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Abstract. This paper studies the drone-aided last-mile delivery problem with shared depot 

resources. Our research motivation comes from E-commerce logistics, where big 

companies such as Amazon, are already filing up patents for the development of drone-

friendly fulfillment centers towers that could serve as both charging hubs and convenient pit 

stops for delivery drones to pick up and drop off packages efficiently. We mainly focus on 

the tactical decisions about the selection of shared fulfillment centers used as the drone 

launch and retrieve stations and the fleet size plans. The operational drone route decisions 

are also incorporated into a unified framework to account for the mutual impact between 

tactical and operational plans. Moreover, we consider explicitly the non-linear and load-

dependent nature of the energy consumption function for drone batteries. The problem is 

formulated as a mixed integer program with linear constraints, developed in the realm of 

layered networks, where the non-linear nature of energy consumption and its load 

dependency are incorporated and efficiently handled without the need of approximating 

non-linear terms. 
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1 Introduction

The two digits growth of the e-commerce is reshaping the distribution of
goods in our cities and the associated logistic business processes and mod-
els. Its disruptive impact on the delivery process has dramatically chal-
lenged transportation companies [19, 21], not only for the increased volume
of last-mile deliveries, but also for the consequent change in customers, more
connected and informed, and whose orders are smaller, more frequent and
normally characterized by very tight time-windows (up to 1 hour). This
pushes the companies to explore new delivery methods, such as cargo bikes,
lockers, delivery robots [6, 20]. Among these options, one of the more in-
teresting one, both from an industrial and an academic point of view, are
Unmanned Aerial Vehicles (UAVs), also known as drones.

Drone-aided deliveries offer significant benefits in terms of cost and deliv-
ery time savings [1, 3, 18] together with lower CO2 emissions and congestion
[5], especially compared to terrestrial vehicles. In addition, drones often
represent the unique option to get access to distant and/or isolated areas,
for their ability to travel across different directions and altitudes. Acknowl-
edging such potentials, Amazon released a number of patents for multi-level
Fulfillment Centers (FC)s that facilitate drone landing and take-off within the
delivery operations, especially in populated urban settings [2], but other sim-
ilar systems are under test, as Google’s “Project Wing” [13], DHL’s “Parcel-
copter” [8], and the joint venture between Swiss Worldcargo (the air freight
division of Swiss International Air Lines) and the California-based start-up
Matternet [7].

Generally speaking, FCs are, in fact, drone stations that are centrally
controlled and are built in a beehive-like tower shape to ease the accommo-
dation of a large number of drones. The FCs also provide retail companies
with a variety of different services from package handling to recharge opera-
tions. The use of such facilities, in a shared way can be an opportunity for
retail companies interested in drone delivery services.

Although the idea of shared FCs seems so appealing, there are some tac-
tical challenges to cope with. In practice, the agreement between the retailer
and the FCs owner is a long-term contract to specify the set of shared FCs
selected by the retailer and the required amount of space at each center
for stocking the parcels. This also depends on the fleet size, which is an-
other important decision the retailer should take in advance. Since tactical
and operational decisions are highly connected and influenced by each other,
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addressing the tactical decisions without considering the impact of opera-
tional plans may lead to system failure and severe losses. To account for
such mutual effect, the tactical and operational plans should be addressed si-
multaneously in a unified framework. Moreover, drone battery consumption
plays a key role in the planning and optimization of drone operations. Un-
fortunately, this component is highly non-linear, with a consequent increase
in the complexity of the problem at hand.

To cope with these issues, the main contributions of this paper are the
following.

� We present an integrated model to jointly address both tactical and
operational decisions arising in the drone-aided delivery context.

� Differently from the majority of the literature, we integrate the non-
linear drone battery energy consumption. In particular, Dorling et al.
[9] showed that drone energy consumption is a non-linear function of
drones’ payload and travel time. Clearly, considering the highly non-
linear nature of the energy consumption function enhances the realism
of the models, but exacerbates their complexity.

� We formulate the drone routing problem with non-linear and load-
dependent energy consumption as a Mixed Integer Linear Problem
(MILP).

� We conduct an extensive set of computational experiments, using data
that reflect the main issues involved in the problem.

The rest of the paper is organized as follows. In Section 2, we review
the relevant contributions to the drone-aided routing problem. In Section
3, we describe the problem, provide a brief discussion on drone battery en-
ergy consumption, and present the MILP. In Section 4, we comment on the
computational experiments. Finally, Section 5 summarizes the paper and
presents directions for future research.

2 Literature review

In this Section, we briefly cover the literature on the pure-play drone-based
models which focus on drone usage to deliver parcels directly from depots to
customer sites. In order to place our contribution in the right perspective,
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among the pure drone routing problem contributions, we also address those
involving depot/drone base/station/fulfillment center location/selection de-
cisions.

The acknowledgment of the importance of appropriate energy consump-
tion models in the literature on the pure-drone routing problem led to the
formulation of energy consumption as an explicit function of drone payload
and travel time. The work of Dorling et al. [9] is one of the first studies
that recognized the non-linear nature of the energy consumption in drone
batteries. The main assumptions made are that the power consumed dur-
ing takeoff, or landing is approximately equivalent to the power consumed
while hovering and the thrust balances the weight force. To avoid the com-
putational intractability of non-linear constraints, the energy consumption
function is replaced by its linear approximation. The authors proposed two
multi-trip drone routing formulations with different objective functions (ei-
ther total operating cost or total delivery time) and designed a simulated
annealing heuristic to solve the model. Similarly, Cheng et al. [4] applied
a linear approximation of the load-dependent energy consumption function
in a multi-trip drone routing problem. The model is enriched by valid cuts
embedded into a branch-and-cut algorithm. In [24], the drone maximum pay-
load, maximum flight duration and customers’ time windows are considered
in a multi-trip routing context. The energy consumption is approximated as
a linear function of drone weight and travel time. Rabta et al. [22] studied
a drone routing problem for parcel delivery with the possibility of en-route
charge from a single depot, considering the energy consumption linearly de-
pendent on the distance and the payload. The model is tested on a small
example with 1 depot, 1 recharging station and 5 customers.

In a recent paper, Du et al. [10] proposed a MILP formulation for the
drone routing problem with the aim of minimizing the total customer service
time and drone flight time. The model considered constraints on drone pay-
load, maximum flight distance, and customer time windows. The authors
applied a Dantzig–Wolfe decomposition approach to solve an instance of the
problem for medical supply delivery.

Regarding the scientific literature in the location-routing field, some au-
thors adopted a hierarchical approach in which first the location decisions
are tackled separately and next the operational drone-routing plans are ad-
dressed; others addressed the strategic/tactical location plans and opera-
tional routing decisions simultaneously. Clearly, the suitability of each ap-
proach depends on the application context; for instance, in a server-centric
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application, where the strategic location decisions are irreversible and costly,
especially compared to the operational routing decisions, it makes sense to
adopt a hierarchical framework; on the contrary, in a customer-centric con-
text, where the delivery plans are highly affected by the location of drone
bases, it is more reasonable to simultaneously handle both location and rout-
ing decisions.

Table 1 categorizes the recent scientific literature. Specifically, we clas-
sify the contributions based on Depot selection/location decisions (whether
addressed hierarchically or simultaneously), Fleet sizing decisions, critical en-
ergy consumption-related features such as drone payload, flight distance/duration
and Energy consumption constraints.

Table 1: Summary of multi-depot drone routing problems
Depot selection Fleet Drone Flight distance/ Explicit energy

decision sizing payload duration consumption constraints
Torabbeigi et al. [23] H ✓ ✓ ✗ Linear
Kim et al. [15] H ✓ ✓ ✓ ✗

Liu et al. [17] S ✓ ✗ ✓ ✗

Yakıcı [25] S ✓ ✗ ✓ ✗

Kim et al. [14] S ✓ ✓ ✓ ✗

Li et al. [16] S ✓ ✗ ✓ ✗

Grogan et al. [12] S ✓ ✗ ✓ ✗

This paper S ✓ ✓ ✗ Non-linear

H: Hierarchical S: Simultaneous.

Concerning the first stream (hierarchical approach), Torabbeigi et al. [23]
proposed two mathematical formulations involving strategic and operational
plans to optimize the drone routes for parcel delivery. At the strategic level,
a set covering model determines the minimum number of required depots to
cover all customers, next, at the operational stage, a drone routing model is
solved to find the optimal drone routes minimizing the number of dispatched
drones. The authors included energy consumption constraints into the prob-
lem which are linear functions of the payload and the travel time. A variable
pre-processing algorithm and primal and dual bound generation methods are
developed to speed up the computational performance. Kim et al. [15] pro-
posed a set covering model to find the optimal locations of drone depots,
followed by a multi-depot drone pickup and delivery model, in a healthcare
context. The cost of used drones is minimized while the drone payload and
the maximum drone flight time constraints are satisfied. A pre-processing
algorithm, a partition method, and a Lagrangian relaxation methods are
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developed as solution approaches.
In the location-routing context, Liu et al. [17] presented a model in a

drone patrol application to simultaneously find the optimal location of drone
launching bases and the optimal drone routes minimizing the total cost (base
establishment cost, drone usage cost, and flight cost). The authors imposed
a maximum flight duration for drones. Two heuristic algorithms combined
with local search strategies are designed and tested for 25 target points and
5 potential base stations. Yakıcı [25] proposed a selective location-routing
problem with the aim of maximizing the sum of importance values corre-
sponding to the covered points. The model accounts for a maximum flight
time and considers an upper bound for the number of selected stations to
be used. An ant colony optimization metaheuristic is designed as solution
approach. Kim et al. [14] proposed a drone routing model with multiple de-
pots, and multiple drones, allowing multiple UAVs to deliver goods to one
customer at the same time. The objective function minimizes the delivery
and drone usage costs. The drone payload capacity and maximum flight dis-
tance are considered as constraints. The optimal location of selected depots,
the fleet size, and the drone routes are the output of the problem. The model
is solved for instances up to 75 customers. In another paper, Li et al. [16]
studied a multi-depot drone routing problem to minimize the total number
of drones used and the total traveled distance. The model accounts for a
maximum drone flight time. Since not all the depots are required to be used,
the optimal location of used depots is an output of the problem. To solve
the problem, the authors developed a heuristic approach based on a hybrid
large neighborhood search.

In a recent paper, Grogan et al. [12] addressed a drone application for
relief operations conducted after a tornado. The authors proposed a routing
problem considering the maximum drone endurance limit with the aim of
minimizing the maximum route duration. The number of dispatched drones
and occupied depots are the problem outputs.

To conclude, in order to address the energy consumption concept in drone-
aided last-mile delivery, the majority of contributions only implicitly account
for the limited battery capacity imposing some constraints on the maximum
drone flight range. It is easy to note that, apart from the present contribution,
only Torabbeigi et al. [23] explicitly accounted for the drone battery energy
consumption. In this case, however, a strong simplification of the problem is
made since battery consumption is expressed as a linear function of payload
and travel time. Clearly, this assumption makes the problem more tractable
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but it raises questions about the feasibility of designed routes, as we will
show in the computational results. The contribution is also different from
the present paper since the authors dealt with the depot location plans and
routing decisions separately.

In this paper, we aim to fill this gap since we explicitly account for the
non-linear nature of energy consumption while tackling the tactical depot se-
lection/fleet size and operational routing decisions simultaneously. Clearly,
this exacerbates the computational intractability of the problem but enables
the decision-maker to adopt tactical policies which enhance operational effi-
ciency.

3 Problem description and mathematical for-

mulation

In this Section, we introduce the Drone Routing Problem with Shared Depots
(DRP-SD) and provide a brief discussion on the non-linear load-dependent
drone energy consumption. Next, we formulate the problem as an efficient
MILP, developed based on a load-indexed layered graph [11].

3.1 Problem definition

The DRP-SD is a location routing problem that determines the optimal
subset of shared FCs used as drone launch and retrieve stations, the optimal
size of the fleet to be deployed, and the optimal drone routes. The choice of
the FCs to use is guided by the minimization of the total cost: the tactical
cost related to the FC tariffs (for packaging and handling services), the fleet
usage cost, and the operational delivery cost. The retailer can afford to rent
a limited number of FCs and each FC can host up to a pre-specified number
of drones.

A fleet of homogeneous drones is available to deliver homogeneous parcels.
The drone batteries are fully charged at the beginning of the service. The
drone routing decisions define the FC that launches the drone, the order
of customers to be visited, and the FC that retrieves the drone, that can
be different from the starting FC. Once the route plans are defined, the
drone is appropriately loaded and visits the subset of customers assigned.
Clearly, the designed routes should be energy feasible, i.e. the total energy
consumed should not exceed the battery capacity. Since the drone energy
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consumption depends on travel time and (non-linearly) on the drone payload,
it is important to track, at each customer’s site, the drone payload after
dropping the parcel at the customer’s doorstep. Finally, after delivering the
last customer’s package, the drone is retrieved at one of the FCs.

It is important to note that in the DRP-SD, the main focus is on tac-
tical plans such as the selection of FCs and the fleet size decision, while
the operational routing plans are incorporated to account for the connection
and mutual interactions between such long-term and short-term plans. As
mentioned earlier, at the time the tactical decisions are planned, the exact in-
formation on the parcels features such as weight is not available and we plan
based on peak- or average-demand scenario, depending on the risk aversion
of the decision maker.

Figure 1 represents a DRP-SD instance with four potential FCs and three
drones. In the colored squares above each customer, the accumulated drone
payload after departure from the customer is reported. All parcels have a
weight of 0.5 kg. Each drone is launched from a selected FC, serves multiple
customers and is finally retrieved at one of the active FCs already used as
drone launch points. As we can see, the choice of FCs is selective and one
FC is not used.

3.2 DRP-SD: Mathematical formulation

Following Dorling et al. [9]’s approach, the energy consumption (in Watt-
hours, Wh) in a drone flying from point i to point j with travel time tij
while carrying a payload of weight pij can be expressed as:

Eij =

√
g3

2 ρξh
(ω + µ+ pij)

3/2 tij (1)

where g represents the gravity constant (in N/kg), ρ denotes the fluid density
of air (in kg/m3), ξ is the area of spinning blade disc (in m2), h is the number
of drone rotors [4] and ω and µ represent, respectively, the drone frame and
battery mass (in kg). Clearly, modeling the energy constraints with non-
linear payload-dependent energy function as in (1) entails the definition of
non-linear constraints. Thanks to the problem assumption on the demand
homogeneity and to the use of load-indexed layered graphs, it is possible to
embed the non-linear energy consumption in a MILP.
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Figure 1: DRP-SD solution

The load-indexed layered graph is built upon indexed levels, which corre-
spond to different drone payloads. To be more specific, let p be the parcel
weight of each customer and Q be the maximum payload capacity of the
drone. Clearly, the drone can serve up to N = ⌊Q

p
⌋ customers. Now, if the

parcels have weight U, (U ≤ Q), the drone payload after delivering the order
of the r−th customer is (U − r p) that corresponds to the load-index/level of
(U − r p). When the drone is on its trip back to the FC, its carrying payload
is 0, which corresponds to the load index of 0. We may represent the load-
indexed layered graph as displayed in Figure 2. This graph includes different
load levels from N to 0 where each load index represents the drone carrying
payload just after visiting a customer. Any node in the graph represents
either one of the customers (denoted by squares and indexed from 1 to n),
or one of the FCs (displayed by circles and indexed from 0, 1, ..., m) and
the level assigned to the node represents the drone payload (the number of
packages to be delivered) upon arrival at the node and before serving it. The
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auxiliary node 0 is used to connect the starting FC to the first customer.
The last customer is followed by the FC that retrieves the drone. Figure
3 displays the load-indexed layered graph corresponding to the example in
Figure 1. Notice that thanks to the layered graph, the energy consumption
associated to each load level r can be easily evaluated as

ϵr =

√
g3

2 ρξh
(ω + µ+ r p)3/2

and hence, becomes a parameter. Defining load indexed decision variables,
as reported in Table 2 (where the whole notation is reported), the DRP-SD
can be formulated as the following MILP:

Sets and indices
C = {1, · · · , n} Set of customers, indexed by i, j
D = {1, · · · ,m} Set of potential FCs, indexed by d
D′ = {0} Auxiliary node
L = {0, 1, · · · , N} Set of levels, indexed by r
Parameters
cij Travel cost between (i, j)
νd Weight-based tariff of the FC d
p Customer’s package weight
δ Drone usage cost
FS Fleet size
Capd Capacity of the FC d
T Maximum number of FCs to use

ϵr Constant parameter
√

g3

2 ρξh
(ω + µ+ r p)3/2

E Battery capacity
Decision variables

xr
i Binary variable which takes value 1 if customer i is visited at load-level r (upon arrival at the location of customer i, the drone carries r parcel packages)

yrij Binary variable which takes value 1 if node j is visited right after node i and there are exactly r − 1 parcels to be delivered after
zd Binary variable which takes value 1 if FC d is used
ei Continuous variable that indicates the accumulated energy consumption upon arrival at node i

Table 2: Mathematical model: notation

min :
∑
i∈C

∑
j∈C
j ̸=i

∑
r∈L

cij y
r
ij +

∑
d∈D

∑
j∈C

∑
r∈L

νd p r y
r
dj

+
∑
j∈C

∑
r∈L

δyr0j (2)∑
r∈L

xr
i = 1 i ∈ C (3)∑

r∈L

∑
j∈C

yr0j ≤ FS (4)∑
i∈C

x1
i =

∑
r∈L

∑
j∈C

yr0j (5)
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Load level N 1 2 3 n 0

1 2 3 m

Load level N − 11 2 3 n 0

1 2 3 m

Load level N − 21 2 3 n 0

1 2 3 m

Load level 3 1 2 3 n 0

1 2 3 m

Load level 2 1 2 3 n 0

1 2 3 m

Load level 1 1 2 3 n

Load level 0

1 2 3 m

Figure 2: Load-indexed layered graph
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Figure 3: Load-indexed layered graph for example in Figure 1
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x1
j =

∑
i∈D

y0ji j ∈ C (6)∑
j∈C
j ̸=i

yrij = xr+1
i i ∈ C, r ∈ L, r ̸= N (7)

∑
i∈C∪{0}

i̸=j

yrij = xr
j j ∈ C, r ∈ L, r ̸= N (8)

yN0j = xN
j j ∈ C (9)∑

d∈D

yrdj = yr0j j ∈ C, r ∈ L, r ̸= 1 (10)∑
j∈C

y0jd ≤
∑
r∈L
r ̸=1

∑
j∈C

yrdj d ∈ D (11)

∑
j∈C

∑
r∈L

yrdj ≤ Capd d ∈ D (12)

zd ≥ yrdj d ∈ D, j ∈ C, r ∈ L, r ̸= 1 (13)∑
d∈D

zd ≤ T (14)

ed +
∑
r∈L
r ̸=1

ϵrtdjy
r
0j ≤ ej+

M ′
dj(1−

∑
r∈L
r ̸=1

yrdj) d ∈ D, j ∈ C (15)

ei +
∑
r∈L
r ̸=N

ϵrtijy
r
ij ≤ ej+

Mij(1−
∑
r∈L
r ̸=N

yrij) i, j ∈ C, i ̸= j (16)

ej + ϵ0
∑
d∈D

tjdy
0
jd ≤ E j ∈ C, d ∈ D (17)

xr
i ∈ {0, 1} i ∈ C, r ∈ L (18)

yrij ∈ {0, 1} i, j ∈ D ∪ C ∪D′, i ̸= j, r ∈ L (19)

zd ∈ {0, 1} d ∈ D (20)
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ei ≥ 0 i ∈ C (21)

ed = 0 d ∈ D (22)

The objective function (2) minimizes the total cost. Constraints (3) ensure
that each customer is visited exactly once. Constraint (4) expresses the re-
striction on the maximum fleet size. Constraints (5) and (6) ensure that all
the drones are retrieved back at the end of the service. Constraints (7)-(9)
represent the connectivity constraints and express the relation between the
binary variables xr

i and yrij. According to constraints (7), any customer i vis-
ited at the upper level r+1 should be connected to exactly one customer (let
say j) at level r by traversing link (i, j). Constraints (8) guarantee that each
customer j visited at level r should be linked to exactly one customer (let say
i) or connected directly to the auxiliary node 0 by the link (0, j) in the same
level. Constraints (9) require that customers visited at level N should be
visited right after the auxiliary node 0 via arc (0, j) in the same level. Con-
straints (10) define the relation between yr0j and yrdj variables. Constraints
(11) ensure that only the FCs selected as drone launch sites can retrieve the
drones back. Constraints (12) represent the restriction on the FCs’ capacity.
Constraints (13) allow drones dispatch only from selected FCs. Constraints
(14) impose an upper bound on the number of selected FCs. Constraints
(15)-(17) express the drone energy consumption: notice that, thanks to the
load-indexed graph, the payload of the drone in each level r can be repre-
sented as constant rp, as embedded into the parameter ϵr. Constraints (15)
is for the first visited customer, (16) for the remaining customers. Mij and
M ′

dj are large enough constant that make the constraints binding only when
the corresponding y variables take value one. Constraints (17) limit the total
energy consumed to the battery capacity. Finally, constraints (18)-(21) ex-
press the nature of variables and constraints (22) set the initial accumulated
energy consumption.

4 Computational results

In this Section, we report the computational results conducted on two sets
of instances with 50 and 75 customers. The data set with 50 customers
is taken from the benchmark [4]. In order to test the model on larger in-
stances with 75 customers, we have extended the 50-customer instances by
adding 25 new customers where the demand and the coordinate location of
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the new customers were randomly generated from the range of demand and
coordinate locations for the 50-customer instances. As in [4], the travel time
between customers i and j is set equal to the travel distance between nodes
i and j, calculated according to the Euclidean norm. The delivery cost is set
as cij = α tij where α = 0.94 $/h is the delivery cost per hour. The drone
usage cost δ was set to 0.7 $ and the FC tariff is computed as νd = δ

γ
(the

parameter γ ∈ {5, 10} represents the proportion between the FC tariff and
the drone usage cost). For all experiments, we have considered 5 potential
FCs with a capacity of at most 5 drones (Capd = 5), and T = 4. Depending
on the instance size, we have set FS = 10 or FS = 12.
Regarding the spatial configurations of the FCs, we have considered a Cen-
tered configuration, where the FCs are located close to the center of the de-
livery area, and a Marginal configuration, where the facilities are marginally
located around the outskirt of the area. In more details, let (Xi, Yi) be the
location coordinates of customer i in the 2-dimensional space, we define

X̄ =
1

n

∑
i∈C

Xi

Ȳ =
1

n

∑
i∈C

Yi

RX = Xmax −Xmin

RY = Ymax − Ymin

(23)

where Xmin = mini∈C Xi, Xmax = maxi∈C Xi, Ymin = mini∈C Yi, Ymax =
maxi∈C Yi For the centered configuration the coordinates of the five FCs are:

FC1 : (X̄, Ȳ )

FC2 :(X̄, Ȳ − βRY )

FC3 : (X̄, Ȳ + βRY )

FC4 :(X̄ − βRX , Ȳ )

FC5 : (X̄ + βRX , Ȳ )

where the input parameter β ∈ (0, 1) controls the dispersion among the FCs
for the centered configuration (we set β = 0.2 in all experiments). For the
marginal configuration the coordinates of the FCs are:
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FC1 : (Xmin, Ymin)

FC2 : (Xmax, Ymin)

FC3 : (Xmin, Ymax)

FC4 : (Xmax, Ymax)

FC5 : (Xmin+Xmax

2
, Ymin)

We have considered a MATRICE 600 PRO drone with a payload of 6 kg
and six TB47S batteries with a power of 0.099 kWh. The estimated parcels
weight is 0.8 kg.
All the experiments have been performed on an Intel® Core i7-10750H, with
2.60 GHz CPU, 16 GB RAM working under Windows 10 and Gurobi 9.1 has
been used as MILP solver.

4.1 Energy consumption versus flight range

In order to highlight the importance of dealing with energy consumption in
the drone-delivery context, we have first carried out a set of experiments on
the instance 50− 5 and marginal configurations of the FCs, with the follow-
ing input parameters T = 4, Capd = 2, FS = 6, ϕ = 5. For the considered
drone, the flight time endurance is ζ = 16min. This flight time has been
evaluated considering the drone always flying fully loaded. This is a quite
conservative assumption, since in practice, the drone is never in this situa-
tion. Despite this, in the results we will show that it may happen that the
drones have not enough energy to complete the route.
We have compared three different models reflecting different modeling ap-
proaches for drone endurance: the Energy-based Model, Flight Range Model
and the No energy Model.

The Energy-based Model incorporates (1) embedded into the MILP model,
as discussed in Section 3; the Flight Range Model implicitly accounts for
the limited battery consumption, limiting instead the total flight time for
each drone. To be more precise, the energy-related variables ei and their
corresponding constraints are removed; instead, a set of continuous variables
ti, i ∈ D ∪ C are introduced denoting the flight duration upon arrival at
node i. Also, constraints (24)-(27) are added into the model to set the flight
duration upon arrival at a customer and to limit the flight duration.
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ti +
∑
r∈L

tijy
r
ij = tj i ∈ C ∪D, j ∈ C, i ̸= j (24)

tj +
∑
i∈D

tjiy
0
ji ≤ ζ i ∈ D, j ∈ C (25)

ti = 0 i ∈ D (26)

ti ≥ 0 i ∈ C (27)

The No energy Model is obtained by excluding the variables ei and the cor-
responding set of constraints.

Table 3 reports the comparative results for the models discussed earlier.
The energy consumption and flight duration are specified in columns with
headings EC and FD, respectively.

As can be observed in Table 3, in both the Flight Range Model and
No energy Model some drones violate the battery capacity which means the
routing plans specified by an asterisk are neither valid nor reliable in practice.
On the other hand, the Energy-based Model not only provides feasible routes,
but it also gives more balanced solutions, where the drones are evenly used.
In fact, the average flight duration (in minutes), for the Flight Range Model
is 11.67 with a variation among drones of 7.38 minutes. The same values
for the No energy Model are 11.43 and 6.54 minutes while for the Energy-
based Model, we get 10.54 and 3.30 minutes. It is interesting to note that
the Energy-based Model provides the best performance especially compared
to the Flight Range Model. In fact, not only the Flight Range Model fails to
provide energy-feasible routes, but it even provides larger flight times both
in terms of the average value and the spread amongst different drones.
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Table 3: Comparative results: energy consumption versus flight range
Energy-based Model Flight Range Model No energy Model
EC FD EC FD EC FD

(kWh) (min) (kWh) (min) (kWh) (min)
0.085 10.38 0.052 8.16 0.052 8.16
0.077 9.54 0.089 11.46 0.077 9.54
0.091 12.06 0.095 11.40 0.095 11.40
0.078 9.24 0.085 10.44 0.085 10.44
0.075 8.76 0.111∗ 12.90 0.111∗ 12.90
0.085 11.16 0.093 10.80 0.118∗ 14.70
0.099 11.70 0.132∗ 15.54 0.107∗ 11.64
0.096 11.52 0.101∗ 12.72 0.101∗ 12.72

4.2 Model validation and discussion

Table 4 displays the results for instances with 50 customers where for each
instance, we have considered 2 different γ values (5 and 10) and 2 FC con-
figurations, for a total of 20 instances. The first three columns in Table 4
display the instance-related information.
In terms of computational time, all the instances are solved in less than 11
minutes and, on average, the CPU time is about 3 minutes. The columns
FCC and V C represent, respectively, the percentage of the tactical Fulfill-
ment center Cost and the Vehicle Cost over the total costs expressed as

FCC =
∑

d∈D

∑
j∈C

∑
r∈L νd p r yrdj

Obj
100 and V C =

∑
j∈C

∑
r∈L δyr0j

Obj
100. In a similar

way, DC represents the percentage of the operational Delivery Cost over the

total costs DC =
∑

i∈C

∑
j∈C

∑
r∈L cij y

r
ij

Obj
100. We have also reported the average

Arrival Time (AvgAT ) to the customers and the average Energy Consump-
tion over all the drones (AvgEC) as important Key Performance Indicators
(KPIs). Finally, the last column reports the number of drones (out of 8) that
require at least 80% of a fully charged battery to complete the route.

The following observations can be drawn from the results. On average,
FCC and V C are about 39% and 54% of the total cost, while DC is limited
to 7%. Such results are expected since, in general, tactical costs are higher
than operational costs. The average customer’s waiting time is just about
3 minutes, showing a speedy delivery and implying good customer satisfac-
tion. In addition, the average energy consumption is about 79% of a fully
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charged battery. This is an informative insight since the fluctuations in en-
ergy consumption, mostly due to weather-related disruptions can drastically
affect the validity of designed routes. In this case, an energy buffer of 20%
contributes to the robustness of the routing plans. When γ = 10, the con-
tribution of FCC and V C are, on average, 30.86% and 61.72% of the total
costs incurred to the system showing that the V C is two times the FCC.
Instead, in the case of γ = 5 (that corresponds to doubled FC tariffs), the
average share of FCC and V C are equal to 47.14%. In terms of the delivery
cost, no significant variation is observed (the average DC of 5.75% in case of
γ = 5 compared to the average DC of 7.47% corresponding to γ = 10).
Second, regarding the KPIs, the average arrival time clearly is not affected by
the increase in FC tariffs and the slight variation in the average energy con-
sumption is related to the flexibility of the proposed model to choose any of
the FCs as the drone retrieve sites as long as the battery capacity is respected.

Regarding the spatial configuration of FCs, we can draw two important in-
sights. First, by switching from the centered to the marginal configuration
and under the same tariff setting, the total system cost slightly increases due
to the increase in the total traveling cost. Needless to say, marginal areas
of the city are less populated while most of the customers are closer to the
city center and farther from the marginal FCs. Clearly, when the tariffs are
the same, it is more beneficial to utilize the FCs near the city center which
ensures speedy delivery and lower energy usage.
The second insight comes from the comparison of the centered configuration
with higher tariffs (γ = 5) and the marginal one with lower tariffs (γ = 10).
In many real-world applications, the FCs located on the outskirts of the city
incur in lower tariffs compared to those in the city center. Nonetheless, the
marginal configuration can be quite appealing since the tactical costs can
be reduced. If the marginal configuration is adopted, the drones should fly
longer distances to reach the customers and this, in turn, will increase the
operational delivery cost, and other time or distance-related KPIs.

For instance, under the marginal configuration, the tactical cost decreases
by 50% but, instead, the delivery costs increase from 2% and up to 8%. In
addition, the AvgAT KPI, under the marginal case, is always worse than
the centered one (at least 4% and at most 21.57% higher). Under the cen-
tered case at most half of the drones consume an amount of energy which is
more than 80% of the drone capacity while under the marginal setting, this
value may increase with an average energy consumption always above the
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Table 4: Computational results: benchmark instances
Instance γ FC configuration FCC V C DC AvgAT AvgEC > 80% Obj CPU

(%) (%) (%) (min) (kWh) (s)

50-1 5 Centered 47.15 47.15 5.70 3.06 0.072 3 11.87 39.95
10 30.84 61.69 7.45 3.06 0.075 3 9.07 44.37

50-2 5 Centered 47.13 47.13 5.72 3.30 0.076 3 11.88 53.36
10 30.83 61.67 7.48 3.30 0.073 3 9.08 127.34

50-3 5 Centered 47.31 47.31 5.74 3.06 0.073 4 11.83 138.92
10 30.98 61.97 7.52 3.06 0.072 4 9.03 84.14

50-4 5 Centered 47.22 47.22 5.54 3.12 0.076 4 11.85 102.17
10 30.91 61.83 7.25 3.12 0.074 3 9.05 148.03

50-5 5 Centered 47.32 47.32 5.34 2.88 0.073 4 11.83 11.29
10 30.99 61.99 7.00 2.88 0.072 2 9.03 14.82

50-1 5 Marginal 46.94 46.94 6.11 3.72 0.081 5 11.92 235.51
10 30.67 61.34 7.98 3.72 0.084 6 9.12 463.87

50-2 5 Marginal 47.07 47.07 5.85 3.42 0.081 5 11.89 642.59
10 30.78 61.56 7.65 3.42 0.088 7 9.09 380.15

50-3 5 Marginal 47.03 47.03 5.93 3.72 0.081 5 11.90 242.78
10 30.74 61.49 7.76 3.72 0.082 6 9.10 398.82

50-4 5 Marginal 47.11 47.11 5.77 3.54 0.083 6 11.88 151.50
10 30.81 61.63 7.55 3.54 0.084 6 9.08 268.39

50-5 5 Marginal 47.13 47.13 5.73 3.42 0.088 8 11.88 116.90
10 30.83 61.66 7.49 3.42 0.078 5 9.08 43.21

0.078 kWh (this value is below 0.076 kWh under the centered configuration).
Table 5 reports the results for the larger instances with 75 customers. The

optimal fleet size is equal to 11 drones for all cases and the average CPU
time is about 17 minutes; as expected, the solution time increases with the
instance size. Regarding the FCC and V C, we observe that if γ = 5, the
tactical costs are comparable and for γ = 10, the V C is almost double that
of FCC. The AvgAT values are always below 4 minutes and the AvgEC is
at most 87% of the drone battery. Under the centered setting, at most 45%
of the drones consume more than 80% of the drone battery while this value
increases to 63% if the marginal setting is selected.
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Table 5: Computational results: larger instances
Instance γ FC configuration FCC V C DC AvgAT AvgEC > 80% Obj CPU

(%) (%) (%) (min) (kWh) (s)
In75-1 5 Centered 49.59 45.45 4.95 2.82 0.068 2 16.93 494.57

10 32.97 60.44 6.58 2.82 0.071 2 12.73 388.12

In75-2 5 Centered 49.53 45.4 5.05 3.06 0.074 5 16.95 1533.54
10 32.92 60.35 6.71 3.06 0.078 4 12.75 1138.42

In75-3 5 Centered 49.69 45.55 4.75 2.94 0.073 3 16.9 907.37
10 33.06 60.61 6.32 2.94 0.071 3 12.7 273.07

In75-4 5 Centered 49.57 45.44 4.97 2.94 0.068 4 16.94 387.09
10 32.95 60.42 6.61 2.94 0.074 3 12.74 170.71

In75-5 5 Centered 49.62 45.48 4.89 2.76 0.07 3 16.92 3538.15
10 32.99 60.49 6.5 2.76 0.069 3 12.72 2171.62

In75-1 5 Marginal 49.36 45.25 5.37 3.30 0.083 5 17.01 717.78
10 32.77 60.08 7.14 3.30 0.08 5 12.81 1344.51

In75-2 5 Marginal 49.38 45.26 5.35 3.30 0.087 6 17.01 887.89
10 32.78 60.1 7.1 3.30 0.086 5 12.81 1044.79

In75-3 5 Marginal 49.41 45.29 5.28 3.54 0.083 6 16.99 1075.07
10 32.81 60.16 7.01 3.54 0.08 5 12.79 524.17

In75-4 5 Marginal 49.38 45.27 5.34 3.48 0.081 5 17 1446.78
10 32.78 60.11 7.09 3.48 0.082 7 12.8 957.2

In75-5 5 Marginal 49.39 45.27 5.32 3.42 0.08 2 17 801.57
10 32.79 60.12 7.07 3.42 0.087 5 12.8 531.96

5 Conclusions

In this paper, we have investigated a drone delivery problem to address the
tactical decisions arising in last-mile applications where the connection with
operational plans is taken into account. The problem deals with the tacti-
cal selection of a subset of FCs to launch and retrieve the drones, and the
fleet sizing decisions on the optimal number of drones to be employed. We
have incorporated the non-linear and load-dependent energy consumption
function into the definition of a load-indexed layered network, leading to the
definition of a MILP that can be efficiently solved for instances with 50 and
75 customers. There are several fruitful directions for future research among

21 CIRRELT-2023-02

Energy Efficient UAV-Based Last-mile Delivery: A Tactical-Operational Model with Shared Depots and 
Non-linear Energy Consumption Model



which the design of heuristic approaches to alleviate the computational bur-
den and also the extension of the present model to account for en-route drone
recharging.
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