0.45
F17D70C8 unif 3658.1 936 3657.3 0.46 0.48
F17D70C8 norm 2892.7 1813 2891.1 0.41 0.47
F17D70C8 trg-L 3007.6 3022 3007.3 0.55 0.56
F17D70C8 unif 3198.0 1200 3196.7 0.33 0.37
F17D70C16 norm 2757.1 77473 2756.8 0.50 0.51
F17D70C16 trg-L - - 3311.5 - -
F17D70C16 unif - - 3082.0 -
F25D70C16 norm - - 2836.3 -
F25D70C16 trg-L 3268.1 305954 3267.0 0.45 0.49
F25D70C16 unif - - 3136.3 -

Table 5: Quality of the bounds for 3 scenarios

Our Lagrangian heuristic finds good feasible solutions for all tested instances within a time limit of one
hour. When increasing the time limit to 5 hours, we also observe a slight improvement in the lower bound.
However, the main improvement is due to finding better feasible solutions with lower objective function
values. After 5 hours, a solution with a proven optimality gap < 5% can be found for all tested instances.

The results show that for instances with a small number of scenarios, we find solutions with lower
optimality gaps than for instances with a higher number of scenarios, since more iterations are performed
and it is easier to find a first-stage solution that avoids penalties for all scenarios. However, the difference
in solution quality between 50 scenarios and 100 scenarios is minimal.

Surprisingly, when increasing the problem size from 8 to 16 capacities, the resulting optimality gap tends
to decrease, just as the run time needed to achieve a gap < 5%. With 16 capacities, it is easier to find
a suitable capacity level for the required production quantities than with 8. Therefore, our upper bound
heuristic finds good solutions with low optimality gaps already in early iterations.

Since we allow for parallelization on up to 32 threads when calculating the lower bound, we further
observe that increasing the number of candidate facility locations has a relatively low impact on the quality
of our solution. However, with 34 candidate locations, we can see that the resulting gap increases as well
as the time needed to achieve a gap < 5%, since the number of iterations performed during the computing
time decreases.

The instances with 390 customers are characterized by relatively long computing times to achieve an
optimality gap < 5%. The time needed to update the Lagrangian multipliers increases as the size of the
problem (30)–(34) depends on the number of customers and scenarios. In later iterations, updating the
multipliers takes approximately 70% of the time needed for one iteration. When increasing the time limit,
we see a considerable improvement in the upper bound. However, the lower bound improves in average by
2%.

7 Conclusion

We have studied the problem of locating hydrogen production facilities in Norway under demand uncer-
tainty. We have formulated our problem as a two-stage stochastic multi-period facility location and capacity
expansion problem. The state-of-the-art commercial solver Gurobi can solve only the smallest instances
with a low number of scenarios. Since the out-of-sample performance can be improved considerably when
increasing the number of scenarios, we present a solution method based on Lagrangian relaxation to solve
larger problems with a higher number of scenarios. With our algorithm, we find high-quality solutions for
all tested instances within five hours computing time.

Due to high distribution costs, the solution chooses to open facilities at most of the candidate locations.
Furthermore, most of the production is located in the southern part of Norway, since high distribution costs
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1 hour 5 hours time to
Instance dist. scen. LB UB gap LB UB gap gap

[106] [106] [%] [106] [106] [%] < 5%
F17D70C8 norm 10 2972.2 3061.9 2.93 2972.7 3058.7 2.81 218
F17D70C8 trg-L 10 2868.4 2938.8 2.40 2868.9 2935.6 2.27 229
F17D70C8 unif 10 3135.3 3256.5 3.72 3135.8 3224.0 2.74 246
F17D70C8 norm 25 3065.4 3166.8 3.20 3065.4 3166.8 3.20 747
F17D70C8 trg-L 25 2730.6 2834.9 3.68 2731.0 2826.8 3.39 1331
F17D70C8 unif 25 2986.9 3121.6 4.32 2987.6 3089.3 3.29 589
F17D70C8 norm 50 2931.6 3041.3 3.61 2931.9 3041.3 3.60 3474
F17D70C8 trg-L 50 2762.6 2892.9 4.51 2763.0 2863.6 3.51 2433
F17D70C8 unif 50 2944.8 3089.2 4.68 2945.2 3064.7 3.90 1273
F17D70C8 norm 100 2949.4 3095.2 4.71 2950.3 3063.5 3.70 3043
F17D70C8 trg-L 100 2766.4 2895.5 4.46 2767.0 2877.5 3.84 2610
F17D70C8 unif 100 2905.9 3061.4 5.08 2906.7 3024.4 3.89 5099
F17D70C16 norm 100 2929.6 3063.1 4.36 2930.1 3009.8 2.65 2937
F17D70C16 trg-L 100 2749.1 2849.6 3.53 2749.5 2843.7 3.31 2610
F17D70C16 unif 100 2882.0 2988.3 3.56 2882.4 2982.9 3.37 2712
F25D70C8 norm 100 2908.7 3058.2 4.89 2909.0 3039.8 4.28 3248
F25D70C8 trg-L 100 2729.0 2848.6 4.21 2729.7 2848.8 4.18 3021
F25D70C8 unif 100 2861.6 3041.0 5.90 2862.7 2989.6 4.25 8654
F25D70C16 norm 100 2892.3 3058.3 5.43 2892.9 2981.2 2.96 3813
F25D70C16 trg-L 100 2713.3 2853.9 4.93 2714.0 2812.4 3.50 3516
F25D70C16 unif 100 2844.5 2991.2 4.91 2845.1 2940.3 3.24 3298
F34D70C8 norm 100 2903.6 3086.4 5.92 2903.9 3044.1 4.60 8807
F34D70C8 trg-L 100 2724.7 2847.9 4.32 2725.4 2847.9 4.30 2980
F34D70C8 unif 100 2856.4 3054.8 6.49 2857.5 2995.8 4.61 8295
F34D70C16 norm 100 2888.6 3077.7 6.15 2889.2 3007.9 3.95 5185
F34D70C16 trg-L 100 2710.0 2841.9 4.64 2710.5 2810.9 3.57 3532
F34D70C16 unif 100 2841.2 3018.0 5.86 2841.6 2960.7 4.02 6267
F17D390C8 norm 100 2787.8 3066.9 9.10 2814.0 2902.6 3.05 4373
F17D390C8 trg-L 100 2421.5 2618.8 7.53 2450.7 2548.5 3.83 4819
F17D390C8 unif 100 2669.1 2817.6 5.27 2695.7 2802.1 3.80 4068
F17D390C16 norm 100 2767.5 2997.2 7.66 2795.7 2867.9 2.52 5128
F17D390C16 trg-L 100 2396.8 2637.9 9.14 2433.5 2500.7 2.69 4474
F17D390C16 unif 100 2654.7 2919.9 9.08 2677.5 2754.7 2.80 3845
F25D390C8 norm 100 2727.5 3139.2 13.11 2779.0 2878.8 3.47 7727
F25D390C8 trg-L 100 2362.7 2734.2 13.58 2418.4 2515.8 3.87 10339
F25D390C8 unif 100 2611.9 2962.0 11.82 2662.5 2780.5 4.24 8531
F25D390C16 norm 100 2703.3 3027.8 10.72 2763.6 2857.0 3.27 6159
F25D390C16 trg-L 100 2337.4 2723.4 14.18 2403.6 2491.8 3.54 6326
F25D390C16 unif 100 2596.3 2997.7 13.39 2646.3 2734.1 3.21 5129
F34D390C8 norm 100 2697.1 3101.6 13.04 2772.2 2903.0 4.50 9855
F34D390C8 trg-L 100 2372.2 2631.1 9.84 2412.5 2526.2 4.50 6848
F34D390C8 unif 100 2581.4 3006.3 14.13 2627.1 2760.6 4.84 8951
F34D390C16 norm 100 2695.1 3009.3 10.44 2779.0 2878.9 3.47 7857
F34D390C16 trg-L 100 2315.3 2778.4 16.67 2400.5 2509.8 4.35 10645
F34D390C16 unif 100 2517.1 3098.3 18.76 2642.6 2761.1 4.29 8118

Table 6: Computational results

dominate the lower production costs in the northern part of Norway. The facility in Trondheim is therefore
characterized by high opening capacity as it has low production costs and many road traffic customers in
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the southern part of Norway are within the distance limit.
Results for small test instances indicate that our algorithm provides good lower bounds. Thus, for future

work, the improvement potential lies within the upper bound heuristic. We further observed that the box-
step method is a limiting factor for instances with a large number of customers, as the time needed to
update the Lagrangian multipliers increases considerably. If shorter computing times are needed, exploring
different methods or a combination of methods for the calculation of the Lagrangian dual may be a promising
direction.
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Schütz, P., Stougie, L., and Tomasgard, A. (2008). Stochastic facility location with general long-run costs
and convex short-run costs. Computers & Operations Research, 35(9):2988–3000.
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