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Abstract. We provide new compact formulations for the robust vehicle routing problem with 

time windows (RVRPTW) under cardinality- and knapsack-constrained demand and travel 

time uncertainty. Particularly, we propose the first compact model that addresses the 

RVRPTW under travel time uncertainty considering the knapsack uncertainty set. Our 

models use different types of constraints to control time propagation based on the well-

known Miller-Tucker-Zemlin and single commodity flow constraints. The latter has not been 

explored even for the deterministic variant of the problem, so we first state them explicitly. 

We also design tailored branch-and-cut algorithms based on the proposed formulations, 

which rely on a dynamic programming algorithm to verify if a solution is robust feasible with 

respect to demand and time, and use specific as well as standard separation methods found 

in the literature. We present detailed computational results on RVRPTW instances, compare 

the performance of our models and algorithms, and evaluate the impact and advantages of 

implementing each studied uncertainty set. 
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1 Introduction

In distribution problems, it is often assumed that all parameters are known
and deterministic when solving a vehicle routing problem (VRP) [Gendreau
et al., 2016]. However, in reality, significant uncertainty is associated with
these problems, such as on the travel time or on each customer’s demand. If
their probability distributions are known, one can resort to stochastic opti-
mization [Birge and Louveaux, 1997]. However, when these are unknown, or
one wants to ensure a feasible solution is guaranteed for all scenarios, robust
optimization (RO) is often more appropriate [Ordonez, 2010].

One perspective of RO seeks to protect the solution against the worst-case
variation of the input data [Ben-Tal and Nemirovski, 1999]. Yet, “worst-case”
is problem-dependent. One popular way to perceive worst-case is the real-
ization of uncertain parameters that deteriorates the objective function the
most. This approach then focuses on providing optimized solutions that are
feasible for any possible realization of the input data. While approaches such
as the Distributionally RO may require knowledge on some statistical data
on the uncertain parameters, such as the mean and variance [Rahimian and
Mehrotra, 2022], most standard approaches do not need this information.
In fact, several works in the RO literature require only an estimate of the
worst-case values of the uncertain parameters [Agra et al., 2012, Gounaris
et al., 2016, Munari et al., 2019]. To avoid overconservative solutions, with
excessive costs due to over-protection against uncertainty, different uncer-
tainty sets can model the uncertain parameters realization whose worst-case
behavior can be controlled by the decision-maker. Different uncertainty sets
often result in solutions with different costs and robustness levels [Subra-
manyam et al., 2020]. From a decision-maker standpoint, these different char-
acteristics are attractive since they can choose the one that best suits their
strategy. Some examples of uncertainty sets used in the literature are the
cardinality-constrained uncertainty set [Bertsimas and Sim, 2004], in which
the decision-maker limits the number of parameters simultaneously attaining
their worst-case value, and the knapsack uncertainty set [Minoux, 2009], in
which the total deviation of a set of parameters is limited instead.

In the VRP literature, the use of different uncertainty sets has been little
explored in the context of travel time variability, as they appear on the robust
VRP with time windows (RVRPTW). While there are studies on different
uncertainty sets for VRP under variability in demand [Gounaris et al., 2013,
Subramanyam et al., 2020], all RVRPTW work under travel time variability
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have considered only the cardinality-constrained uncertainty set [Agra et al.,
2012, Lee et al., 2012, Munari et al., 2019]. Recently, Bartolini et al. [2021]
proposed a column generation algorithm that considers uncertainty on travel
times with a knapsack uncertainty set for the robust traveling salesman prob-
lem with time windows, a variant of the RVRPTW with a single vehicle. Yet,
there are still no compact formulations for the RVRPTW under uncertainty
on travel times.

This paper provides the first compact formulations for the RVRPTW un-
der demand and travel time uncertainty following the knapsack-constrained
sets. Our main contributions are to:

• propose a new compact commodity flow (CF) formulation for the de-
terministic VRPTW. We are not aware of any compact formulation
for this variant in which both load and time propagation are modeled
based on CF constraints;

• introduce two compact formulations for the RVRPTW under demand
and travel time uncertainty following the cardinality-constrained and
the single knapsack uncertainty sets. We also extend these formulations
to account for the multiple knapsacks case;

• design tailored branch-and-cut (BC) algorithms based on the proposed
formulations, in which robustness is verified for each integer solution
using a polynomial-time dynamic programming (DP) algorithm.

Our compact formulation based on CF constraints presents stronger linear
programming (LP) relaxations than those of Munari et al. [2019] and bet-
ter performance for the deterministic case. We perform detailed computa-
tional analyses on RVRPTW instances, showing that, while harder to solve,
instances considering the knapsack uncertainty set may provide solutions
with similar level of robustness as some configurations of the cardinality-
constrained set while costing less, highlighting some advantages of its use.
The BC algorithm also showed positive results, solving almost twice as many
instances to optimality as a commercial solver applied on the compact mod-
els.

The remainder of this paper is organized as follows. In Section 2, we
introduce some definitions and concepts used in this work. In Section 3,
we introduce a novel compact formulation based on CF constraints for the
deterministic VRPTW and extend it to consider uncertainty on the demand
and travel times following a recent modeling strategy in the RO literature
[Munari et al., 2019]. In addition, we also describe a new modeling strat-
egy that considers uncertainty on travel times with the single and multiple
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knapsack-constrained uncertainty sets and derive two compact formulations
using them. In Section 4, we describe the proposed BC algorithms. The
computation results of the experiments are shown in Section 5. Finally, the
concluding remarks are discussed in Section 6.

2 Background and Literature Review

In this section, we start with some background definitions and in Section 2.1
we describe the two uncertainty sets used in this paper. Section 2.2 reviews
the existing compact formulations developed for the RVRPTW. Note that
they only consider the traditional cardinality-constrained uncertainty set, as
there are no works in literature with a compact formulation using knapsack
uncertainty to model travel time variability.

The notation used is as follows. Let C = {1, . . . , n} be the set of n
customers; N = C ∪ {0, n + 1} be the set of nodes including two copies of
the depot; and A = {(i, j) | i, j ∈ N, i < n + 1, j > 0, i ̸= j} be the set of
arcs. For each arc (i, j) ∈ A, we define cij as the travel cost from i to j and
assume they satisfy the triangle inequality. The set of homogeneous vehicles
is K, each with capacity Q. Each customer i ∈ C has a demand di ≤ Q.

The incorporation of time windows also requires parameters [ai, bi], which
indicate the earliest and latest times a vehicle may start serving customer i,
respectively; si is the service time of node i; and tij is the travel time of arc
(i, j) ∈ A. To account for these new characteristics, in compact models one
often resorts to the use of constraints inspired by the Miller-Tucker-Zemlin
(MTZ) formulation [Miller et al., 1960].

2.1 Uncertainty Sets

In this section, we review the cardinality-constrained and the knapsack un-
certainty sets.

2.1.1 Cardinality-Constrained Set.

The cardinality-constrained set works with a budget Γ representing the thresh-
old of the total scaled variation of the uncertain parameters. Particularly, if
Γ is integer, we can interpret it as the number of worst-case realizations that
can simultaneously occur in a route [Bertsimas and Sim, 2004]. As in most
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RVRPs, we assume that the worst-case value of the demand and travel time
parameters occur when they assume their highest possible value since this
impairs the feasibility of the route the most. Then, a solution is considered
robust feasible for a budget Γ if it is feasible when up to any Γ uncertain
parameters simultaneously assume their worst-case value. Under demand
uncertainty, that means the solution does not violate the vehicle capacity
when the demands of any Γ customers assume their largest values. Likewise,
if travel time is the uncertain parameter, the solution is robust feasible if
all time windows are satisfied for any combination of Γ arcs attaining their
worst-case travel times.

In the cardinality-constrained set, travel time uncertainty is modeled with
random variables γt

ij, 0 ≤ γt
ij ≤ 1, which indicate the normalized scale devi-

ation for the travel time of arc (i, j). The sum over these random variables
is limited by the travel time budget Γt. Thus, the uncertainty set designed
for travel times, U t, is represented by:

U t = {t ∈ R|A| | tij = t̄ij+t̂ijγ
t
ij, ∀(i, j) ∈ A;

∑
(i,j)∈A

γt
ij ≤ Γt; 0 ≤ γt

ij ≤ 1,∀(i, j) ∈ A},

where the travel time tij for each arc (i, j) ∈ A ranges from its nominal value
t̄ij up to t̄ij+ t̂ij, with t̂ij being its maximum deviation. A similar idea applies
for demand uncertainty, using a demand budget Γd and random variables γd

i ,
which leads to the uncertainty set:

Ud = {d ∈ R|N | | di = d̄i + d̂iγ
d
i , i ∈ N ;

∑
i∈N

γd
i ≤ Γd; 0 ≤ γd

i ≤ 1, i ∈ N}.

2.1.2 Knapsack Set.

Unlike the cardinality-constrained set, the knapsack uncertainty set does not
limit the number of worst-case realizations. Instead, it limits the total abso-
lute deviation on a route, considering one or more knapsacks [Subramanyam
et al., 2020]. Each knapsack l involves a subset of nodes for demands or arcs
for travel times, with its own budget of uncertainty ∆l. Usually, the RVRP
literature models these knapsacks by relating the realizations to geographical
regions [Gounaris et al., 2013, Subramanyam et al., 2020]. For example, one
may group the nodes/arcs into four different quadrants (NE, SE, NW, SW)
and set a budget for each quadrant based on its characteristics. For instance,
a quadrant with higher variability in demand may have larger budget than
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others. Additionally, one usually builds the multiple knapsacks as disjoint
sets, meaning that their nodes/arcs do not overlap.

Let L be the set of knapsacks and Sl the set of arcs in each knapsack
l ∈ L. We define ∆t

l as the budget of uncertainty for travel times in knapsack
l ∈ L. Then, we can model this set for travel time, U t

L, using the following
expression:

U t
L = {t ∈ R|A| | t̄ij ≤ tij ≤ t̄ij + t̂ij,∀(i, j) ∈ A;

∑
(i,j)∈Sl

(tij − t̄ij) ≤ ∆t
l , l ∈ L}.

In this definition, the travel time realization tij ranges from t̄ij to t̄ij+ t̂ij, and
the sum of all deviations in knapsack l is limited by ∆t

l . A similar expression
can be generated for problems under demand uncertainty, using a budget
∆d

l , and defining Sl as the set of nodes in each knapsack l ∈ L:

Ud
L = {d ∈ R|N | | d̄i ≤ di ≤ d̄i + d̂i, ∀i ∈ N ;

∑
i∈Sl

(di − d̄i) ≤ ∆d
l , l ∈ L}.

In practical settings, this type of representation might be more appropriate
than the cardinality-constrained set, especially regarding time uncertainty. It
is often easier for a driver to estimate how late he or she is when traveling to a
specific region than to tell how many streets usually achieve their worst-case
traffic.

A variant of this uncertainty set we study in this work is the single-
knapsack uncertainty set, in which a single knapsack encompasses every
arc/node for each uncertain parameter (i.e., |L| = 1). Thus, budget ∆t

limits the total deviation in travel times in a route. This set is most ap-
propriate in systems where there is no clear distinction of behavior among
customers, or if the decision-maker wants to introduce a limitation for each
vehicle that is independent of the route.

To the best of our knowledge, there is no paper considering the knapsack
uncertainty set for uncertain travel times in the RVRPTW literature. The
works that use this uncertainty set only consider uncertainty on the demand
[Gounaris et al., 2013, Pessoa et al., 2021, Subramanyam et al., 2020]. It is
worth noting that it is not trivial to extend these methods to consider uncer-
tainty on travel times because they were designed based on the assumption
that if a knapsack is completely filled, it does not matter where in the route
the load deviation occurred. However, we cannot make this assumption in
problems with uncertainty on travel times, as travel time deviations can be
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absorbed by the customer’s opening time windows and waiting time. Indeed,
even after a long deviation on a given arc, the vehicle may still have to wait
for the time window to open. Therefore, we cannot make the same assump-
tion as in the case of uncertain demand, requiring new modeling strategies
and algorithms.

2.2 Robust Optimization Formulations for VRPs

The dualization scheme introduced by Bertsimas and Sim [2003] is the most
traditional approach in the RO literature to derive robust counterparts of con-
tinuous or discrete linear optimization problems when relying on cardinality-
constrained sets. This strategy is based on replacing the protection function
of each constraint with its corresponding dual problem, ensuring the robust
counterpart remains linear. More specifically, each constraint with an un-
certain parameter has a protection function that consists of a continuous
linear optimization problem that determines the worst-case realization for
the uncertain parameters in that constraint. This subproblem is then re-
placed by its dual problem, which introduces new (continuous) variables and
constraints to the robust counterpart. We refer to Bertsimas and Sim [2004]
for further details.

In the RVRP literature, Agra et al. [2012] present a compact model de-
rived from the dualization approach based on the so-called layered formu-
lation of the VRPTW. The authors considered uncertainty on travel times
only, inspired by a maritime transportation problem with no capacity con-
straints. The layered formulation is based on creating a flow problem where
a graph is defined for every vehicle, and each one of them has n layers. Each
l-th layer represents the node where the vehicle is after visiting l − 1 nodes
on a path from the origin. For each layer, there is a set of possible arcs that
the vehicle can traverse, based on the feasibility of the time windows con-
straints and the nodes previously visited on the route. The authors reported
computational results for the obtained robust counterpart considering small-
scale instances with 10 to 20 cargoes and 1 to 5 vehicles. These instances
were all solved to optimality when using an additional strategy that reduces
the maximum number of layers, with average computational times of 225.29
seconds to solve the model, plus 107.64 seconds to run the layer-reduction
algorithm. Munari et al. [2019] tested the same formulation on instances
from Solomon’s benchmark set with 25 customers to compare it with their
own formulation (that is not based on the dualization approach). They ob-
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served that the layered-based formulation could not prove optimality for any
instance and found feasible solutions or proved infeasibility for only 59.48%
of them within the time limit of 3600 seconds.

Lee et al. [2012] also used the dualization scheme to model the RVRP
with deadlines, a variant of the RVRPTW which does not consider the open-
ing time windows. As reported by the authors, preliminary computational
experiments showed that the solver could not process the compact formula-
tion even for small-scale instances, so the authors resorted to Dantzig-Wolfe
decomposition. Another limitation of their formulation is that it is not easily
extendable to the RVRPTW, as it considers that a worst-case scenario is the
one that has the maximum delay within the chosen budget, which may not
be true when the opening time windows are available, as the waiting times
may absorb part of the deviation.

Recently, Munari et al. [2019] proposed an alternative for the dualiza-
tion scheme when using cardinality-constrained sets in the context of RVRP
variants. This approach is based on the linearization of recursive equations
that model the worst-case realizations of the uncertain parameters. This
linearization results in constraints that guarantee a robust feasible solution
in a compact model. Their work is based on the cardinality-constrained un-
certainty set and assumes that the budget of uncertainty is integer and thus
defined as the maximum number of worst-case values taken simultaneously
by the uncertain parameters. For instance, considering the budget Γt for
travel time uncertainty and a given route r = (v0, v1, . . . , vh), the variable
wvjγ represents the worst case for service start time at node vj in route r,
when the travel times at any γ ≤ Γt arcs up to node vj attain their worst-
case values simultaneously. The worst case for service start time at node vj is
the latest between its opening time window (avj) and the worst-case arrival

time. Let t̄vj−1vj be the nominal travel time on arc (vj−1, vj) and t̂vj−1vj be
its maximum deviation. Then, the value of wvjγ can be computed using the
following recursive equation [Munari et al., 2019]:

wvjγ =


av0 , if j = 0,
max{avj , wvj−1γ + t̄vj−1vj + svj−1

}, if γ = 0,
max{avj , wvj−1γ + t̄vj−1vj + svj−1

,
wvj−1γ−1 + t̄vj−1vj + t̂vj−1vj + svj−1

}, otherwise,

(1)

for all j = 0, . . . , h and 0 ≤ γ ≤ Γt. We can convert these equations into
the following linear constraints for a two-index compact formulation, which
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guarantee a robust feasible solution with respect to time propagation and
time window satisfaction:

wjγ ≥ wiγ + (si + t̄ij)xij −Mij(1− xij), (i, j) ∈ A, γ = 0, . . . ,Γt, (2)

wjγ ≥ wi(γ−1) + (si + t̄ij + t̂ij)xij −Mij(1− xij),

(i, j) ∈ A, γ = 1, . . . ,Γt, (3)

ai ≤ wiγ ≤ bi, i ∈ N, γ = 0, . . . ,Γt, (4)

where xij is the commonly used binary variable that assumes the value of
1 if, and only if, a vehicle traverses arc (i, j) ∈ A, and Mij is a sufficiently
large number that can be set as max{0, bi−aj}, for each (i, j) ∈ A. For each
γ = 0, . . . ,Γt, constraints (2) and (3) guarantee that, if xij = 1 for a given
(i, j) ∈ A, the service starting time at node vj when γ travel times attain
their worst-case values is computed by choosing the largest between two
possibilities: γ worst-case realizations already happened in arcs that precede
arc (i, j), as represented by constrains (2); or γ − 1 worst-case realizations
happened before (i, j) and, thus, the travel time on arc (i, j) attains its worst-
case value, as represented by constraints (3). Constraints (4) impose the
satisfaction of the time windows. We can apply the same strategy to derive
similar constraints for demand uncertainty. Because this robust counterpart
yields fewer constraints and variables than those derived using the dualization
approach [Munari et al., 2019], it performs significantly better on general-
purpose linear optimization solvers. Yu et al. [2022] also report superior
results when using this approach to model a robust variant of the team
orienteering problem. For this reason, besides the difficulties of extending
dualization methods to problems with travel time variability, the models
introduced in this work are based on the linearization approach.

3 New Compact Formulations for the RVRPTW

We present novel RO models for the RVRPTW which resort to the lin-
earization technique of recursive equations proposed by Munari et al. [2019].
First, we develop in Section 3.1 a new CF formulation for the determinis-
tic VRPTW. Then, we derive its robust counterpart using the cardinality-
constrained uncertainty set to obtain a new compact RO model for the
RVRPTW in Section 3.2. Recall that an MTZ-based formulation already
exists for this problem [Munari et al., 2019], but no CF-based formulation
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has been proposed thus far. Then, in Section 3.3, we propose the first CF-
and an MTZ-based models for the single and multiple knapsack uncertainty
sets.

3.1 CF Formulation for the VRPTW

While there are formulations based on CF constraints for several VRP vari-
ants in literature [Gouveia, 1995, Letchford and Salazar-González, 2006,
2015], we did not find any compact formulation explicitly defined for the
VRPTW in which both load and time propagation are modeled using this
type of constraints. There is, however, one for the TSP with time windows
[Langevin et al., 1993] and another for the split delivery VRPTW [Bianchessi
and Irnich, 2019], both in a deterministic context, but none of them mod-
els the two types of propagation using CF constraints. In what follows,
we present our developments to introduce time windows and time flow con-
straints.

Let xij be the binary variable that assumes the value of 1 if, and only if, a
vehicle traverses arc (i, j) ∈ A, which is commonly used to define two-index
vehicle flow formulations. We define a continuous variable fij to represent
the load of the vehicle that traverses arc (i, j) ∈ A, inspired by the variables
introduced by Gavish [1984]. To adapt this model to the VRPTW, we treat
time as a second commodity. Thus, we introduce continuous variables gij
that represent the elapsed time of a route when the vehicle enters arc (i, j)
after serving node i. The model is then given by:

min
∑

(i,j)∈A

cijxij, (5)

s.t.
∑

i:(i,j)∈A

xij = 1, j ∈ C, (6)

∑
h:(h,i)∈A

xhi =
∑

j:(i,j)∈A

xij, i ∈ C, (7)

∑
j:(i,j)∈A

fij = di +
∑

h:(h,i)∈A

fhi, i ∈ C, (8)

dixij ≤ fij ≤ (Q− dj)xij, (i, j) ∈ A, (9)∑
j:(i,j)∈A

gij ≥ si +
∑

h:(h,i)∈A

(ghi + thixhi) , i ∈ C, (10)
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(ai + si)xij ≤ gij ≤ (bi + si)xij, (i, j) ∈ A, (11)

xij ∈ {0, 1}, (i, j) ∈ A. (12)

The objective function (5) consists of minimizing the total traveling costs.
Constraints (6) ensure that each customer is visited only once, whereas (7)
guarantee the correct vehicle flow through the nodes. Constraints (8) ensure
the load flow propagation, enforcing that the load on the vehicle that leaves
node i increases by its demand di. These constraints also forbid subtours.
Constraints (9) prevent the vehicle from exceeding its capacity. Constraints
(10) act similarly to (8) and guarantee the time flow propagation through
the visited nodes of a route. Constraints (11) ensure that time windows are
met. They also guarantee that the variable gij is non-negative if arc (i, j) is
traversed. Finally, constraints (12) define the binary domain of variables xij.

3.2 CF Formulation for the Cardinality-Constrained
RVRPTW

We obtain the robust counterpart of model (5)–(12) following the idea of
the linearization technique [Munari et al., 2019]. Similarly to the steps per-
formed in the MTZ-based formulation, we add an index γ to the variables
that control the load and time propagation. Hence, let variables fijγ and
gijγ represent the worst-case load and elapsed time of the vehicle that tra-
verses arc (i, j) ∈ A, considering that γ parameters attain their worst case
simultaneously. With these variables, we can redefine the load and time
flow propagation constraints of the model. First, constraints (8) and (9) are
replaced with:∑

j:(i,j)∈A

fijγ ≥ d̄i +
∑

h:(h,i)∈A

fhiγ, i ∈ C, γ ≤ Γd, (13)

∑
j:(i,j)∈A

fijγ ≥ d̄i + d̂i +
∑

h:(h,i)∈A

fhi(γ−1), i ∈ C, 1 ≤ γ ≤ Γd, (14)

d̄ixij ≤ fijγ ≤ (Q− d̄j)xij, (i, j) ∈ A, γ ≤ Γd. (15)

Constraints (13) and (14) guarantee the propagation of the worst-case
vehicle load, according to the following two cases: the demand of γ nodes
attained their worst-case previously, and then only the nominal demand of
node i happens, as computed in the right-hand side of (13); or γ−1 worst-case
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realizations occurred previously and then the demand of node i also attains
its maximum deviation (hence, one more worst-case value considered), as
calculated in the right-hand side of (14). Constraints (15) ensure that the
vehicles’ capacity is satisfied for all possible number of worst-case realizations.
Note that, in the deterministic case (Γd = 0), constraints (14) are not defined
and constraints (13) and (15) are the same as (8) and (9).

Likewise, we can apply the same process to the constraints associated with
time flow and, then, we obtain the following RO model for the RVRPTW
with uncertainty on demands and travel times. The model consists of the
objective function (5) subject to (6), (7), (12)–(15), and to:∑

j:(i,j)∈A

gijγ ≥ si +
∑

h:(h,i)∈A

(ghiγ + t̄hixhi), i ∈ C, γ ≤ Γt, (16)

∑
j:(i,j)∈A

gijγ ≥ si +
∑

h:(h,i)∈A

(ghiγ−1 + (t̄hi + t̂hi)xhi), i ∈ C, 1 ≤ γ ≤ Γt, (17)

(si + ai)xij ≤ gijγ ≤ (bi + si)xij, (i, j) ∈ A, γ ≤ Γt. (18)

Constraints (16) and (17) act similarly to (13) and (14) but for time load
propagation. Constraints (18) ensure that the time windows are respected.

Thanks to the capacity and time windows constraints (15) and (18), only
one variable related to load (fijγ) and time (gijγ) propagation are allowed to
have a non-null value for each i and γ, specifically the one related to arc (i, j)
where xij = 1. Thus, suppose that in an optimal solution, we have xi1j1 = 1
and xj1k1 = 1. Then, timing constraints (16) and (17) related to node j1, for
any γ > 0, can be simply represented as follows:

gj1k1γ ≥ gi1j1γ + t̄i1j1 + sj1 , (19)

gj1k1γ ≥ gi1j1γ−1 + t̄i1j1 + t̂i1j1 + sj1 . (20)

Conversely, in the MTZ-based model for the RVRPTW [Munari et al., 2019],
the time constraints related to node j1 in path (i1, j1, k1) can be written as
follows:

wj1γ ≥ wi1γ + t̄i1j1 + sj1 , (21)

wj1γ−1 ≥ wi1γ + t̄i1j1 + t̂i1j1 + sj1 , (22)

where wj1 is a continuous variable that represents the departure times from
node j1. Given that variables gj1k1γ and wj1 have the same meaning, it is
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possible to see that constraints (19)–(20) are equivalent to (21)–(22). A sim-
ilar conclusion can be drawn for the load constraints. Hence, both models
have equivalent load and time propagation constraints in an integer solu-
tion. However, our CF-based formulation avoids the weak big-M constraints
presented in the MTZ-based models. Indeed, as we will demonstrate later,
our new formulation yields a much tighter relaxation. Finally, it is worth
mentioning that model (5)–(7), (12)–(15) is a valid RO formulation for the
RCVRP under the cardinality-constrained uncertainty set.

3.3 Formulations for the Knapsack-Constrained RVRPTW

We can also derive MTZ- and CF-based formulations for the RVRPTW un-
der single and multiple knapsack uncertainty sets using the linearization ap-
proach. Recall that ∆d and ∆t are the budgets of uncertainty in demand and
travel times, respectively, used in the definition of the single knapsack un-
certainty sets in Section 2.1.2. Similarly, we have ∆d

l and ∆t
l for the multiple

knapsack uncertainty sets.

3.3.1 MTZ-Based Formulation for the Single Knapsack Uncer-
tainty Set.

To generate the MTZ-based formulation for the RVRPTW under the single
knapsack uncertainty set, we define the following decision variables:

• uiδ: represents the load on the vehicle up to and including node i ∈ N ,
considering up to a total deviation of δ ∈ {0, 1, . . . ,∆d} units over the
demands’ nominal values for all nodes previously visited;

• wiδ: indicates the earliest time that a vehicle can start the service at
node i ∈ N , considering up to a total deviation δ ∈ {0, 1, . . . ,∆t}
time units over the travel times’ nominal values for all arcs previously
traversed.

In these definitions, the index δ represents the total load/time over their
nominal values accumulated in the route up to the current node. This inter-
pretation requires integer budget and deviations, since an index is used to
represent the deviations. Moreover, for large budgets, the number of vari-
ables and constraints becomes large as they grow pseudopolynomially. Later
in this section we discuss some strategies to address these issues.

To derive constraints based on variables uiδ and wiδ, we rely on the follow-
ing interpretation based on DP, inspired by the discussion presented in Sec-
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tion 2.2 for the cardinality-constrained uncertainty set. Let r = (v0, v1, . . . , vh)
be a route visiting h−1 customers. For this route, we can compute the values
of wvjδ for j = 0, . . . , h and δ = 0, 1, . . . ,∆t as follows:

wvjδ =

{
av0 , if j = 0,

max
0≤λ≤min{δ,t̂vj−1vj }

{avj , wvj−1(δ−λ) + t̄vj−1vj + svj−1
+ λ}, otherwise.

(23)

The first case in (23) is a boundary condition for the first node in the route,
the depot, and defines the starting time of the route. The second computes
the worst-case starting time of the service at node vj, considering that the
travel time deviation in arc (vj−1, vj), represented by λ, may attain any
value from 0 to the minimum between the total budget δ and the maximum
deviation t̂vj−1vj . Notice that this expression encompasses the deterministic
cases for δ = 0 and λ = 0. Additionally, this calculation accounts for the
opening of the time window. To check the feasibility of the route with respect
to time windows, we need to verify after each iteration of the DP algorithm
if wvjδ ≤ bvj for each node vj and δ ∈ {0, 1, . . . ,∆t}. In the compact model,
these verifications are introduced as the upper bound of the time windows
constraints.

It is possible to derive a similar expression for computing the values of
variables uvjδ. However, since the vehicle load is not subject to a behavior
analogous to the opening of the time windows, the worst-case load at a
given node can be computed by filling the knapsack with as much demand
deviations as possible in the order they appear in the route. Hence, we use
the following improved equation:

uvjδ =


d̄v0 , if j = 0,

uvj−1δ + d̄vj , if δ < d̂vj ,

max{uvj−1δ + d̄vj , uvj−1(δ−d̂vj )
+ d̄vj + d̂vj}, if d̂vj ≤ δ < ∆d,

max
0≤λ≤min{d̂vj ,∆d}

{uvj−1(∆d−λ) + d̄vj + λ}, otherwise,

(24)

for j = 0, . . . , h and δ = 0, 1, . . . ,∆d. The first two cases define boundary
conditions: one sets the total load in the first node in the route, which
is usually the depot; whereas the other applies when the total deviation
considered in the route is lower than d̂vj , thus resulting in adding only the
nominal demand of node vj to the total load. We do not introduce any
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deviations in the variables with small δ because the algorithm focuses on
finding uvj∆d , which is properly calculated by the remaining cases. The
third case corresponds to whether or not we consider the full deviation of
the demand on node vj, with the largest between both values being chosen.
Finally, the last case corresponds to δ = ∆d, and involves using the remaining
budget of the knapsack. It considers all the possible deviations from 0 to d̂vj ,
denoted as λ, as long as this value does not exceed the budget ∆d. The value
λ represents the deviation added to the knapsack to fill it up.

With this interpretation of the variables and relying on the lineariza-
tion approach to convert the recursive equations (23) and (24) to linear con-
straints, we developed the following model for the RVRPTW under the single
knapsack uncertainty set:

min
∑

(i,j)∈A

cijxij, (25)

s.t. (6), (7), (12), and to

ujδ ≥ uiδ + d̄j +Q(xij − 1), (i, j) ∈ A, δ = 0, . . . ,∆d, (26)

ujδ ≥ ui(δ−d̂j)
+ d̄j + d̂j +Q(xij − 1), (i, j) ∈ A, δ = d̂j, . . . ,∆

d, (27)

uj∆d ≥ ui(∆d−λ) + d̄j + λ+Q(xij − 1),

(i, j) ∈ A, λ = 0, . . . ,min{d̂j,∆d}, (28)

0 ≤ ujδ ≤ Q, j ∈ N, δ = 0, . . . ,∆d, (29)

wjδ ≥ wi(δ−λ) + t̄ij + λ+ si + bn+1(xij − 1),

(i, j) ∈ A, δ = 0, . . . ,∆t, λ = 0, . . . ,min{δ, t̂ij}, (30)

aj ≤ wjδ ≤ bj, j ∈ N, δ = 0, . . . ,∆t. (31)

The objective function (25) is the same as in the other formulations presented
in this work. Constraints (26)–(28) determine the worst-case load at node j
considering a non-negative integer budget δ ≤ ∆d, and they are the linear
counterpart of the recursive equations (24). Constraints (29) ensure that the
vehicle capacity is respected. Notably, we just need to verify the upper bound
for δ = ∆d. If we consider only these constraints and the ones related to the
variable’s domain, we formulate the RCVRP. Constraints (30) compute the
worst-case service starting time using the same strategy as in the recursive
equations (23). They compute the arrival time in node j considering the
route’s total deviation of δ. The right-hand side evaluates the quantity λ of
time deviation that should be considered for that particular node, while the

Compact Formulations for the Robust Vehicle Routing Problem with Time Windows under Demand and Travel 
Time Uncertainty

14 CIRRELT-2022-34



remaining δ − λ units of deviation happened in previous nodes of the route,
thus wjδ is determined by the choice of λ that results in the worst-case arrival
time. Finally, constraints (31) ensure the time windows are respected.

3.3.2 CF Formulation for the Single Knapsack Uncertainty Set.

To derive a robust counterpart of the deterministic CF model (5)–(11) con-
sidering knapsack-uncertainty on demand and travel time, we define the fol-
lowing load and time variables:

• fijδ: the load carried on arc (i, j) ∈ A with a total deviation of δ ∈
{0, 1, . . . ,∆d} units over the nominal demand;

• gijδ: earliest elapsed time of a route when the vehicle begins to tra-
verse arc (i, j) ∈ A after serving node i with a total deviation of
δ ∈ {0, 1, . . . ,∆t} units over nominal travel times.

Using a similar interpretation as that presented in the previous section,
we can derive CF-based constraints from the recursive equations (23) and
(24), resulting in the following new CF formulation for the RVRPTW.

min
∑

(i,j)∈A

cijxij, (32)

s.t. (6), (7), (12), and to∑
j:(i,j)∈A

fijδ ≥ d̄i +
∑

h:(h,i)∈A

fhiδ, i ∈ N, δ = 0, . . . ,∆d, (33)

∑
j:(i,j)∈A

fijδ ≥ d̄i + d̂i +
∑

h:(h,i)∈A

fhiδ−d̂i
,

i ∈ N, δ = d̂i, . . . ,∆
d, (34)∑

j:(i,j)∈A

fij∆d ≥ d̄i + λ+
∑

h:(h,i)∈A

fhi∆d−λ,

i ∈ N, λ = 0, . . . ,min{∆d, d̂i}, (35)

d̄ixij ≤ fijδ ≤ (Q− d̄j)xij, (i, j) ∈ A, δ = 0, . . . ,∆d, (36)∑
j:(i,j)∈A

gijδ ≥ si +
∑

h:(h,i)∈A

λ≤t̂hi

(ghiδ−λ + (t̄hi + λ)xhi),

i ∈ N, δ = 0, . . . ,∆t, λ = 0, . . . , δ, (37)

(ai + si)xij ≤ gijδ ≤ (bi + si)xij, (i, j) ∈ A, δ = 0, . . . ,∆t. (38)
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The objective function (32) is the same as in the previous formulations.
Constraints (33)–(35) are based on the recursive equations (24) and work
similarly to (26)–(28), forbidding subtours and computing the worst-case
load values using the CF variables. Capacity constraints are imposed via (36).
Constraints (37) compute the elapsed time based on the idea of equations
(23), and constraints (38) enforce the time windows.

We mention a few difficulties that the models based on single knapsack
uncertainty sets might face and some possible solutions. The first issue re-
gards the large number of variables when the budgets are large. However,
budget values in real contexts are typically not large. For instance, Bar-
tolini et al. [2021] consider ∆d = 100 minutes of deviation as an extreme
case. This would be considered a volatile environment since the delay would
take roughly 20% of a worker’s day. Hence, smaller values of ∆d are usually
reasonable in practice. Another possible workaround is to change the order
of magnitude of δ; for instance, instead of using the unit of δ as 1 minute,
one can use it in units of 5 minutes. This strategy may reduce the model
to a tractable size. Another limitation of the proposed formulations is the
impossibility of using non-integer units for δ. The mentioned workaround
may be used in this case as well, by multiplying the non-integer unit by a
constant that turns it into an integer number, possibly at the cost of worsen-
ing the computational performance. Nevertheless, we believe the proposed
approaches are still of theoretical and practical value, and may benefit re-
searchers and practitioners interested in formulations for RVRP variants.

3.3.3 Formulations for the Multiple Knapsack Uncertainty Set.

In the multiple knapsack uncertainty set, we consider a set L of knapsacks
and subsets of nodes (or arcs) associated with each knapsack (Sl, l ∈ L)
with its own budget ∆l. To extend the previous formulations to a multiple
knapsack framework, we redefine the continuous variables related to demand
(uiδ and fijδ) and time (wiδ and gijδ) to consider an index δl representing the
total deviation in the route for each knapsack l. For the sake of conciseness,
we present these formulations in the appendix.
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4 Branch-and-cut Algorithm for the RVRPTW

In addition to the compact formulations, we designed a tailored BC algorithm
to obtain better computational performance for the studied models. The
cut separation is performed using a combination of strategies: a DP-based
algorithm, a heuristic algorithm proposed for the RCVRP [Gounaris et al.,
2013], and the CVRPSep package [Lysgaard et al., 2004]. We use the latter
to generate rounded capacity inequalities (RCI) only, which are stated as
follows for a given set of nodes VS:∑

i∈N\VS

∑
j∈VS

xij ≥

⌈∑
j∈VS

d̄j

Q

⌉
, VS ⊂ C. (39)

These cuts ensure that the number of vehicles entering set VS offer enough
capacity to serve all the nodes in VS. Since enumerating every possible set
VS requires a long computational time, CVRPSep uses an efficient heuristic
algorithm to generate a limited number of sets and relevant cuts.

Other than that, for instances with uncertainty on demand we also use
the Robust RCI (RRCI) introduced by Gounaris et al. [2013]. These cuts
are a robust extension of the capacity cut previously explained, represented
by the following inequalities:

∑
i∈N\VS

∑
j∈VS

xij ≥

⌈
1

Q
max
d∈Ud

∑
j∈VS

dj

⌉
, VS ⊂ C. (40)

Note that these are almost identical to the deterministic version (39), the
main difference being that, in the robust case, we consider the maximum pos-
sible demand inside the uncertainty set instead of the nominal demand. Since
enumerating every possible RRCI would be impractical, we implemented a
heuristic algorithm to dynamically separate and insert these cuts as needed,
as proposed by Gounaris et al. [2013]. We start with a solution and a ran-
domly generated set of customers VS; then, we iteratively perturb this set by
inserting or removing a node from it. In each attempt of adding/removing a
node to/from VS, we analyze every potential customer and remove or insert
the one with the highest impact in the difference between the right-hand side
and the left-hand side of the corresponding RRCI constraint. We also main-
tain a tabu list of recently added/removed customers that are not allowed to
be moved in or out of the set for some iterations, to avoid cycles. We stop
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the algorithm when we do not improve the difference between the right- and
the left-hand sides of the inequality for a given number of iterations.

An important factor in this algorithm is the need to efficiently compute
the right-hand side of the inequality since this value must be frequently
checked. To assist in this calculation, we create an auxiliary data structure
that reduces the number of steps required. For the cardinality-constrained
uncertainty set, we define an auxiliary vector Q ∈ R|VS |,Q = (d̂[1], . . . , d̂[|VS |]),
containing the demand deviations of all nodes in VS in non-increasing order,
i.e., d̂[j−1] ≥ d̂[j], where d̂[j] is the demand deviation in the jth position of
this vector. We then compute DVS

, the maximum demand of this set, using

DVS
=

∑
j∈VS

d̄j +

min{Γd,|VS |}∑
γ=0

Qγ. (41)

Then, for each iteration when we check the possibility of insertion/removal
of a given node j ∈ VS, we take the total demand of the current set VS (DVS

)
and compute the new right-hand side for that particular node (RSj) using
the following expression:

RSj =

{
DVS

+ d̄j +max(d̂j −QΓd , 0), if j ̸∈ VS;

DVS
− d̄j −max(d̂j −QΓd+1, 0), otherwise,

(42)

After determining which node j will be inserted/removed from set VS, we
update DVS

, which takes the value of RSj, and insert/remove its deviation
from Q. Note that we did not need to compute DVS

again with the equation
(41), we only need to use it in the first iteration reducing the number of
operations in the procedure.

For the single and multiple knapsack uncertainty sets, we used the for-
mulas proposed by Gounaris et al. [2013] to calculate the maximum demand
deviation, which is done in O(|VS|). Let L be the set of knapsacks and Sl

the subset of nodes inside each knapsack l ∈ L. The right-hand side of the
RRCI is then given by:∑

i∈VS

d̄i +
∑
l∈L

min{∆d
l ,

∑
i∈VS∩Sl

d̂i}. (43)

Since this is a heuristic algorithm, it might miss a violated constraint.
Thus, for integer solutions we also use a DP algorithm based on the recursive
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equations (23), which can be executed in O(|N |
∏

l∈L ∆
d
l ). Whenever the

heuristic is unable to find a new violated cut, this algorithm checks if the
solution is feasible and inserts additional feasibility cuts if needed. If for a
given route r = (v0, v1, . . . , vh) the infeasibility is detected in node vj for a
given j ∈ {1, . . . , h} the following inequality is inserted into the problem:∑

0<i≤j

yvi−1vi ≤ j − 1. (44)

We used a different approach for time uncertainty. We initialize the model
with only the deterministic time flow propagation constraints and dynami-
cally insert the robust constraints (16) and (17) whenever they are violated.
To efficiently check the feasibility of a solution, we use DP algorithms based
on equations (1) and (24) to compute the worst-case elapsed times and then
identify whether time windows are violated in the route. These algorithms
have complexity O(|N |Γt) for the cardinality constrained uncertainty set and
O(|N |

∏
l∈L ∆

t
l) for the knapsack set.

5 Computational Experiments

In this section, we present the results of extensive computational experiments
performed to assess the proposed compact models and BC algorithms for the
cardinality-constrained and single-knapsack uncertainty sets, using bench-
mark instances from the literature. We compare the computational perfor-
mance of these approaches against the MTZ-based formulation of Munari
et al. [2019] for the cardinality-constrained set, which is the state-of-the-art
compact model for the RVRPTW. Additionally, we analyze the impact of ro-
bustness regarding the different uncertainty sets. All models and algorithms
were coded in C++ using the Concert library of IBM CPLEX Optimization
Studio version 20.1 with default parameters. All experiments were performed
on a Linux PC with Intel Core i7-8700 CPU @ 3.60 GHz processor and 16GB
of RAM. We imposed a time limit of 3600 seconds for each run.

We use the same benchmark instances of the RVRPTWwith 25 customers
introduced by Munari et al. [2019], who adapted the VRPTW instances of
Solomon [1987] to include uncertainty in demands and travel times. Each
uncertain parameter is defined by its nominal value and maximum deviation.
The maximum deviations for demand (Devd) and travel time (Devt) are de-
fined as 10%, 25%, and 50% of the nominal value, truncated on the first dec-
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imal place. In the experiments with the cardinality-constrained uncertainty
set, the budgets for demand (Γd) and travel time (Γt) assume the values of
0, 1, 5, and 10, where 0 is the deterministic case. We run experiments with
three different configurations of these parameters: uncertainty on demand
only (Γd > 0,Γt = 0), uncertainty on travel time only (Γd = 0,Γt > 0),
and uncertainty on both demand and travel times (Γd > 0,Γt > 0). For the
latter, the budgets for both parameters are the same, i.e., Γd = Γt. Similar
configurations are used for the single-knapsack uncertainty set, with bud-
gets ∆d,∆t ∈ {0, 20, 40, 60}. In all experiments, if the budget of uncertainty
for a specific parameter (demand or travel time) in the instance is zero, the
maximum deviation for that parameter (Devd or Devt) will also be zero.
These combinations of budget and deviations result in 56 instances for the
deterministic cases (i.e., when Γd = Γt = 0 and ∆d = ∆t = 0) and 168
instances for each configuration of budgets with positive values. However,
for experiments with the cardinality-constrained RVRPTW having positive
Γt, five instances became infeasible and were discarded (hence, we have 163
instances in experiments with configurations in which Γt > 0). The detailed
results are available online at www.dep.ufscar.br/munari/rvrptw.

5.1 Computational Performance of the Compact For-
mulations

5.1.1 Cardinality-Constrained Uncertainty Set.

Table 1 summarizes the results of the proposed CF formulation and the
MTZ-based formulation of Munari et al. [2019] for the cardinality-constrained
RVRPTW. We performed two experiments with both models: solving the LP
relaxations of these models and solving the models using the general-purpose
MIP solver. For the first experiment, the table presents the average objec-
tive value (Obj), the quality of the LP relaxation (QLR), and the average
computational time in seconds (T). QLR is the percentage of the LP re-
laxation value relative to the obtained integer solution value. For the MIP
solver results, in addition to the average objective values and computational
times, the table shows the average optimality gap (Gap), as provided by the
solver at the end of the execution, and the number of instances that were
solved to optimality (Opt). The results are grouped according to different
configurations of Γd and Γt.

Regarding the LP relaxation of the formulations, we observe that CPLEX
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Table 1: Results of the MTZ-based and CF Formulations for the Cardinality-
Constrained RVRPTW, Considering Different Configurations of Budgets

LP Relaxation MIP Model

MTZ CF MTZ CF

Γd Γt Obj QLR (%) T (s) Obj QLR (%) T (s) Obj Gap (%) T (s) Opt Obj Gap (%) T (s) Opt

0 0 177.23 53.5 0.011 267.43 80.7 0.030 331.27 3.7 577.04 48 331.27 0.7 282.68 52

1 0 177.23 53.0 0.013 267.68 80.0 0.060 334.63 4.3 667.27 143 334.63 0.9 357.69 154
5 0 177.23 50.5 0.024 268.60 76.6 0.208 350.73 7.2 956.74 130 351.01 3.6 1223.47 119
10 0 177.25 50.2 0.026 270.19 76.6 0.481 352.75 8.4 1126.01 126 354.20 5.5 1675.54 102

0 1 177.37 53.6 0.014 261.58 79.1 0.083 330.74 3.5 564.19 142 330.31 0.9 325.05 151
0 5 177.50 52.7 0.028 262.73 77.9 0.296 337.08 4.8 697.58 135 335.23 1.9 921.29 131
0 10 177.52 52.4 0.032 263.53 77.8 0.747 338.75 5.6 835.98 132 337.47 3.3 1335.51 115

1 1 177.37 53.1 0.021 261.81 78.3 0.106 334.33 4.4 649.30 137 334.04 1.2 454.73 148
5 5 177.50 50.3 0.053 263.79 74.7 0.513 353.00 7.5 994.17 125 353.68 5.2 1700.40 97
10 10 177.01 49.9 0.058 266.00 75.0 3.973 354.83 8.8 1297.26 117 359.18 9.4 2276.58 73

All 177.32 51.9 0.028 265.33 77.7 0.650 341.81 5.8 836.55 1235 342.10 3.3 1055.29 1142

was considerably faster with the MTZ model, whereas the CF model resulted
in significantly stronger linear relaxation. On average, the value of the lin-
ear relaxation for the CF model is 77.7% of the integer solution against only
51.9% for the MTZ formulation. This behavior was expected since the CF for-
mulations in the literature are known for having tighter LP relaxations than
those based on big-M parameters [Letchford and Salazar-González, 2015].

For the new MIP formulations, while the MTZ model yielded shorter run
times and 8.1% more instances solved to optimality, the CF presented lower
average optimality gaps in all but one of the combinations of Γd and Γt, better
ensuring the quality of the solution obtained. Hence, when the MTZ model
does not solve an instance to optimality, the gaps are considerably larger than
those of the CF formulation, which is usually closer to proving optimality
given its stronger linear relaxation. Furthermore, the CF formulation solved
more instances to optimality in the deterministic case (Γd = Γt = 0) in
about than half the time on average. The CF model also outperformed the
MTZ one in terms of computational times and number of optimal solutions
in instances where the uncertainty budgets (Γd and Γt) are less than or
equal to 1. Finally, we also identified the traditional behavior found in the
RO literature [Ordonez, 2010, Agra et al., 2013, Munari et al., 2019] where
increasing the budget also tends to increase the time it takes to solve the
problem. This is expected since the budget directly impacts the number of
variables and constraints of the formulations. This behavior is noticeable in
both models and for any combination of Γt and Γd.
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5.1.2 Knapsack Uncertainty Set.

Similarly to the previous uncertainty set, we first compare our proposed
formulations regarding computational performance. Table 2 follows a similar
structure to Table 1, but for different configurations of the knapsack set
budgets ∆d and ∆t.

Table 2: Results of the MTZ-based and CF formulations for the single knapsack-
constrained RVRPTW, considering different configurations of budgets.

LP Relaxation MIP Model

MTZ CF MTZ CF

∆d ∆t Obj QLR (%) T (s) Obj QLR (%) T (s) Obj Gap (%) T (s) Opt Obj Gap (%) T (s) Opt

0 0 165.78 49.1 0.069 272.68 80.8 0.048 337.59 3.8 592.70 26 337.59 0.9 259.87 28

20 0 165.78 47.9 0.091 273.22 78.9 4.464 346.25 7.4 1126.48 71 349.17 5.7 1809.10 57
40 0 165.78 46.6 0.169 273.62 76.9 20.753 355.96 11.4 1630.44 52 366.64 14.6 2206.55 37
60 0 165.82 46.1 0.298 274.03 76.2 43.758 359.41 13.3 1727.39 51 371.22 17.2 2502.04 31

0 20 165.92 48.9 1.148 272.81 80.3 87.620 339.54 9.7 1491.93 56 493.90 24.2 2451.28 27
0 40 166.00 48.1 4.110 280.62 81.3 923.937 345.17 13.1 1840.01 51 1168.65 63.0 2815.86 20
0 60 166.04 47.4 6.162 293.67 83.8 1194.765 350.28 15.8 2131.26 42 1025.75 53.2 2780.25 14

20 20 165.92 47.4 1.220 273.35 78.2 106.106 349.73 12.1 1644.30 56 568.60 29.1 2543.69 27
40 40 166.00 45.2 3.983 281.61 76.7 1011.130 367.19 17.7 2110.46 41 1170.30 63.0 3105.86 16
60 60 166.94 44.8 5.668 318.16 85.4 2149.707 372.34 20.3 2307.84 38 1271.08 69.5 3128.97 6

All 166.00 47.2 2.292 281.38 79.9 554.229 352.35 12.4 1660.28 484 3422.91 34.0 2360.35 263

Similar conclusions as with the previous uncertainty set can be drawn
from Table 2 regarding the quality of the LP relaxation and computational
performance of the models. Particularly, the CF formulation presented stronger
LP relaxations overall, with a QLR of 79.9%, but presented worse results as
a MIP model, since it resulted in fewer instances solved to optimality (263)
than the MTZ model (484), in longer running times (2360.35 seconds against
1660.28 seconds from the MTZ model), and in larger average gaps (34% ver-
sus 12.4%). This is a consequence of the CF model requiring longer running
times when solving the LP relaxation for instances with larger ∆ values
(e.g., 1194.76 seconds for ∆d = 0 and ∆t = 60, and 2149.71 seconds for
∆d = ∆t = 60), hindering the CF formulation efficiency. Notably, instances
with travel time deviation were harder to solve than those with deviation
exclusively on demand, which is a consequence of the models having more
constraints related to time flow propagation, as we cannot apply the con-
straint reduction strategy used for the demand uncertainty, in which we fill
the knapsacks as quickly as possible.
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5.2 Computational Performance of the BC Algorithms

5.2.1 Cardinality-Constrained Uncertainty Set.

We now analyze the results of the BC algorithms developed for both models
introduced in Section 4. Table 3 summarizes the results using a similar
structure to the Table 1. We do not show results for the LP relaxation, as
they are similar to those presented in Table 1.

Table 3: Average Objective Values and Computational Times of the BC Algo-
rithm for the Cardinality-Constrained RVRPTW

MTZ CF

Γq Γt Obj Gap (%) T (s) Opt Obj Gap (%) T (s) Opt

0 0 331.27 0.6 224.01 53 331.27 0.7 279.52 52

1 0 334.63 0.9 268.11 158 334.63 0.8 299.43 156
5 0 350.68 0.8 304.31 157 350.73 0.9 426.13 153
10 0 354.92 1.2 509.17 147 354.93 1.4 651.36 144

0 1 330.74 0.7 235.06 154 330.73 0.7 307.42 151
0 5 337.08 1.1 334.21 150 337.14 1.4 563.33 143
0 10 338.64 1.3 392.45 146 338.88 1.9 700.17 137

1 1 334.36 1.0 341.11 152 334.35 0.9 384.56 149
5 5 353.00 1.2 495.85 146 353.53 1.6 895.58 132
10 10 356.44 1.5 585.00 139 356.72 2.0 1085.92 123

All 342.18 1.0 368.93 1402 342.29 1.2 559.34 1340

As expected, the BC algorithms outperformed their corresponding com-
pact models as we start with a deterministic model and add cuts as they
are needed, thus having a model with considerably fewer constraints. The
average solution times and gaps decreased, while the number of optimal so-
lutions increased in all configuration of budgets. For example, the average
solution time for the MTZ-based model decreased from 836.55 seconds to
368.93 seconds, the average gap reduced from 5.8% to 1.0%, and the number
of instances solved to optimality increased from 1235 to 1402. Similarly, the
average time of the BC algorithm for the CF model was almost halved, de-
creasing from 1055.29 to 559.34 seconds, the average gap decreased from 3.3%
to 1.2%, and 198 more instances were solved to optimality, in comparison to
solving the compact formulation.

The MTZ-based formulation still performed better than the CF one within
the proposed BC, taking less time than the BC based on the CF model to
solve the instances (368.93 seconds against 559.34) and finding more opti-
mal solutions (1402 against 1340). Additionally, the BC algorithm with the
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MTZ-based model was superior even when solving the compact formulation
had some advantage, namely the results from instances with Γ ≤ 1. More-
over, the optimality gaps were smaller, and more instances were solved to
optimality in all configurations.

There are two main reasons for these superior results of the MTZ-based
BC algorithm. The CVRPSep package strengthens the LP relaxation of
the model, which is still quicker to solve than the LP relaxation of the CF
model. Indeed, strengthening the LP relaxation with the valid inequalities
of CVRPSep is particularly more helpful to the MTZ-based formulation,
which usually has a weak LP relaxation. Consequently, this reduces one
advantage of the CF model over the MTZ-based formulation. Moreover,
since the solver usually obtains the optimal solution of the LP relaxation
faster with the MTZ-based formulation, the search tree explores more nodes
quicker and, hence, finds an optimal solution before the BC algorithm based
on the CF model. Even when the BC algorithms do not prove optimality
within the time limit, the MTZ-based BC algorithm usually shows a superior
performance, as it tends to explore more nodes.

Figure 1 shows the overall performance of the compact formulations and
BC algorithms, grouped by instance classes. Classes C1 and C2 include
instances with clustered customers; R1 and R2 have instances with randomly
positioned customers; and RC1 and RC2 have a combination of clustered
and randomly positioned customers. Classes with suffix 2 have wider times
windows and larger vehicle capacities. In each chart presented in the figure,
a bar corresponds to the number of instances each approach could solve to
optimality in that class and uncertainty budget. A horizontal line shows the
number of instances in the class. As the charts indicate, the MTZ-based
BC algorithm outperformed the CF-based one for most classes, even in C1
and RC1 where the compact models showed a better performance. Only
in class C2 the CF-based method showed a slight advantage, as it solved
all instances to optimality. Therefore, the MTZ-based formulation proved
more suitable for the BC algorithm in the studied set of instances. Likewise,
a decision-maker will probably find better results using this BC algorithm
when working with the cardinality-constrained RVRPTW. If opting to use
only the compact formulations, it is preferable to use the CF model if the
instances have some degree of clustering.
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Figure 1: Number of Optimal Solutions Obtained by the Compact Formulations
and BC Algorithms per Instance Class and Uncertainty Budget for the Cardinality-
Constrained RVRPTW
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Table 4: Average Objective Values and Computational Times of the BC Algo-
rithm for the Single Knapsack-Constrained RVRPTW

MTZ CF

∆d ∆t Obj Gap (%) T (s) Opt Obj Gap (%) T (s) Opt

0 0 331.27 0.6 224.01 49 331.27 0.6 224.01 53

20 0 341.58 7.7 1263.72 124 344.30 6.3 2104.34 91
40 0 350.00 11.1 1660.96 100 359.16 14.2 2480.07 58
60 0 352.93 12.7 1828.73 94 365.21 17.4 2733.56 49

0 20 333.88 9.7 1625.50 104 496.49 24.6 2799.64 38
0 40 341.72 14.5 2142.09 81 1233.65 69.8 3073.46 26
0 60 348.46 18.6 2478.64 63 1127.36 64.8 3045.10 19

20 20 345.43 12.2 1910.75 95 595.95 32.6 2951.88 34
40 40 363.23 19.0 2446.77 62 1247.16 70.3 3332.96 17
60 60 378.05 23.3 2645.94 52 1303.35 76.9 3386.76 6

All 318.84 12.9 1822.71 824 710.58 37.7 2613.18 391

5.2.2 Knapsack Uncertainty Set.

Table 4 summarizes the results of the BC algorithms for the knapsack-
constrained RVRPTW for different budget configurations. Most of the in-
ferred conclusions for the cardinality-constrained uncertainty set also hold
for the single knapsack set. The BC algorithms improved the computa-
tional performance of the models, indicated by the lower average running
times and larger number of solved instances than using the compact models.
More specifically, the BC algorithm with MTZ-based formulation solved 824
instances compared to only 484 solved by the general-purpose MIP solver
with the compact formulation, and the BC with the CF formulation solved
391 instances to optimality compared to 263 instances with the compact
model. Additionally, the better performance of the BC algorithm with the
MTZ-based model is noticeable regarding computational times, number of
instances solved to optimality, and optimality gaps. This is a consequence
of the strengthening of the LP relaxation brought about by the algorithm,
further assisted by the reduced size of the MTZ-based model compared to
the CF one.

Both algorithms showed considerably greater difficulty in solving instances
of the knapsack-constrained RVRPTW, compared to the deterministic coun-
terpart as well as the cardinality-constrained RVRPTW. To help visualize
this behavior, Figure 2 shows the number of instances solved to optimality
for each pair of demand and travel time deviations (Devd, Devt), base mod-
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els (MTZ and CF), and uncertainty sets (Card: cardinality constrained; or
Knap: single knapsack). The horizontal green line over the bars shows the
number of instances for that combination of Devd and Devt.

Figure 2: Number of Instances Solved to Optimality by the BC Algorithms for
Each Pair of Demand and Travel Time Budgets (Devd,Devt) for the Cardinality-
and Knapsack-Constrained RVRPTW
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As the chart suggests, the BC algorithms on the cardinality-constrained
uncertainty set proved optimality for considerably more instances than the
methods with the knapsack uncertainty set. Since the proposed models index
the uncertainty budget on the decision variables, by choosing larger budgets,
the problem grows larger in number of variables and constraints, becoming
more difficult to solve. Thus, as the chosen budgets for the knapsack un-
certainty set (20, 40, and 60) are considerably larger than those used for
the cardinality-constrained set (1, 5, and 10), instances defined for this set
were considerably harder to solve. Moreover, in the knapsack uncertainty
set, instances with deviation on travel time were considerably more difficult
to solve, which is a consequence of the impossibility of reducing the DP
equations for time, as can be done for the demand.
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5.3 Robustness Analysis

We analyze the impact of the proposed RO approach regarding the objective
function value and robustness of the solutions. The robustness of a solution
is an important information in the decision-making process, as it can be used
to evaluate the trade-off between cost and its “safety”, which in this work
means the chance of a solution becoming infeasible in practice. To estimate
this, we applied a Monte Carlo simulation with 1000 scenarios in which the
uncertain parameters follow a continuous uniform distribution from their
nominal value to their maximum realization for a given Devd (or Devt).

5.3.1 Cardinality-Constrained Uncertainty Set.

Table 5 shows the average results for each budget configuration of the cardina-
lity-constrained set, considering maximum deviations of 10%, 25%, and 50%.
For each combination of budgets (Γd and Γt) and deviations (Dev), the table
shows the average price-of-robustness (PoR), which constitutes the percent-
age increase in costs of the robust solution over the deterministic one, and
the average percentage of infeasible scenarios in the Monte Carlo simula-
tion (Risk). Furthermore, regarding the PoR, the table shows the minimum
(Best) and maximum (Worst) values obtained among all instances under
that combination, and the normalized standard deviation (SD). All values
are presented as percentages. The SD values help us evaluate the solutions’
variability because, although the average robust solution among the instances
might be good, there is a risk of the worst-case performance being consider-
ably more expensive.

We note that, by construction, greater budgets (Γd and Γt) enlarge the un-
certainty sets, and therefore, the probability of infeasibility decreases, but the
cost increases accordingly. This can be identified by comparing the PoR and
the Risk values between solutions with same deviation but different budgets.
The probability of constraint violation, on the other hand, tends to decrease
for large uncertainty budgets Γ. It is up to the decision-maker to select the
most appropriate level of robustness. Regarding the impact of the deviations
(Dev), we observe an increase on the PoR as they increase (positive budgets
only), as the robust solutions become more conservative to account for these
additional deviations. Furthermore, the deviation strongly impacts the Risk,
especially when considering smaller budgets, as the solutions are more likely
to violate the capacity or time windows constraints.
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Table 5: Average Probability of Constraint Violation (Risk) and Average Price-
of-Robustness (PoR) of the Solutions Obtained for the Cardinality-Constrained
RVRPTW considering Different Deviations. For Each Combination of Budgets
and Deviation, Columns Best, Worst, and SD give the Minimum, Maximum, and
Normalized Standard Deviation Regarding PoR. All Values are Presented as Per-
centages

Γd Γt
Dev=10% Dev=25% Dev=50%

Risk PoR Best Worst SD Risk PoR Best Worst SD Risk PoR Best Worst SD

0 0 27.5 0.0 0.0 0.0 10.1 61.2 0.0 0.0 0.0 10.1 66.3 0.0 0.0 0.0 10.1
1 0 23.7 0.1 0.0 0.6 10.0 61.2 0.1 0.0 0.0 5.9 66.2 9.3 5.3 14.6 9.0
5 0 0.0 9.3 5.3 14.6 9.0 0.0 18.3 0.0 0.0 5.9 0.4 22.3 14.4 26.8 7.2
10 0 0.0 14.8 6.7 19.5 7.1 0.0 21.5 0.0 0.0 5.9 0.0 24.5 14.9 30.6 6.3

0 0 17.4 0.0 0.0 0.0 10.1 45.1 21.5 0.0 0.0 10.1 63.9 0.0 0.0 0.0 10.1
0 1 8.0 0.3 0.0 2.7 10.2 15.3 1.2 0.0 0.0 5.9 32.1 4.1 0.7 17.1 13.6
0 5 0.0 0.7 0.0 2.8 10.1 0.0 3.7 0.0 1.2 5.7 0.0 12.2 4.5 27.1 12.6
0 10 0.0 0.7 0.0 2.8 10.0 0.0 4.2 0.0 1.3 5.7 0.0 14.7 7.7 33.8 11.2

0 0 42.8 0.0 0.0 0.0 10.1 86.9 4.2 0.0 0.0 10.1 98.4 0.0 0.0 0.0 10.1
1 1 29.7 0.4 0.0 3.3 10.1 66.8 1.3 0.0 0.7 5.8 80.4 13.0 10.2 20.6 10.0
5 5 0.0 10.4 5.6 17.1 8.7 0.0 20.7 0.0 0.9 5.8 0.4 26.5 18.4 36.3 6.1
10 10 0.0 14.2 7.0 22.0 7.0 0.0 23.9 0.0 1.3 5.7 0.0 27.5 18.5 37.3 6.1

All 12.4 4.2 2.0 7.1 9.4 28.0 10.1 0.0 0.4 6.9 34.0 12.8 7.9 20.3 9.4

Interestingly enough, the SD values of the robust solutions are close to,
or even smaller than, those of the deterministic solutions in most instances.
Since they are small, there is a relatively small difference between the best
and worst PoR within an instance class. From a decision-maker’s standpoint,
that means that using the RO approach usually results in solutions with
similar increments in costs over the deterministic solution, with relatively low
chances of large variability. This is particularly good for planning because,
once the relevant uncertainty budgets are set, there is little need to test
different RO parameters for the new data when working with a given cost
target.

Figure 3 shows the plots of the PoR versus the Risk for instances in
classes C1, R1, and RC1, considering different budgets of uncertainty (0, 1,
5, and 10) and deviations (0, 10, and 25%). The more convex the curve is,
the better the trade-off between PoR and Risk is because the robust solution
effectively reduces the risks with a slight cost increase. Thus, some of the
solutions with the most expensive trade-off are those from instance class RC1
in Figures 3(c) and 3(f), where an increase of 30% in the costs is needed to
neutralize the risks. We also note that in some cases, namely class C1 in
Figures 3(a), 3(b), 3(e), and 3(f), class R1 in 3(c), and class RC1 in 3(d),
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increasing the budget also increases the solution costs with no impact in the
risks. These cases occur when the solution with a smaller budget already had
a null risk, and thus using a more conservative choice only increases the cost
of the solution. From a decision-maker perspective, there is no reason to use
these over-conservative solutions over the ones with zero risk and lower costs.
On the other hand, some robust solutions, particularly those with deviation
in time, greatly improve the robustness with an excellent trade-off, voiding
all risks with a worst-case deviation of 10% with an increase in costs of as
little as 1.3%.

In summary, the results of the cardinality-constrained RVRPTW suggest
that the RO approach can provide relevant solutions to support the decision-
making process of choosing vehicle routes. The decision-maker can obtain
solutions with different trade-offs regarding risks and costs. With this data,
they can make an informed choice and opt for a more robust solution, which
deteriorates the costs but ensures a better service level, or take a cheaper
solution but accept more risks.

5.3.2 Knapsack Uncertainty Set.

Table 6 summarizes the PoR and Risk values for the single knapsack- con-
strained RVRPTW according to each combination of budgets (∆d and ∆t)
and deviations (Dev). Similarly to the previous uncertainty set, as the bud-
gets ∆d and ∆t increase, the solutions become more conservative, and thus
the PoR tends to increase while the risks tend to lower. The increase in the
deviation values (Dev) also significantly affects the PoR and Risk. For a
given combination of Dev and ∆, the robust solutions have a similar incre-
ment in the PoR for all instances of the group. This is a positive behavior,
as the decision-maker can have prior insight into the cost of the solution for
that combination before running a new instance, allowing them to better
direct computational efforts.

The results indicate that the solutions obtained for the single knapsack-
constrained uncertainty set are similar to those obtained for the cardinality-
constrained uncertainty set, when considering the same deviation level (Dev).
This is confirmed in the charts presented in Figure 4, which show the average
Risk and PoR for each combination of (Devd, Devt) of the solutions obtained
considering the cardinality-constrained and the knapsack uncertainty set.
Particularly, the solutions considering the cardinality-constrained set with
Γ = 1 were relatively similar to those considering the single knapsack set
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Figure 3: Trade-off Between Price-of-Robustness (PoR) and Probability of Con-
straint Violation (Risk) for the Instances in Classes C1, R1, and RC1
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Table 6: Average Probability of Constraint Violation (Risk) and Average Price-of-
Robustness (PoR) of the Solutions Obtained for the Single Knapsack-Constrained
RVRPTW Considering Different Deviations. For each Combination of Budgets
and Deviation, Columns Best, Worst and SD give the Minimum, Maximum and
Normalized Standard Deviation Regarding PoR. All Values are Presented as Per-
centages

∆d ∆t
Dev=10% Dev=25% Dev=50%

Risk PoR Best Worst SD Risk PoR Best Worst SD Risk PoR Best Worst SD

0 0 27.5 0.0 0.0 0.0 10.1 61.2 0.0 0.0 0.0 10.1 66.3 0.0 0.0 0.0 10.1
20 0 10.0 9.6 5.3 14.7 8.7 50.2 9.4 5.3 14.7 8.9 66.3 9.6 5.3 14.7 8.7
40 0 0.0 9.7 5.3 14.8 8.7 0.0 18.6 10.0 24.1 6.9 21.3 18.5 10.0 23.8 7.1
60 0 0.0 9.8 5.3 15.2 8.6 0.0 22.5 14.3 28.0 6.6 0.0 22.8 14.4 30.2 6.4

0 0 17.4 0.0 0.0 0.0 10.1 45.0 0.0 0.0 0.0 10.1 63.9 0.0 0.0 0.0 10.1
0 20 8.0 0.6 0.0 4.8 9.7 15.3 0.7 0.0 3.3 10.6 32.1 0.9 0.0 4.6 10.5
0 40 0.0 2.2 0.0 10.1 9.2 0.0 2.6 0.0 6.3 9.6 0.0 3.6 0.1 10.5 10.5
0 60 0.0 3.7 0.0 13.4 8.7 0.0 5.1 0.4 16.5 10.0 0.0 6.2 0.4 22.0 11.1

0 0 42.8 0.0 0.0 0.0 10.1 86.9 0.0 0.0 0.0 10.1 98.4 0.0 0.0 0.0 10.1
20 20 15.6 10.6 5.3 18.7 8.3 56.9 11.0 5.3 18.3 9.0 80.6 10.7 5.3 17.9 9.1
40 40 0.0 13.3 5.6 21.1 7.2 0.0 23.7 11.2 35.2 6.6 22.3 24.6 12.5 36.6 7.6
60 60 0.0 15.1 6.4 26.0 6.3 0.0 29.1 14.8 44.9 6.1 4.5 30.9 15.6 49.2 6.8

All 10.1 6.2 2.8 11.6 8.8 26.3 10.2 5.1 15.9 8.7 38.0 10.7 5.3 17.5 9.0

and ∆ = 20, although the latter presented slightly lower risks. However,
the solutions considering ∆ = 20 were relatively cheaper on instances with
deviations exclusively on travel times, while retaining the same robustness
level, highlighting the advantages of using the knapsack uncertainty set. This
behavior is particularly noticeable in instances with deviation exclusively on
travel time.

Similarly, the solutions considering ∆ = 40 and ∆ = 60 outperform
those with Γ = 5 and Γ = 10 in terms of Risk and PoR in the groups with
Dev = 10% and Dev = 25%. In the instances with Dev = 50%, on the other
hand, there is a trade-off between the solutions with Γ = 5 and Γ = 10, which
have zero risk, and the solutions with ∆ = 40 and ∆ = 60, which usually had
slightly lower costs in exchange for slightly higher risks. These results show
that the knapsack uncertainty set might be useful from the decision-maker’s
point of view, as it can provide different and competitive solutions that may
outperform solutions related to the cardinality-constrained uncertainty set in
some configurations. Moreover, this uncertainty set is often more intuitive to
design as it is easier to estimate the maximum deviation in a route instead
of the number of arcs/nodes attaining their worst-case value.
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Figure 4: Average Risk and PoR of for Different Deviation Levels (Devd,Devt)
and Uncertainty Sets
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6 Conclusions

We proposed new compact models for the RVRPTW with variability in de-
mand and travel time by considering the cardinality-constrained and knap-
sack uncertainty sets. We are not aware of any other compact model consid-
ering a knapsack uncertainty set. The compact models were formulated using
MTZ-based and CF constraints, and we exploited the linearization technique
to model uncertainty. Additionally, we proposed tailored branch-and-cut al-
gorithms based on these formulations, resulting in more efficient approaches.
Moreover, the CF-based formulation was used for the first time to model the
deterministic VRPTW.

Computational results with the proposed compact models using bench-
mark instances from the literature suggest that the MTZ-based formulation
has the best overall performance for both uncertainty sets, even though the
CF model exhibits stronger linear relaxations and performs better on the
deterministic case. The tailored branch-and-cut algorithms considerably im-
prove the computational results of the proposed models, especially the one
that relies on the MTZ-based formulation. When comparing the results of
the two uncertainty sets, we observe that the use of the knapsack uncertainty
set provides interesting solutions that can present a robustness level similar
to the cardinality-constrained set, traditionally used in literature, but with
lower costs. Moreover, this uncertainty set may be easier to use in a practical
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setting, since it requires only the estimation of the maximum expected devi-
ation, a more realistic requirement than the number of parameters attaining
their worst-case value.

There are interesting directions for future work. One would be to develop
branch-price-and-cut algorithms for the knapsack-constrained RVRPTW, which
would allow us to solve larger instances of the problem. These algorithms
may be combined with heuristic approaches, leading to an effective exact hy-
brid method for this variant. Another interesting topic would be to extend
the proposed compact models and branch-and-cut algorithms to other types
of uncertainty sets used in the RO literature, such as the ellipsoidal and
factor models, which may show more suitable features in a decision-making
process.
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A MTZ-Based Formulation for the RVRPTW

Under a Multiple Knapsack Uncertainty

Set

To adapt the previous MTZ-based model to the multiple knapsack uncer-
tainty set, we need new load and time variables and budget parameters.
Each knapsack has a budget ∆d

l (demand) or ∆t
l (time). We provide the

model for two knapsacks, and the extension to more knapsacks is trivial.
The variables are now uiδ1δ2 to represent accumulated load of the vehicle up
to node i, with a total deviation δ1 over the demand’s nominal value for the
first knapsack and δ2 for the second one; likewise, timing variables are now
wiδ1δ2 representing the earliest possible time to start the service at node i,
considering a total deviation of δ1 over the travel time’s nominal value for
the first knapsack and δ2 for the second one. The model is then:

min
∑

(i,j)∈A

cijxij , (45)

s.t. (6), (7), (12), and to

ujδ1δ2 ≥ uiδ1δ2 + d̄j +Q(xij − 1), (i, j) ∈ A, 0 ≤ δ1 ≤ ∆d
1, 0 ≤ δ2 ≤ ∆d

2, (46)

ujδ1δ2 ≥ uiδ1−d̂jδ2
+ d̄j + d̂j +Q(xij − 1),

(i, j) ∈ A, j ∈ S1, j ̸∈ S2, d̂j ≤ δ1 ≤ ∆d
1, 0 ≤ δ2 ≤ ∆d

2, (47)

ujδ1δ2 ≥ uiδ1δ2−d̂j
+ d̄j + d̂j +Q(xij − 1),

(i, j) ∈ A, j ̸∈ S1, j ∈ S2, 0 ≤ δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, (48)

ujδ1δ2 ≥ uiδ1−d̂jδ2−d̂j
+ d̄j + d̂j +Q(xij − 1),

(i, j) ∈ A, j ∈ S1, j ∈ S2, d̂j ≤ δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, (49)

uj∆d
1δ2

≥ ui∆d
1−λδ2

+ d̄j + λ+Q(xij − 1),

(i, j) ∈ A, 0 ≤ λ ≤ d̂j , 0 ≤ δ2 ≤ ∆d
2, j ∈ S1, j ̸∈ S2, (50)

ujδ1∆d
2
≥ uiδ1∆d

2−λ + d̄j + λ+Q(xij − 1),

(i, j) ∈ A, 0 ≤ λ ≤ d̂j , 0 ≤ δ1 ≤ ∆d
1, j ̸∈ S1, j ∈ S2, (51)

ujδ1∆d
2
≥ uiδ1−λ∆d

2−λ + d̄j + λ+Q(xij − 1),

(i, j) ∈ A, λ ≤ d̂j , j ∈ S1, j ∈ S2, (52)

uj∆d
1∆

d
2
≤ Q, j ∈ N, (53)

wjδ1δ2 ≥ wiδ1−λδ2 + t̄ij + si + λ+ bn+1(xij − 1),
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(i, j) ∈ A, 0 ≤ λ ≤ min{t̂ij , δ1} ≤ ∆t
1, 0 ≤ δ2 ≤ ∆t

2, j ∈ S1, j ̸∈ S2, (54)

wjδ1δ2 ≥ wiδ1δ2−λ + t̄ij + si + λ+ bn+1(xij − 1),

(i, j) ∈ A, 0 ≤ δ1 ≤ ∆t
1, λ ≤ min{t̂ij , δ2} ≤ ∆t

2, j ̸∈ S1, j ∈ S2, (55)

wjδ1δ2 ≥ wiδ1−λδ2−λ + t̄ij + si + λ+ bn+1(xij − 1),

(i, j) ∈ A, 0 ≤ λ ≤ t̂ij , λ ≤ δ1 ≤ ∆t
1, λ ≤ δ2 ≤ ∆t

2, j ∈ S1, j ∈ S2, (56)

aj ≤ wjδ1δ2 ≤ bj , (i, j) ∈ A, 0 ≤ δ1 ≤ ∆t
1, 0 ≤ δ2 ≤ ∆t

2, (57)

uiδ1δ2 ≥ 0, i ∈ N, 0 ≤ δ1 ≤ ∆d
1, 0 ≤ δ2 ≤ ∆d

2, (58)

wiδ1δ2 ≥ 0, i ∈ N, 0 ≤ δ1 ≤ ∆t
1, 0 ≤ δ2 ≤ ∆t

2. (59)

Similarly to the previous models, the objective function (45) seeks to
minimize the total traveling costs. Constraints (46)–(52) compute the de-
mand for the worst case and forbid subtours. The vehicle capacity is ensured
by constraints (53). Constraints (54)–(56) are similar to (50)–(52), but for
the travel time. The time windows constraints are imposed by (57) and the
domains of the variables are defined in (58)–(59). Note that we can easily
extend this model for k knapsacks by adding indices from δ1 to δk.

B Commodity-Flow Formulation for the RVRPTW

Under a Multiple Knapsack Uncertainty

Set

Similarly to how it was done for the MTZ-based model, we extend formula-
tion (32)–(38) to consider multiple knapsacks. Again, we present a formula-
tion containing two knapsacks as the extension to k knapsacks is trivial, but
the number of constraints grows quickly. This formulation uses the same sets
and parameters as the MTZ-based model, while the load and time variables
are now fijδ1δ2 and gijδ1δ2 with similar interpretations. The resulting model
is given by:

min
∑

(i,j)∈A

cijxij , (60)

s.t. (6), (7), (12), and to∑
j:(i,j)∈A

fijδ1δ2 ≥ d̄i +
∑

h:(h,i)∈A

fhiδ1δ2 , i ∈ N, 0 ≤ δ1 ≤ ∆d
1, 0 ≤ δ2 ≤ ∆d

2, (61)

∑
j:(i,j)∈A

fijδ1δ2 ≥ d̄i + d̂i +
∑

h:(h,i)∈A

fhiδ1−d̂iδ2
,
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i ∈ N, i ∈ S1, i ̸∈ S2, d̂i ≤ δ1 ≤ ∆d
1, 0 ≤ δ2 ≤ ∆d

2, (62)∑
j:(i,j)∈A

fijδ1δ2 ≥ d̄i + d̂i +
∑

h:(h,i)∈A

fhiδ1δ2−d̂i
,

i ∈ N, i ̸∈ S1, i ∈ S2, 0 ≤ δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, (63)∑
j:(i,j)∈A

fijδ1δ2 ≥ d̄i + d̂i +
∑

h:(h,i)∈A

fhiδ1−d̂iδ2−d̂i
,

i ∈ N, i ∈ S1, i ∈ S2, 0 ≤ δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, (64)∑
j:(i,j)∈A

fij∆d
1δ2

≥ d̄i + λ+
∑

h:(h,i)∈A

fhi∆d
1−λδ2

,

i ∈ N, i ∈ S1, i ̸∈ S2, 0 ≤ δ2 ≤ ∆d
2, 0 ≤ λ < d̂i, (65)∑

j:(i,j)∈A

fijδ1∆d
2
≥ d̄i + λ+

∑
h:(h,i)∈A

fhiδ1∆d
2−λ,

i ∈ N, i ̸∈ S1, i ∈ S2, 0 ≤ δ1 ≤ ∆d
1, 0 ≤ λ < d̂i, (66)∑

j:(i,j)∈A

fij∆d
1∆

d
2
≥ d̄i + λ+

∑
h:(h,i)∈A

fhi∆d
1−λ∆d

2−λ,

i ∈ N, i ∈ S1, i ∈ S2, 0 ≤ λ < d̂i, (67)

dixij ≤ fijδ1δ2 ≤ (Q− dj)xij , (i, j) ∈ A, 0 ≤ δ1 ≤ ∆d
1, 0 ≤ δ2 ≤ ∆d

2, (68)∑
j:(i,j)∈A

gijδ1δ2 ≥
∑

h:(h,i)∈A

λ≤t̂hi

(ghiδ1−λδ2 + (t̄hi + λ)xhi) + si,

i ∈ N, i ∈ S1, i ̸∈ S2, 0 ≤ λ ≤ δ1 ≤ ∆t
1, 0 ≤ δ2 ≤ ∆t

2, (69)∑
j:(i,j)∈A

gijδ1δ2 ≥
∑

h:(h,i)∈A

λ≤t̂hi

(ghiδ1δ2−λ + (t̄hi + λ)xhi) + si,

i ∈ N, i ̸∈ S1, i ∈ S2, 0 ≤ δ1 ≤ ∆t
1, 0 ≤ λ ≤ δ2 ≤ ∆t

2, (70)∑
j:(i,j)∈A

gijδ1δ2 ≥
∑

h:(h,i)∈A

λ≤t̂hi

(ghiδ1−λδ2−λ + (t̄hi + λ)xhi) + si,

i ∈ N, i ∈ S1, i ∈ S2, 0 ≤ λ ≤ δ1 ≤ ∆t
1, 0 ≤ λ ≤ δ2 ≤ ∆t

2, (71)

(aj + sj)xij ≤ gijδ1δ2 ≤ (bj + sj)xij , (i, j) ∈ A, 0 ≤ δ1 ≤ ∆t
1, 0 ≤ δ2 ≤ ∆t

2 (72)

xij ∈ {0, 1}, (i, j) ∈ A, (73)

fijδ1δ2 ≥ 0, (i, j) ∈ A, 0 ≤ δ1 ≤ ∆d
1, 0 ≤ δ2 ≤ ∆d

2, (74)

gijδ1δ2 ≥ 0, (i, j) ∈ A, 0 ≤ δ1 ≤ ∆t
1, 0 ≤ δ2 ≤ ∆t

2. (75)
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The interpretation of this model is very similar to the previous one, but the
variables are related to the arcs and not the nodes.
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