CIRRELT

Bureau de Montréal

Université de Montréal
C.P.6128, succ. Centre-Ville
Mentréal {Québec) H3C 307
Tél - 1-514-343- 7575
Telécopie -1-514-343-7121

Bureau de Québec

Université Laval,

2325, rue de la Terrasse

Pavillen Palasis-Prince, local 2415
Québec (Québec) GIVOAG

Tél - 1-418-656-2073

Télécopie - 1-418-656-2624

CIRRELT-2023-08

Lookup Table String Similarity Algorithm

Banafsheh Mehri
Yves Goussard
Martin Trépanier

January 2023

kS i TRpT— = T ww
3 MGl u-r-uru- EF_“_ UQAM  §ig e HEC MONTREAL  ipfencordla S0 VADC  “GidhecBE  FEiaeca:



Lookup Table String Similarity Algorithm

Banafsheh Mehri'?", Yves Goussard?, Martin Trépanier'?

' Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
(CIRRELT)

2 Department of Electrical Engineering, Polytechnigue Montréal

3 Department of Mathematics and Industrial Enginnering, Polytechnique Montréal

Abstract. String similarity algorithms are mainly used for measuring
similarity/dissimilarity between words for comparison and approximate
matching in many domains such as document clustering, fraud detection, word-
sense disambiguation for information retrieval and many more applications.
Although this field of research is well explored, most of the existing works rely on
optimizing result accuracy of such metrics whereas the trade-off between speed
of the measurement process (especially when operating on large data),
sensitivity of metrics with respect to the thresholds and discriminatory power of
similarity metrics are mostly ignored. The main objective of this paper is to
introduce a new algorithm: Lookup Table String Similarity (LTSS), which provides
an interesting trade-off between speeding up the process, reducing the
sensitivity to thresholds and increasing the ability to put similar words close to
each other when performing clustering as well as avoiding being too
discriminative to separate highly similar words. We also perform an evaluation of
a set of string similarity metrics to show the performance of our algorithm. Our
experiments indicate that the proposed method significantly outperforms the
existing metrics in terms of computational efficiency while exhibiting adequate
performance with respect to sensitivity, inter- and intra-bucket clustering. These
characteristics make LTSS algorithm an attractive candidate for computing
similarity distance when performing text classifications/clustering specially on
very large datasets.

Keywords: String similarity, misspelling, approximate matching, document
clustering.

Acknowledgements. The authors gratefully acknowledge the financial support
provided by the Natural Sciences and Engineering Council of Canada (NSERC),
and the Société de transport de Montréal (STM) for data provisioning.

Results and views expressed in this publication are the sole responsibility of the authors and do
not necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne refletent pas nécessairement la
position du CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: banafsheh.mehri@polymtl.ca

Dépdt légal — Bibliotheéque et Archives nationales du Québec
Bibliotheque et Archives Canada, 2023

© Mehri, Goussard, Trépanier and CIRRELT, 2023



Lookup Table String Similarity Algorithm

1 Introduction

In textual data, measuring the similarity between the texts is done by calculating the dis-
tance between their strings based on a similarity metric. Similarity metric algorithms
are widely used in Information Retrieval (IR) systems in order to enable searching for
information in databases, documents or linked data and they are used in various spe-
cific applications such as clustering or matching entity names [13] [7] [12], spell error
detection and normalization of micro texts [44], data cleaning and duplicate detection
[6] [28] and many more.

To showcase the importance of similarity measures on the performance of similarity
metric algorithms when dealing with real-life data sets,, Lopez et al. [26] have shown
that choosing an efficient similarity measure can help producing an ontology-based
question answering system that supports query disambiguation, knowledge fusion, and
ranking mechanisms, to identify the most accurate answers. In another effort, Ngonga
Ngomo and Auer [33] have revealed the impact of similarity measures in semantic web.
They developed an approach for the large-scale matching of instances in metric spaces
for the discovery of links between knowledge bases on the linked data.

With regard to the performance evaluation, string similarity measures used in many ap-
plications are usually evaluated in terms of their ability to retrieve relevant and accurate
information regarding a text string query. Papadimitriou et al. [35] discussed the possi-
ble effects of sensitivity of similarity functions on web graphs that would associate to
the quality of search results in search engines. They have shown that by using a simi-
larity function that is more sensitive to changes in high-quality vertices in web graphs,
results of a search query can be significantly improved.

Although string similarity metrics are amongst well studied fields of research, most of
these studies are focused on the precision of such algorithms while other characteris-
tics such as swiftness, sensitivity to thresholds and desired discriminatory power are in
most cases are overlooked. This research proposes a new string similarity algorithm that
adapts to the situations where those above-mentioned characteristics of an algorithm are
unavoidably required in real-world applications. Our proposed algorithm has been eval-
uated through a comparison with several existing algorithms. The experimental results
depict that it outperforms the existing algorithms with regard to the time efficiency
while obtaining comparable results in terms of accuracy, which makes it of great inter-
est to computational intensive applications when working with massive amount of data.

The rest of this paper is organized as follows. Section 2 points out to the commonly
used string similarity metrics. Section 3 introduces our proposed string similarity algo-
rithm, the Lookup Table String Similarity algorithm. Sections 4 describes the experi-
mental setup for the implementations and the performance comparisons. Section 4 also
includes the description about the data used in this study, the methodology to conduct
the performance comparisons and the metrics used to evaluate the experiments. Section
5 discusses the results of such experiments and Section 6 includes the conclusion.

CIRRELT-2023-08 1



Lookup Table String Similarity Algorithm

2 Related Work

Finding similarity between words is the fundamental part of similarity between sen-
tences, paragraphs and documents. String-based similarity algorithms operate on string
sequences and character composition. These measures usually map a pair of strings s
and ¢ to a real number r, where a smaller value of r indicates greater similarity between
s and t. Gomaa and Fahmy [16] grouped string similarity measures in two categories:
character-based similarity measures, which consider distance as the difference between
characters of strings (thus useful in the case of typographical errors) and term-based
similarity measures, which take into the account the distance between the two terms.
These types of categorization are mostly addressing the problem of document cluster-
ing. We can also group string similarity measures in edit-based similarity measures,
token-based similarity measures and hybrid similarity measures. Edit-based similar-
ity measures are characterized to process and evaluate the contrast between strings as
a weighted aggregate of the quantity of additions, eliminations, substitutions and ad-
ditionally transpositions needed to obtain the second string from the first one. The dis-
tance is then the cost of best sequence of edit operations that convert s to ¢t. Levenshtein,
Smith-Waterman and Jaro—Winkler are examples of edit-based similarity measures.

Token-based similarity measures essentially first try to decompose texts into token sets'
sets to use tokens rather than complete texts, and then compute the similarity based on
the token sets. Usually, two similar strings end up having a large overlap in their token
sets. Nonetheless, Token-based similarity measures are not quite efficient to calculate
similarity when typos and misspelling words are introduced [12]. In general, such mea-
sures suffer from the limitation that they only consider exact match of two tokens in bag
of words, hence ignoring string fuzzy matches. Jaccard, Sorensen-Dice and Cosine are
popular examples of token-based similarity measures.

There also exist hybrid similarity measures which combine the benefits of edit-based
and token-based methods. When more control is needed over the similarity measure, hy-
brid algorithms can be effective. Unlike edit-based measures [48] [42], hybrid measures
can be used for matching an attribute value to its abbreviation or acronym. Monge-Elkan
belongs to this group of similarity measures.

Here, for a better understanding of the sequence, we will briefly describe the main
algorithms of each class:

Levenshtein [24] is a commonly used similarity measure that describes the distance
between two strings by checking the base number of operations expected to change one
string into the other, where an operation is defined as an addition, cancellation, or sub-
stitution of a character, or a transposition of two nearby characters [24]. In other words,
The Levenshtein distance between two strings is the minimum number of edits needed
to transform one string into the other, with the permissible operations being: insertion,

! A token or g-gram is a character string of length q

2 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

deletion, or substitution of a single character. The Levenshtein distance between two
strings s and ¢ (of length |s| and |¢| respectively) is given by lev, (|al, |b]) where

max (i, ) ifmin(i,j) =0
leve (i—1,7)+1

min leve (3,7 —1)+1 Otherwise
leve (i—1,7 — 1)+ 1(s,# ;)

Zevs,t (Zv .7) =

where 1(,, # t;) is the indicator function equal to 0 when s; = ¢; and equal to 1 oth-
erwise, and levs (i, ) is the distance between the first ¢ characters of s and the first j
characters of ¢. ¢ and j are 1-based indices.

[4], [40], [39] and [25] are some of many applications of the Levenshtein similarity
metric such as comparing movement patterns detection, plagiarism detection, measur-
ing errors in text entry tasks and comparing sequence information in animals’ vocaliza-
tions.

Smith-Waterman [36] is a famous algorithm for acting nearby sequence alignment to
find the best alignment over the conserved domain of two sequences [36]. The Smith-
Waterman algorithm compares segments of all possible lengths and optimizes the sim-
ilarity degree. More specifically, this algorithm determines the sequence of operations
needed to transform one string to another, but attributes lower weights to transforma-
tions among similar-sounding characters and employs specialized logic for handling
alignment gaps such as a “’gap start” penalty corresponding to the beginning of a string
of unmatched characters, and a separate ”gap continuation” penalty for its continuation.
Instead of looking at an entire sequence at once, the Smith-Waterman algorithm com-
pares multi-lengthed segments, looking for whichever segment maximizes the scoring
measure. The algorithm itself is recursive in nature:

Hij =maxH; 151+ s(as,b;); Hi—y, j — Wy Hi j—1 — W13 0

Where s =a; ...ax and t = b; . .. by are the sequences to be aligned, K and L
are the lengths of s and t respectively. s(s,t) is the similarity score of the elements
that constituted the two sequences and Wy, as the penalty of a gap that has length k.
H;_1 ;1 + s(a;, b;) is the score of aligning a; and b;. H,_j, ; - W}, is the score if a; is
at the end of a gap of length k. H; ;1 - W, is the score if b; is at the end of a gap of
length [ and 0 means means there is no similarity up to a; and b;.

[20], [14], [18] and [47] are some examples of applications of this similarity metric on
plagiarism and collusion detection, automatic traffic signature extraction, early illness
recognition and its usage in genomic applications.

Jaro—Winkler [43] is, basically, an extension of Jaro distance [22]. In theory, Jaro dis-
tance is identifiable as the minimum number of single-character transpositions required
to change one string into the other, whereas Jaro-Winkler distance utilizes a prefix that

CIRRELT-2023-08 3



Lookup Table String Similarity Algorithm

establishes more favorable weights to strings that match from the beginning for a set of
prefix length. Given strings s=a; ...ax and t = by ... by, define a character a; in s to

be common with ¢, suppose that H = M, there is a b; = a; in string ¢ such that
i —H <j<i+H.
Now suppose that the characters in s common with ¢ and vice versa be s’ = a] . .. a/x

and ¢’ = b} ...V} . Now define a transposition for s’ and ¢’ The Jaro similarity for s and
tis:
1 sl 1] | = To ]

JarO(S,t) = g(g‘i’ﬂ‘i’ |5/|

)
Given P the length of the longest common prefix of s and ¢, let P’ = max(P,4), then
the Jaro-Winkler distance between s and ¢ is:

/

P
Jaro — Winkler(s,t) = Jaro(s,t) + E(l — Jaro(s,t))

Some applications of Jaro-Winkler similarity metric are such as duplicate detection in
health related records [1] and entity linking in Twitter data[8].

Jaccard [21] is mostly used in document similarity applications. Jaccard index refers
to the ratio of the size of the intersection of two strings to the size of their union [21]. In
order to use this algorithm, a document, typically, must be presented as a bag of words
which is the list of unique words in it, then we can compute Jaccard index between
them. The Jaccard similarity between the word sets s and ¢ is simply:

t
Jaccard(s,t) = :SBt:
s

Jaccard similarity coefficient has been used in many real word problems such as in
recommender system [46], distributed genome comparisons [5] and application level
traffic classification [10].

Sorensen-Dice [38] works by comparing the number of identical character pairs be-
tween the two strings [37]. It is often called Sgrensen index or Dice’s Coefficient. For
two sets of strings s and ¢, the Sorensen-Dice distance is defined as:

ds.t)— 1 2xlsINlE
s+ 11

Livestock emission characterization [19], biogeographic classifications [32] and anomaly-

based intrusion detection in system activities [34] can be mentioned as some real world
applications of Sorensen-Dice similarity.

4 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

Cosine is a very famous string similarity measure, extensively used in document simi-
larity in information retrieval domain [2] and clustering [23]. Cosine similarity measure
determines the cosine of the angle between two vectors. Once the strings are trans-
formed in vectors of occurrences of sequences of k characters, the similarity between
them will be the cosine of their respective vectors. Given two string sets of s and ¢, the
cosine similarity between the two sets is defined as:

3.7
cosf =
IIslll[zl

Cosine similarity is the same concept as TFIDF which is widely used in the information
retrieval problems.

Monge-Elkan [30] computes the average of the similarity values between the more
similar token pairs in two strings s and ¢. This algorithm was introduced by Monge
and Elkan [31] and it has been used in many name-matching and record linkage com-
parative studies [6] [7]. This hybrid method maintains the properties of the internal
character-based measure, the ability to deal with misspellings, typos, OCR errors, and
deals successfully with missing or disordered tokens. Given string sets of s, ¢ and their
substrings s = a7 ...ax and t = by . . . by, the Monge-Elkan algorithm measures the
average of the similarity values between pairs of more similar tokens within string sets
s and t. The Monge-Elkan similarity is defined as:

K
sim(s,t) = Z mLafc sim’(A;, Bj)
=
i=1

Where sim’ is some secondary distance function.

The main advantage of this algorithm is being recursive, which gives an ability to handle
sub-fields or sub-sub-fields, meaning that the algorithm is more likely to find a match
between a string and its corresponding incomplete string in several formats. Ontology
alignment [41], biomedical abbreviation clustering [45] and title matching [15] can be
mentioned as some examples of application of this similarity metric.

3 Lookup Table String Similarity Algorithm

We introduce Lookup Table String Similarity (LTSS) algorithm which is a method
based on pairwise comparison of the components of two strings s and ¢ to find the
similarity. Our newly proposed algorithm splits the original problem into smaller sub
problems to compute the similarity of two strings converted to integer arrays corre-
sponding to the indices of the components of each string by yielding scores to matches
and mismatches.

The LTSS algorithm is mainly based on constructing the similarity matrix of the com-
ponents of the strings, which is the calculated cost of changing one letter to another.

CIRRELT-2023-08 5



Lookup Table String Similarity Algorithm

For certain letters, the matrix values are initialized by predefined weight values. The
scoring metric used in this algorithm is sensitive to detect changes and swaps in the
components of strings and it penalizes the comparison. Besides the penalty on chang-
ing and swapping the components of strings, additional penalty will be added based on
the first letters of the two strings s and ¢. For instance, it adds up a weight for a change
from the letter ”K” in ”Katerine” when compared with the letter ’C” of ”Catherine”,
meaning that instead of putting zero for the similarity of such two letters, it detects the
change and adds a non-zero value. It also considers that the shift might have been oc-
curred in more than N letters, equal to the defined radius. The algorithm then iterates
over all the indices in a radius and add up a penalty based on the number of shifts and
compares the two letters within the radius in both strings. Finally, it finds the minimum
distance within the radius and returns it. Algorithm 1 illustrates the pseudo-code of
LTSS algorithm.

The steps of our proposed method can be summarized as:

1. Initializing parameters:

— radius: radius of the filter for the comparison of pairwise letters
costShift: cost of swapping two letters

costDIiff: cost of the difference of two letters

costFirst: cost of the difference of the two first letters

2. Compute the difference between size of the two strings and return zero if it is
greater than the radius.

3. Convert the two strings to indices of letters.

4. Construct similarity matrix of letters, which contains the cost of changing one letter
to another. For certain letters, we initialize the matrix values by specific weight
values.

5. Compute a penalty related to the size difference of the two strings, replacing a letter
by another, the penalty related to the shift between letters, and an additional penalty
on the first letter.

6. Iterate through the letters of the shortest string, and generate a vector storing all the
distances between pair letters within a radius.

7. Compute the distance between letters of the first index.

8. Iterate over all the indices in a radius and add up a penalty based on the number of
shifts.

9. Perform the comparison of two letters within the radius in both strings.

10. Find the minimum distance within the radius and return it.

4 Experimental Setup

In this section, first we explain the steps to prepare the data and the gold standard that
are used in this experiments. Then, we discuss our methodology regarding the imple-
mentation of an indirect comparison between selected similarity algorithms and LTSS
and different parts of the evaluation process.

6 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

Algorithm 1 Lookup Table String Similarity algorithm

1:
2
3
4:
5:
6.
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:

procedure SIMILARITY(stringl, string2)

SETradius

SETcostShift

SETcostDif f

SETcostFirst

dif ference_Sizes = |stringl.length — string2.length)|

if (dif ferencesizes>this.maxDif f) then
return 0

end if

indl < getIndices(stringl)

ind2 < getIndices(string2)

WTB < loadthetableo fweights

__ costDif f Xmax(stringl.length,string2.length)
penalty - min(stringl.length,string2.length)
dist < 0

for i = 0 — min(stringl.length, string2.length) do

distRadius = vector[4 X radius + 1]

if (i == 0) then
distRadius.add(W T Blind2[i]][ind1[i]] x costFirst)
Elsedist Radius.add(WT Blind2[i]][ind1][i]])

end if

for j = 0 — radius do
penaltyShift = costShift x |j — i

dist Radius.add(WT Blind2[i)][ind1[i — j]] + penaltyShi ft)
dist Radius.add(W T B[ind2[i]][ind1[i + j]] + penaltyShi ft)
dist Radius.add(W T Blind1[i)][ind2[i — j]] + penaltyShift)
dist Radius.add(WT Blind1[i)][ind2[i + j]] + penaltyShi ft)
end for
dist+ = min(dist Radius)
end for

return dist
end procedure

4.1 Data Preparation

To conduct this study, we used WikEd Error Corpus [17]. This dataset contains large
and diversified records extracted from the Wikipedia revision history using data mining
techniques. It is a freely available corpus including 12,130,508 pairs of edited sentences
from the English version of Wikipedia and a total of 14 million edits of various types.
The edits include:

grammatical error corrections
stylistic changes

sentence rewordings and paraphrases:
spelling error corrections
encyclopaedic style adjustments

time reference changes

information supplements

CIRRELT-2023-08 7



Lookup Table String Similarity Algorithm

— numeric information updates
— item additions/deletions to/from bulleted lists
— etc ...

Although there are many types of edits in this corpus, the scope of our research has to
be limited to spelling error corrections. Since the data is too noisy and the variability
of texts is high, we perform an error selection process including two steps of extraction
and cleaning. First, for the extraction steps, we implemented a program that crawls the
raw data and extracts only the spelling error corrections amongst all the error correc-
tion types. The spelling error corrections are presented inside the logs with the format:
[-donload-] [+download+]. Basically, this format indicates that the word between the
two minuses was misspelled and replaced with the word between the two pluses.

Second, in the cleaning step, we filtered out texts consisting of stop words such as
”and”, ’then”, "when” etc, and those including numbers, digits and special characters.
Even though this refinement process reduced the size of the dataset, the remainder still
contained a very large amount of records. Since the average length of a word in most
English documents is over 5 characters 2 we eliminated non-English words and those
with less than five characters. Finally, a subset of 10,000 misspelled words was assem-
bled to perform the study. A gold standard was brought together by merging the results
of forming 777 groups of similar words by performing several manual adjustment and
verification processes. Each group was carefully edited by hand and repeatedly veri-
fied to ensure having a reliable solution file. The biggest group contained 40 words and
smallest one had only 4 words.

4.2 Methodology

To compare the performance of LTSS algorithm to the selected similarity measures, we
implemented a program that generates clusters, which we call Buckets, and then esti-
mated the correctness of the obtained results by comparing them to the gold standard.
In this setting the evaluation is mainly provided by casting the task as a clustering prob-
lem under the hypothesis that similar strings will end up in the same cluster using each
string similarity algorithm. If the overall performance of an string similarity algorithm
is good in terms of putting very similar words in one cluster and putting very dissimilar
words in different clusters, then it would be the same case for any 1:1 matching strings.
The operational methods are demonstrated in Figure Figure 1, and can be summarized
as follows:

— Creating the similarity matrix: This corresponds to a similarity graph (based on
each string similarity algorithm) with data points for nodes and edges whose weights
are the closeness between data points represented by a value between 0 and 1.
We used a Java library called SimMetrics [9] that contains the implementations of
string similarity algorithms in order to develop an application that performs pair-
wise comparisons to compute such matrix for all of the algorithms.

% http://www.wolframalpha.com/input/?i=average+english+word+length

8 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

Compute
In Similarity Matrix Select Top N
put ’
Dataset Based on Neighbors

String Similarity Algorithms

Gold i

Standard ;. With Defined Metrics ! . .

Dataset i ‘w ; !
i . : HAC Clustering E<1—

Compare results % J

Fig. 1: Methodology steps

— Detecting outliers in data points: We keep only the most similar neighbors of each

data point using a nearest neighbor based outlier detection technique [3]. For this
purpose, we set the pruning threshold to the weakest outlier, then we calculate the
nearest neighbors for a data instance, and we set the outlier threshold for any data
instance to the score of the weakest outlier found. This removes instances that are
close to the outliers, and hence not interesting to be included in the flowing steps.

By plotting the histograms of similarities we found out the best value of the thresh-
old that covers the larger proportion of data and cuts out the lower, in order to filter
out weak similarities and reduce the size of the matrix. In other words, we keep
the strongest edges of the similarity graph. We repeated the procedure with many
iterations to figure out the best value of N based on obtained results.

It is important to mention that it was not necessary to normalize the matrices be-
cause the values are within a fixed range of zero to one. Hence, re-normalization
would shrink matrices, but there would have no effect in regard to the final results.
However, we considered the similarity distance matrix as a graph with connected
nodes (distance values) and we decided to keep only strong edges that correspond
to higher similarity distances i.e. distance = (1— similarity) between data points
in our matrices. This process not only reduced the size of matrices and calculation
time consequently, but also helped to cut out most of the outliers, hence resulting
in a better accuracy. The top N neighbors were chosen based on a careful analy-
sis of the proportion of data that seemed to be outliers. We plotted the frequency
of similarity values and filtered out only the segment containing the data that was
associated with less occurrence and higher similarity distance (between 0.6 and 1
in most cases).

Implementing K-Means clustering [27] to build buckets of similar words by using
each string similarity algorithm. K-Means requires setting the parameter for num-

CIRRELT-2023-08 9



Lookup Table String Similarity Algorithm

ber of buckets, and in our experiments we did set this number to number of buckets
in our gold standard in order to compare our results with the solution file.

— Implementing Hierarchical Agglomerative Clustering (HAC) [11] to create buckets
with no a priori information about the number of clusters required. Each data point
is allocated to its own bucket and after that the calculation proceeds iteratively,
joining the two most comparative buckets at each progression step, and continues
until there is only one bucket.

— Some metrics were used to evaluate the obtained results. In the following section,
we explain in details such metrics and the purpose of choosing them.

4.3 Evaluation Metrics

The evaluation is mainly provided by casting the task as a clustering problem under the
hypothesis that similar strings will end up in the same cluster using each string simi-
larity algorithm. If the overall performance of an string similarity algorithm is good in
terms of putting very similar words in one cluster and putting very dissimilar words in
different clusters, then it would be the same case for any 1:1 matching strings.

To evaluate the performance of the LTSS algorithm through the clustering task and to
assess the obtained results we developed several quantitative metrics, hence realizing
indirect comparison tests between the similarity algorithms and the LTSS algorithm:

— Intra-buckets distance:

— Intra-buckets distance: Intra-bucket distance is a measure of compactness that cal-
culates within set sum of squared errors. This measure is the sum of squares of
distances between the points of each bucket and the corresponding bucket center.
Smaller value for the within set sum of squared Errors is more desirable as it shows
that the string similarity algorithm considers words with minimum dissimilarity
between them as similar words. Since the dataset contains large volume of data,
we used the Apache Spark machine learning library [29] to rapidly compute this
metric.

— Inter-buckets distance: Inter-buchet distance is the measure of separation. It mea-
sures the distances between buckets’ centers by calculating the sum of distances
between the centroids and the total sample mean multiplied by the number of points
within each cluster. Inter-bucket distances represent the dissimilarities between the
buckets, therefore, an efficient string similarity algorithm tends to maximize this
value in order to come up with buckets that their centers are distant from each
other. This metric and the previous metric attribute to the compromise sought be-
tween minimizing intra-bucket distance and maximizing inter-bucket distance that
corresponds to the discriminatory power of the algorithm used as the string similar-
ity measure. Ideally, the selective force of the algorithm must be sufficiently strong
to result in minimal internal and maximal external distances.

10 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

— Number of buckets per threshold: Using this metric helps understand the sensitivity
of each algorithm with respect to changes in thresholds. An efficient metric is ex-
pected to avoid being too sensitive to threshold, meaning that it should not generate
considerable different number of buckets when the threshold is changed insignifi-
cantly. This feature of the similarity algorithm has a direct effect on the end results
when applied to an automated machine learning system, since it renders the learn-
ing process overly reliant on the threshold.

— Total execution time: The overall time that it takes to generate buckets is calcu-
lated in milliseconds. This metric shows the efficiency of string similarity algorithm
in terms of computational cost. Lower execution time makes the algorithm more
adoptable and applicable in variety of domains with high interest in less computa-
tional cost. All experiments has been conducted 30 times and the average amount
is reported.

5 Results

Our results enabled us to draw conclusions on the efficiency of our novel string sim-
ilarity algorithm in comparison with broadly used ones. We discuss the outcome of
experimental analyses in the direction of specified characteristics that make an algo-
rithm effective while operating on expansive data sets such as bibliographic databases.
Our experiments were performed using an Intel Xeon 2.6 GHz computer with 64 Gig
of RAM.

Figure 2 shows the different values of within set sum of squared error resulting from
K-Means clustering on each similarity matrix that is generated by the selected string
similarity algorithms.

The results of computing within set sum of squared error showed that the performance
of these methods covers a wide range. Smith-Waterman and Monge-Elkan showed
higher errors in terms of within set sum of squared error. Our proposed algorithm out-
performs Cosine, Sorensen-Dice and Jaccard, surpasses the hybrid algorithm of Monge-
Elkan, and Smith-Waterman. the Levenshtein algorithm, the Jaro-Winkler algorithm
and the LTSS algorithm have the least within set sum of squared error compared to all
other algorithms.

We examined all the buckets created by each algorithm and found out that for instance
some very similar misspelled words like: ”achievedto”, ”chievment” and "unachieved”
are put together in one bucket when we applied the LTSS algorithm, whereas all other

algorithms distinguished them by putting into separate buckets.

We observed the buckets created by each algorithm and found out that for instance
some very similar misspelled words like: ”achievedto”, ”chievment” and "unachieved”
are put together in one bucket when we applied the LTSS algorithm, whereas all other

algorithms distinguished them by putting into separate buckets.

CIRRELT-2023-08 n



Lookup Table String Similarity Algorithm

0 44000
o
&
> 40000
1Y
S
g 36000
S
o
g 32000
S
(%]
3 28000
£
£
§ 24000 l

20000

o aet N X «0 > >
@“ & ~N QF \, oos\ ge“o ya°° ’6@(«\ @‘6
\ @ ya‘o go‘e 56‘.\\\\ \N’“

Fig. 2: Intra-buckets distances

Although the Levenshtein algorithm produced lower error than the LTSS algorithm, it
considers the above-mentioned words not similar because of not containing the first
and the last exact similar characters, which makes the discriminatory power of this al-
gorithm questionable. When the first letters of the two compared strings are completely
different, the Levenshtein algorithm distinguishes them with reporting less similarity
value, whereas our method detects the shift in letters and returns more precise value for
the similarity score.

As an example, the LTSS algorithm computes the similarity between the words chmith”
and “shmith” as: ’0.9325”, while the Levenshtein algorithm return the value of ”0.8333”
for the similarity score; because of containing two different letters of ’c” and ”’s” at the
beginning of each word. Additionally, the LTSS algorithm considers words such as “at
lanica”, “atlantic” and “antlatic” as similar words, however, the Levenshtein algorithm
returns words such as “arbania”, “astanga”, as similar words for “atlanica”.

Figure 3 includes the histograms of all average distance values of elements inside buck-
ets produced by each algorithm. Our results indicates that the Jaro-Winkler algorithm,
the Levenshtein algorithm and the LTSS algorithm show better results compared to oth-
ers since the distribution of inter-bucket average distance values are biased toward the
minimum values. On the contrary, the rest of algorithms show tendency toward an av-
erage distance of 0.4 to 0.6 between words in buckets. In contrast, the LTSS algorithm
results in creating buckets with almost less than 0.6 average distance between words in
them.

Looking inside the buckets we can see the difference between the two algorithms’ re-
sults. For an example, the Sorensen-Dice algorithm considers the two words “’substra-
tion” and altrations” as similar words, whilst the LTSS algorithm separated them and

12 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

Frequency

Frequency

Frequency

Frequency

CIRRELT-2023-08

150 200 250 300

100

150 200 250 300

100

Frequency
150 200 250

100

04 05 06 07 08 09
Average Distance

03

o,
°

0.1 0.2

°

(a) Cosine

Frequency
150 200 250 300

100

0.2

0.7 0.8 09 1

04 05 08
Average Distance

03

2
°
°

(b) Sorensen-Dice

°
°

0.2 03 04 05 06

Average Distance

0.7 08 09

(c) Jaccard

Frequency
150 200 250

100

°
°

02 03 09 1.0

°

04 05 06
Average Distance

(d) Jaro—Winkler

0.7 08

02 0.3 04 0.5 0.6

Average Distance

07 08 09 1.

°

(e) Levenshtein

Frequency
15 200 250 300

100

e
°

0.1 0.2 03 04 0.5 0.6

Average Distance

(f) LTSS Algorithm

07 08

0.2 03

08

04 05 06 0.7

Average Distance

(g) Monge-Elkan

00

09 1.

o

0.1 0.2

0.7 08 09 1.0

o

04 05 08
Average Distance

2
°

03

(h) Smith-Waterman

Fig. 3: Intra-buckets average distances

—_

3



Lookup Table String Similarity Algorithm

ELEET]

grouped substration” with words such as “’subtraction”, ”sebtraction”, etc., and altra-

95 9

tions”” was located inside a bucket with “altraction”, "aterations”, etc . as similar words.

Moreover, we consider an algorithm as successful if it also shows higher between
clusters distance. The results of inter-bucket distances are illustrated in Figure 4. The
Monge-Elkan algorithm shows the least between cluster sums of squares value. The
highest value of between cluster sums of squares belongs to the Levenshtien algorithm
followed by the LTSS algorithm which seems to outperform the Jaro-Winkler and the
rest of algorithms considering the discriminatory power with regard to inter-bucket dis-
tances.

30000
25000
20000
15000
10000

5000

0
G o

2 @ <
QW o 0656 e“xrp oodﬁ We <°
2

S < (o \V
o P ¥ & W
e s&\‘“}“ 5o » Vo

Fig. 4: Inter-buckets distances

While k-means tries to advance optimization to reach a global optimal, agglomerative
hierarchical clustering aims at searching for the best stride at each group combination,
running insatiable calculation, which is done precisely yet bringing a sub-optimal solu-
tion. Nevertheless, K-means clustering produces a single partitioning, but hierarchical
clustering can give distinctive partitioning depending on the level-of-determination that
we bring into consideration.

14 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

10000 —&— Levenshtein

—A— Jaro—Winkler
—&— Jaccard

—&— Cosine

—k— Smith-Waterman
—— Monge-Elkan
—— Sorensen-Dice
—@— LTSS

7500

5000

Number of Buckets

2500

N
0 od ¢ L g

48 42 36 30 24 18 12 6 0

Height

Fig. 5: Number of buckets per threshold

Figure 5 shows that the LTSS algorithm is not too sensitive to the changes in the level
of threshold because it produces continuous good results through the shift in threshold
during the hierarchical clustering process. The best algorithm is the Jaro-Winkler, which
can be seen as a smooth curve with exponential gradual increase versus decreasing the
height. The rest of the algorithms show similar behavior by generating neighboring
curved lines.

When comparing string similarity measures, many inexpensive algorithms in terms of
computational cost can surpass quality limitations and open up new application fields
such as the task of disambiguation. In cascaded classification used to obtain disam-
biguation results on large amount of data, each classifier should produce a decision as
fast as possible to speed up the overall process. Results of comparing algorithms in
terms of computational cost in Figure 6 shows that the LTSS algorithm is the fastest
algorithm which makes it a better choice for big-data and real-time applications.

The closest competitor of the LTSS algorithm is the Levenshtein algorithm, with the
significant difference of practically twice the amount of total time to produce results.
The slowest algorithm is Smith-Waterman with showing around thrice completion time
compared to the LTSS algorithm.

6 Conclusion

We studied the string similarity search problem and introduced a new method: the
Lookup Table String Similarity (LTSS) algorithm. We performed a quantitative analysis
between the new algorithm and several extensively used string similarity algorithms to
evaluate the performance of the LTSS algorithm. Additionally, our research introduced
a comprehensive comparison study between some of the existing widely used similar-
ity measures. On the one, depending on the type of the application, one can use our
results in order to understand the trade-offs between different performance indicators
when choosing a suitable similarity algorithm. On the other hand, our novel algorithm
has a lower computational cost with an acceptable rate of accuracy. When operating
on large datasets, our proposed algorithm is time-efficient, which can be of an interest

CIRRELT-2023-08 15



Lookup Table String Similarity Algorithm

450000
375000
>
& 300000
[
ig
< 225000
S
3
8 150000
a
75000
0

s N R o0
u® qe“ﬁ'x\ C o«

N 33(0/ W

Fig. 6: Total execution time

in applications with indispensable need of high processing speed such as disambigua-
tion. Future work will include testing our method against different databases, to better
understand its drawbacks and improve its performance.

References

1. Agbehadji, L.E., Yang, H., Fong, S., Millham, R.: The comparative analysis of smith-
waterman algorithm with jaro-winkler algorithm for the detection of duplicate health related
records. In: 2018 International Conference on Advances in Big Data, Computing and Data
Communication Systems (icABCD). pp. 1-10. IEEE (2018)

2. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463. ACM press
New York (1999)

3. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time with random-
ization and a simple pruning rule. In: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 29-38. ACM (2003)

4. Beernaerts, J., Debever, E., Lenoir, M., De Baets, B., Van de Weghe, N.: A method based on
the levenshtein distance metric for the comparison of multiple movement patterns described
by matrix sequences of different length. Expert Systems with Applications 115, 373-385
(2019)

5. Besta, M., Kanakagiri, R., Mustafa, H., Karasikov, M., Rétsch, G., Hoefler, T., Solomonik,
E.: Communication-efficient jaccard similarity for high-performance distributed genome
comparisons. In: 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). pp. 1122-1132. IEEE (2020)

6. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity
measures. In: Proceedings of the ninth ACM SIGKDD international conference on Knowl-
edge discovery and data mining. pp. 39-48. ACM (2003)

7. Branting, L.K.: A comparative evaluation of name-matching algorithms. In: Proceedings of
the 9th international conference on Artificial intelligence and law. pp. 224-232. ACM (2003)

16 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Caliano, D., Fersini, E., Manchanda, P., Palmonari, M., Messina, E.: Unimib: Entity linking

in tweets using jaro-winkler distance, popularity and coherence. In: # Microposts. pp. 70-72
(2016)

. Chapman, S.: Simmetrics. URL http://sourceforge. net/projects/simmetrics/. SimMetrics is a

Similarity Metric Library, eg from edit distance’s (Levenshtein, Gotoh, Jaro etc) to other met-
rics,(eg Soundex, Chapman). Work provided by UK Sheffield University funded by (AKT)
an IRC sponsored by EPSRC, grant number GR N 15764 (2009)

Chung, J.Y., Park, B., Won, Y.J., Strassner, J., Hong, J.W.: An effective similarity metric
for application traffic classification. In: 2010 IEEE Network Operations and Management
Symposium-NOMS 2010. pp. 286-292. IEEE (2010)

Cios, K.J., Pedrycz, W., Swiniarski, R.W.: Data mining methods for knowledge discovery,
vol. 458. Springer Science & Business Media (2012)

Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names
and records. In: Kdd workshop on data cleaning and object consolidation. vol. 3, pp. 73-78
(2003)

Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional data sets
for data integration. In: Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 475-480. ACM (2002)

Feng, X., Huang, X., Tian, X., Ma, Y.: Automatic traffic signature extraction based on smith-
waterman algorithm for traffic classification. In: 2010 3rd IEEE International Conference on
Broadband Network and Multimedia Technology (IC-BNMT). pp. 154-158. IEEE (2010)
Gali, N., Mariescu-Istodor, R., Frinti, P.: Similarity measures for title matching. In: 2016
23rd International Conference on Pattern Recognition (ICPR). pp. 1548-1553. IEEE (2016)

. Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. International Journal of

Computer Applications 68(13) (2013)

Grundkiewicz, R., Junczys-Dowmunt, M.: The wiked error corpus: A corpus of corrective
wikipedia edits and its application to grammatical error correction. In: International Confer-
ence on Natural Language Processing. pp. 478—490. Springer (2014)

Hajihashemi, Z., Popescu, M.: An early illness recognition framework using a temporal
smith waterman algorithm and nlp. In: AMIA Annual Symposium Proceedings. vol. 2013,
p- 548. American Medical Informatics Association (2013)

Heynderickx, PM., Van Huffel, K., Dewulf, J., Van Langenhove, H.: Application of similar-
ity coefficients to sift-ms data for livestock emission characterization. Biosystems engineer-
ing 114(1), 44-54 (2013)

Irving, R.W.: Plagiarism and collusion detection using the smith-waterman algorithm. Uni-
versity of Glasgow 9 (2004)

Jaccard, P.: The distribution of the flora in the alpine zone. New phytologist 11(2), 37-50
(1912)

Jaro, M. A.: Advances in record-linkage methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical Association 84(406), 414—420 (1989)
Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering.
In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining. pp. 16-22. ACM (1999)

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In:
Soviet physics doklady. vol. 10, pp. 707-710 (1966)

Lilley, M.S., Garland, E.C., Rekdahl, M.L., Noad, M.J., Goldizen, A.W., Garrigue, C.: Im-
proved versions of the levenshtein distance method for comparing sequence information in
animals’ vocalisations: tests using humpback whale song. Behaviour 149(13-14), 1413-1441
(2012)

Lopez, V., Ferndndez, M., Motta, E., Stieler, N.: Poweraqua: Supporting users in querying
and exploring the semantic web. Semantic Web 3(3), 249-265 (2012)

CIRRELT-2023-08 17



Lookup Table String Similarity Algorithm

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

MacQueen, J., et al.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and prob-
ability. vol. 1, pp. 281-297. Oakland, CA, USA. (1967)

Martins, B.: A supervised machine learning approach for duplicate detection over gazetteer
records. In: International Conference on GeoSpatial Sematics. pp. 34-51. Springer (2011)
Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai,
D., Amde, M., Owen, S., et al.: Mllib: Machine learning in apache spark. Journal of Machine
Learning Research 17(34), 1-7 (2016)

Monge, A., Elkan, C.: An efficient domain-independent algorithm for detecting approxi-
mately duplicate database records (1997)

Monge, A.E., Elkan, C., et al.: The field matching problem: Algorithms and applications. In:
KDD. pp. 267-270 (1996)

Murguia, M., Villasefior, J.L.: Estimating the effect of the similarity coefficient and the clus-
ter algorithm on biogeographic classifications. In: Annales Botanici Fennici. pp. 415-421.
JSTOR (2003)

Ngomo, A.C.N., Auer, S.: Limes-a time-efficient approach for large-scale link discovery on
the web of data. integration 15(3) (2011)

Nikolova, E., Jecheva, V.: Some similarity coefficients and application of data mining tech-
niques to the anomaly-based ids. Telecommunication Systems 50(2), 127-135 (2012)
Papadimitriou, P., Dasdan, A., Garcia-Molina, H.: Web graph similarity for anomaly detec-
tion. Journal of Internet Services and Applications 1(1), 19-30 (2010)

Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of
molecular biology 147(1), 195-197 (1981)

Sgrensen, T.: A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on danish commons.
Biol. Skr. 5, 1-34 (1948)

Sgrenson, T.: A method of establishing groups of equal amplitude in plant sociology based
on similarity of species content and its application to analyses of the vegetation on Danish
commons (1948)

Soukoreff, R.W., MacKenzie, 1.S.: Measuring errors in text entry tasks: An application of
the levenshtein string distance statistic. In: CHI’01 extended abstracts on Human factors in
computing systems. pp. 319-320 (2001)

Su, Z., Ahn, B.R., Eom, K.Y., Kang, M.K., Kim, J.P., Kim, M.K.: Plagiarism detection using
the levenshtein distance and smith-waterman algorithm. In: 2008 3rd International Confer-
ence on Innovative Computing Information and Control. pp. 569-569. IEEE (2008)

Sun, Y., Ma, L., Wang, S.: A comparative evaluation of string similarity metrics for ontology
alignment. Journal of Information &Computational Science 12(3), 957-964 (2015)

Tao, W., et al.: Approximate string joins with abbreviations. Ph.D. thesis, Massachusetts
Institute of Technology (2018)

Winkler, W.E.: String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage. (1990)

Xue, Z., Yin, D., Davison, B.D., Davison, B.: Normalizing microtext. Analyzing Microtext
11, 05 (2011)

Yamaguchi, A., Yamamoto, Y., Kim, J.D., Takagi, T., Yonezawa, A.: Discriminative applica-
tion of string similarity methods to chemical and non-chemical names for biomedical abbre-
viation clustering. In: BMC genomics. vol. 13, p. S8. Springer (2012)

Zhang, X.L., Fu, Y.Z., Chu, P.X.: Application of jaccard similarity coefficient in recom-
mender system. Computer Technology and Development 24(4), 158-165 (2015)

Zhao, M., Lee, W.P., Garrison, E.P., Marth, G.T.: Ssw library: an simd smith-waterman c/c++
library for use in genomic applications. PloS one 8(12), 82138 (2013)

18 CIRRELT-2023-08



Lookup Table String Similarity Algorithm

48. Zhu, M., Shen, D., Nie, T., Kou, Y.: An adjusted-edit distance algorithm applying to web
environment. In: 2009 Sixth Web Information Systems and Applications Conference. pp.
71-75. IEEE (2009)

CIRRELT-2023-08 19



	CIRRELT-2023-08-abstract.pdf
	Bibliothèque et Archives Canada, 2023




