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Abstract. This paper addresses the management of patients transportation requests within 

a hospital, a very challenging problem where waiting requests must be scheduled among 

the available porters in such a way that patients arrive at their destination timely and the 

resources invested in patient transport are kept as low as possible. Moreover, since 

transportation requests arrive unpredictably, the problem must be solved in real-time. To 

deal with such a dynamic context, all pending requests are rescheduled periodically. We 

propose several strategies to trigger the rescheduling of waiting requests and three 

approaches (a mathematical formulation, a constructive heuristic, and a local search 

heuristic) to solve each rescheduling problem. A simulation tool is proposed to evaluate the 

potential of the rescheduling strategies and the proposed scheduling methods to tackle 

instances inspired by a real mid-size hospital. The local search heuristic, which produces 

the best results, is fast enough to be used in a real context and achieves significant 

reductions in the response time, total distance walked by porters, and percentage of late 

requests compared to the results produced by a constructive heuristic which mimics the 

manner in which our partner hospital presently manages requests. 
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1. Introduction

Clinical diagnostics processes increasingly use a growing collection of tests, analy-
ses, and consultations. Patients interact with a more extensive set of specialists and
practitioners, leading to more complex pathways involving patient’s moves between
the hospital’s services or departments. Patient flow, either within a given hospital or
healthcare facility or involving transportation from one hospital to another, constitutes
one of the most important logistics flows in the healthcare context.

Patient transportation distinguishes between inter-hospital transportation (defined
as the patient’s transport between their home and the hospital or even between two
hospitals) and intra-hospital transportation, which concerns the transportation of a
patient between two any services within the same hospital. Although inter - and intra-
hospital transportation problems are very close, they also show, as it will be pointed
out later, differences justifying the development of specific approaches to deal with
each problem effectively and efficiently.

As the one we observed and inspired this research, a mid-size hospital handles
around a thousand patients’ transportation requests every weekday. These requests
concern inpatients (i.e., patients hospitalized), but in some cases, also outpatients
receiving ambulatory services at the hospital. To ensure the safety, comfort, and quality
of the service offered to patients, hospitals have a transportation office. In this office,
transportation requests are received, handled, and assigned among a crew of assistants
referred to as porters. The performance of the transportation service directly impacts
the hospital’s operations, as patients arriving late to their appointments will cause
delays in scheduled services. It can also impact the patients’ experience related to
waiting times before and after transport.

Finally, from a managerial standpoint, the number of resources invested in patient
transport, including personnel and rolling equipment, is far from negligible. Therefore,
hospitals seek to simultaneously minimize the waiting times for both patients and
services and the cost of the transportation system, which is basically related to the
porters’ salaries.

In this context, this paper seeks to propose several methods to manage patients’
transportation requests in real-time and assess their efficiency. We model the assign-
ment of transport requests to porters as a parallel machine scheduling problem with
sequence-dependent setup times (PMSP-SDST), and we propose a mathematical for-
mulation, a constructive heuristic, and a local search heuristic for addressing the static
situation whereby a set of transport requests are given.

To deal with the dynamic arrival of requests, we periodically reconsider the sched-
ule for all waiting requests. This process will be referred to as rescheduling. Several
approaches to trigger the rescheduling process are proposed, and a simulation tool
empirically assesses their performance to handle instances inspired by the real case of
a mid-sized hospital in the province of Quebec, Canada.

The remainder of the paper is organized as follows. The next section describes the
problem of intra-hospital patient transportation, followed by a brief review of related
papers. The mathematical formulation and the heuristics designed to deal with the
problem of dispatching static requests are then proposed, followed by a description
of the approaches for triggering rescheduling. Computational results are reported and
analyzed. Finally, conclusions and suggestions for future research are presented.
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2. Handling requests for patient transport

Intra-hospital patient transport involves the movement of patients with limited mo-
bility or requiring supervised transport from one location to another for diagnosis or
therapeutic reasons within the same building (Painchaud, Bélanger, & Ruiz 2017). In
intra-hospital transport, porters move patients using stretchers, beds, or wheelchairs.
The following paragraphs describe how intra-building transportation requests are han-
dled.

The transportation office (TO) receives and handles requests from all services and
departments of the hospital, including the admission and discharge offices. We assume
that porters use some communication equipment that allows them to be in contact with
the TO. Some requests are submitted in advance, but the majority require immediate
transport. A transportation request i is characterized by an origin oi (the location of
the patient) and a destination di. It also contains the time the request was received by
the TO, tai , and its due time tdi , which means the latest time the patient is expected at
the destination. Note that for requests placed in advance, tai corresponds to the time
at which the patient will be ready for transportation. In some hospitals, for example,
in the one inspiring this research, the request’s due time tdi is replaced by a level of
priority λi that defines the maximum allotted time to complete the request. Finally,
ti, the traveling time from oi to di, is known.

Let us assume that a request i having tai smaller or equal to the current time is
assigned to a porter p. Porter p leaves the TO (or their current location) and moves to
location oi. Then, the porter transports the patient to their destination di, where the
patient is transferred to the service personnel. The porter contacts the TO to confirm
the completion of the current task and to inquire about the subsequent request to
perform. In the span between the completion of a request and his assignment to a
new one, the porter is said to be idle. Finally, the delay of a request i is 0 if the
patient arrives at the destination before its due time tdi . Otherwise, the delay for the
request is computed as Ci − tdi , where Ci denotes the completion time (the arrival at
the destination) of the request i.

During the day, porters become busy, and incoming requests are queued. The TO’s
dispatcher must decide which request (if any) to assign a porter whenever one becomes
available; this decision is not straightforward. The TO can assign the queued requests
according to their arrival time. However, this policy does not guarantee a shorter
patient wait or an earlier arrival at the destination. Indeed, assigning requests in a
FIFO (first come, first served) manner may force the available porter to travel a long
distance from their current location to the origin of the request i, as illustrated by
Figure 1. The left part (a) of the figure shows four requests waiting, i, i+ 1, i + 2,
and i+ 3 to be served. Two porters p1 and p2 are traveling to the destinations of their
current requests di−1 and di−2, respectively. Assuming that p1 arrives at the destination
before p2, the dispatcher applies the FIFO rule and assigns p1 to the earliest request i.
Then, when p2 arrives at di−2, the dispatcher assigns them to i+ 1. The central part
(b) of Figure 1 illustrates these assignments. However, if the dispatcher had taken
into account the arrival of porter p2 at destination di−2, the distances traveled by the
porters would have been reduced by the assignment of porter p1 to request i+ 1, and
porter p2 to request ri, as shown by (c), the right part of Figure 1.

Assignment decisions must therefore consider the wait times and expected duration
of queued requests, but also how they will be scheduled. Indeed, one of the most
important features of this problem is related to the porters’ movement between two
consecutive requests, which depends on the sequence of jobs assigned to each porter.
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Figure 1. Example of dispatch decisions and their potential outcomes.

Moreover, since new requests arrive at the system from unpredictable locations at
random times, what seems to be the right choice now, might not be ideal a few minutes
later, rendering this a real-time decision-making problem.

3. Literature review

As mentioned previously, inter- and intra-hospital transportation problems are
strongly related, although they also show significant differences. For that reason, this
section reviews relevant works on the two problems and concludes with a discussion
on the specific features of intra-hospital transportation to position and justify the
contributions of this research.

To the best of our knowledge, Dershin and Schaik (1993) presented one of the
first works devoted to improving intra-hospital, also referred to as in-house transport.
Their work is three-part because it proposes improvements to the communication and
control system, the development of a rational staffing model, and a database to monitor
long-term performance. They used a queuing model to estimate waiting time based
on the number of porters, assuming a fixed service rate (i.e., the number of services
completed by a porter in an hour). Their recommendations considerably improved
the system performance and, furthermore, demonstrated to managers that dramatic
waiting times increase when call loading exceeds certain threshold levels.

The interest in intra-hospital patient transportation strongly increased at the end
of the 2010s. Naesens and Gelders (2009) presented a case study of a hospital in Bel-
gium, where the goal was to reduce the long waiting times for patient transportation
between services. To this end, the authors performed a detailed study of transport
operations. They analyzed patient flows and recommended replacing the existing cen-
tralized approach with a new decentralized service.

Fiegl and Pontow (2009) extended the transportation of patients to include the
transport of medical items (e.g., records, forms, medicine, and laboratory samples)
between services. Contrary to the transport of patients, where a request must be
completed before starting the next, the problem becomes a variant of the pickup-
and-delivery routing problem since several items can be transported together. They
proposed an online optimization approach based on the highest density first rule pro-
posed by Prughs, Sgall, and Torng (2004) to minimize the flow time and thereby ensure
the highest possible task throughput.

Segev, Levi, Dunn, and Sandberg (2012) studied a particular case of patient trans-
portation where patients waiting for surgery needed to be moved from the admission
and preparation area to the operating theater. The work aimed to determine the
appropriate number of dedicated elevators and porters to prevent delays in patient ar-
rivals to operating theaters. To this end, a data-driven simulation tool was developed.
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Although this work differs from the more general case where a large set of patients’
origins and destinations are considered, it contributes accurate stochastic models for
elevators and traveling times. It also presents a sensitivity analysis of the system per-
formance concerning the number of dedicated elevators and available porters, which
are among the most important considerations when designing a patient transportation
system.

Hanne, Melo, and Nickel (2009) designed a computer-based planning system to coor-
dinate inter-building transportation. This system is based on a dynamic DARP, which
they solve with different heuristics. Indeed, several papers have modeled the inter-
building transport problem faced by large hospitals owning several buildings, or even
the transport of patients from their homes to hospitals and from hospitals back to their
homes, as a DARP, a variant of a vehicle routing problem providing multi-occupancy,
door-to-door transport service for people that aims to minimize simultaneously total
traveled distance by the ambulances and patients inconvenience. This “inconvenience”
measures the increase of the ride for any patient with respect to the shortest (direct)
ride caused by sharing the route). We refer interested readers to the review on DARP
by Cordeau and Laporte (2007) and the review on people transportation by Doerner
and Salazar-González (2014).

Cordeau and Laporte (2003) proposed a two-neighborhood Tabu search metaheuris-
tic to solve the static version of DARP (i.e., the transportation requests are known a
priori). The first neighborhood removes a request from its current route and re-inserts
it in a different route; the second neighborhood consists of rearranging the sequence
of not yet serviced requests in their assigned route. Later, their metaheuristic was
adapted by Beaudry, Laporte, Melo, and Nickel (2010) to be used in a inter-building
transport context where requests arrive dynamically. To this end, the authors de-
veloped a two-phase procedure that is executed each time a new request arrives. In
the first phase, a simple heuristic is used to insert the new request into an existing
route to generate a feasible solution, which is improved in the second phase (the Tabu
search). Kergosien, Lenté, Piton, and Billaut (2011) addressed a similar context, but
they considered the possibility of outsourcing transport requests to a private company.
They also proposed a Tabu search metaheuristic to minimize the system’s total cost,
encompassing both the hospital and external company costs.

Schmid and Doerner (2014) studied a joint patient scheduling and transportation
problem. In their case, patients need to follow a given set of treatments at different
services in the same hospital. Once treatment is completed, the patient needs to be
transported to the next service by a porter. The difficulty lies in identifying, for each
patient, the start time for each treatment and assigning a porter to each transportation
request in such a way that the total patient inconvenience, idle times in rooms, and
empty movements by porters are minimized. The problem is modeled as a variant of
the multi-depot vehicle-routing problem with time windows (MDVRPTW). However,
the problem is static, i.e., all the patients and their required treatments are known in
advance.

Some other papers addressed the transport of patients from their homes to hospi-
tals (outbound requests) and from hospitals back to their homes (inbound requests).
These works aimed to elaborate routes to pick up several patients in a vehicle, thus
sharing the same transport to the hospital or from the hospital to the patient’s homes.
By doing so, vehicles are used more efficiently, although they may become longer for
some patients. Bowers, Lyons, and Mould (2012) proposed a decision support tool for
strategic resource allocation decisions on this version of inter-hospital patient trans-
portation. A constraint ensures that the patients’ inconvenience (the increase in the
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riding time concerning the shortest direct ride) will not exceed an acceptable dis-
tance, thus limiting potential patient discomfort. Such constraints help maintain the
equity of the service and patient comfort. Schilde, Doerner, and Hartl (2011) explored
the fact that most of the patients who travel to the hospital return to their homes
once the service is completed and how this can be used to ‘anticipate’ their return
requests and used this probabilistic information to improve the planning of inbound
routes. Four metaheuristic solution approaches were proposed to handle the resulting
dynamic stochastic dial-a-ride problem to demonstrate that taking stochastic informa-
tion about future return transport into account is beneficial under certain conditions
discussed in the paper.

Finally, in recent years, intra-hospital transportation problems have focused on
the porters’ ergonomic stress induced by pushing and pulling patients’ beds and
wheelchairs. Since the physical effort depends on the conveyance vehicle, tour length,
and patient weight, some works proposed scheduling formulations that aim to mini-
mize the porters’ ergonomic strain, which in turn minimizes the risk of musculoskeletal
disorders (von Elmbach, Boysen, Briskorn, & Mothes 2015; von Elmbach, Scholl, &
Walter 2019). Unfortunately, the proposed formulations are static, meaning that all re-
quests need to be known a priori, which is clearly not realistic in a healthcare context,
although von Elmbach et al. (2019) suggested that their approach might be adapted
to tackle the dynamic arrival of requests.

We can conclude that the scientific literature contains rich contributions related to
the transport of hospital patients. However, most of the literature focuses on inter-
building problems concerning static variants where the transport requests are known
in advance. As pointed out by von Elmbach et al. (2019), the development of efficient
online algorithms seems challenging but a valuable task for future research, specifically
for inter-hospital problems for which the contributions are scarce. In this vein, our work
contributes to a comprehensive evaluation of several algorithms capable of handling
real-time patient transport requests.

It is also worth pointing out the differences between inter- and intra-hospital prob-
lems that motivate the development of specific approaches for the latter case. Fore-
most, inter-hospital problems seek to transport efficiency by moving several patients
together. Since intra-hospital transport concerns a patient at the time, efficiency lies
in minimizing porters’ “empty” travels between two requests. That is the reason why
inter-hospital formulations minimize (or limit) patients’ inconvenience or the increase
in their travel time, while intra-hospital problems focus on lateness.

Even more, we have observed that patients’ travel times in intra-hospital problems
are quite short. For instance, the average travel time between services in the hospital we
observed is around 5 min, which according to the TO’s managers, fit well with times
they saw in other hospitals in the province. Comparatively, Beaudry et al. (2010)
reports ride times of 30 minutes in an ambulance and up to 21 minutes for urgent
requests for transport between the buildings spread over a hospital campus. Finally,
another difference concerns the problem’s degree of dynamism Ψ (the ratio between
requests not known in advance to the total number of requests). Kergosien et al. (2011)
reports that the average dynamism in the real instances they obtained was Ψ = 58%,
which contrasts with our real case where none of the requests was known in advance
(Ψ = 100%).

The following section proposes exact and approximated approaches to handle the
PMSP-SDST, the static version of the intra-hospital patient transportation problem.
Then, Section 5 presents strategies (i.e., rescheduling triggering policies) to use the
described approaches in a dynamic context.
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4. Static approaches to assign and schedule requests

In this section, it is assumed that when the schedule is created, all the requests to
be performed are known in advance, and the objective is to minimize the weighted
lateness of all the requests. An exact and two approximated approaches are proposed
to assign and schedule the requests. The exact approach consists of a mixed integer
linear programming model. Similar formulations have already been proposed in the
literature (e.g., Radhakrishnan & Ventura 2000). The two approximated approaches
are a constructive heuristic and a local search heuristic. The need for approximated
approaches is justified by the combinatorial nature of the scheduling problem, which is
NP-Hard. Indeed, according to Pinedo (2008), the single machine scheduling problem
with sequence-dependent setup times (SMSP-SDST) can be solved in polynomial time
for cases where the setup times have a particular structure. However, if the setup times
are arbitrary, as in the problem we consider, the SMSP-SDST remains strongly NP-
Hard. Nonetheless, the proposed formulation will be used to produce bounds that allow
the quality of the approximated solutions to be estimated in some cases.

4.1. A mathematical formulation for the PMSP-SDST

We model transportation requests as tasks to perform by the porters (the servers),
and the sequence-dependent setup times correspond to the time or the distance re-
quired to move from the location at the end of a task to the beginning of the next
one. This modeling approach leads to a very compact and easy-to-understand formu-
lation. Furthermore, although a scheduling problem can be reformulated as a vehicle
routing problem, doing so requires several sets of constraints, such as the ones concern-
ing depots from which routes start and finish, pairing constraints to ensure that the
same porter visits the origin and destination locations of each request, and even prece-
dence constraints forcing to visit the request’ origin before its destination. All these
restrictions are implicit, or their formulation is straightforward in the PMSP-SDST.

Let R be the set of requests to be performed and P the set of available porters.
Let R′ = R∪ {0} be an enlarged set of tasks that contains ‘dummy’ requests allowing
each porter to initiate their sequence of tasks. Recall that preemption is not allowed;
once the porter has started a task, they cannot be interrupted or redirected to another
request. Let tij be the porter’s traveling time from the destination location di of request
i to the origin oj of request j, assuming that request j is performed right after request
i. Moreover, let ti, t

a
i , and tdi be the time to transport patient of request i from their

origin location to their destination (i.e., from oi to di), the time at which the request i
was inserted in the system, and the maximum time at which request i can be finished
before it is considered a delay, respectively. Dummy requests start at the hospital
transportation office and require null traveling time. As the porters can stay at the
destination of the last performed request, the final location of the dummy request does
not need to be restricted to the hospital transportation office. Finally, we associate
each request i with a penalty αi that increases with the request’s priority or urgency.

Several sets of variables are used to formulate the model. Continuous variables Cip

compute the time at which request i is completed by porter p; variables Li compute
the lateness (if any) incurred in serving request i; finally, decision variables xijp have
a value of 1 if porter p executes request j immediately after request i, and a value of
0 otherwise.
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The porter scheduling problem can be formulated as follows:

Min
∑
i∈R

αiLi (1)

s.a. ∑
p∈P

∑
i∈R′

i̸=j

xijp = 1, ∀j ∈ R; (2)

∑
j∈R

x0jp ≤ 1, ∀p ∈ P ; (3)

∑
h∈R′

h̸=i,j

xhip ≥ xijp,

∀i ∈ R′; ∀j ∈ R; i ̸= j;∀p ∈ P ; (4)∑
p∈P

∑
j∈R
i̸=j

xijp ≤ 1, ∀i ∈ R; (5)

Cjp +M(1− xijp) ≥ Cip + tij + tj ,

∀i ∈ R′; ∀j ∈ R; i ̸= j;∀p ∈ P ; (6)

C0p = 0, ∀p ∈ P ; (7)

Cjp ≥
∑
i∈R′

i̸=j

xijp ∗ (taj + tij + tj),

∀i ∈ R; ∀p ∈ P ; (8)

Li ≥ Cip − tdi , ∀i ∈ R; ∀p ∈ P ; (9)

xijp ∈ {0, 1},
∀i ∈ R′; ∀j ∈ R; i ̸= j;∀p ∈ P ; (10)

Cip ≥ 0, ∀i ∈ R′; ∀p ∈ P ; (11)

Li ≥ 0, ∀i ∈ R; (12)

The objective function (1) aims to minimize the weighted sum of the lateness over
all requests. Coefficient αi, which takes higher values for more urgent requests, forces
the formulation to comply first with the due date of urgent requests. Constraints (2)
ensure that each request is performed by one and only one of the porters, and it has
a unique request as an immediate predecessor. Constraints (3) say that each porter p
starts their working sequence with dummy request 0, followed by one request at most.
Constraints (4) guarantees that the same porter p executes the previous and successive
requests. Constraints (5) ensure that all the requests made by the same porter p are
correctly ordered (i.e., each request has a unique immediate successor). Constraints
(6) ensure, for each request j performed by a given porter p, its completion time must
be at least the completion time of its precedent request, i, plus the traveling time from
the destination of request i to the origin of the request, j, plus the execution time of j.
The completion time for all dummy requests is set as 0 by constraints (7). Constraints
(8) prevent requests from being started before the associated patient’s pickup time tai .
Constraints (9) compute the lateness for each request. Constraints (10)-(12) define the
variables’ domains.
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4.2. Constructive heuristic

Our observations at a partner hospital inspire this constructive heuristic (CH). It sorts
a set of requests to be performed, first in decreasing order of their priority, and within
the same priority, according to their arrival times. Then, the heuristic assigns the first
request to the porter, who will become available first. The request is deleted from the
set and inserted in the last position of the selected porter’s schedule. The heuristic
loops until the set of requests to be performed are empty.

4.3. Local search heuristic

The local search heuristic (LS) starts from an initial feasible solution and explores
three neighborhoods to minimize weighted lateness. The procedure to generate the
initial solution is basically the same as in CH; it sorts the requests similarly. However,
the selection of the porter is different; instead of selecting the first available porter, it
selects based on the best value for the objective function.

The neighborhoods N1 to N3 explored by LS are formed by combining the shift and
swap moves described by Moser, Musliu, Schaerf, and Winter (2021). The three neigh-
borhoods are used sequentially according to their level of computational complexity:
Shift, External Swap + Internal Shift, and External Swap + Internal Swap. Starting
with N1, every possible move in the neighborhood is explored, the move producing
the best improvement over the best solution found so far is implemented, and the best
solution is updated. If no improvement is possible, the heuristic moves to the following
neighborhood. The heuristic stops when the exploration of the last neighborhood does
not yield any improvement compared with the best solution found so far. At any time,
if a solution better than the best found so far is reached, the heuristic goes back to the
first neighborhood in the sequence. Finally, note that moves that schedule a request i
earlier than the patient’s pickup time tai are allowed, but the transport cannot start
before this time. The neighborhoods are described as follows.

• N1—Shift: In this neighborhood, the heuristic explores all possible solutions
produced when a request i is removed from its current sequence p and inserted
into any possible position in all other sequences different from p. All requests
are considered for evaluation.

• N2—External Swap + Internal Shift: This neighborhood considers every
possible swap between two requests, the request i assigned to the porter p, and
request j assigned to any porter q such that p ̸= q (External Swap). Then, it
explores every possible shift of request i in the sequence q and those of request j
in the sequence p and selects the ones minimizing the objective value (Internal
Shift).

• N3—External Swap + Internal Swap: This neighborhood, as the previous
one, considers every possible swap between two requests, the request i, assigned
porter p, and the request j assigned to any porter q such that p ̸= q (External
Swap). For each of those exchanges, it explores every swap (exchanges) of request
i with all the requests in the sequence q and those of request j with all the
requests in the sequence p and selects the ones minimizing the objective value
(Internal Swap).
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5. A dynamic approach to rescheduling requests

As we explained in the previous sections, the management of transportation requests is
a dynamic and uncertain problem. In manufacturing systems, rescheduling is defined
as the process of updating a production sequence to incorporate an interruption in
production or the arrival of new information or tasks (Vieira, Herrmann, & Lin 2003).

The instants at which rescheduling is launched can be fixed a priori (at a given fre-
quency) or be dependent on the system state. A natural manner of handling reschedul-
ing in our context is to trigger the rescheduling of the existing execution sequences
every time a new request arrives. Hence, upon its arrival, the new request is added
to the set of requests waiting to be executed, and, considering the current state of
the porters (location if idle, and time and location of their current missions if busy),
the set of waiting requests is rescheduled. Intuitively, such a strategy might allow the
manager to profit from opportunities that arise due to the new event. On the other
hand, reconsidering the actual schedule may not be optimal (da Silva, Scarpin, Pécora,
& Ruiz 2019) and be very expensive in terms of computational effort. To find the best
possible balance between the rescheduling frequency, quality of the produced solutions,
and computational effort, we propose the following rescheduling triggering policies:

• Policy 1 (Φ1): Rescheduling is triggered whenever a new request arrives.
• Policy 2 (Φ2): Arriving requests are queued, and the rescheduling is triggered
when either β requests are waiting or upon arrival of an urgent request (see
Section 6.1). This policy aims to guarantee that a schedule, once produced, will
be at least partly implemented before it might be reconsidered. Delaying the
rescheduling trigger also reduces the number of reschedules compared to Φ1.
Rescheduling is also triggered on the arrival of an urgent request to avoid delays
for such requests. After several preliminary tests, we set β = |P | in the numerical
experiments.

• Policy 3 (Φ3): This policy is similar to Φ2, but rescheduling is triggered pe-
riodically every κ time unit rather than at variable times. Rescheduling is also
triggered upon the arrival of an urgent request. In our numerical experiments,
we set κ = 5 minutes.

• Policy 4 (Φ4): A reschedule is triggered every time a request is completed.
However, since the number of pending requests can be large, only the q ≤ |P |
oldest requests are considered to be rescheduled.

Each of the described rescheduling triggering policies offers a different compromise
between the frequency of rescheduling, which impacts the computational effort, and
the performance of the solutions’ quality.

6. Numerical Experiments

This section aims to assess the relative performance of the methods proposed over a
set of random instances generated using data provided by a real hospital and to discuss
their potential as effective tools for real-life applications. It first presents the instances
and then the methods that will be evaluated. Finally, it reports the numerical results
and discusses the proposed methods’ benefits in service metrics.

All the tests were performed on a computer with an Intel Xeon E5-2683 v4 2.1GHz
processor using one core and a maximum of 8Gb of RAM running on a CentOS Linux
release 7 operational system. CPLEX 12.8 was used to solve the proposed mathe-
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matical formulation, and all other solving procedures were programmed in C++ and
compiled using gcc 9.1.

6.1. Generation of test instances
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Figure 2. Historical distribution of requests’ arrivals during the day (over 20 week-days).

We used the data provided by a hospital in the province of Quebec, Canada, with
800 beds, to generate random yet realistic instances. Historical data containing past
requests were used to build a discrete distribution of the requests’ arrival frequency
at different moments of the day. Figure 2, which reports the average, largest, and
the smallest number of requests received at each hour of the day over 20 week-days,
illustrates the variability of the demand arrivals.

We limited our experiments to the day work-shift (8 a.m. to 4 p.m.). The 8-hours
shift was divided into 96 intervals of 5 minutes, and the average number of requests
received during each interval was computed. This empirical distribution was sampled
to generate the interarrival time for each request i and then determine the actual
arrival time tai . The due date of each request was set to tdi = tai + ν + γi, the sum
of the request’s arrival time tai , a fixed value ν corresponding to the longest distance
between any two locations in the hospital in seconds, and a value γi which is related
to the priority of request i. Four priority levels were considered: λ1 to λ4, with λ4

corresponding to the highest priority. Parameter γi was set to 1800, 1000, 600, and 60
seconds for priorities 1 to 4, respectively, indicating that the higher priority requests
are expected to be completed sooner. Finally, the penalty αi in the objective function
(1) was set, after running some preliminary tests, to 1, 10, 18, and 30 for priorities λ1,
λ2, λ3, and, λ4, respectively.

Three sets of 12 instances were generated, with each set corresponding to a given
profile H1, H2, and H3. The instance profiles represent the prevalence of the priority
levels in the generated requests. Profile H1 contains a few requests of priority λ4

(approximately 10%), with the remainder having any other level of service with a
uniform probability of 30%. In the second profile H2, the number of requests of each
priority is homogeneous, so on average, there are 25% of each type. Finally, the third
profile H3, contains, on average, 34% of λ4 requests, while the remaining requests have,
on average, a probability of 22% for each of the other priorities.
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The origin and destination of each request were randomly selected from the set of
28 locations provided by the hospital according to their average frequency of occur-
rence. The hospital’s transportation office also provided travel times between any two
locations. Traveling times vary between 1.5 and 8.5 minutes, with an average of 4.66
minutes. The experiments considered 16 porters.

6.2. Dispatching methods

Every time a rescheduling is launched, we can use any of the three scheduling ap-
proaches presented in Section 4 (a mathematical program referred to as MP, a con-
struction heuristic CH, and a local search heuristic LS ) to assign and sequence re-
quests to porters. By combining a rescheduling policy with a scheduling approach, it
is possible to form a variety of methods to handle dynamic patient transport requests.
To improve the readability of the text, the resulting methods will be referred to as
XXY Y , where XX denotes the rescheduling policy (Φ1, Φ2, Φ3, or Φ4) and Y Y the
scheduling approach (MP, CH, or LS ).

6.3. Numerical results
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Figure 3. Average Objective Function, produced for each profile of instances and by each policy-solving

method.

Figure 3 reports, for each of the 12 considered policy-solving method combinations,
the average objective function value produced over the 12 instances of each profile H1,
H2, and H3. The best average value produced for each profile has been underlined for
easier identification. It is worth mentioning that no computational times are reported
because, in all the cases but for method Φ4MP, no instance required more than 2
seconds to be solved. Note that methods using MP as a scheduling approach require
computational times that make them unsuitable for any real-time application. Indeed,
to give the reader an idea of the computational requirements of methods using MP,
when we limited the total execution time to 7 days and the maximum computational
time to solve a schedule to 1 hour, only Φ4MP was able to give solution to some
instances (12 out of 36).

Figure 3 demonstrates the low performance of the constructive heuristic CH com-
pared with LS and that for all the policies. The results reported in Figure 3 also
confirm that the policy Φ1 clearly dominates the others and, when combined with the
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solving approach LS, constitutes the most promising method to solve the problem in
hand.

Finally, note that the results produced by Φ4MP, when available, compare poorly
to the ones produced by Φ1LS. Two factors can explain that poor comparison; first,
recall that the rescheduling computation time was limited to 1 hour. If this time limit
is reached during partial rescheduling, the best solution found so far—which might
be far from the optimal one—is kept. The other factor is the rescheduling triggered
strategy. The combination of MP with rescheduling policy Φ4 does not seem very
effective.

The previous numerical experiments focused on the value of the objective function,
which corresponds to a sum of weighted lateness. In practice, managers are concerned
with performance indicators related to service quality or efficiency that are aligned, yet
different, from the objective, pursued by the proposed methods. For that reason, we
evaluated the performance of the selected methods concerning other service-oriented
performance metrics: the average response time (RT ) in minutes, which for a given
request i is defined as RTi = Cip − tai , the percentage of late requests (%L), and the
average lateness of late requests (AvL) in minutes. By doing so, it should be possible
to assess how well the proposed methods suit the managers’ goals.
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Figures 4, 5 and 6 report, for each type of profile of instances H1, H2, and H3, the
average results produced by policy Φ1 combined to methods CH and LS. Since the
priority of requests is a key aspect of service, the results for the three performance
metrics are reported separately for λ1, λ2, λ3, and λ4.

Let us begin the analysis by looking at the results produced for the average re-
sponse time (Figure 4). Method Φ1LS drastically reduces the average response times
with respect to Φ1CH. Indeed, for the most urgent requests of type λ4, the reduc-
tion in response time increases from 23.9% to 31.5% depending on the profile of the
considered instances. Similar improvements are achieved for the requests belonging to
other priorities. Moreover, although the response time produced by Φ1LS tends to in-
crease when the priority decreases, the increase is moderate, and the time consistently
lower than those produced by Φ1CH. Regarding the percentage of late requests %L,
Φ1LS produced the smallest percentage of late requests for all priorities and profiles
(Figure 5). Finally, Figure 6 also shows that the resulting average delays whenever a
request is late are reasonable and that this applies to both methods. In particular,
Φ1LS produces average delays of under one minute in all the cases.

To summarize, the numerical results confirmed the excellent performance of Φ1LS.
Indeed, the noticeable improvements concerning the results produced by Φ1CH, the
method that mirrors the one used at the hospital, suggest that the implementation of
Φ1LS might result in significant savings for the transportation office.

6.4. Managerial insights

The differences between the results produced for instances of profiles H1, H2, and
H3 raise certain managerial questions. Indeed, the response times produced by each
method deteriorate as the proportion of urgent requests increases (i.e., from H1 to
H2 and from H2 to H3). Although this deterioration is handled differently by the
considered methods, the results produced for profileH1 are preferred from a managerial
standpoint. However, given that in the current system, most of the requests need
immediate transport, it is possible that professionals and nurses overstate the priority
of some requests to be certain that they will be performed in a timely manner. By doing
so, the performance for all requests, including the highest priority requests, would
decrease, which might provoke professionals’ and nurses’ dissatisfaction and, most
likely, their tendency to increase the priority of the requests they place. Therefore,
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it is essential to make stakeholders aware of both the benefits of placing requests
in advance—which should relieve the urgency of requests— that might bring to the
system and, even more importantly, the deterioration in system performance as a
result of the increasing number of higher priority requests placed.

6.5. Sensitivity of the results concerning the number of porters
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Figure 7. Average response time, in minutes, produced by Φ1LS for 16, 15, and 14 porters.
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Figure 8. Average % of late requests, produced by Φ1LS for 16, 15, and 14 porters.

To better characterize the improvements achieved by method Φ1LS concerning
Φ1CH, we computed, for both methods, the porters’ daily empty moves that corre-
spond to the setup time or, in other words, the daily time spent traveling from the end
of requests to the origin of the following ones. We found that when Φ1CH was used,
each porter spent an average of 203 minutes per day on empty moves, while this time
was reduced to only 138 minutes in the case of Φ1LS, an improvement of 65 minutes.
This reduction in time positively affects the response time because it increases the
availability of porters upon the arrival of requests. Moreover, considering that the 16
porters work 8-hour shifts in the instances, the efficiency achieved by Φ1LS in terms
of empty moves corresponds to the working time of two porters. In other words, im-
plementing Φ, 1LS might help reduce the number of required porters. To explore the
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Figure 9. Average Lateness, in minutes, produced by Φ1LS for 16, 15, and 14 porters.

extent to which a reduction in the number of porters would impact the system perfor-
mance, we solved the previous instances again by Φ1LS using |P | = 15 and |P | = 14
porters. The results are reported in Figures 7, 8 and 9 which detail the average results
produced for performance metrics RT , %L, and AvL for each type of request priority
(λ1 to λ4) and profile of instances H1, H2, and H3.

The numerical results confirm the expected performance deterioration as the number
of porters is reduced for all the metrics. However, these deteriorations are not as large
as one might expect. Indeed, the results produced by Φ1LS with |P | = 14 porters
are still better than the ones produced by Φ1CH with 16 porters, representing an
important potential reduction in the current resources used by the transportation
office.

7. Conclusion

This paper describes the transport of patients within a healthcare facility and proposes
efficient methods to manage patient transport requests in real-time. The problem of
assignment and scheduling of transport requests to porters is modeled as a PMSP-
SDST. Since the combinatorial nature of the resulting mathematical formulation makes
it intractable even for very small instances, it proposes a constructive and a local search
approach for addressing the static situation where the transport requests are known
in advance.

However, in practice, new transport requests arrive in real-time, and the current
schedule needs to be periodically revised in such a way that the requests not yet served
and those that arrived after the last schedule was elaborated can be considered. This
process is referred to as rescheduling. Several approaches to trigger the rescheduling
process were proposed and combined with solving approaches to form specific methods
that offer different performances.

Numerical experiments run on randomly generated instances inspired by a real hos-
pital demonstrate that (i) the proposed heuristic methods are able to handle realistic
situations in real-time, so they are suitable for real implementation, and (ii) the com-
bination of a local search heuristic and a policy that triggers the rescheduling each
time a new request arrives is particularly effective in solving this challenging problem.
In particular, our experiments demonstrate that, compared to the management ap-
proach used in a real hospital, this heuristic drastically reduces the time that porters
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travel empty (i.e., between two requests), translating into shorter response times and
fewer late requests. In fact, our local search heuristic produces results that compare
to the method currently used by the hospital but using only 14 porters rather than
16, representing an important potential reduction in the required resources.

This work also raises managerial and scientific questions for further research. From
a managerial standpoint, our experiments demonstrate that the hospital’s demand
profile, in particular their priority, strongly impacts the potential performance of the
transportation system. Hence, managers must understand the specific needs of their
patients and set appropriate priorities for requests. Furthermore, in the current system,
immediate transport is required for the majority of requests, putting a lot of pressure
on the TO to serve them in a timely manner. It is of interest to ensure stakeholders
are made aware of the benefits that placing requests in advance might bring to the
TO and the patients. To this end, simulation tools such as the one used in this paper
might be very helpful. From a scientific point of view, this work assumed the transport
times to be deterministic and known in advance. It should be necessary, at least, to
evaluate how the performance of the proposed methods is impacted by the variability
of transport times, which will, most probably, require the development of specific
models to tackle their uncertainty.
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