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Abstract. We introduce a modeling framework for stochastic rider-driver matching in many 

to-one ridesharing systems, in which drivers have to be selected before the exact rider 

demand is known. The modeling framework allows for the use of driver booking fees and 

penalties for unmatched drivers, therefore supporting different system operating modes. We 

model this problem as a two-stage stochastic set packing problem. To tackle the 

intractability of the stochastic problem, we introduce three model approximations and 

evaluate them on a large set of benchmark instances for three different system operating 

modes. Our computational experiments show the superiority of some model approximations 

over others, and provide valuable insights on the impact of penalties and booking fees on 
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1 Introduction

Ridesharing agencies match drivers and riders to jointly fulfill their itineraries. As more than
half of the world population lives in urban areas (UN, 2018), the potential benefits of ridesharing
are numerous. To name a few, the reduction of road congestion and CO2 emissions, improved
access to transportation in regions with limited mass transit, and the reduction of transportation
costs. Individuals may participate in ridesharing for several reasons, such as environmental
awareness, economical savings, or the lack of access to mass transit systems. Furthermore, cities
may encourage ridesharing through the introduction of high-occupancy vehicle lanes (Giuliano
et al., 1990), and governments may implement carbon-reduction regulations to promote ridesharing
(Si et al., 2022).

The practice of ridesharing is not new, and dates as early as WWII and the 1970s oil crisis.
Furthermore, the expansion of telecommunication systems, particularly the Internet, contributed
to the development of numerous ridesharing systems (Chan and Shaheen, 2012). The potential
scale of ridesharing markets is evidenced by surveys conducted by the US government on the
occupancy rate of vehicles. These surveys show that the average occupancy rate of vehicles
involved in work-related trips has been smaller than 1.4 since the 1970s (McGuckin and Fucci,
2018). Thus, provided the presence of a large user-base, ridesharing systems can promptly access
a large fleet of vehicles with spare capacity for transportation. The presence of such user-base is
therefore of key importance for the success of a ridesharing system.

Ridesharing systems are two-sided markets: the ridesharing platform serves as an intermediary
agency that proposes rideshares (matches) to drivers and riders. These drivers and riders are free
to accept or reject a rideshare. Therefore, focusing on user-friendliness is a priority for ridesharing
companies. Ridesharing works best when participants have similar itineraries. For example,
when commuting from residential to commercial areas or vice versa. Even if ridesharing systems
limit themselves to rideshares that are geographically compatible, these rideshares may not be
user-friendly enough to convince the participants to commit to the rideshares. Encouraging user
participation can be achieved in several ways. One way of increasing user participation is, for
example, to offer incentives such as service guarantees to participants. Furthermore, applying
Operations Research tools to ridesharing may improve the quality of the generated rideshares and
the overall performance of the system.

Given the importance of available drivers within the system that can be matched to ride
requests, it is of utmost importance that drivers remain satisfied users of the system. It is therefore
in the best interest of the operator to respond as quickly as possible to driver requests. The
ridesharing matching problem here studied therefore assumes that the operator has to respond
to driver requests in a timely manner. As such, drivers have to be selected, typically, before all
compatible rider requests are known. The operator has two possibilities to reassure selected (i.e.,
booked) drivers: either by paying an a priori booking fee, or by paying a compensation in case a
selected driver is not matched to any rideshare. The underlying planning problem is a two-stage
many-to-one dynamic ridematching problem, in which drivers can be booked on different levels
in the first stage, while the rider requests are still uncertain. In the second stage, the actual
rider requests are observed and assigned to booked drivers. Assignment decisions between drivers
and riders correspond to planned ridesharing trips that may take place in the near future. The
goal of the problem is to book drivers and assign riders to booked drivers such that the planned
rideshares maximize profit.
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Contributions. The contributions of this paper are as follows: 1) we introduce a novel many-
to-one ride-matching problem that allows for booking drivers on different contract levels under
rider request uncertainty; 2) we propose a two-stage stochastic set-packing modeling framework,
instantiating three different ridesharing system operating modes; such models provide a flexible
starting point for operators that can be tailored to their specific context; 3) we propose models
that approximate the second-stage value function of the two-stage stochastic model, specifically, a
sample average approximation model and an expected value problem model; to further improve
the computational tractability, we introduce a relaxation of the sample average approximation
model where the integrality constraints of the second-stage problem are relaxed; finally, 4) we
evaluate all models on a new set of benchmark instances that represent a wide range of ridesharing
operations; specifically, we analyze the performance of the different models’ solutions in practice
and quantify the economic importance to explicitly consider the uncertainty in the problem;
further, we analyze the impact of booking fees, penalties and the use of multiple booking levels,
and provide managerial insights, allowing operators to identify system configurations that are
both profitable and result in high user satisfaction.

Outline. This paper is structured as follows. In Section 2, we conduct a literature review and
distinguish our work with respect to previous research in the field of ridesharing. In Section 3, we
define the considered planning problem. In Section 4, we introduce mathematical formulations to
solve the problem, namely, a deterministic and a two-stage stochastic formulation. We also provide
approximations for the two-stage stochastic formulation. In Section 5, we conduct computational
studies where we evaluate the two-stage stochastic approximations on instances based on data
from an industrial partner. In Section 6, we present the conclusions of our study and identify
potential future research directions.

2 Related Work

Ridesharing planning is usually modeled either as one-to-one bipartite matching (Agatz et al.,
2011) or as vehicle routing (Baldacci et al., 2004). The bipartite matching formulation allows for
a simple modeling of the decision problem, and its network structure allows it to be solved in
polynomial time. Different characteristics of ridesharing operations were studied before. To name
a few, Baldacci et al. (2004) study a same-destination dial-a-ride problem for carpooling with
multiple passengers per vehicle. Wang et al. (2018) and Peng et al. (2022) study ridesharing and
taxi-sharing problems with stability constraints. The motivation for studying matching stability
is that users would be less likely to arrange rideshares outside a rideshare platform that provides
stable matches to their users. When considering multiple riders per vehicle, both studies employ
a set-packing or set-partitioning formulation (which are known to be NP-Hard) similar to our
problem, but without rider stochasticity, booking fees and penalties for not finding a match. In
particular, Peng et al. (2022) proposes a branch-and-price algorithm to solve a many-to-one stable
matching problem. To find feasible rideshares, the authors design the pricing subproblem as
several knapsack problems, one for each driver. As the authors consider routes with at most two
riders, this pricing subproblem can be solved efficiently. For surveys on ridesharing and related
problems, we refer the reader to Agatz et al. (2012), Furuhata et al. (2013), Mourad et al. (2019),
and Martins et al. (2021).
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The issue of information flow and uncertainty concerning user requests has received mixed
attention in the ridesharing literature. Several studies (e.g. Agatz et al., 2011; Wang et al., 2018)
assume that information is released dynamically within a rolling horizon framework. In other
words, in ridesharing contexts, information is rarely fully known in advance. However, tackling this
uncertainty has often been overlooked in the literature of ridesharing and related fields. Bertsimas
et al. (2019) study an online taxi dispatching problem, and propose a myopic matching policy that
has no access to predictions on future demand. To the best of our knowledge, Homsi et al. (2020,
2021) are the only studies that address demand uncertainty in a dynamic context. Homsi et al.
(2020) introduce a two-stage matching model with rematches for ridesharing. In their problem,
rider requests are stochastic. Homsi et al. (2021) evaluate this model within a rolling horizon
framework. Our work is inspired by these works in the sense that we consider stochastic rider
requests. We further extend these works by allowing for multiple riders in the same rideshare.
However, we do not consider the possibility of rematching in our study. Instead, our work focuses
on the interplay between the ridesharing decisions and the booking fees and penalties.

Furthermore, to the extent of our knowledge, there are no ridesharing studies that consider the
possibility of different service level agreements between participants and the ridesharing system.
We address this gap in the literature by allowing for different levels of driver booking, which may
be associated with different booking fees and penalties, and impact the profitability and feasibility
of potential rideshares. Finally, previous studies have suggested penalties based on the response
time, i.e., the time of occurrence of requests and the time the match is generated (e.g. Riley et al.,
2019; Homsi et al., 2020), or penalties for riders that were not serviced (Lee and Savelsbergh,
2015). However, to the best of our knowledge, no attention was given to penalties associated
with the failure to provide a rideshare to drivers once an agreement (i.e., a booking) between the
system and the drivers is established. Given that a ridesharing system depends on the presence
of a large driver user-base to attract potential riders, our study explores the use of penalties for
unmatched drivers. These penalties promote a higher level of service stability to users, as the
rideshare operator has a monetary risk associated with decisions that are likely to leave drivers
without a rideshare. Furthermore, prioritizing drivers may be an effective strategy to bootstrap a
ridesharing system, as the presence of drivers is needed in order to attract a rider user-base.

From an Operations Research perspective, the here considered problem has connections to
several classical optimization problems. As drivers have to pick-up riders at their origin and
drop them off at their destinations, the problem resembles an extension of Pickup and Delivery
Problems defined on a graph (see, e.g. Parragh et al., 2008a), in which the vehicles have to
be selected before the commodities are known. From the matching perspective, the problem
structurally can also be seen as a stochastic set-packing problem (see, e.g. Escudero et al., 2011),
where the objective function coefficients are uncertain. In our case, the right-hand-side coefficients
of some constraints are uncertain. Our problem also has connections to facility location problems,
which can be modeled as a set-partitioning problem (Baldacci et al., 2002). In this case, driver
bookings correspond to the activation of facilities, and the rideshares correspond to the assignment
of customers to facilities.

3 Planning Problem and Operating Modes

We now define the planning problem and the variants considered in this paper. Section 3.1
introduces the general planning problem, based on which Section 3.2 then instantiates three

Two-Stage Stochastic One-to-Many Driver Matching for Ridesharing

CIRRELT-2022-36 3



problem variants corresponding to different rideshare operating modes. Finally, Section 3.3
elaborates on the relation of the problem to its multi-stage counterpart.

3.1 Problem Definition

A ridesharing platform receives transportation requests for a specific time-window (also referred
to as the planning period), indicating the willingness of drivers and riders to engage in ridesharing
with other users on the platform. When creating requests, a user specifies its origin, destination,
earliest departure time, latest required arrival time at the destination, and whether it wants to
participate as a driver or a rider. Based on this information, the platform plans ridesharing groups
such that participants can fulfill their itineraries while travelling together to save fuel. As such, a
ridesharing group is defined as a planned trip composed of one driver and one or more riders.

Driver and rider requests. Drivers are defined as individuals that possess a vehicle and
have a planned itinerary consisting of an origin, a destination, an earliest departure time and a
latest arrival time at which the driver has to arrive at her destination. Drivers may participate
in a rideshare with riders, i.e., a driver may pick-up riders at their origin locations and drop
them off at their specified destinations, as long as the specified time windows are respected. In
most ridesharing systems that involve commuting or intra-city transportation, driver requests
must be made and selected in a timely manner before the actual rider requests are known. As
such, the matching planning problem considers driver and rider requests with itineraries that fall
into the window of a specific planning period, e.g., the morning commuting period of a weekday.
Specifically, this planning period spans the time period starting at the earliest departure time
among all drivers and ending at the latest arrival time among all drivers. Once the driver requests
for the planning period are known, a subset of these requests has to be booked in advance (e.g., the
evening before) before rider requests are known, such that these booked drivers can be assigned
to rider requests once they have occurred.

The occurrence of specific rider requests is uncertain. It is assumed that the platform is able
to characterize this uncertainty through probability distributions or historical observations (e.g.,
rider requests observed throughout the last weekdays). The planning problem therefore resolves
into a two-stage structure: in the first stage, driver requests are released and must be booked; in
the second stage, rider requests are known and must be assigned to booked drivers. As mentioned
above, such two-stage structure may represent a context where driver requests are made and
selected in the evening. Rider requests are then gradually released until the morning commuting
period of the planning day and assigned to the selected drivers.

Contract levels. Given that drivers have to be selected before the actual rider requests are
known, it may be possible that a booked driver is not assigned to any actual rideshare. In order to
provide an incentive to drivers and encourage an expanding driver user-base, the system operator
may therefore book a driver according to different contract levels, which can be seen as a type of
service agreement or booking policy: either a predefined fee is paid to a selected driver, no matter
whether the driver is actually assigned to a rideshare, or a penalty is paid to drivers that have
been selected, but not assigned to a rideshare. These contract levels, along with their specified
booking fees and penalty values, may be specified for different service characteristics. For example,
the operator may decide to pay higher booking fees for drivers that are available during larger
time-windows. While the costs to book drivers may increase, larger availability windows also offer
higher flexibility to match to potential riders. As a result, the final choice of such contract levels
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may impact several relevant performance measures considered by the system operator, such as
the profitability of the rideshare, the satisfaction of drivers (reflected by the level of compensation
when not matched) and the satisfaction of riders (reflected by the ability to match them).

While drivers are typically compensated for making available their vehicles, riders typically
pay a fee in order to be matched with the prospect of saving due to the rideshare. Incentives to
participate in a rideshare are therefore monetary. Riders pay for the service, because it is cheaper
than driving alone, or because they do not have access to a car or other forms of transportation.
The drivers pick up riders in exchange for a compensation because it is also cheaper than driving
alone. Therefore, both drivers and riders are potentially saving money when ridesharing. We
can characterize the benefit associated with a rideshare by, for example, the amount of distance
savings that it generates for its participants. Specifically, such savings may be computed as the
difference between the total rideshare distance and the individual travel distances in case each
participant drives alone. However, the general problem, as well as our modeling framework are
general enough to allow for benefits that are based on other performance measures. Note that
we do not make any assumption on how the fees are distributed among participants. For further
reading on this subject, we refer the reader to literature on, for example, Shapley values for
ridesharing (Levinger et al., 2020).

The objective of the problem is to book drivers and then assign them to riders to build rideshares
with maximal value. In the following, we will refer this problem to the 2-Stage Stochastic Driver
Matching Problem (2S-SDMP). Next, we describe how this problem can represent different
operating modes of ridesharing services.

3.2 Different Operating Modes

The above introduced notions of contract levels, booking fees and penalties allow for various
ridesharing system configurations. In the following, we will focus on three specific problem variants,
which represent realistic operating modes in practice and will allow us to explore the impact of
the system parameters on the performance measures relevant to the operator:

• Multiple contract levels with penalties (pen-k): Each driver can be booked at one of
k different contract levels. Booking a driver is free of cost. However, a penalty is paid if a
booked driver is not assigned to a rideshare. Each contract level specifies a different driver
availability window and a penalty. Assigning rider itineraries to the route of a driver results
in overall savings (both in terms of used vehicles and in terms of distance), which is shared
among the participants. This variant corresponds to traditional ridesharing systems, with
an additional penalty mechanism to attract drivers to its user-base. For k = 1, this variant
represents ridesharing operations where the system only offers one type of contract to its
users. For k > 1, it represents a more flexible system that offers drivers different types of
contract.

• Multiple contract levels with booking fees (fee-k): Booking a driver involves a fee,
but there are no additional penalties in case drivers are not assigned to rideshares. Drivers
can be booked at one of k contract levels. While drivers have a specific origin (i.e., a location
where they will start their trip), they do not have a fixed destination. This variant therefore
represents taxi-like sharing platforms, where drivers are independent contractors that are
booked in advance to transport riders. After completing the trip, they are free to take new
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trips or to leave the platform. Here, benefits from rideshares mostly come from the cost
savings when several riders share the same taxi, as opposed to paying a separate taxi for
each ride.

• Penalties and booking fees (pen-fee): Drivers can be booked on one of two contract
levels: either without a booking fee, but with a penalty if the driver is not assigned to a
rideshare, or vice-versa (i.e., with a booking fee, but without penalties). This variant may
fit a traditional ridesharing system, which has a smaller driver user-base and would like to
attract more riders by providing more driver resources. If a driver is willing to be booked
on either contract level, this provides an additional opportunity to optimize profits and
improve the overall service level.

As mentioned earlier, a ridesharing operator is not only concerned with the profitability of the
system, but also with its long-term success, often reflected by its attractiveness to the driver and
rider user-base (reflected by, e.g., booking fees, penalties, matching probability). The first problem
variant, pen-k, will allow us to explore the trade-off between driver availability windows, rideshare
profitability and penalties. Large driver availability windows allow for more matching flexibility,
but their attractiveness depend on the price. The second problem variant, fee-k, will allow us
to study how the system’s profitability is affected by an increasing compensation of the drivers.
Finally, studying the hybrid variant pen-fee may help to understand under which penalty values
are acceptable compared to the booking fees.

3.3 A note on the multi-stage planning problem

The above presented planning problem assumes that the driver-selection is carried out indepen-
dently for a predefined planning period, for which all driver requests are known, while rider
requests are yet unknown. This is a realistic setting in a variety of contexts, for example, for
the planning of work-related trips, where the planning takes place twice a day: morning trips
from home to work, and afternoon return trips from work to home. We now consider a more
dynamic context, where requests may be revealed gradually over time and driver-selection takes
place several times throughout the day. Specifically, consider a k-stage planning problem, where
drivers can be selected and riders can be matched at any of the k stages, and decisions at each
stage are made for the upcoming planning period (which are therefore disjoint). We now elaborate
on the suitability of the 2-stage approach presented by the 2S-SDMP for specific assumptions on
this k-stage problem.

Proposition 1. If driver-selection can only be made in the first stage and rider matches are
decided in the following stages as rider requests occur, this multi-stage problem variant reduces to
the 2S-SDMP.

While the 2S-SDMP originally assumes that all rider requests are uncertain at the time of
driver-selection, it can easily account for the case of gradual rider request release. Rider requests
that have not yet been observed in the first stage are all considered uncertain, no matter when in
the future they will be released. Rider requests that have already occurred can still be accounted
for as an uncertain rider request, with an occurrence probability of 100%. As a result, the problem
structure remains unchanged, as drivers still have to be selected in the first stage, while riders are
uncertain.
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In contrast, a gradual release of the drivers in a multi-stage context or the possibility of
selecting drivers at later stages may impact the suitability of the 2S-SDMP problem setting,
depending on the assumptions made on when those drivers can be selected. In many contexts,
drivers will have to be selected at specific times, h hours before, for example, the beginning of
the planning period. In the case of the 2S-SDMP where the planning may span a time period
from 6am to 10am, the driver-selection planning may be required to be carried out at 10pm the
day before, i.e., 8 hours before the beginning of the planning period (in order to give drivers a
response sufficiently early). Even in a dynamic context, this is a realistic assumption: while driver
and rider requests arrive gradually over the day, the planning is performed several times per day,
h hours (e.g., 4 hours) before the beginning of the actual planning period.

Proposition 2. If drivers with itineraries within a given time-window have to be selected a
specific time before the start of that time-window, and if each rider request appears in only one
decision stage, then this multi-stage problem variant can be solved exactly by multiple executions
of the 2S-SDMP.

This proposition follows from the fact that the planning over the entire planning horizon
separates into independent planning problems, one for each planning period given by the various
stages. Each of those planning problems then corresponds to an independent instance of the
2S-SDMP. Note that the assumption on the rider requests is quite realistic, given that it is unlikely
that the combination of earliest departure time and latest arrival time allows for feasible driver
matches in two consecutive planning periods. Finally, also note that this proposition assumes that
rider-request uncertainty is time-independent, i.e., there is uncertainty whether a specific request
occurs (such as in the case of morning/afternoon commuting), but no uncertainty regarding the
time-window of the rider. This also appears to be a realistic assumption in several contexts, such
as work-related trips, which typically occur around the same time.

If, however, a driver can be booked at any decision stage before the start of the time-window
of her itinerary, or rider request uncertainty is time-dependent (i.e., there is additional uncertainty
on the time for which the ride is requested), theoretically, a multi-stage problem is required. The
2-stage stochastic problem can be extended to approximate this multi-stage problem by using
multiple time-periods in the second stage, in which drivers can be selected at a later moment in
time and riders can be assigned to the selected drivers. An example of such a model is given by
Homsi et al. (2020), which additionally allows for rematching participants in later time periods.

4 Mathematical Models

In this section, we formally describe the problem that we are studying through mathematical
programming models that are general enough to encompass all problem variants discussed above
(see Section 3.2). In Section 4.1, we first introduce a deterministic model, which assumes that the
actual rider requests are known in advance. While this is unrealistic in practice (unless requests
can be accurately predicted), the performance of the deterministic model operating under perfect
information can be used as a benchmark. We then define a two-stage stochastic model in Section
4.2, explicitly addressing rider request uncertainty. Finally, we discuss several approximations of
the two-stage model in Section 4.3.
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4.1 The deterministic formulation

Let D be the set of driver requests and R be the set of rider requests, which jointly form the
set of transportation requests with D ∩ R = ∅. Let L be the set of contract levels on which a
driver can be booked. In order to be available to participate in a rideshare, a driver i ∈ D has to
be booked at some contract level ℓ ∈ L, implying a booking cost (e.g., a booking fee) of f ℓ

i . A
rideshare is a route that starts at the driver’s origin location, then picks up and delivers one or
more riders to their destination, and ends at the driver’s destination.

Each booked driver and each rider can participate in at most one rideshare. Let P(R) be the
power set of riders R, i.e., a set containing all subsets of R. For a given driver i ∈ D booked
at contract level ℓ ∈ L, let Ωℓ

i ⊆ P(R) represent the set of feasible rider subsets that may share
a ride with driver i. Any rider subset ω ∈ Ωℓ

i therefore represents a possible rideshare, and we
here assume that the exact route for this rideshare is the most economical one, generating a total
system revenue rℓiω. The set of feasible rideshares Ωℓ

i , along with the corresponding revenues, can
be enumerated beforehand. If a booked driver is not assigned to any rideshare, a penalty pℓi is be
paid for compensation.

Let zℓi be a binary variable that takes value 1, if and only if driver i ∈ D is booked at level
ℓ ∈ L. For each driver i ∈ D, level ℓ ∈ L and riders ω ∈ Ωℓ

i , let y
ℓ
iω be a binary variable that takes

value 1, if and only if the riders in ω share a ride with driver i ∈ D, booked at level ℓ ∈ L.
Further, for each rider j ∈ R, let b′j be a binary constant equal to 1, if and only if rider request

j occurs, i.e., rider j is available for a rideshare. For a given driver i ∈ D, contract level ℓ ∈ L
and rider subset ω ∈ Ωℓ

i , let ajω denote a binary constant equal to 1, if and only if j ∈ ω. A
deterministic matching model can be written as:

max
∑
i∈D

∑
ℓ∈L

−f ℓ
i z

ℓ
i +

∑
i∈D

∑
ℓ∈L

( ∑
ω∈Ωℓ

i

rℓiωy
ℓ
iω − pℓi(z

ℓ
i −

∑
ω∈Ωℓ

i

yℓiω)
)

(1)

∑
ℓ∈L

zℓi ≤ 1 ∀i ∈ D (2)∑
ω∈Ωℓ

i

yℓiω ≤ zℓi ∀i ∈ D, ℓ ∈ L (3)

∑
i∈D

∑
ℓ∈L

∑
ω∈Ωℓ

i

ajωy
ℓ
iω ≤ b′j ∀j ∈ R (4)

zℓi ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L (5)

yℓiω ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L, ω ∈ Ωℓ
i . (6)

Objective (1) maximizes the total system profit, given by the difference between the revenue
generated by the rideshares, the fees for booked drivers and the penalties for drivers that have
been booked, but have not been assigned to any rideshare. Constraints (2) ensure that drivers
cannot be booked on more than one level. Constraints (3) ensure that a driver can serve at most
one rideshare, and only if it is booked. Finally, Constraints (4) ensure that a released rider can
rideshare with at most one driver. This model has the structure of a set-packing model with the
addition of driver booking variables zℓi . As such, the problem is NP-hard.
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Note that this problem formulation makes no assumption on how route feasibility is defined,
but is flexible enough to accommodate many feasibility requirements while enumerating Ωℓ

i . The
definition of feasibility may depend on the ridesharing system and the objectives of the operator.
For the sake of our numerical analyses, we will focus on two intuitive feasibility criteria: vehicle
capacity and time-window feasibility. The latter is even more important if the planning period
spans a long time (e.g., several hours). We give further details on route feasibility when explaining
our route enumeration procedure in Section 5.1.4.

While the formulation above is based on set-packing, the problem can theoretically also
be modeled as a compact arc-flow formulation (see, e.g., Baldacci et al., 2004). Such arc-
flow formulation would require to explicitly model all driver routes, including their feasibility
requirements, on an (almost) complete graph. As such, the problem can be seen a stochastic
extension of the Pickup and Delivery Problem with Time Windows (see Parragh et al. (2008a) and
Parragh et al. (2008b) for extensive surveys), but with an excessively large number of vehicles. This
problem generalizes the vehicle routing problem, which is known to be NP-hard (Lenstra and Kan,
1981). The corresponding formulations would therefore likely be intractable for general-purpose
MIP solvers and the explicit representation of route constraints (e.g. time window constraints)
may lead to a formulation that provides worse bounds than a set-packing formulation (see, e.g.,
Costa et al., 2019). Next to the issue of solving such formulations, they also limit the possible
definitions for rideshare feasibility and revenue functions. While a set-packing formulation allows
for the application of complex business rules and feasibility criteria during the route enumeration
process, an arc-flow formulation is limited to linear additive rules.

4.2 The two-stage stochastic formulation

We now no longer assume that we have an a priori knowledge on whether a rider is released or
not. Instead, we assume that we can characterize the uncertainty on the release of riders through
probability distributions or historical observations. Thus, instead of having binary constants b′j
for the release of rider j ∈ R as in the deterministic model, we represent this uncertainty through
random binary variables b̃j ,∀j ∈ R.

We are concerned with finding a set of booked drivers that allows for maximum profit as
averaged over all (or most) realizations of b̃. To this end, we formulate a two-stage stochastic
problem that maximizes an expected second-stage value function. In the first stage, the model
decides which drivers to book. Based on these decisions, one second-stage problem is solved for
each realization of b̃, where booked drivers and released riders are assigned to rideshares. The
two-stage stochastic model can be written as follows:

max
∑
i∈D

∑
ℓ∈L

−f ℓ
i z

ℓ
i + Q(z) (7)∑

ℓ∈L
zℓi ≤ 1 ∀i ∈ D (8)

zℓi ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L, (9)

where
Q(z) = Eb̃[Q(z,b)]

is the expected second-stage value function. Objective (7) maximizes the expected profit of
building rideshares in the second stage, minus the costs associated with driver booking in the first
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stage. For a given realization (e.g. a scenario) b of b̃, the second-stage value function Q(z,b) is
defined as:

Q(z,b) := max
∑
i∈D

∑
ℓ∈L

(∑
ω∈Ωℓ

i

rℓiωy
ℓ
iω − pℓi(z

ℓ
i −

∑
ω∈Ωℓ

i

yℓiω)
)

(10)

∑
ω∈Ωℓ

i

yℓiω ≤ zℓi ∀i ∈ D, ℓ ∈ L (11)

∑
i∈D

∑
ℓ∈L

∑
ω∈Ωℓ

i

ajωy
ℓ
iω ≤ bj ∀j ∈ R (12)

yℓiω ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L, ω ∈ Ωℓ
i . (13)

Objective (10) maximizes the profit of the selected rideshares, minus the costs associated with
booked drivers that were not assigned to any rideshare. The second-stage problem is a set-packing
problem and, as such, is NP-hard itself. Solving the two-stage model for all realizations of b̃
would require to solve a formulation with an exponential number of variables, which would be
computationally intractable for most probability distributions. For that reason, we now introduce
three formulations that approximate the second-stage value function.

4.3 Approximations for the two-stage stochastic model

The two-stage problem may be challenging to solve, as the number of all possible rideshares
and the number of all possible realizations for b̃ are both exponential on the number of riders,
which can lead to a very large model. To address this, we propose three approximations for the
second-stage value function.

4.3.1 The sample average approximation problem

We first introduce a sample average approximation (SAA) for the two-stage stochastic formulation
(Birge and Louveaux, 2011). To this end, we generate a set of scenarios S = {b1, . . . , b|S|} randomly
sampled from b̃, where |S| ≪ 2|R|. Alternatively, S can be obtained from historical observations.
These scenarios are then used to approximate the second-stage value function Q(z) by

QSAA(z) =

|S|∑
s=1

1

|S|
Q(z,bs).

The corresponding model is solved under the same set of Constraints (8) and (9). Note that,
if only a single scenario is used to build the SAA (i.e., |S| = 1), then the model is structurally
identical to the deterministic model (1)–(6).

4.3.2 The sample average approximation problem with relaxed second stage

If the integrality gap of the previously defined SAA model is small, then relaxations of the second-
stage function may still generate high-quality integer solutions. The relaxation of integrality
constraints in stochastic programming has been applied to other problems. For example, Ahmed
et al. (2003) study a multi-stage stochastic programming model for capacity expansion under
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uncertainty. The authors relax the integrality constraints and then use an heuristic to transform
the continuous relaxation solution into an integer solution.

We here pursuit a similar approach. We relax the integrality constraints (13) of the second-
stage problems (i.e., yℓiω ∈ [0, 1], ∀i ∈ D, ℓ ∈ L, ω ∈ Ωℓ

i). First-stage decisions, however, remain
binary. We refer to this relaxation as the SAA-R. Such a relaxation is likely to dramatically
reduce the computing time required to solve the model, while still maintaining first-stage binary
decisions. Such formulation would also allow for the use of a Benders decomposition algorithm
to solve the model, if needed. In Section 5.2.2, we empirically evaluate if the second-stage value
function approximation of the SAA-R is sufficiently strong to replace the SAA model, and provide
insights on the performance of the SAA-R.

4.3.3 The expected value problem

When computational resources are limited and solutions are required in nearly real-time, it may
be desirable to use an approximation of the second-stage value function that does not depend
on multiple scenarios. Instead of considering the scenarios S = {b1, . . . , b|S|} explicitly in the
formulation, we may use a formulation with a single sample mean realization:

b̄ =

|S|∑
s=1

1

|S|
bs.

The second-stage value function Q(z) is then replaced by

QEVP(z) = Q(z, b̄).

This problem is commonly referred to as the expected value problem (EVP) (Birge and Louveaux,
2011). Similarly to Homsi et al. (2020), the EVP has binary variables on the left-hand-side and
may have fractional coefficients on the right-hand-side of Constraints (12). This may render
the formulation too restrictive or even infeasible, which therefore requires us to also relax the
integrality constraints of the y variables.

5 Computational Study

In this section, we conduct extensive computational experiments on the proposed models. To
provide insights on a wide range of ridesharing operating modes (see Section 3.2), we evaluate four
problem variants: pen-1, pen-2, fee-2 and pen-fee. We first introduce the set of benchmark
instances used throughout our experiments in Section 5.1. We then evaluate the proposed models
in Section 5.2, focusing on three types of key insights: the benefits of using one problem variant
over another; an understanding on why certain models out- or underperform in specific settings;
and, the impact of the input parameter values on the expected user satisfaction and system
profitability.

5.1 Benchmark instances

We generate a benchmark set of 6 base instances following the generation process of Homsi et al.
(2021), based on data from a Montreal ridesharing company. Then, we expand this base benchmark
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set by varying the parameters of these instances to assess the impact on the platform profit and
user satisfaction, while keeping the same network topology. Namely, we vary the values of the
booking fees, revenues and penalties. As such, we have 39 instances for variant pen-1, 6 instances
for variant pen-2, 6 instances for variant fee-k, and 6 instances for variant pen-fee. An instance
is composed of:

• a set D of 200 drivers, each with a specified origin, destination and latest arrival time;

• a set R of 200 riders, each with a specified origin, destination, latest arrival time, as well as
the probability that its request occurs;

• a set of booking levels L, the booking fees coefficients f ℓ
i ,∀i ∈ D, ℓ ∈ L, and the penalty

coefficients pℓi , ∀i ∈ D, ℓ ∈ L;

• the availability window scaling parameters τr and τ ℓd,∀ℓ ∈ L, d ∈ D;

• a set of feasible rideshares Ωℓ
i for each driver and booking level, that is constructed based

on τr and τ ℓd,∀ℓ ∈ L, i ∈ D;

• the revenues rℓiω associated with each rideshare ω ∈ Ωℓ
i ,∀ℓ ∈ L, i ∈ D;

• a ground truth set of 2000 scenarios, each containing a realization of b̃, to validate the
profit of the first-stage decisions generated by our models.

Next, we describe how these instances are generated.

5.1.1 Origin and destination locations

Inspired by Homsi et al. (2021), we randomly generate points based on seven different demand
clusters around the metropolitan region of Montreal (see Figure 1). These demand clusters
correspond to residential and downtown regions. Due to time-window restrictions and the
requirement to generate rideshares with positive distance savings, many of the feasible rideshares
satisfying these conditions have origin or destination requests within the same local region. Thus,
such complex instances can be often separated into multiple instances and solved individually to
provide close to optimal approximations for the larger instance. We therefore focus our study
on the case where requests originate in different residential regions and have destinations in the
downtown region. This represents, for example, the case of daily morning commute.
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Figure 1: The geographical region considered around the metropolitan region of Montreal,
along with the clusters for origins and destinations. Orange points correspond to the
downtown region.

5.1.2 Probability of request occurrence

The probability that rider j ∈ R submits a rider request for the upcoming planning (i.e., the
probability that the random variable b̃j takes value 1) is a real number sampled uniformly from
[0, 1]. We therefore sample realizations of b̃ to generate independent request scenarios used in our
models.

5.1.3 Latest arrival times and availability windows

We randomly generate the latest required arrival times for each request i ∈ D ∪ R. Its latest
arrival time bi is a real number sampled uniformly from [8, 10], representing the time range from
8am to 10am in the morning. The latest arrival times represent, for example, the latest time
individuals may want to arrive at work. We hence assume that individuals are not willing to
arrive later than the specified latest arrival time. Instead, they are willing to leave home earlier to
accommodate for the delays involved in ridesharing. Thus, based on the latest arrival time, we
calculate the earliest departure time ai based on the travel time between an individual’s origin
ui ∈ R2 and destination vi ∈ R2 (in longitude and latitude), as follows:

ai = bi − τ · d(ui, vi)
s

,∀i ∈ D ∪R,

where d(ui, vi) is the approximate routing distance in kilometers between ui and vi, s = 40 km/h
is a constant speed assumed for all participants, and τ is an availability window scaling factor.
Therefore, d(ui, vi)/s represents the estimated individual travel time of user i if she travelled alone.
When referring to a driver at level ℓ, we use the notation τ ℓd. When referring to riders, we use the
notation τr. When ridesharing, we assume that riders are willing to accept travel times up to
30% longer than individual travel times, i.e., their earliest departure time is computed based on
τr = 1.3. As in Homsi et al. (2021), we estimate the true routing distance between two points
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with the aid of a regression model trained with OSRM routing data (Luxen and Vetter, 2011),
resulting in the following formula:

d(ui, vi) = 1.57 + 81.91 · d̄(ui, vi),

where d̄(ui, vi) is the Manhattan distance between ui and vi.
In problem variant fee-k, drivers have no fixed destination and their time windows simply

represent a time block during which they are available to provide transportation. For each level-1
driver i ∈ D, the earliest departure time ai is set to as 45 minutes before bi (i.e., bi = ai + 45/60).
For a level-2 driver i ∈ D, ai is set to one hour before bi (i.e., bi = ai+1). We uniformly sample ai
from the interval [7, 9]. When calculating the distance savings, we disregard the arc between the
driver origin and the first pick-up. Note, however, that this distance is still relevant to determine
whether a rideshare is time-feasible or not.

5.1.4 Route enumeration and route feasibility

We a priori enumerate feasible ridesharing routes with a depth-first search algorithm that in-
crementally builds routes. This algorithm (implemented in C++) evaluates partial routes with
different sizes, and extends routes by adding new riders. The extension of a route stops as soon as
the route is no longer time-window feasible (i.e., when it violates the earliest departure time and
latest arrival time of participants). To speed up the enumeration, we restrict the set of possible
routes to those that are user-friendly and that make sense in practice for ridesharing. Specifically,
we limit each route to at most three riders, which accurately represents the capacity of most
vehicles that have ridesharing-related availability window restrictions. As all destinations are in
the downtown region, it is unlikely that routes with additional pick-ups after deliveries would be
more advantageous than routes with all pick-ups before all deliveries. We therefore also limit the
enumeration to routes that start dropping off riders to their destinations only after all riders have
been picked up from their origins. Despite being an exponential procedure, many rideshares are
not time-window feasible, which speeds up the route enumeration.

Table 1 shows average statistics for the enumeration procedure, grouped by problem variant.
The first columns show the problem variant and total number of routes enumerated for all booking
levels. The last column shows the CPU time in seconds required to enumerate these routes.

Table 1: Statistics for the route enumeration procedure by problem variant.

Variant Routes Routes (1 rider) Routes (2 riders) Routes (3 riders) T (sec)

pen-1 2,410 1,177 1,192 41 66
pen-2 5,050 2,342 2,604 104 152
fee-2 9,862 3,823 5,853 186 3,450
pen-fee 1,996 1,518 478 0 41

5.1.5 The revenue of a rideshare

We assume that the revenue rℓiω the system operator earns for each rideshare ℓ ∈ L, i ∈ D,ω ∈ Ωℓ
i

is computed as a share of the total distance savings siω generated by the rideshare. A scaling
parameter γℓr converts the total distance savings into a revenue value allocated to the ridesharing
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operator:
rℓiω = γℓr · siω.

This allows us to adjust the value of a rideshare individually for each driver booking level.

5.1.6 Booking penalties

We define the booking penalties pℓi , ∀i ∈ D, ℓ ∈ L as the product of a penalty scaling parameter
γℓp and the distance between driver origin and destination d(ui, vi), as below:

pℓi = γℓp · d(ui, vi).

We can therefore represent situations where the system subsidizes a proportion of the driver’s
journey in case it is unable to find riders to form a rideshare.

5.1.7 Parameters used for different problem variants

We now describe the values of the parameters that are specific to each variant:

• Single contract level with penalties (pen-1): We consider only one level of booking
per driver (i.e., L = { 1 }) and no cost associated to driver booking (i.e., f1

i = 0, ∀i ∈ D).
Studying this variant, we aim at understanding the benefits of increasing the size of the
availability window, which results in a trade-off between profitability and user-friendliness.
To this end, we evaluate instances with different driver availability windows by varying
τ1d ∈ { 1.3, 1.4, 1.5 }. Furthermore, we test the following values for the revenue and penalty
scaling coefficients (γ1r and γ1p):

1. We fix γ1r = 0.3, and vary γ1p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 };
2. We fix γ1p = 0.3, and vary γ1r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }.

• Multiple contract levels with penalties (pen-2): We consider two booking levels (i.e.,
L = { 1, 2 }) and no cost associated with driver booking (i.e., f1

i = 0, ∀i ∈ D). For level-1
drivers, we assume that τ1d = 1.3, γ1r = 0.2 and γ1p = 0.3. For level-2 drivers, we assume
that τ2d = 1.4, γ2r = 0.2 and vary γ2p ∈ { 0.5, 1, 2, 4, 8, 16 }. Studying this variant, we aim at
understanding the trade-off between availability window size and penalties.

• Multiple contract levels with booking fees (fee-2): We consider two booking levels.
All booked drivers are paid a fee in advance, and there are no penalties if they are not
matched in the second stage (i.e., γℓp = 0, ∀ℓ ∈ L). For level-1 drivers, we fix γ1r = 0.3
and f1

i = 1,∀i ∈ D. For level-2 drivers, we fix γ2r = 0.3 and vary the booking fees
f2
i ∈ { 1.5, 2, 2.5, 3, 3.5, 4 } , ∀i ∈ D. Level-1 drivers are available for 45 minutes, and level-2
drivers are available for 1 hour. We study this variant to explore which booking fees can be
justified when increasing the availability window.

• Penalties and booking fees (pen-fee): The operator has the choice of selecting a
driver either with a booking fee, or with a penalty as in variant pen-2. Both levels have
the same availability window τ1d = τ2d = 1.3 and revenue share γ1r = γ2r = 0.3. Level-1
drivers can be booked at no cost (i.e., f1

i = 0,∀i ∈ D), but penalties are paid if the
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booked drivers are not assigned to any rideshare on the second stage. To this end, we
vary γ1p ∈ { 0.5, 1, 1.5, 2, 2.5, 3 }. Level-2 drivers have no penalties (i.e., γ2p = 0), but a fee
f2
i = 1,∀i ∈ D is paid to book them. We study this variant in order to gain an understanding
of the interplay between the use of the two different driver booking types.

5.2 Computational results

In this section, we evaluate the solutions provided by the proposed models on our benchmark
instances. All experiments have been executed on a machine with an AMD 3970X processor and
256 GB of memory. Models have been solved using CPLEX version 12.10. We limited CPLEX to
one thread, set its execution time limit to one hour, and used Python to build all models.

5.2.1 Validation of first-stage decisions

To estimate the unbiased performance of the first-stage decisions (i.e., the values of the z variables)
generated by each model, we evaluate these decisions on the ground truth validation set with
2,000 samples for b̃. Let f̃(z) be a model’s optimal objective function value over these validation
samples. We compare f̃(z) against the objective function value of the wait-and-see problem
(Madansky, 1960), which consists of solving several independent single-scenario models, one for
each sample of b̃. First-stage decisions are therefore tailored to each sample of b̃, allowing us to
obtain the best possible profit in case the planner has the ability to accurately predict the future
realization of b̃. While this is unrealistic in practice, the wait-and-see solution can be used as
an upper bound to evaluate the quality of the solutions obtained from the other models. The
wait-and-see objective fws is the average of the objective function values of each independent
problem, and is an upper bound for f̃(z). Thus, to estimate the quality of the first-stage solutions
z we calculate the relative gap between f̃(z) and fws as:

gapws =
fws − f̃(z)

fws
.

It is interesting to note that, as the first-stage decisions of the wait-and-see problem are specific
to each scenario and are aware of the actual rider requests, the wait-and-see solution will never
book drivers that are not matched in the second-stage, given that this would incur unnecessary
(and sub-optimal) penalties or booking fees.

5.2.2 Performance for different models on all problem variants

We now analyze the difficulty of solving the various models for each of the problem variants.
Specifically, for each of the four problem variants, we evaluate the benefits of using a scenario-based
approach such as the SAA over a simpler model such as the EVP. We also explore the tradeoff
between representing the second-stage problem of the SAA formulation as a binary set-packing
problem, or as a relaxation.

Table 2 summarizes the results averaged over the problem instances for each of the four problem
variants (pen-1, pen-2, fee-2, pen-fee) and each of the three models: the conventional SAA,
the SAA with relaxed second-stage (SAA-R) and the EVP. Column “|S|” indicates the number of
scenarios used in each model. Column “profitgt” represents the average profit associated with the
first-stage decisions and evaluated on the the ground truth set. Column “gapws (%)” indicates
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the average percentage gap of the objective function value to the optimal objective function value
of the wait-and-see solution. Column “T (sec)” represents the average CPU time (in seconds)
required by CPLEX to solve the models. To assess the potential benefits of having more precise
information on the occurrence of riders, we test our models with different numbers of scenarios
(specifically, with 25, 50, 100 and 200 scenarios).

Table 2: Results for models on all problem variants.

model |S| profitgt gapws (%) T (sec) model |S| profitgt gapws (%) T (sec)

pen-1 pen-2
SAA 25 517.48 8.73 1.84 SAA 25 234.23 20.53 32.75

50 518.69 8.47 8.85 50 253.49 14.02 56.68
100 519.68 8.24 35.82 100 258.13 12.46 656.16
200 519.95 8.16 163.75 200 262.48 10.99 1,711.35

SAA-R 25 517.46 8.73 0.74 SAA-R 25 237.83 19.32 7.96
50 518.74 8.46 2.65 50 254.19 13.79 7.50
100 519.66 8.25 9.88 100 258.20 12.43 53.67
200 519.91 8.17 48.63 200 262.73 10.90 372.70

EVP 25 500.65 12.89 0.46 EVP 25 110.35 62.38 1.85
50 499.60 13.07 0.84 50 103.31 64.76 1.77
100 506.12 11.48 0.37 100 8s8 71.56 1.41
200 506.46 11.43 0.53 200 91.74 68.67 1.77

fee-2 pen-fee
SAA 25 113.20 17.39 1,277.62 SAA 25 355.92 12.61 0.56

50 113.19 17.39 2,973.47 50 355.98 12.59 3.75
100 113.62 17.05 3,600.00 100 359.31 11.77 26.25
200 113.63 17.03 3,600.00 200 360.74 11.43 378.09

SAA-R 25 112.90 17.62 574.76 SAA-R 25 355.90 12.61 0.44
50 113.15 17.38 2,133.00 50 355.88 12.62 1.50
100 113.59 17.06 3,411.86 100 359.19 11.80 9.95
200 113.69 16.98 3,600.00 200 360.73 11.43 16.80

EVP 25 110.66 19.25 2,274.27 EVP 25 238.56 41.34 0.12
50 110.88 19.01 3,600.00 50 247.95 39.04 0.67
100 111.30 18.72 2,385.05 100 270.88 33.43 1.08
200 110.70 19.15 1,952.12 200 270.56 33.51 0.92

The results highlight the benefits of using a stochastic model: for variant pen-1 at 200
scenarios, the gaps of the SAA and the SAA-R are, on average, about 3 percentage points smaller
than the gap of the EVP (8.16% and 8.17% versus 11.43%). Moreover, the results show that
increasing the number of scenarios reduces the gap for all models, except for the EVP at problem
variant pen-2, where the average gap increases from 62.38% with 25 scenarios to 68.67% with 200
scenarios, while the average gaps of the SAA and SAA-R at 200 scenarios are 10.99% and 10.90%,
respectively.

On the SAA-R performance. The results show that relaxing the second-stage problem
for the SAA formulation can be an efficient strategy: for example, for variant pen-2 with 200
scenarios, the model can be solved in about 20% of the original computing time (from 1711.35
seconds to 372.70 seconds), while the gaps are similar to those of the original SAA. We observe
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similar reductions in computing time and similar gaps for all other problem variants, except for
variant fee-k where both models exceed the computing time limit, while the gaps are similar.
This may suggest two further advantages associated with relaxing the second-stage problem: as
the relaxed second-stage problems are easier to solve, we may be able to better approximate the
second-stage value function by increasing the number of samples. Further, in the case where the
original SAA formulation becomes too hard to solve, relaxing the second-stage allows us to apply
Benders decomposition (which requires continuous subproblems).

To better understand the different levels of computational effort required to solve the SAA
and the SAA-R, we conduct further experiments where we compare the optimal solution (or best
known solution) value of each model with the solution value of its linear programming relaxation.
Average results for the SAA and SAA-R with 200 scenarios are shown in Table 3. Column
“profit200” indicates the profit (objective function value) of the models over the 200 scenarios used
to find the first-stage decisions. Column “int. gap (%)” shows the integrality gap between the
optimal (or best known) solution and the linear programming relaxation. Column “opt. gap (%)”
indicates the optimality gap as reported by CPLEX.

Table 3: Integrality and optimality gaps for the SAA and the SAA-R with 200 scenarios.

variant model profit200 int. gap (%) opt. gap (%) T (sec)

pen-1 SAA 521.05 0.15 0.00 186.10
SAA-R 521.69 0.01 0.00 55.34

pen-2 SAA 268.91 0.15 0.00 1,219.95
SAA-R 269.23 0.03 0.00 238.49

fee-2 SAA 115.70 4.17 1.24 3,600.00
SAA-R 119.26 1.29 0.70 3,600.00

pen-fee SAA 364.62 0.12 0.00 409.16
SAA-R 365.04 0.00 0.00 18.34

As expected, the SAA-R model has smaller integrality gaps (often zero or close to zero) than
the SAA model, which results in faster solution times. For cases where optimality is not proven
(fee-2), we observe that the optimality gaps of the SAA-R are still smaller than those of the SAA.

As the SAA-R is a relaxation of the SAA, the optimal value of the objective function of the
SAA-R will be an upper bound to the optimal SAA objective. Column profit200 shows that this
upper bound is relatively tight. For all variants except for fee-2, the SAA-R objectives have
a gap of at most 0.12% to the SAA objective. For variant fee-2, none of the models has been
able to prove optimality and the average gap between the best known solutions of the SAA-R
and the SAA is 2.99% (115.70 and 119.26). This gap could be further improved by strengthening
the relaxed second-stage set-packing formulation through valid inequalities (see, e.g. Borndörfer,
1998).

In an effort to gain an understanding of why the SAA-R provides such tight approximations
for the second-stage value function, we inspect the proportion of the second-stage y variables that
take value 1, as opposed to variables that take a fractional value greater than zero. Upon further
inspection of a pen-1, a pen-2 and a fee-2 instance solved by the SAA-R with 200 scenarios, we
have observed that y variables with value 1 represent about 90% (for pen-1), 72% (for pen-2) and
50% (for fee-2) of the total number of variables with non-zero values (i.e., variables with value 1,
and variables with non-zero fractional values). The fact that more SAA-R variables are fractional

Two-Stage Stochastic One-to-Many Driver Matching for Ridesharing

18 CIRRELT-2022-36



for variant fee-2 explains the larger gap between the SAA-R and SAA objectives (2.99%, as
opposed to 0.12% for other problem variants). We furthermore observed that the ratio between
rideshares (non-zero y variables) and activated drivers is 1.04 (for pen-1), 1.15 (for pen-2) and
1.19 (for fee-2). These ratios are significantly smaller than those in the EVP solutions (3.10,
3.29 and 5.00, respectively). This suggests that, even if the second-stage variables are relaxed, a
significant proportion of the variables assume integer values, which leads to a better approximation
of the second-stage value function, and explains the good performance of the SAA-R. Given the
high solution quality induced by the SAA-R model on the ground truth and its small integrality
and optimality gaps when compared to the SAA model, we restrict the following experiments to
the SAA-R model using 200 scenarios.

On the EVP performance. Despite its short computing times, the EVP model does not
reliably provide a reasonable approximation to the original SAA solution. This becomes evident, in
particular, for variants pen-2 and pen-fee, where its gaps are significantly worse than those of the
other models.s Instead, it may be more effective to solve the other models with a smaller number
of scenarios, which likely generates solutions of higher quality and CPU times comparable to the
EVP. The bad performance of the EVP is due to the combination of fractional right-hand-side
coefficients (for the mean sample realization b̄ of b̃) and continuous second-stage variables, as
bj ∈ [0, 1],∀j ∈ R are likely to be fractional, Constraints (12) will likely limit the creation of
rideshares to fractional values (i.e., yℓiω < 1). As a consequence, the EVP solution may partially
open multiple rideshares for the same driver, such that the cost of the booking fee is offset. Indeed,
upon further inspection of some instances, we have observed that drivers are partially assigned to,
on average, 3.1 different rideshares for pen-1, 3.29 for pen-2, and 5.00 for fee-2. The first-stage
decisions are therefore not optimized under the assumption that drivers can be assigned to at
most one rideshare, and consequently they may not be as profitable when evaluated on the ground
truth. The performance of the EVP for variant pen-2 is further discussed in Section 5.2.5.

5.2.3 PEN-1: impact of driver availability windows

In this and the following sections, we explore how the platform profit and user satisfaction are
impacted under the different problem variants and parameter settings. With the overall objective
to gain an understanding which parameter values are desirable such that both the platform and
the participants benefit, we will examine several performance indicators: the platform profit, the
proportion of booked drivers, the proportion of failed bookings, the proportion of satisfied riders,
and the cost of the rideshare compared to driving alone.

We first focus on the impact of the driver availability window. We limit these experiments
to variant pen-1 and test availability window scaling coefficients τ1d ∈ { 1.3, 1.4, 1.5 }, along with
different configurations of the revenue share scaling parameter γ1r and penalties scaling parameter
γ1p, namely:

• we fix the penalty coefficients to γ1p = 0.3, and vary the share of savings collected by the
ridesharing platform γ1r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }, representing contexts where the platform
passes almost all revenue to the users (γ1r = 0.1) up to contexts where the platform keeps
most of the revenue, and only little for its users (γ1r = 0.9);

• we fix the coefficient for the share of savings collected by the ridesharing platform to γ1r = 0.3,
and vary the penalties γ1p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }. This represents contexts
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where the platform subsidizes only 10% of a booked driver’s trip in case it is not assigned
to a rideshare (γ1p = 0.1) up to contexts where drivers are highly compensated through
penalties if they are not assigned to any rideshare (1.1 ≤ γ1p ≤ 1.5).

We expect larger availability windows to contribute to a higher number of successful matches,
and hence to more profitable solutions. However, larger availability windows may generate
inconveniences for drivers. Operators are therefore interested in identifying a reasonable value for
τ1d that generates sufficient profit, while causing minimal inconveniences.

The results are summarized in Table 4. Column “book (%)” indicates the average proportion
of booked driver over all drivers. Column “failed (%)” shows the average proportion of failed
bookings (i.e., drivers that were booked but not assigned to any rideshare) over all booked drivers.
Column “sat. riders (%)” represents the average proportion of satisfied rider requests (i.e., riders
that have been assigned to a rideshare) over all released riders. Column “cost (%)” shows the
percent average trip cost relative to individual trips (i.e., the ratio of shared distances plus platform
cut over the sum of individual distances).

Table 4: SAA-R results for different values of τ 1d on variant pen-1 (averaged over
fixed γ1

p = 0.3 with γ1
r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }; and fixed γ1

r = 0.3 with γ1
p ∈

{ 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }).

τ 1d profitgt gapws (%) book (%) failed (%) sat. riders (%) cost (%) T (sec)

1.3 464.40 12.55 34.33 4.24 75.55 76.36 11.67
1.4 528.57 7.47 36.29 2.77 87.95 75.85 70.66
1.5 566.75 4.47 37.88 1.62 96.03 75.62 63.57

The results indicate that, as τ1d increases, the platform profit also increases. This is explained
by the fact that the platform is able to form more rideshares: there are more booked drivers and
fewer failed bookings, as drivers can adjust more easily to different rideshares. Furthermore, a
direct consequence of having less failed bookings is a smaller gap to the wait-and-see solution,
which has no failed bookings. Rider demand can also be better met with larger driver availability
windows: almost all riders (96.03%) are provided service when τ1d = 1.5, while the trips costs
for users remain stable (around 76%, representing 24% cost savings). However, using such large
availability windows would not provide the best user experience for drivers. A reasonable trade-off
value for τ1d seems to be 1.4, as it improves all performance metrics and does not require a large
level of driver flexibility.

5.2.4 PEN-1: impact of revenue share and penalty levels

The goal of this section is to identify values for the revenue share and penalties such that the
ridesharing platform attains a good profit while keeping users satisfied. To this end, we explore
the impact of changing the platform revenue share and penalty levels independently. Then, we
study the joint impact of these parameters.

Impact of revenue share. We analyze the impact of changing the scaling parameter γ1r for
the revenue share collected by the ridesharing platform (defined in Section 5.1.5). We limit these
experiments to variant pen-1. We fix the penalty coefficient to γ1p = 0.3 and vary the share of
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savings collected by the ridesharing platform γ1r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 } (note that results are
averaged over instances with driver availability window scaling coefficients τ1d ∈ { 1.3, 1.4, 1.5 }).

Table 5: SAA-R results for different values of γ1
r on variant pen-1 (averaged over instances

with γ1
p = 0.3 and τ 1d ∈ { 1.3, 1.4, 1.5 }).

γ1
r profitgt gapws (%) book (%) failed (%) sat. riders (%) cost (%) T (sec)

0.1 130.93 10.31 34.67 1.54 85.13 64.81 44.46
0.3 408.47 6.70 36.33 2.42 87.14 72.85 67.08
0.5 690.73 5.30 38.17 4.05 88.91 80.74 46.21
0.7 976.08 4.39 39.17 5.12 89.72 88.44 41.03
0.9 1,261.50 3.89 40.50 6.47 90.39 96.16 31.75

The results are summarized in Table 5. As expected, when increasing the revenue share, more
matching decisions become economically profitable, which leads to more booked drivers and more
matched riders, resulting in a larger profit for the platform. The platform profit also does not
seem to be critically affected by the increasing proportion of failed driver bookings (which are
compensated an equivalent of 30% of their individual trip costs, as γ1p = 0.3). This is explained
by the fact that the total paid penalties become negligible compared to the revenues generated
from the rideshares. This disparity between revenue and penalty values also explains why larger
revenue shares are linked to smaller gaps to the wait-and-see solution. Unfortunately, an increasing
revenue share kept by the operator also results in higher costs for the users: with γ1r = 0.9, the
participants pay on average 96% of the costs of driving alone, which are rather unattractive cost
savings. The revenue share γ1r therefore has to be kept at reasonable levels (e.g., at 0.3) to ensure
that users save around 30% when compared to driving alone.

Impact of different penalty levels. We now investigate how the results change according
to different penalty levels γ1p . We limit these experiments to variant pen-1 (for availability window
scaling coefficients τ1d ∈ { 1.3, 1.4, 1.5 }), fix the share of savings collected by the ridesharing plat-
form to γ1r = 0.3, and vary the penalty scaling coefficients γ1p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }.
Note that any value γ1p > 1 implies that drivers are compensated more than their trip cost in case
they are not assigned to any rideshare.

Table 6: SAA-R results for different values of γ1
p on variant pen-1 (averaged over instances

with γ1
r = 0.3 and τ 1d ∈ { 1.3, 1.4, 1.5 }).

γ1
p profitgt gapws (%) book (%) failed (%) sat. riders (%) cost (%) T (sec)

0.1 420.50 3.88 40.50 6.47 90.39 73.14 44.91
0.3 408.47 6.70 36.33 2.42 87.14 72.85 67.08
0.5 402.14 8.18 35.33 1.88 85.91 72.67 56.45
0.7 397.06 9.36 34.67 1.66 85.29 72.55 58.17
0.9 392.79 10.36 34.67 1.54 85.15 72.63 50.23
1.1 389.25 11.18 33.67 1.25 83.89 72.46 42.40
1.3 386.22 11.89 33.17 1.06 83.10 72.42 44.39
1.5 383.23 12.59 33.17 1.06 83.10 72.42 56.54

The results are summarized in Table 6. Surprisingly, larger penalties do not have a major
impact on the system’s profit: the proportion of failed bookings decreases quickly as the penalties
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increase, which avoids large profit losses. For the smallest penalty level γ1p = 0.1, about 5 of the 81
booked drivers are paid penalties, while at the highest penalty level, this is the case for less than 1
booked driver on average. However, higher penalties result in less driver bookings, and therefore
also in less rider matches. This explains the small decrease in the profit. Higher penalties may
therefore be a good “marketing” strategy to attract new drivers, as they are likely to be matched;
even if they are not, they can expect a large compensation. Additionally, from a user perspective,
the average trip cost remains relatively stable. Penalty values at around γ1p = 0.5 therefore seem
to provide a good trade-off, given that both the profit and the user booking percentages are
relatively high, while a 50% compensation is still sufficiently high to attract new drivers to the
user-base. Finally, we note that larger penalties increase the gap to the wait-and-see solution.
This is explained by the larger penalty costs that are paid by the stochastic solution, while the
wait-and-see solution avoids all penalties due to perfect knowledge.

Joint impact of different revenue share and penalty levels. While the above explores
the impact of increasing revenue share and penalty levels separately, we now investigate the
impact of changing both parameters at the same time. We consider all combinations of γ1r ∈
{ 0.1, 0.3, 0.5, 0.7, 0.9 } and γ1p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 } (for a fixed driver availability
window coefficient τ1d = 1.3).

Figure 2: Impact of different values of γ1
r and γ1

p on key performance indicators
(averaged over instances with τ 1d = 1.3, γ1

r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 } and γ1
p ∈

{ 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }).
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Figure 2 illustrates the impact of the different parameter value combinations on the four
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most important key performance indicators: the operator profit, the remaining costs for users,
the percentage of booked drivers and the percentage of matched rider requests. Generally, these
results confirm the previous observations: operator profits and user costs are inversely related
in regards to the profit share. It is interesting to note that system profit and user costs roughly
sum to 100%, which is not obvious, given that the latter is computed as the cost savings (directly
correlated to the total travel distance) that a user can obtain by sharing a ride as when opposed
to driving alone. For the operator, this suggests an important trade-off, which will be mostly
dictated by the importance of the user savings. For example, if the system aims at an average
cost of about 70% for the riders and drivers, the operator should expect that the revenue share γ1r
has to be kept below 30% (i.e., a value of 0.3).

In contrast, the penalty level only marginally impacts the operator profit and user costs, but
considerably impacts the percentages of booked drivers and matched rider requests. In order to
keep users happy, it appears to be beneficial to keep the penalty value at a reasonably low value
around γ1p = 0.5. As shown in the previous study, this may slightly increase the percentage of
drivers that have been booked, but not matched; however, in such rare cases, a 50% compensation
of the total trip costs are likely to be sufficiently attractive to drivers.

5.2.5 PEN-2: larger availability windows at the cost of higher penalties

We now assess whether large availability windows are a more beneficial choice, even in the case of
larger penalty values. To this end, we assess problem variant pen-2 with level-1 driver availability
windows of (τ1d = 1.3 and larger level-2 availability windows of τ2d = 1.4). Larger availability
windows clearly lead to a higher matching flexibility, as more ridesharing routes become time-
feasible. To properly compensate level-2 drivers for the inconvenience, we evaluate the impact of
larger values of level-2 penalties. Specifically, we test γ2p ∈ { 0.5, 1, 2, 4, 8, 16 }, while the penalty
for level-1 drivers remains at the same (smaller) value of γ1p = 0.3. Note that all experiments
assume a fixed revenue share of γ1r = γ2r = 0.3, which has been found in previous experiments to
be a beneficial trade-off between operator profits and savings for users.

Table 7: SAA-R results for different values of γ2
p on variant pen-2 (τ 1d = 1.3, τ 2d = 1.4 and

γ1
p = 0.3).

γ2
p profitgt gapws (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

0.5 271.22 8.04 4.04 30.81 10.27 0.61 87.32 68.71 412.58
1.0 269.32 8.68 6.26 29.42 10.53 0.28 87.84 69.00 801.47
2.0 266.79 9.53 7.73 26.96 9.10 0.14 86.47 68.66 333.48
4.0 263.26 10.73 8.19 26.97 8.97 0.13 86.45 68.89 241.93
8.0 256.42 13.03 8.20 25.97 8.90 0.12 85.79 68.54 179.23
16.0 249.34 15.43 8.26 25.48 8.26 0.09 84.95 68.46 267.50

The results are summarized in Table 7. Columns “book L1 (%)” and “book L2 (%)” indicate
the average percentages of all drivers booked at levels 1 and 2, respectively. Columns “failed L1 (%)”
and “failed L2 (%)” show the average proportions of booked, but unmatched level-1 and level-2
drivers, respectively. The results show that the optimal solutions book a much larger percentage
with larger availability windows (i.e., level-2 drivers), even when faced with unrealistically high
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penalties (such as γ2p = 16). Indeed, larger availability windows reduce the likelihood of failing
a booking (from about 10% for level-1 drivers to at most 0.61% for level-2 drivers), as drivers
have more flexibility. In absolute terms, far less than 1 out of the more than 50 booked level-2
drivers remain unmatched on average. The monetary risk to the ridesharing platform is therefore
marginal, even when penalties are high. Interestingly, trip costs for users remain stable. On
the downside, larger penalties imply that a smaller proportion of the available drivers is booked,
Nevertheless, high penalties may be an interesting temporary “marketing strategy” to attract
a large driver user-base in the near-future without sacrificing much profit. Finally, as observed
in previous experiments, larger penalties increase the gaps to the wait-and-see solution. This is
expected, given that the latter has perfect knowledge on rider requests and can therefore avoid
penalties.

On the EVP performance for variant PEN-2. Intrigued by the rather bad performance
of the EVP for problem variant pen-2 (see Table 2), we now explore the model performance for
different penalty values γ2p in Table 8. As before, these experiments involve high penalties for
level-2 drivers, ranging from γ2p = 0.5 to 16.

Table 8: EVP results for different values of γ2
p on variant pen-2 (τ 1d = 1.3, τ 2d = 1.4 and

γ1
p = 0.3).

γ2
p profitgt gapws (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

0.5 260.25 11.74 6.14 30.78 12.29 2.29 89.66 69.04 1.55
1.0 239.89 18.62 3.40 33.56 14.89 2.72 89.75 69.05 1.92
2.0 211.54 28.20 3.72 33.20 17.23 2.35 89.65 69.05 1.83
4.0 112.40 61.69 3.02 33.97 13.68 2.94 89.73 69.07 1.84
8.0 30.27 89.43 4.19 32.74 16.27 2.27 89.68 69.06 1.87
16.0 -303.91 202.33 4.42 32.57 11.64 2.76 89.65 69.01 1.62

The results are quite conclusive and highlight the negative consequences of the EVP’s inability
to discriminate the probabilistic risk of failed driver bookings. The EVP solution books more
level-2 drivers than the SAA-R solution (32.57% vs. 25.48% for γ2p = 16; compare Table 7), which
allows for a high flexibility to match the fractional rider requests. However, the proportion of
failed level-2 bookings remains relatively high when compared to the SAA-R solutions (2.76% vs.
0.09% for γ2p = 16), resulting in several penalties when evaluated on the ground truth. We expect
these results to generalize to other problem variants if large penalty values are evaluated. This, in
turn, may ultimately jeopardize the profitability of the system. In practice, this is likely to be
unacceptable and makes the EVP an unnecessarily risky choice as a planning model.

5.2.6 FEE-2: larger availability windows at the cost of higher booking fees

We now investigate whether the conclusions from the previous section also hold in the case of
the problem variant, where booking fees are paid instead of penalties. To this end, we consider
problem variant fee-2 with two different booking levels. Drivers can be booked at level 1 for a
fee of f1

i = 1, which are available for 45 minutes. Alternatively, drivers can be booked at level 2,
for a larger time window of 1 hour and a higher booking fee of f2

i ∈ { 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 }.
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Table 9: SAA-R results for different values of f 2
i on variant fee-2 (f 1

i = 1; level-1 drivers
are available for 45 minutes; level-2 drivers are available for 1 hour).

f 2
i profitgt gapws (%) opt. gap (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

1.5 148.71 10.82 0.68 1.31 16.44 12.58 13.49 78.89 71.63 3,600.00
2.0 131.71 14.16 0.93 3.07 14.06 23.29 12.14 76.19 71.47 3,600.00
2.5 117.34 16.69 1.04 4.01 12.58 27.00 10.15 73.74 71.42 3,600.00
3.0 105.98 18.01 0.43 5.03 11.08 22.62 7.68 71.27 71.46 3,600.00
3.5 94.32 20.24 0.61 5.46 10.16 27.19 7.67 69.07 71.41 3,600.00
4.0 84.04 21.99 0.57 5.93 9.33 25.92 6.68 66.92 71.53 3,600.00

The results are summarized in Table 9. As the models tend to exceed the CPU time limit for
this problem variant, column “opt. gap (%)” shows the optimality gap of the best known solution
as reported by CPLEX. Even though CPLEX did not prove optimality for any instance, the final
optimality gaps are rather small. The difficulty of solving problem instances for this problem
variant can be explained by the fact that drivers have no fixed destination, and are therefore
more flexible. This leads to a larger number of feasible routes when compared to other problem
variants (as previously shown in Table 1), which leads to larger formulations that require more
computational resources to be solved.

Although the proportion of booked level-2 driver decreases and the proportion of booked
level-1 drivers increases with larger level-2 penalties, the system tends to prioritize level-2 drivers.
This highlights the benefit of larger availability windows, which is in line with previous findings for
other problem variants (see Sections 5.2.3 and 5.2.5). However, in contrast to variant pen-2, fees
that are paid for every booked driver, and not only for those who remain unmatched, result in less
driver bookings in general, and therefore in less matched rider requests. Larger level-2 booking
fees naturally amplify this phenomena: the system starts matching more level-1 drivers, which
further reduces the number of successful matches, and therefore reduces the overall system profit.
The percentage of failed bookings are relatively high on both levels, given that no additional
penalty is paid if a booked driver remains unmatched. For a similar reason, such higher number
of failed booking do not imply less satisfied drivers, since drivers are compensated in either case.
Finally, similar to previous results, the gaps to the wait-and-see solution are relatively high, given
that the latter can avoid paying booking fees to drivers that are not matched.

5.2.7 PEN-FEE: impact of mixed booking costs and penalties

As a final set of experiments, we now focus on variant pen-fee, a context where drivers can be
booked either by means of penalties (booking level 1) or by a fixed booking fee without risk of
future penalties (booking level 2). Specifically, level-1 drivers can be booked with potential penalty
scaling values γ1p ∈ { 0.5, 1, 1.5, 2, 2.5, 3, 8, 16 }. Level-2 drivers are booked without penalties, but
with a constant booking fee f2

i = 1, ∀i ∈ D. Both booking levels have the same relative availability
window scaling values τ1d = τ2d = 1.3 and revenue share γ1r = γ2r = 0.3.
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Table 10: SAA-R results for different values of γ1
p on variant pen-fee (τ 1d = τ 2d = 1.3,

γ1
r = γ2

r = 0.3 and f 2
i = 1).

γ1
p profitgt gapws (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

0.5 369.27 9.34 29.08 6.41 1.41 32.48 80.65 73.59 16.39
1.0 363.25 10.81 25.33 9.51 0.68 26.86 80.28 73.26 16.77
1.5 360.86 11.40 24.38 10.36 0.50 26.03 80.28 73.21 14.77
2.0 358.69 11.93 23.41 11.32 0.39 24.51 80.28 73.21 19.34
2.5 356.75 12.40 22.43 12.13 0.33 24.21 80.38 73.07 17.23
3.0 355.56 12.69 21.94 12.35 0.26 22.83 79.95 73.03 16.29
8.0 346.81 14.84 20.96 13.60 0.18 22.27 80.24 73.06 26.64
16.0 338.49 16.87 19.97 14.59 0.13 21.14 80.24 73.05 23.69

The results, summarized in Table 10, indicate that, for lower penalty values, the system favors
level-1 drivers (those that potentially imply penalties) over level-2 drivers (those paid booking fees).
While the proportion of level-1 drivers decreases as the penalties increase, even for unrealistically
large penalty values (i.e., γ1p = 16), we do not observe an inflection point at which booking fees
become more favorable. Such behavior is mostly motivated by the underlying percentages of
booked, but unmatched drivers: the proportion of failed level-1 drivers is negligibly small, while
the proportion of failed level-2 drivers is quite high (but without economic impact). For γ1p = 16,
the average penalty for an unmatched level-1 driver would is 335.85, which may pose considerable
risks to the ridesharing platform, as a single penalty paid would almost be in the same orders of
the entire profit. On average, however, only 0.05 level-1 drivers remain unmatched (200 drivers
×19.97%× 0.13%). Among all booked level-2 drivers, only 4 to 6 remain unmatched, on average
(and in this case, without any economic impact).

Similar to previous results, larger penalties only have a limited negative impact on the profit,
as the system rarely fails a level-1 booking and has to pay the penalty. Further, larger penalties
lead to larger gaps to the wait-and-see solution, similar to previous results. All other performance
metrics remain similar, which confirms the conclusions of previous experiments, suggesting that
penalties are an attractive driver compensation mechanism to ridesharing operator (as opposed to
booking fees), while maintaining an overall customer satisfaction.

6 Conclusions

We have introduced a general modeling framework for ridesharing systems, where drivers have to
be selected before driver requests become available. This framework allows for the representation
of many-to-one ridesharing systems, and addresses the uncertainty of rider requests while taking
into consideration compensation strategies for drivers (booking fees and penalties for not providing
a rideshare). The mixed-integer programming modeling framework consists of a two-stage set-
packing model with stochastic nodes. We exemplify the usage of this model by means of three
instances of ridesharing system operating modes and identify the conditions under which the here
proposed problem also solves the more general multi-stage problem variant used in a dynamic
context.

We evaluate three models that approximate the second-stage value function: the SAA model,
the expected value model, and the SAA model with a relaxed second-stage problem (SAA-R).

Two-Stage Stochastic One-to-Many Driver Matching for Ridesharing

26 CIRRELT-2022-36



Our computational results show that the SAA and SAA-R models generate better solutions, while
the latter is solved within a a fraction of the required computing time.

We then carry out extensive sets of computational experiments in order to derive managerial
insights on the benefits of the different operating modes, as well as on parameter values that
ensure both the profitability of the system and a high user satisfaction. Specifically: 1) larger
availability windows allow for more matching flexibility and ultimately lead to a higher number
of successful matched and hence a higher platform profit; 2) large penalties do not necessarily
jeopardize the profitability of the system, given that optimal planning solutions will adjust the
driver bookings in order to keep failed bookings low, and therefore mostly avoid penalties; this
implies that announcing temporarily high penalty compensation may be valid marketing strategy
to increase the driver user-base; 3) if possible, a driver compensation mechanism via penalties may
be preferable to system operators over fixed booking fees, if penalties can be mostly avoided; 4)
while a higher revenue share kept by the operator also implies more profit, it is inversely related
to the savings for the users; as such, we identify revenue share and penalty parameter values that
provide an attractive trade-off between overall system profit and customer satisfaction.

This research opens several promising research directions. From a practical viewpoint, it may
be worthwhile investigating multi-stage problem variants that cannot be solved exactly by the
here proposed two-stage stochastic model (e.g., variants where drivers can be selected at any
time during the day, as well as the possibility of un- and re-matching drivers and riders). From a
methodological point of view, mathematical decomposition algorithms may be employed to solve
the here proposed models faster and on larger scale. In this regards, integrating route-generation
via column generation may be a promising avenue to solve the SAA, while Benders decomposition
may be employed to solve the SAA-R.
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