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Abstract. This paper studies the road train optimization problem with load assignments 

(RTOP-LA). The RTOP-LA deals with assigning customers' demands to trailers delivered 

via regular trucks or road trains and determining the routing of these trucks through final 

customers. Road trains leave the origin terminal to reach intermediate ones, where the 

trailers can later be dismantled and sent to customers by regular trucks. We formulate the 

problem to minimize the total cost. A commercial solver is used to solve small-size instances 

of the problem, and we develop a multi-start iterated local search MS-ILS algorithm to obtain 

high-quality solutions. The results of our experiments show that MS-ILS provides optimal 

solutions for most instances. For small size instances MS-ILS outperforms the commercial 

solver, but its performance becomes more evident when the number of customers 

increases. Moreover, MS-ILS provides excellent solutions for larger instances in short 

computation times. Finally, a slightly adapted version of our algorithm has been proved 

efficient to solve the single truck and trailer routing problem. Compared to state-of-the-art 

algorithms on a set of 32 instances, our adapted algorithm obtained five new best-known 

solutions. 
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1. Introduction

Greenhouse gas (GHG) emission from the road transportation sector is one of the

significant sustainability challenges for cities. Road transport emissions, representing 21%

of total GHG emissions in Canada, increased by 12% from 2005 to 2017, mainly due to

the increase in the number of vehicles on the roads and the increased use of large, heavy

trucks (Canada, 2020). In the province of Quebec, the second-largest province in Canada

with 8.3 million inhabitants, this proportion goes up to 35.6% (Gouvernement du Québec,

2019). While transportation companies consistently seek ways to reduce fuel consumption

and carbon footprint and improve e�ciency, city o�cials also introduce and implement

various solutions to promote sustainability. For example, in Quebec, the government

has permitted the travel of road trains on highways. The road train technology aims to

minimize total operating costs by consolidating transportation (Keaton, 1991) to increase

e�ciency and throughput.

Road trains (also referred to as multi-trailer trucks, long-combination vehicles, or turn-

pike double) consist of two or more (up to half a dozen) trailers or semi-trailers hauled by

a tractor truck (Boysen et al., 2017). In general, long-combination vehicles (LCVs) have

three major truck configurations: a tractor-semi-trailer with a trailer up to 28 feet (known

as the Rocky Mountain Double), a tractor hauling two trailers up to 48 feet each (known

as the Turnpike Double), a tractor hauling three trailers up to 28 feet each, known as the

Triple Trailer Combination (Dessouky et al., 2007). Due to safety reasons, in most coun-

tries, the maximum allowed dimension and combination of vehicles are regulated (Jagelčák

et al., 2019). For example, the use of 33-feet doubles and 28-feet triples are prohibited

in some states in the US (Chen et al., 2019) or some European countries such as Den-

mark, the Netherlands, Sweden, Finland, and Norway. However, in some German federal

states, vehicle combinations of up to 25.25 meters long is permitted (Jagelčák et al., 2019).

In Canada, an LCV (road train) consists of a tractor and two trailers with a combined

length of 25 to 40 meters (Lightstone et al., 2021). Under certain regulations, four Cana-

dian provinces (Alberta, British Columbia, Ontario, and Quebec) support the use of road

trains (Lightstone et al., 2021). In the province of Quebec, the regulation allows a road
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train to haul two trailers of up to 16.2 meters each (Ministère des Transports, 2020).

Road trains are generally routed through intermediate terminals, and the literature

shows operational gains when using them (Guastaroba et al., 2016; Atefi et al., 2018).

These intermediate terminals are mainly known to improve distribution logistics since each

customer’s demand can be assigned to and shipped from the closest terminal in a more

decentralized manner. Therefore, the main gain comes from resource-saving o↵ered by the

economies of scales (Crainic and Kim, 2007). Coupling two or more trailers into a truck

to travel to these intermediate terminals brings an even more considerable operational

advantage. It saves directly one truck, one driver, and the corresponding fuel and wages.

Intermediate terminals allow sets of demands to be brought to locations close to final

customers and from them to be routed to final destinations. However, if customers are

located relatively far from these terminals, several smaller vehicles are still needed for final

deliveries. Therefore, how to optimize the routes to move trailers through the distribution

network using a mix of road trains and regular trucks requires a rigorous approach.

Inspired by a real-world Quebec-based transportation company, we describe and model

a problem, which will be called the road train optimization problem with load assignment

(RTOP–LA). We consider two types of orders. The first type either requires a complete

trailer or is large enough to be delivered directly as a full truckload (TL). Other orders are

smaller and will be consolidated to be delivered via less-than-truckload (LTL) deliveries.

The mechanical configuration of trucks allows for moving one or two trailers at a time.

In the following, we refer to these configurations as regular trucks versus road trains,

respectively. Road trains can move several trailers simultaneously with either TL or LTL

orders. Due to the existing legislative rules and regulations in Quebec, road trains can only

travel between terminals on highways and cannot deliver directly to final customers. It

should also be noted that setting up a road train is a complicated task, as the attachment

of the second trailer requires delicate operations. Therefore, only some drivers can operate

a road train. When road trains arrive at the destination terminal, they are dismantled,

and then each order is delivered to the final destination by a regular truck. Now given

a fleet of trucks, the goal is to minimize the transportation cost and, consequently, the
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fuel consumption of all these deliveries. For computational purposes and inspired by this

real case, we generate several problem instances varying in size and features, such as the

demand patterns. We formulate the RTOP–LA as a mixed-integer linear programming

(MIP) problem. A commercial MIP solver could optimally solve several small instances

of the problem. However, to solve real-size instances of the problem, we have developed a

Multi-Start Iterated Local Search (MS-ILS) algorithm.

In summary, the contributions of this paper are as follows: i) we formally introduce the

RTOP–LA and propose a mathematical model for it, ii) we develop an MS-ILS algorithm

to obtain solutions for real-size instances of the problem, for which a commercial solver

proved to be limited, iii) we also validate our algorithm by solving available benchmark

instances of the single truck and trailer problem from the literature, and finally, iv) we

perform a sensitivity analysis on the number of trailers loaded on a road train.

The remainder of this paper is organized as follows. Section 2 reviews similar problems

from the literature. In Section 3, we describe the problem, followed by the mathematical

formulation presented in Section 4. A numerical example is given next in Section 5. The

proposed solution algorithm is elaborated in Section 6. We present the results of the

computational experiments in Section 7, followed by conclusions in Section 8.

2. Literature review

In this section, we review the relevant literature on road train optimization. Although

still scarce, road trains are mentioned in the optimization literature. Laumanns et al.

(2001) demonstrated the advantages of using road trains in reducing transportation costs

compared to using other types of vehicles. They developed a multi-objective mathematical

model to optimize fuel consumption and speed jointly. The authors proposed evolutionary

algorithms and showed the Pareto points closest to optimal Pareto solutions. From the

computational perspective, although the method could obtain solutions close to the set of

optimal Pareto ones, the authors attested to di�culties in getting good results. Dessouky

et al. (2007) conducted a simulation study to present the e�ciency of using shorter and

lighter multiple trailers instead of one long and heavy trailer.
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The RTOP–LA is related to three vehicle routing problem (VRP) streams: i) Truck

and trailer routing problem (TTRP), ii) Swap-Body VRP, and iii) two-echelon VRP. In

what follows, we briefly discuss recent contributions in each of these streams and show

their relevance to the RTOP–LA.

It should be noted that ideas such as the use of truck platoons (Bhoopalam et al.,

2018) or doubly open park-and-loop routing problem (Cabrera et al., 2022) are also loosely

related to the RTOP–LA. We refer the reader to the excellent work published recently (see

Boysen et al. (2021)).

2.1. Truck and trailer routing problem

The RTOP–LA shares similarities with the TTRP which was first introduced as an

extension of the VRP in Semet (1995) where two sets of customers, vehicle and truck

customers, are defined. The vehicle customers can be visited by a truck coupled with a

trailer, whereas the truck customers do not require the trailer. Although several di↵erent

costs, such as parking the trailer, loading and unloading (Chao, 2002) can occur in the

TTRP context, mainly the objective is to minimize the total travel costs. Chao (2002)

proposed a tabu search (TS) algorithm to solve benchmark instances. Lin et al. (2009)

applied a simulated annealing heuristic to the TTRP which could improve the solutions

of several benchmark instances.

Villegas et al. (2010) presented a problem called the single truck and trailer routing

problem with satellite depots (STTRPSD). In this problem, a truck with a trailer visits

a set of satellite depots. At a satellite depot, the trailer is detached, and the truck visits

the customers assigned to this satellite depot. Similar to our problem, a truck with a

trailer can only travel on main roads. The authors solved the problem in two levels; in

the first one, the truck with the trailer departs from the main depot to visit a subset of

trailer points. In the second level, customers are visited by the truck alone. Derigs et al.

(2013) introduced the idea of load transfer between truck and trailer and imposing time

windows for delivery. They developed a local search based heuristic. They concluded that

the definition of the problem is rather simplistic and the benchmark instances from the

literature do not show the full complexity of the problem. Therefore, they called for more
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realistic problem settings and benchmark instances. Accorsi and Vigo (2020) introduced

a general variant of the single truck and trailer routing problem and proposed a unified

solution approach for a class of problems.

Drexl (2013) surveyed the applications of the vehicle routing problem with trailers

and transshipments (VRPTT). In the VRPTT, the main questions to answer are “which

vehicle transfers how much load, when, where and into which other vehicle?”

2.2. Swap-Body VRP

The Swap-Body VRP (SB-VRP) is a generalization of the TTRP (Absi et al., 2017).

A swap body is a type of freight container used for road and rail transport. These con-

tainers are standardised. Folding legs under their frame is their main characteristic. A

homogeneous fleet consisting of trucks, semi-trailers, and swap-bodies as well as a set of

swap locations are considered in the SB-VRP (Todosijević et al., 2017; Miranda-Bront

et al., 2017). The swap locations are similar to the intermediate terminals in the RTOP–

LA where the swap-bodies (trailers) can be exchanged (Miranda-Bront et al., 2017). The

vehicles can pull up to two swap-bodies (Absi et al., 2017). A truck carrying two SBs is

called a train. Some customers can be visited by a train, some others only by a truck,

carrying one SB, and some are mandatory train customers (Huber and Geiger, 2017). The

goal of the SB-VRP is to minimize the total cost, including the fixed costs of using the

vehicles and the operational costs of performing the routes (Todosijević et al., 2017).

Absi et al. (2017) considered a relax and repair heuristic. Todosijević et al. (2017)

presented a mixed integer programming formulation for the SB-VRP and proposed two

general variable neighborhood search heuristics to solve the benchmark instances. In Hu-

ber and Geiger (2017), the performance of several neighborhood operators to solve the

SB-VRP is studied. They also investigated the use of parallel variable neighborhood

searches to solve the problem where the master thread collects the best solutions ob-

tained on di↵erent parallel threads. Miranda-Bront et al. (2017) developed a cluster-first

route-second heuristic with greedy randomized adaptive search and iterated local search

procedure metaheuristics to solve it.

RTOP–LA is similar to the SB-VRP since, in both problems, trucks or trains leave
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from a depot to several intermediate/swap locations. In the RTOP–LA, road trains are

dismantled at the terminal and only trucks are allowed to visit customers whereas in

the SB-VRP, depending on the type of customer, a truck or a train visits the customer.

Moreover, in the SB-VRP, a truck/train must have the same swap bodies with which it

has departed when back to the main depot (Huber and Geiger, 2017).

2.3. Two-echelon VRP

Finally, RTOP–LA shares similarities with the two-echelon VRP since trucks/road-

trains are dispatched from a main terminal to visit several intermediate terminals before

the freight is moved to the final customers. Several surveys exist in the literature on the

two-echelon VRPs (see, Perboli et al. (2011); Cuda et al. (2015); Sluijk et al. (2023)).

The use of intermediate facilities (e.g., cross-docks, distribution centers, and terminals)

in multi-echelon distribution networks is very well studied in the optimization literature.

Studies on the multi-echelon routing problems are also numerous (e.g., Dondo et al. (2011);

Baldacci et al. (2013); Darvish et al. (2019); Smith et al. (2021)). See Cuda et al. (2015)

who provided an overview of the two-echelon routing problems.

Previous studies show how using terminals may help route optimization, which in

turn contributes to fuel consumption minimization and other related operating expenses.

Our literature review shows that although multi-echelon VRP, SB-VRP, and TTRP are

problems broadly studied in the literature, distribution problems considering the use of

road trains with intermediate terminals, especially considering their real applications are

still very limited.

3. Problem description

We define the RTOP–LA on an undirected graph G = (N,E) where N = {0, 1, . . . ,m+

n} is the set of all nodes and E = {(i, j) : i, j 2 N} is the edge set, where i < j. The

node set N is partitioned into three sets, N = {0} [ T [ J ; T = {1, 2, ...,m} is the set of

terminals where 1 is the origin terminal and the m � 1 others are the intermediate ones,

also called satellite terminals, and J = {m + 1, ...,m + n} is the set of final customers.

7

The Road Train Optimization Problem with Load Assignment

CIRRELT-2023-11



Node 0 is the dummy node used for modelling routing variables. In this regard, we also

define V = {0} [ J .

Each customer j 2 J has a demand qj , representing the number of pallets ordered (as

an integer value). A trailer can hold up to Q pallets, therefore, if a customer order is

equal to the trailer capacity, qi = Q, this customer is said to have ordered a TL, and when

it is less than the trailer capacity, typically less than 75%, it is said to have ordered an

LTL. Trailers can be loaded either on regular trucks or on road trains. In our context, the

company owns several trucks and 53-foot trailers that can be hauled alone or as a pair on a

road train. Therefore, there is no limit associated with the fleet. A truck can move either

one or two trailers, but a regular truck driver cannot drive a road train. Therefore, the

number of available road trains is limited by the number of available experienced drivers

r, and we assume no limit on the number of available regular truck drivers.

Requests are known at least a day in advance; thus, we assume that demands are

deterministic. A TL order is delivered to a single customer at a time by a back-and-forth

route. For customers having LTL orders, we need to determine the routes associated with

each terminal.

In the following, we consider that a regular truck, which moves only one trailer at a

time, has a unit cost of c1 per kilometer. These trucks (and drivers) are available at the

origin terminal and every intermediate terminal (those of set T ), and they can visit any

node of J . Using a road train incurs a unit cost of c2 per kilometer. Typically c2 is 25 –

40% higher than c1 as setting up a road train requires delicate operations and has to be

carried out by experienced drivers. If we define dij as the distance in kilometer between

nodes i and j, then cij = c1 ⇥ dij represents the cost associated with the edge (i, j) for

regular trucks and c̄t = c2 ⇥ d1,t with t 2 T\{1} the cost of sending a road train to an

intermediate terminal t. Therefore, cij represents the cost associated with the edge (i, j)

for regular trucks and c̄t the cost of sending a road train to an intermediate terminal t.

A road train travels through highways from the origin terminal to another intermediate

terminal. Once at the destination terminal, the road train is dismantled, and the two

trailers (TL or LTL) are delivered to their final destinations by regular trucks. To solve
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the problem, one needs to determine the followings:

(i) the orders assigned to each trailer,

(ii) the number of trailers (TL or LTL) assigned to regular trucks departing from the

origin terminal to deliver directly to final customers,

(iii) the number of trailers (TL or LTL) assigned to road trains departing from the origin

terminal to the intermediate ones,

(iv) for each intermediate terminal that receives a road train, eventually, one needs to:

• assign trailers’ load to regular trucks to deliver to final customers and,

• make sure that each regular truck returns to its terminal (the one from which

it had departed).

It should be noted that the loading decisions are handled by assigning orders to trailers

and trailers to trucks.

4. Mathematical formulations

In this section, we present the mathematical formulation for the RTOP–LA. The fol-

lowing variables are defined. The assignment of trailer k to terminal t is denoted by ytk.

ztkj equals one if customer j is served from terminal t by a truck carrying trailer k and wt

denotes the number of road trains sent to terminal t. Finally, the number of times edge

(i, j) is traversed by a truck carrying trailer k from terminal t is denoted by xijtk. xijtk

are the routing variables, and they are defined from each terminal. Therefore i 2 J [ {0},

where node 0 is the dummy starting node for each route. For example, if x0j2k = 1, it

means that customer j is visited from terminal 2 by a truck carrying trailer k. Table 1

summarizes the notation of our model.

9

The Road Train Optimization Problem with Load Assignment

CIRRELT-2023-11



Table 1: Parameters, sets and variables of model RTOP–LA

Parameters

i, j node index
t terminal index
cij cost associated with the edge (i, j), for regular trucks
c̄t cost of sending a road train to terminal t
qj demand of customer j 2 J
Q trailer capacity
r number of road train drivers
Sets

T set of terminal sites
J set of customers
V set of customers and a dummy terminal ({0} [ J)
K set of trailers
E set of edges
S all subsets of J such that

P
j2S qj  Q

Variables

ytk if trailer k is dispatched from terminal t,
xijtk the number of times edge (i, j) is traversed by a truck carrying trailer k

from terminal t where i 2 J [ {0} and j 2 J , i < j,
wt number of road trains sent to terminal t,
ztkj if customer j is visited by trailer k from terminal t.

Min
X

i2V

X

j2J
i<j

X

k2K

X

t2T
cijxijtk +

X

t2T\{1}

c̄twt (1)

Subject to
X

t2T\{1}

wt  r (2)

X

k2K
ytk = 2wt 8t 2 T\{1} (3)

X

t2T
ytk  1 8k 2 K (4)

X

j2J
qjztkj  Qytk 8k 2 K 8t 2 T (5)

X

t2T

X

k2K
ztkj = 1 j 2 J (6)
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X

i2V
i<j

xijtk +
X

i2V
i>j

xjitk = 2ztkj 8j 2 J 8t 2 T 8k 2 K (7)

X

j2J
x0jtk = 2ytk 8k 2 K 8t 2 T (8)

X

i2S

X

j2S
i<j

xijkt  |S|� 1, 8S ✓ J k 2 K 8t 2 T (9)

xijtk 2 {0, 1, 2} 8t 2 T k 2 K i 2 V j 2 J (10)

ytk 2 {0, 1} , 8t 2 T k 2 K (11)

ztkj 2 {0, 1} 8t 2 T k 2 K j 2 J. (12)

wt 2 Z⇤ 8t 2 T (13)

The objective function (1) minimizes the total transportation cost of regular trucks

and road trains. The cost includes the routing costs and the cost of sending road trains

from the original terminal to the intermediate ones. Constraint (2) limits the number

of trailers sent by road trains to intermediate terminals, which is twice the number of

available road train drivers. Constraints (3) link the total number of trailers assigned to

each terminal with the total number of road trains sent to the same terminal. Constraints

(4) assure that a trailer is assigned to at most one terminal. Constraints (5) are the trailer

capacity constraints. Constraints (6) assure that each customer must receive a trailer

from a terminal. Constraints (7) and (8) are the degree constraints. Constraints (9) are

the subtour elimination constraints. These constraints are used as lazy constraints which

means that they are added to a pool of cuts that are not initially active. As soon as a

feasible solution is found, violated subtour constraints are detected. It should be noted
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that when the set of LTL orders is non-empty, the RTOP–LA is NP-hard since the routing

problem at each terminal reduces to a vehicle routing problem or a travelling salesman

problem (see Laporte and Nobert (1987) and Laporte (1992)). More specifically, RTOP–

LA can be reduced to a two-echelon capacitated VRP, which for the case with even one

satellite depot is proved to be NP-hard (Perboli et al., 2011). This explains the presence

of constraints (9). Constraints (10)–(12) detail the domain of the variables used in the

model.

5. Numerical example

In this section, we provide a numerical example to clarify the problem encountered by

our industrial partner. In this example, we consider twenty customers, three terminals,

and five road train drivers. Terminal 1 is the origin terminal and Terminals 2 and 3 are

the intermediate ones. Trailers are assumed to have a capacity of 24 pallets.

Figure 1 shows a solution with three road trains (dashed lines) and nine regular trucks.

The solution is presented on the right hand side of the figure, where we see five LTL load

assignments to trailers, respecting the capacity Q = 24. We also see TL order assignments.

On the left hand side, red lines show routes with multiple customers, and green lines

are single-customer routes. Customers are shown by red ovals and the terminals by green

rectangles. The first road train brings two TL trailers to terminal 2 and later from this

terminal, they are delivered to customers 4 and 5 by two regular trucks. The second road

train moves two LTL trailers to terminal 2. Then two regular trucks perform routes to

customers 6 and 18 and to customers 11, 9, 16, and 8. The third road train carries two

LTL trailers to terminal 3 where a regular truck meets the demands of customers 7, 15,

and 19, and a second one fulfils the demands of customers 12, 13, 2, 20, and 14. Finally,

customers 1 and 17 receive their TL demands from the main terminal and customers 3

and 10 are served in LTL from the main terminal.
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Figure 1: An example of the RTOP–LA solution

6. Solution algorithm

To date, many intricate metaheuristics are proposed to solve two-echelon VRPs. Among

them, the ILS has shown promising results in dealing with routing and location-routing

problems (Penna et al., 2013). The ILS (Lourenço et al., 2019) is a metaheuristic that ap-

plies local searches to solutions generated through perturbations. These perturbations are

neighborhood structures that alter solutions, aiming to increase diversity and expand the

search space. After a perturbation process, a local search is generally applied, defining a

region for the search space with the goal of intensification. Moreover, Iterated Tabu Search

(ITS), which combines ILS with a TS, has been e↵ective in solving several combinatorial

optimization problems (Lai and Lü, 2013). Given the success of the ILS in solving similar

problems, we have developed a multi-start ILS (MS-ILS) with tabu list metaheuristic to

solve the RTOP–LA. This algorithm has several features as follows.

As suggested in Nguyen et al. (2012), we use a multi-start framework to diversify the

solutions without wasting time in unproductive iterations. restartmax is the number of

times the MS-ILS is restarted from an initial solution.

The second feature is the local search component which tries to improve the current
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solution obtained from the perturbation procedure. Moreover, a TS list is introduced to

prevent revisiting the local optimums.

The third feature is a perturbation operator. The goal is to avoid getting stranded in

a local optimum. The number of perturbations is set to pmax.

The general process is summarized in Algorithm 1. In what follows, we elaborate the

components of the proposed MS-ILS.

Algorithm 1: Multi-start iterated local search.
Result: s⇤

1 Iter = 1;
2 repeat

3 s0  RandomSolution() ; /* Initialization: Algorithm 2 */
4 s LocalSearch(s0) ; /* Local search: Algorithm 3 */
5 piter = 0
6 while piter  pmax ; /* Perturbation loop */
7 do

8 s0  Perturb(s) ; /* Perturbation: Algorithm 4 */
9 s00  LocalSearch(s0) ; /* Local search: Algorithm 3 */

10 if s00 is feasible then

11 s s00 ;

12 if f(s) < f(s⇤) then
13 s⇤  s;
14 piter = 0 ;
15 else

16 s s⇤;
17 piter = piter + 1;

18 Iter = Iter + 1;
19 until Iter = restartmax;

6.1. A random initial solution

A random initial solution is generated heuristically. We start by constructing the

regular truck routes followed by road train ones. A customer, a terminal, and a truck are

randomly selected. The customer is added to a route (selected truck) linked to the selected

terminal. This customer is removed from the set of customers to be visited. From the set

of unvisited customers, another customer is selected and if feasible, with respect to the

capacity limit of the truck, the customer is added to the route. The random selection of

customers, the feasibility check, and their insertion into the route continue until the truck
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reaches its capacity limit. After each selection, the customer is inserted in the lowest cost

position.

The maximum number of available trucks at each terminal is set to twice the number

of road train drivers, r. As many road trains as possible are formed by pairs of truck

routes coming from the same terminal. The procedure is summarized in Algorithm 2.

Algorithm 2: RandomSolution().

1 Data: J , K, T
Result: s0

2 repeat

3 Select randomly trailer k 2 K, terminal t 2 T ;

4 Set J = ;;
5 repeat

6 Select randomly customer j 2 J
7 if feasible with respect to trailer capacity then

8 Find the cheapest insertion position for customer j in the route of
trailer k to terminal t;

9 Remove j from J ;

10 else

11 Move customer j from J to J ;

12 until J 6= ;;
13 Remove k from K
14 Remove t from T if its number of associated routes reaches r

15 Set J = J

16 until J 6= ;;
17 Form road trains by pairing truck routes from the same terminal;

6.2. Local search algorithm

We use a strategy to combine a variable neighborhood descent (VND) method (Hansen

and Mladenović, 2014) with a tabu search algorithm. A set of local search operators (LS)

is available, and one of them (operator l) is randomly selected at the beginning of each

iteration. This procedure is known as the VND with a random neighborhood ordering

(RVND) successfully applied to several fleet vehicle routing problems (see, Subramanian

et al. (2010); Penna et al. (2013)).

Our preliminary tests revealed that the first-improve strategy works better than the
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best-improve one. Therefore, we apply the first-improve strategy to the local search oper-

ator. If the new solution does not improve the incumbent solution, then l is removed from

LS, a di↵erent local search operator is selected, and the process restarts. All local search

operators are returned to LS set if the solution is improved. The process continues until

LS is empty. The current solution is maintained if the process does not find an improved

solution. During this procedure, whenever a new solution is found, its value and the details

of the routes are saved in a tabu list. The goal is to ensure the diversity of solutions and

to avoid local optima as local searches cannot use the tabu listed solutions. The length of

the tabu list is between tabumin and tabumax. Each time a new solution is found, the list

length is reduced to tabumin. The local search followed by tabu list updating procedure

ends after Itermax iterations with no improvements.

In this paper, we use three classical local searches as proposed in Subramanyam et al.

(2020). The relocate procedure takes one customer at a time and tries to insert it in all

other positions and in all routes. The exchange procedure takes all pairs of customers from

the same route and exchanges their positions. Finally, the inter-route 2-opt chooses two

routes from the same terminal and deletes an arc from each of them. Then, all possible

links between nodes of the removed arcs are tested. The best option that reconstructs the

route is considered as the new current solution. The procedure is repeated for all pairs of

arcs. The pseudocode of the local search algorithm is provided in Algorithm 3.

6.3. Neighborhood structure for the perturbation

At each perturbation iteration, the process starts by selecting two routes from the set

of routes, R. The first route is the one having the highest average demand for visited

customers. The second one is selected by looking at the distances between the customers

of this route and all other customers. We identify the pair of customers having the shortest

distance. The route that contains this other closest customer is called closest route. These

two routes, i.e., the one with the highest average demand and the closest route, are then

removed, and all their customers are placed in V 0, the set of unvisited customers, and then

relocated randomly to other routes (trucks) with available capacities. If the total capacity

of the trucks does not allow the insertion of these customers, new trucks are allocated
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Algorithm 3: LocalSearch().

1 Data: s, tabumin, tabumax, Itermax

2 s⇤  s;
3 Iteration = 0;
4 currentsize = tabumin;
5 repeat

6 Randomly select a local search operator l 2 LS;
7 repeat

8 Iteration = Iteration+ 1;
9 s0 = first improvement l(s);

10 if f(s0) < f(s) then
11 s s0;
12 if |tabu list| > currentsize then

13 Remove the first position solution from tabu list ;
14 end

15 if f(s0) < f(s⇤) then
16 s⇤  s0;
17 Iteration = 0;
18 currentsize = tabumin;

19 end

20 Add s0 to tabu list ;
21 Reset LS with all local searches;
22 Select a local search operator l 2 LS;

23 else

24 Remove l from LS;
25 Select l0 2 LS;
26 l l0;
27 if currentsize < tabumax then

28 currentsize = currentsize + 1;
29 end

30 end

31 until LS = ;;
32 Reset LS with all local searches;

33 until Iteration = Itermax;
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Algorithm 4: Perturb().

1 Data: s, R
Result: s0

2 From R select route r with the highest average demand;
3 From R select route r0 as the closest route of r;
4 Remove all customers from r and r0 and place them in V 0;
5 repeat

6 Select a customer from V 0 and a random route from R;
7 if feasible with respect to trailer capacity then

8 Relocate the customer randomly in the selected route;
9 else

10 Add a route to R originating from the main terminal;
11 Add the selected customer to this route;

12 end

13 Remove the customer from V 0;

14 until V 0 = ;;

to their original terminals and customers are inserted in these routes. Next, we apply

a random local search operator on this perturbed solution, as presented in Algorithm 1.

The road train set is updated next by forming pairs of routes that leave from the same

terminal. This process is repeated pmax times. Algorithm 4 summarizes this procedure.

7. Computational results

This section presents and discusses the results of our computational experiments. The

model presented in Section 4 and the proposed solution algorithm elaborated in Section

6 are coded in C++. The model is solved using Gurobi Optimization solver 9.5.0. All

computational experiments are conducted on an Intel Core i7 processor running at 4.0

GHz with 64 GB of RAM installed with the Ubuntu Linux operating system.

In this section, first, we start by introducing the instances generated in this paper in

Section 7.1. Then in Section 7.2, the performance of the model in solving these instances

is evaluated. The parameter tuning procedure for the proposed algorithm is described in

Section 7.3. Its performance is evaluated in Section 7.4 and by solving instances for the

single truck and trailer with intermediate depot in Section 7.5. Finally, in Section 7.6, we

perform a sensitivity analysis on the road train configuration concerning the number of
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trailers loaded.

7.1. Instance generation

Inspired by our collaboration with a major common carrier, we generated several in-

stances with di↵erent combinations of orders. An order is classified as a truck-load (TL)

if it corresponds to a trailer’s capacity, thus 24 pallets. For less-than-truckload (LTL)

orders, we used di↵erent demand patterns as presented in Table 2.

Table 2: Instance set parameters

Number of Number of TL Number of LTL LTL Demand Pattern

instance sets High Low

40 4, 8, 12, 16 4, 8, 12, 16, 20 [7, 8, 9] [4, 5, 6]

We use four values for the number of TL and five for the number of LTL orders and

define two demand patterns for the LTL orders. When the number of pallets is 7, 8, or

9, the demand pattern is considered as high and when it is either 4, 5 or 6, the demand

is considered low. As the trailer capacity, Q, is set to 24 pallets; high demand will result

in routes with, on average, three deliveries and between four to six deliveries for the low

demand pattern. We generate 40 instance sets and four instances in each set for a total

of 160 individual instances.

The coordinates of each customer are integer values randomly placed in a 50⇥50 area.

We place the main terminal within x 2 [30, 50] and y 2 [0, 15] (lower right corner). The

coordinates of the first intermediate terminal are in x 2 [10, 35] and y 2 [20, 30] and the

second one in x 2 [0, 25] and y 2 [30, 45].

These instance sets are numbered as TLa–LTLb–c where a is the number of TL, b the

number of LTL, and c is either H or L for the demand pattern, referring to high versus

low demand pattern. Thus, instances in set TL12–LTL20–H have 12 TL orders and 20

LTL orders with a high demand pattern. It should be noted that instances with 8 TL

and 16 LTL are representative of the company’s day-to-day operations. The instances are

publicly available at https://doi.org/10.5683/SP3/R6ZNPW.
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7.2. Performance of the model

The model presented in Section 4 is solved using a commercial solver (Gurobi solver).

Table 3 shows the average results obtained where the first two columns provide information

on the instance. Then for high and low demand patterns, we report the solution value or

the upper bound (UB), the percentage gap (Gap%) and the computing time (Time) in

seconds. For instances solved to optimality, Gap = 100 ⇥ (UB � z⇤)/z⇤ where z⇤ is the

value of the optimal solution. When z⇤ is unknown, we use Gap = 100⇥ (UB �LB)/LB

where LB is the lower bound reported by Gurobi (see Laporte and Toth (2022)). The

average results are from four instances generated for each combination of TL and LTL.

Note that the time limit is set to 21,600 seconds.

Table 3: Average of results obtained by the commercial solver

High demand pattern Low demand pattern

TL LTL UB Gap(%) Time (s) UB Gap (%) Time (s)

4 4 319.72 0.00 3 279.40 0.00 1
4 8 322.60 0.00 1136 322.25 0.00 220
4 12 455.93 3.67 17814 379.50 7.14 21600
4 16 592.92 10.84 21600 448.06 17.55 21600
4 20 539.80 16.96 21601 459.75 13.49 21600
8 4 423.03 0.00 2 404.15 0.00 2
8 8 495.00 0.00 334 506.45 0.00 491
8 12 574.21 5.08 21600 523.26 2.24 18644
8 16 598.22 6.76 21600 604.16 6.57 21600
8 20 769.31 15.35 21600 618.00 12.52 21600
12 4 566.09 0.00 8 566.21 0.00 6
12 8 642.32 0.00 756 671.33 0.00 238
12 12 786.52 3.44 21522 781.36 1.99 13145
12 16 888.30 5.60 21600 697.40 5.59 21600
12 20 952.90 13.24 21600 808.46 8.09 21600
16 4 726.64 0.00 13 769.13 0.00 14
16 8 845.72 0.00 485 744.66 0.00 727
16 12 807.45 2.10 17428 834.88 0.00 743
16 16 1080.79 10.25 21600 894.56 7.09 21600
16 20 1044.32 11.09 21601 973.88 8.63 21600

Global average 671.59 5.22 12695 614.34 4.54 11432

On average and over all instances, we observe a gap of 5.22% and 4.54% to optimal

solutions for high and low demand instances, respectively. We also observe that the low

demand instances are slightly easier to solve, as shown by the obtained optimality gap and

the execution time. The results in Table 3 also show that all instances with four or eight

LTLs can be solved to optimality on average in 353 seconds. However, as the number of

LTL deliveries increases, the solver struggles to prove optimality, in most cases taking the
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whole three hours allocated running time.

7.3. Tuning parameters

For the MS-ILS parameter tuning, we follow the simple sequential strategy proposed by

Accorsi and Vigo (2021). First, we consider a default reasonable value for each parameter

to tune. These values are set based on preliminary trial-and-errors or the literature (e.g.,

(Nguyen et al., 2012)). Then, we change the value of one parameter keeping the rest as

default to get the cost and the execution time. The goal is to identify a set of parameters

leading to good quality solutions while keeping the running time low (Accorsi and Vigo,

2021).

We perform the parameter tuning on an independent set of 10 instances as the bench-

mark. In these instances, the number of LTL orders is fixed to 20, and we use 4, 8, 12,

16 and 20 TL orders. For each combination, we generated an instance with low and high

demand patterns, leading to 10 tuning instances. Table 4 presents the parameter values

used as default and Table 5 shows their values in tuning tests.

The cost obtained and execution time for each instance on each of the tests are pre-

sented in Table 6. The results show the trade-o↵ between the quality of the solution and

the change in execution time. Parameters of test 4 produce slightly better results than the

default one but at the expense of the computing time, almost four times higher. Consid-

ering this trade-o↵, we keep the parameters as their default values in our computational

experiments.

Table 4: Default values for the parameters

Parameters Description Value
restartmax Maximum number of global iterations |J |⇥ 100

pmax Maximum number of perturbations 2
Itermax Number of iterations without improvement 15
tabumin Minimum length of the tabu list 10
tabumax Maximum length of the tabu list 30
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Table 5: Values for parameter tuning tests

Parameters Test (#): Value

restartmax

Test 1: |J |⇥ 10
Test 2: |J |

pmax

Test 3: 4
Test 4: 6

Itermax

Test 5: 10
Test 6: 20

tabumin

Test 7: 15
Test 8: 20

tabumax
Test 9: 20
Test 10: 40

Table 6: Results of tuning tests

Instance\Test Default 1 2 3 4 5 6 7 8 9 10

Instance Cost

TL12 LTL20 H 755.54 766.62 773.03 755.54 754.51 761.51 755.54 757.22 754.94 755.54 756.15
TL12 LTL20 L 690.29 700.23 763.23 694.21 688.17 702.48 692.21 700.03 701.95 698.85 700.23
TL16 LTL20 H 5095.30 5121.77 5136.30 5093.70 5098.26 5082.18 5095.68 5098.29 5101.00 5096.67 5100.05
TL16 LTL20 L 1887.77 1889.89 1980.16 1884.24 1886.34 1890.12 1887.91 1883.32 1889.89 1886.36 1892.93
TL20 LTL20 H 1358.62 1398.45 1433.06 1376.38 1374.00 1378.10 1382.94 1376.51 1362.31 1389.00 1393.31
TL20 LTL20 L 6078.08 6085.01 6205.93 6080.36 6074.07 6093.27 6081.47 6082.92 6089.26 6075.87 6073.67
TL4 LTL20 H 579.08 579.45 582.20 576.30 576.30 579.08 576.30 579.45 579.08 576.30 577.95
TL4 LTL20 L 477.99 487.76 511.08 474.95 462.61 471.65 477.99 475.08 473.72 462.61 477.99
TL8 LTL20 H 716.73 740.69 757.79 710.01 699.48 714.59 699.48 706.05 710.61 719.91 726.69
TL8 LTL20 L 571.89 584.68 620.82 571.04 571.39 571.39 571.04 571.39 571.39 576.95 571.39
Average 1821.13 1835.45 1876.36 1821.67 1818.51 1824.44 1822.06 1823.03 1823.41 1823.80 1827.04

Instance Time

TL12 LTL20 H 24 3 0 5 4 14 40 18 21 5 11
TL12 LTL20 L 9 1 0 52 28 13 26 1 27 28 26
TL16 LTL20 H 2 3 0 1 84 3 25 27 34 29 6
TL16 LTL20 L 9 4 0 21 82 18 43 41 31 9 41
TL20 LTL20 H 17 1 0 57 109 9 29 56 35 11 1
TL20 LTL20 L 25 6 0 7 122 27 21 19 51 24 28
TL4 LTL20 H 6 0 0 4 6 16 13 12 14 11 14
TL4 LTL20 L 8 2 0 18 22 3 2 22 8 6 16
TL8 LTL20 H 4 3 0 11 50 14 21 9 3 1 25
TL8 LTL20 L 24 2 0 38 10 9 5 7 27 30 17
Average 13 3 0 21 52 13 22 21 25 15 18
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7.4. Performance of MS-ILS

For each combination of TL and LTL, we created four instances, see Table 2. A total

of 160 instances are run five times, and the average results are presented in Table 7. The

best solutions among the five runs are saved and the average of the best solutions of four

instances for each combination of TL and LTL is shown under columns Best Sol.

To evaluate the performance of the proposed algorithm, we follow the definition pro-

vided by Laporte and Toth (2022) to compare the solutions obtained with the MS-

ILS (BestSol) with the lower bound (LB) obtained by the commercial solver. Column

GAPUB(%) compares the average best solutions obtained by the MS-ILS with the LB

obtained from the commercial solver, where GAPUB(%) = 100 ⇥ BestSol � LB

LB
. The

next columns of cost, best time, and total time show the average cost, best time, and

total time obtained over all runs and all instances for each combination of TL and LTL,

respectively.

Table 7: Results of the proposed algorithm (MS-ILS)

High demand pattern Low demand pattern

Average Average
TL LTL Best Sol. GAPUB(%) cost best time total time Best Sol. GAPUB(%) cost best time total time

4 4 319.72 0.00 319.72 0.60 6.26 279.40 0.00 280.03 0.63 6.25
4 8 322.61 0.00 322.65 2.70 10.80 322.25 0.00 322.25 2.31 10.49
4 12 455.93 3.67 456.03 2.85 16.90 379.98 7.26 380.15 2.89 16.99
4 16 593.12 10.88 594.57 9.41 24.87 448.06 17.55 450.40 5.48 25.12
4 20 542.90 17.65 545.69 15.69 32.34 459.37 13.39 460.13 11.31 33.83
8 4 423.03 0.00 423.03 0.72 9.16 404.15 0.00 404.15 1.11 9.56
8 8 495.00 0.00 495.00 1.52 14.93 506.45 0.00 506.85 2.94 15.43
8 12 574.21 5.08 574.53 6.57 22.20 523.26 2.24 524.68 8.89 23.41
8 16 600.08 7.09 603.35 11.65 30.72 604.17 6.57 606.71 10.50 30.82
8 20 779.22 16.77 785.42 22.54 38.16 618.05 12.54 619.14 15.20 41.34
12 4 566.40 0.05 566.40 0.90 13.40 566.22 0.00 566.22 1.18 12.98
12 8 642.32 0.00 643.01 4.01 19.21 671.75 0.06 672.80 5.21 20.01
12 12 786.52 3.44 787.67 10.69 27.39 784.90 2.46 791.04 11.28 27.80
12 16 899.48 6.87 904.12 12.41 36.18 703.82 6.54 707.47 15.49 35.48
12 20 957.59 13.75 960.39 19.85 44.36 821.47 9.86 825.79 25.29 47.10
16 4 726.64 0.00 727.36 5.68 18.24 769.67 0.07 771.06 7.40 17.33
16 8 848.56 0.33 850.47 7.63 23.70 745.16 0.06 746.74 6.41 24.49
16 12 809.32 2.31 812.40 13.36 34.34 834.88 0.00 835.58 7.58 29.28
16 16 1061.51 8.26 1068.91 25.73 46.27 898.49 7.58 900.82 21.69 49.37
16 20 1055.25 12.18 1062.08 38.83 62.68 979.63 9.32 984.31 33.06 61.50

Global average 672.97 5.42 675.14 10.67 26.61 616.05 4.77 617.81 9.79 26.93

As it can be observed from Table 7 and compared to the results shown in Table 3,

in general, the proposed algorithm finds solutions as good as the ones obtained by the
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commercial solver, with an average of 0.20% and 0.23% deviation from the upper bounds

for instances with high and low demand pattern, respectively. However, these solutions

are obtained in less than 27 seconds compared to 12,425 and 11,432 seconds spent by the

commercial solver for instances with high and low demand patterns. If we consider the

time the best solutions are obtained by the proposed algorithms, the comparisons becomes

even more interesting, as on average the best solutions is obtained in no longer than 11

seconds.

7.5. Testing ILS on single truck and trailer routing problem with satellite depots instances

As the STTRPSD is close to our problem, and to evaluate the performance of the

proposed metaheuristic, we adapted our algorithm to solve the instances of this problem

from the literature. In this case, we must use only one road train and visit more than

one intermediate terminal. We also assign only one regular truck to each intermediate

terminal. The calculation of the objective function is also altered to consider the order in

which the intermediate terminals appear in the solution.

Villegas et al. (2010) generated a set of 32 instances characterized by the number of

customers ranging from 25 to 200 and the number of intermediate depots ranging from

from 5 to 20. Customer demands follow a uniform distribution in the interval [1, 200]. The

distribution of customers and trailer points is clustered (c) or random (rd). The capacity

of trucks is either 1,000 or 2,000. Euclidean coordinates are randomly selected in a square

grid of 100 ⇥ 100. More information on these instances can be found in Villegas et al.

(2010).

Table 8 compares the results obtained by our proposed metaheuristic with those from

Villegas et al. (2010) and Accorsi and Vigo (2020). The first four columns provide in-

formation on the STTRPSD instances. We solved each instance five times and, as in

Villegas et al. (2010) and Accorsi and Vigo (2020), we report the best solution obtained

(Best), average solution (Avg), and the average execution time (Time, in seconds). Then,

methods from Villegas et al. (2010) including enhanced cluster-first, route second (labelled

CFRS), CFRS and VND (labelled CFRS+VND), and iterated route-first, cluster-second

(labeled IRFCS) are compared. For IRFCS, the best and average solutions obtained from
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ten runs are shown in columns Best and Avg. Finally, the last two columns present the

best and average solutions obtained by the hybrid metaheuristic proposed by Accorsi and

Vigo (2020).

As Table 8 shows, from 16 instances with less than 100 customers, we improved the

best known solution from the literature for two instances, identified in boldface. For

larger instances with more than 100 customers, the performance of our method slightly

improves. On these 16 larger instances, we obtained thirteen times the same solution as

the ones reported in Accorsi and Vigo (2020) and improved the best known solution from

the literature in three cases, identified in boldface. Our adapted algorithm outperforms

all those presented in Villegas et al. (2010) as confirmed by the global averages shown at

the bottom of the table. To have the same basis of comparison for all methods, we also

report the average of percentage GapUB, where the best known solution (BKS) for each

instance is used as the reference solutions. Therefore, GAPUB(%) = 100 ⇥ UB �BKS

BKS
,

where UB is the solution obtained by the algorithm being compared.
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Table 8: Performance comparison on STTRPSD instances

MS-ILS Three heuristics Hybrid metaheuristic

(Villegas et al., 2010) (Accorsi and Vigo, 2020)

Instance n p Type Best Avg. Time CFRS CFRS+VND IRFCS (Best) IRFCS (Avg) Best Avg

1 25 5 c 405.46 405.46 93.73 444.08 405.46 420.34 427.48 405.46 405.46
2 25 5 c 374.79 388.26 29.95 444.08 391.62 390.6 398.56 374.79 374.79
3 25 5 rd 584.03 584.03 73.70 696.73 585.96 596.17 618.61 584.03 584.03
4 25 5 rd 508.48 521.17 15.47 640.01 526.27 530.48 548.32 508.48 508.48
5 25 10 c 386.45 396.13 69.51 460.28 386.45 398.41 404.86 386.45 386.45
6 25 10 c 380.86 381.32 20.86 460.28 386.45 391.43 401.46 380.86 380.86
7 25 10 rd 573.96 578.10 64.39 789.7 582.64 597.13 613.02 573.96 573.96
8 25 10 rd 506.37 508.85 57.81 789.7 582.64 521.67 542.26 506.37 506.37
9 50 5 c 565.54 572.04 144.48 625.67 583.41 641.15 646.42 583.07 583.07
10 50 5 c 516.98 545.05 460.44 574.17 560.17 594.72 608.57 516.98 516.98
11 50 5 rd 831.11 831.11 510.53 1177.25 870.51 994.62 1012.4 870.51 870.51
12 50 5 rd 766.03 766.03 102.49 980.57 787.79 895.6 907.91 766.03 766.03
13 50 10 c 387.83 397.79 199.29 471.43 387.83 424.53 433.5 387.83 387.83
14 50 10 c 367.01 385.25 185.32 460.36 381.32 415.45 421.57 367.01 367.01
15 50 10 rd 811.28 865.52 327.81 1034.77 847.49 892.42 931.37 811.28 811.28
16 50 10 rd 731.53 753.62 142.48 1013.2 758.95 855.75 874.4 731.53 731.53
17 100 10 c 607.56 615.54 643.06 705.19 640.01 724.13 742.97 614.02 614.02
18 100 10 c 547.44 560.17 425.20 665.76 555.31 679.7 691.22 547.44 547.44
19 100 10 rd 1169.22 1181.50 499.68 1544.01 1416.6 1569.15 1593.06 1271.81 1271.81
20 100 10 rd 1097.28 1128.10 418.90 1290.79 1167.97 1378.2 1408.73 1097.28 1097.28
21 100 20 c 642.61 713.59 173.81 820 668.04 768.01 781.21 642.61 642.61
22 100 20 c 581.56 624.59 203.63 808.61 643.16 692.03 714.43 581.56 581.56
23 100 20 rd 1143.10 1211.59 160.02 1392.01 1192.83 1374.35 1410.23 1143.1 1143.1
24 100 20 rd 1060.75 1136.45 218.00 1342.1 1138.84 1321.92 1348.44 1060.86 1063.3
25 200 10 c 819.97 938.60 4680.36 1004.8 849.63 1032.04 1049.39 819.97 819.97
26 200 10 c 710.69 765.17 3386.42 878.59 734.63 936.67 949.52 710.69 711.19
27 200 10 rd 1755.46 1841.66 5386.00 2391.08 2026.04 2305.69 2322.63 1755.46 1755.46
28 200 10 rd 1445.94 1584.38 2892.65 1951.77 1515.01 2028.96 2050.88 1445.94 1445.94
29 200 20 c 907.19 1106.18 901.62 1098.7 950.21 1134.92 1152.02 907.19 907.19
30 200 20 c 814.45 1040.68 1001.53 1036.27 862.35 1040.35 1056.52 814.45 814.45
31 200 20 rd 1610.63 1750.11 1042.91 2251.76 1691.43 2142.39 2167.92 1610.63 1610.63
32 200 20 rd 1413.32 1539.91 758.20 2019.44 1559.43 1956.08 1975.18 1413.32 1413.32

Average 782.03 828.04 740.12 1008.22 832.39 957.66 975.16 787.22 787.31

Average GapUB (%) 0.00 5.15 26.93 5.36 18.19 20.56 0.55 0.56

After having the results compared to the best known solutions from the literature and

since multi-start frameworks have already been proposed in Villegas et al. (2010) to solve

the benchmark instances, in what follows, we compare the results with other multi-start

algorithms. In Table 9, we refer to our MS-ILS algorithm as the Proposed Algo. where

we show the best, worst, and average solutions obtained for each instance. The results

are compared against the ones from two multi-start methods, reported in Villegas et al.

(2010). These methods are multi start evolutionary local search (ELS) and their MS-ILS.

Our algorithm clearly produces better solutions than these two methods. However, the

algorithms proposed by Villegas et al. (2010) are more stable with respect to average and

worst solutions. The same as for the previous table, the average percentage GapUB, where

the BKS for each instance is used as the reference solutions, is reported.
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Table 9: Performance comparison with other multi-start algorithms on STTRPSD instances

Proposed Algo. MS-ELS MS-ILS

Instance Best Worst Avg. Best Worst Avg. Best Worst Avg.

1 405.46 405.46 405.46 405.46 405.46 405.46 405.46 405.46 405.46
2 374.79 391.62 388.26 374.79 374.79 374.79 374.79 374.79 374.79
3 584.03 584.03 584.03 584.03 584.03 584.03 584.03 584.03 584.03
4 508.48 524.34 521.17 508.48 508.48 508.48 508.48 508.48 508.48
5 386.45 401.07 393.80 386.45 386.45 386.45 386.45 386.45 386.45
6 380.86 381.43 381.32 380.86 380.86 380.86 380.86 380.86 380.86
7 573.96 579.19 576.91 573.96 573.96 573.96 573.96 573.96 573.96
8 506.37 509.55 508.85 506.37 506.37 506.37 506.37 506.37 506.37
9 565.54 572.13 569.54 583.07 583.41 583.1 583.07 583.07 583.07

10 516.98 552.77 544.68 516.98 516.98 516.98 516.98 516.98 516.98
11 831.11 831.11 831.11 870.51 870.51 870.51 870.51 870.51 870.51
12 766.03 766.03 766.03 766.03 766.03 766.03 766.03 766.03 766.03
13 387.83 403.55 395.29 387.83 387.83 387.83 387.83 387.83 387.83
14 367.01 392.69 384.70 367.01 367.01 367.01 367.01 367.01 367.01
15 811.28 892.06 857.37 811.28 811.28 811.28 811.28 811.28 811.28
16 731.53 764.15 755.34 731.53 731.53 731.53 731.53 731.53 731.53
17 607.56 621.94 615.71 614.2 614.31 614.3 614.02 615.32 614.41
18 547.44 564.22 559.92 547.44 548.11 547.64 547.44 548.11 547.57
19 1169.22 1189.28 1181.50 1275.76 1285.38 1280.65 1280.02 1286.14 1282.79
20 1097.28 1143.82 1127.10 1097.28 1097.28 1097.28 1097.28 1103.43 1097.9
21 642.61 746.06 704.52 642.61 643.93 642.79 642.61 642.61 642.61
22 581.56 636.55 617.03 581.56 583.71 581.78 581.56 583.71 582.18
23 1143.10 1245.05 1206.48 1143.1 1151.29 1147.11 1143.1 1150.34 1146.66
24 1060.75 1161.90 1132.73 1060.75 1066.54 1064.04 1060.75 1064.99 1062.84
25 819.97 986.54 935.02 827.1 836.39 830.99 822.52 835.02 828.37
26 710.69 783.86 762.26 715.37 729.98 723.17 714.33 725.99 719.99
27 1755.46 1881.82 1827.33 1761.1 1807.95 1787.63 1763.3 1805.7 1783.24
28 1445.94 1633.42 1569.29 1454.9 1475.95 1461.06 1445.94 1470.7 1458.15
29 907.19 1173.85 1105.17 912.87 920.76 916.17 909.46 923.22 913.51
30 814.45 1101.65 1040.68 815.51 824.51 820.64 820.67 824.84 822.19
31 1610.63 1812.00 1727.43 1620.47 1648.79 1632.1 1614.18 1649.12 1631.61
32 1413.32 1577.25 1521.14 1420.45 1449.77 1432.01 1413.32 1438.97 1424.77

Average 782.03 850.33 828.04 788.91 794.99 791.69 788.29 794.46 791.04

Average GapUP (%) 0.00 7.55 5.15 0.7 1.20 0.93 0.65 1.16 0.87
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7.6. Sensitivity analysis on the number of trailers loaded on road trains

In this section, we provide managerial insights on the use of road trains. In our case

study, based on the Canadian context, we assumed that each road train could only load

two trailers. However, in other countries, such as Australia, the limit is three trailers.

Therefore, we conduct the following analyses to understand how much improvement can

be obtained if the two-trailer regulation is extended.

In the mathematical model presented in Section 4, constraints (3) set the number of

trailers to be loaded on each road train to two. First, we limit the number to three by

modifying the right-hand side of these constraints as presented below (constraints (14)).

X

k2K
ytk = 3wt 8t 2 T\{1} (14)

Then, we study how the model optimizes the number of trailers loaded on a road train

when having more flexibility. In this case, we modify the model by replacing constraints

(3) with constraints (15), as shown below.

X

k2K
ytk  3wt 8t 2 T\{1} (15)

The results are presented in Tables 10 and 11 for instances with high and low demand

patterns, respectively. The first two columns in these tables provide the instance sets

information. Then the average of upper bounds (UB), the optimality gap (Gap%), and

the execution time in seconds (Sec.) are reported for using two trailers, three trailers, and

either two or three trailers. We expect that the model with the most flexibility obtains

the best solutions. Moreover, we expect that increasing the number of trailers will lead to

cost minimization since the fixed cost remains the same.

From the results shown in Tables 10 and 11, we observe that, in general, changing the

limit on the number of loaded trailers from two to three, makes the problem more di�cult

to solve, proved by the increase in the average gap and the execution time. However, this

increase in the number of loaded trailers will result in 6.82% and 6.24% global average

cost reduction for high and low demand instances, respectively.
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Table 10: Comparison of the results for di↵erent number of trailers for high demand instances

Two trailers Three trailers Two or three trailers

TL LTL UB Gap% Sec. UB Gap% Sec. UB Gap% Sec.

4 4 319.72 0.00 3 297.05 0.00 2 294.97 0.00 3

4 8 322.60 0.00 1136 308.82 0.00 1902 307.28 0.00 3826

4 12 455.93 3.67 17814 431.68 9.09 21600 431.68 9.21 21600

4 16 592.92 10.84 21600 545.73 13.11 21600 543.26 12.55 21600

4 20 539.80 16.96 21601 515.79 23.86 21601 515.89 22.75 21601

8 4 423.03 0.00 2 394.64 0.00 3 394.64 0.00 4

8 8 495.00 0.00 334 472.41 0.00 1882 471.27 0.00 1226

8 12 574.21 5.08 21600 557.00 8.87 21600 551.93 9.21 21600

8 16 598.22 6.76 21600 566.79 7.78 21600 566.79 7.84 21600

8 20 769.31 15.35 21600 721.40 19.12 21600 720.60 21.39 21604

12 4 566.09 0.00 8 523.10 0.00 9 523.10 0.00 38

12 8 642.32 0.00 756 595.75 0.00 805 595.75 0.00 770

12 12 786.52 3.44 21522 727.50 6.21 21600 727.50 6.18 21600

12 16 888.30 5.60 21600 829.38 9.49 21600 829.38 9.30 21600

12 20 952.90 13.24 21600 878.55 17.44 21602 878.51 19.82 21606

16 4 726.64 0.00 13 676.63 0.00 33 675.17 0.00 27

16 8 845.72 0.00 485 783.32 0.00 1952 783.26 0.00 1281

16 12 807.45 2.10 17428 750.65 2.02 16295 748.34 2.37 20192

16 16 1080.79 10.25 21600 973.83 6.43 21601 973.83 8.31 21600

16 20 1044.32 11.09 21601 965.14 14.82 21601 962.96 14.21 21602

Global average 671.59 5.22 12695 625.76 6.91 13024 624.81 7.16 13249
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Table 11: Comparison of the results for di↵erent number of trailers for low demand instances

Two trailers Three trailers Two or three trailers

TL LTL Sol. Gap% Sec. Sol. Gap% Sec. Sol. Gap% Sec.

4 4 279.40 0.00 1 274.77 0.00 3 272.11 0.00 2

4 8 322.25 0.00 220 313.14 0.00 1176 310.98 0.00 750

4 12 379.50 7.14 21600 351.92 10.09 21600 351.33 9.57 19619

4 16 448.06 17.55 21600 422.80 17.07 21600 422.80 18.21 21600

4 20 459.75 13.49 21600 442.19 15.06 21600 437.35 16.11 21600

8 4 404.15 0.00 2 379.02 0.00 4 376.40 0.00 4

8 8 506.45 0.00 491 479.61 0.00 2669 479.61 0.00 1125

8 12 523.26 2.24 18644 491.48 4.37 21600 491.48 5.13 21600

8 16 604.16 6.57 21600 568.86 7.96 21600 568.86 8.03 21600

8 20 618.00 12.52 21600 584.32 11.48 21600 582.28 11.33 21600

12 4 566.21 0.00 6 520.74 0.00 10 520.74 0.00 10

12 8 671.33 0.00 238 619.86 0.79 7420 619.86 0.00 3654

12 12 781.36 1.99 13145 733.85 4.54 16652 733.85 4.44 16512

12 16 697.40 5.59 21600 646.93 7.14 21600 646.93 9.17 21600

12 20 808.46 8.09 21600 764.20 8.61 21600 764.20 8.84 21601

16 4 769.13 0.00 14 715.97 0.00 23 715.97 0.00 27

16 8 744.66 0.00 727 683.38 0.00 3765 683.38 0.00 3988

16 12 834.88 0.00 743 788.61 0.00 5451 786.81 0.00 2754

16 16 894.56 7.09 21600 831.57 7.52 21601 831.09 7.44 21601

16 20 973.88 8.63 21600 906.26 9.92 21601 906.02 9.30 21601

Global average 614.34 4.54 11432 575.97 5.23 12659 575.10 5.38 12142

As expected, when the model is flexible in choosing the number of loaded trailers, i.e.,

either two or three, the cost is further reduced, but the optimality gap and execution time

are increased. To better observe these e↵ects and how the solution changes, in Figure

2, we show the optimal solutions obtained for an instance with four TLs and four LTLs

with a high-demand pattern. In all three solutions, a road train is sent from the main

terminal (terminal 1) to the other two (terminals 2 and 3). Also, customer 4 is always

visited from the main terminal, customers 1 and 7 from terminal 2, and customers 2, 5, 6,

8 from terminal 3. However, when only two trailers are loaded on a road train, customer

3 will be visited from terminal 1. The other di↵erence is in how the routes are built, in

the flexible case, as is the case with two loaded trailers, the model chooses to send two
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trailers to terminal 3, and creates a route to server customers 5, 6, and 8 whereas, in the

case with three loaded trailers, three routes are generated to serve customers, 2, 5, 6, and

8.
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(a) with two trailers
Solution: 276.55

(b) with three trailers
Solution: 256.62

(c) with two or three trailers
Solution: 248.30

Figure 2: Optimal solutions for instance TL4-LTL4-H-A with di↵erent number of trailers per road train.
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8. Conclusion

This paper introduces and solves the road train optimization problem with load as-

signment (RTOP–LA). RTOP–LA deals with selecting intermediate terminals for road

trains and making routing decisions for trucks from all terminals to customers. Trailers

are initially located in an origin terminal, loaded with customer demands. These trailers

can be carried by regular trucks sent directly to customers from the origin terminal or the

other option is to connect two trailers to a road train and send them to an intermediate

terminal where they will be dismantled. These trailers are then assigned to regular trucks

and sent to final customers. We also considered two types of orders: full truckload (TL)

and less-than-truckload (LTL). A new model for RTOP–LA has been introduced and a

set of 160 instances based on our collaboration with a trucking company is developed.

We also developed an algorithm based on the multi-start iterated local search (MS-ILS)

metaheuristic to obtain quality solutions for larger instances.

In order to have an independent basis of comparison, we have evaluated the MS-ILS

over the benchmark instances of the single truck and trailer routing problem with satellite

depots (STTRPSD) against the best algorithms available. Out of 32 instances, we report

five new best known solutions. Finally, our analyses show that additional gains can be

obtained by having more flexibility in the choice of the number of trailers loaded on a road

train.

In future work, we suggest applying this problem to other minimization objectives,

such as delivery time and the number of movements in loading and unloading demands.

Moreover, this problem can be extended considering uncertainties, for example, of de-

mands and delivery or service time. Scheduling deliveries considering the time required

to load/unload trailers and to dismantle road trains at the terminals also opens doors to

other interesting and practical problems inspired by our work in this paper.
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Dondo, R., Méndez, C.A., Cerdá, J., 2011. The multi-echelon vehicle routing problem

with cross docking in supply chain management. Computers & Chemical Engineering

35, 3002–3024.

35

The Road Train Optimization Problem with Load Assignment

CIRRELT-2023-11

https://tc.canada.ca/fr/services-generaux/transparence/gestion-rapports-ministeriels/rapports-annuels-transports-canada/transports-canada-2019
https://tc.canada.ca/fr/services-generaux/transparence/gestion-rapports-ministeriels/rapports-annuels-transports-canada/transports-canada-2019
https://tc.canada.ca/fr/services-generaux/transparence/gestion-rapports-ministeriels/rapports-annuels-transports-canada/transports-canada-2019


Drexl, M., 2013. Applications of the vehicle routing problem with trailers and transship-

ments. European Journal of Operational Research 227, 275–283.
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serre en 2017 et leur évolution depuis 1990. Technical Report ISBN 978-2-550-85631-3.

Gouvernement du Québec.
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