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Abstract. During the COVID-19 pandemic, healthcare organizations suffered a shortage of 
essential medical supplies, such as personal protective equipment, which resulted in severe 
consequences. This study aims to assess the impact of one potential factor for this 
shortage, i.e., the lack of visibility over the consumption of personal protective equipment. 
To do so, different forecasting methods combined with a periodic review inventory system 
are tested on semi-simulated data that include various visibility issues. The forecasting 
methods are categorized based on the data used. The Holt and naïve methods are selected 
as demand-based forecasting methods, and a modified compartmental epidemiological 
model is explored for its use of pandemic data to forecast demand. This paper studies three 
of the most common data visibility problems. Specific scenarios have been developed to 
analyze the impact of (1) delayed data, (2) temporally aggregated data, and (3) erroneous 
data on the performance of the system. Our findings indicate that, in most cases, data 
visibility issues directly influence the healthcare supply chain and diminish the performance 
of the system. However, when these visibility issues result in exponentially large over-
forecasts, we observe a performance improvement in the system. This phenomenon is 
particularly true for a system that uses the epidemiological compartmental model as its 
forecasting method while using lagged data. 
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1 Introduction

In March 2020, the coronavirus disease 2019 (COVID-19) was declared a global pandemic by the

World Health Organization (WHO) [1]. With over 5 million deaths as of February 2022 [2], COVID-

19 has been one of the deadliest events in recent human history. Its economic impact is nothing

short of a catastrophe. Not only has bankruptcy become a constant threat, but it also brought the

world governments to the brink of an economic collapse comparable to the economic shock of the

2008 financial crisis [3]. Moreover, the global supply chain has experienced significant disruptions

in almost every industry [4–8]. Factory shutdowns [9, 10], uncertain and lengthy lead times [11, 12],

export restrictions [13, 14], and fluctuating demand [15, 16] are just a few contributing factors to the

inadequacy of the supply chain during the COVID-19 pandemic era, and healthcare supply chains

(HSCs) are no exception. During the initial stages of the pandemic and in the absence of a viable

vaccine, a sudden increase in hospitalizations pushed the healthcare facilities to their limits [17].

Since this virus spreads mostly via airborne particles and droplets, the most effective prevention

methods of transmission are social distancing and the use of personal protective equipment (PPE)

[18]. Protecting the frontline health workers was the obvious and utmost priority. The skyrocketing

demand for PPE resulted in severe shortages within healthcare facilities. Reports of PPE shortages

[19] were alarming and led to the implementation of “crisis capacity strategies” where extreme

measures such as the reuse of N95 masks were suggested [20].

The COVID-19 pandemic has exposed deficiencies in current HSCs. Warnings about the upcom-

ing pandemics [21] following the 2002-2004 SARS outbreak [22] have largely been ignored, which

left HSCs unprepared to face such an event, failing to perform adequately when it was needed the

most. There is thus an urgent need to revitalize the existing supply chain, at least within the

healthcare industry. Generally, the supply chain can be divided into two main sections: upstream

and downstream. In this paper, we focus on the downstream processes, particularly the factors that

can directly impact the flow of products. Supply chain managers, hereon managers, generally have

little to no control over the production line of their suppliers, and it was even less the case during

the pandemic. Therefore, their focus must be on downstream activities such as inventory and data

management. Most importantly, they should consider the impact of supply chain visibility, or lack

thereof, on the performance of the system should it require further enhancement.

Barratt and Oke [23] define supply chain visibility as “the extent to which actors within a supply

chain have access to or share the information which they consider as key or useful to their operations

and which they consider will be of mutual benefit”. The ability to track demand, replenishment,

and inventory within the system could potentially be vital to the system’s performance. In Canada,

the operations and processes of the healthcare supply chain fall under the provincial jurisdictions

[24] with highly diverse strategies about their inventory and data management systems, and with

minimal visibility on the various segments of the supply chain [25], which makes it fragmented

and inefficient [26]. The lack of visibility in the system is further intensified when encountering a
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crisis as critical as the COVID-19 pandemic [27, 28]. In the absence of proper data management

infrastructures that can provide timely and reliable reports on the status of the supply chain,

managers are forced to rely on their intuitions, which could negatively impact the overall system

performance.

Demand forecasting is an integral part of any inventory system. Understanding the limitations

and capabilities of forecasting methods becomes even more crucial for a successful manager consid-

ering that the potential data visibility issues (DVIs) within the system might have been amplified

due to the pandemic. Therefore, there exists an immediate need to examine the functionality of

common forecasting methods in the presence of DVIs. Our analyses focus on the impact of various

DVIs on the performance of a system that employs different forecasting methods in the context of

a pandemic.

The contributions of this paper are as follows. First, we compare two widely used forecasting

methods within professional communities (i.e., the näıve and Holt methods) to an epidemiological

compartmental model. This comparison is made both on the forecasting performance and the

performance of the resulting inventory management system. Second, we investigate common issues

associated with the visibility or lack thereof in the HSCs and analyze their impacts on the system’s

performance in the specific context of a pandemic. In particular, the examined DVIs are data

delay, temporally aggregated data and erroneous data. We present a separate scenario for each

DVI and assess its direct impact on the performance of the system. In addition, to replicate real-

world situations, we analyze a randomized delay data scenario as well as a randomized temporally

aggregated data scenario. In the scenario that analyzes the erroneous data, both under- and over-

reporting within the data are considered, and their impacts on the performance of the system are

analyzed.

This paper is organized as follows. The related literature is presented in Section 2. Section 3

describes the problem. Section 4 describes the general solution approaches for this problem. Sec-

tion 5 presents the numerical study and the associated results. Finally, Section 6 provides our

conclusions.

2 Literature review

In this section, we review two research streams relevant to this paper, i.e., (1) demand forecasting

and (2) supply chain visibility, with a specific focus on the context of a pandemic. Then, our paper

is positioned with respect to this literature.

2.1 Demand forecasting

Managing the inventory of PPE during a pandemic is a challenging task. Most inventory manage-

ment systems perform as expected when the demand is stable. However, when the demand expe-
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riences high levels of volatility, such as in the context of a pandemic, the impact of the forecasting

process on the system’s performance becomes more prominent since it directly affects decision-

making. Forecasting the demand for PPE during a pandemic is complicated. First, the new demand

is often drastically different from past demand patterns. Second, demand patterns are challenging

to predict as they are often linked to many factors (e.g., panic buying and hoarding behaviours

observed during the COVID-19 pandemic [29, 30]), which are, in turn, difficult to anticipate.

Several forecasting methods exist to predict demand during a pandemic. These methods can

be grouped into two categories. In the first one, the forecast is directly based on the demand data.

These methods include classical statistical methods that are used extensively within the scientific

communities and the industry. Forecasting methods such as näıve forecast [31], simple exponential

smoothing [32], Holt-Winters [33], regression models [34], and autoregressive integrated moving

average (ARIMA) models [35–37], to name a few, are mainly based on the historical data of the

time series that is being predicted.

In the second category, the demand is predicted through the utilization of epidemiological data

along with the pandemic’s behaviour. This is a two-tier method, where forecasting the pandemic’s

consequences (e.g., infected population, hospitalizations) are considered as trigger parameters in

the forecast of excess demand (i.e., demand above the average due to the pandemic) for medical

supplies such as PPE. In this case, the same methods mentioned in the first category can also be

employed to predict the pandemic behaviour [38]. As an example, Sun [39] proposes a modification

to the ARIMA model to forecast the dynamics of the pandemic. Swapnarekha, Behera, Nayak,

Naik, and Kumar [40] rather use the multiplicative Holt-Winters model and observe that it produces

good forecasts of the number of confirmed infected cases. However, a more detailed interpretation of

the pandemic behaviour can be produced using the well-established compartmental epidemiological

model, first introduced by Kermack, McKendrick, and Walker [41]. In its simplest form, the model

places each member of the population in different compartments (i.e., susceptible, infected, and

removed) based on their status and uses a series of differential equations to explain the interactions

between them. Hence, the name SIR is appointed for the proposed model. Extensive studies using

a compartmental model have been done on past [42, 43] and current pandemics [44–47].

The SIR model can also be extended to study the pandemic under external factors such as

social distancing. Gounane, Barkouch, Atlas, Bendahmane, Karami, and Meskine [48] develop a

nonlinear SIR model to incorporate the effect of social distancing. To study the effect of lock-

down on the pandemic, Ianni and Rossi [49] propose a time-dependent SIR model. Furthermore,

researchers have modified the SIR model to include additional compartments that represent spe-

cific population segments. The exposed compartment is the most common addition to the original

model, hence “E” in SEIR. It represents the latency between the contraction of disease and the

ability to transmit the infection by an individual [50]. Moreover, to investigate the population at

healthcare facilities at any given time, the “Hospitalized” compartment can be added to the model

[51, 52]. Once the required pandemic parameters are predicted, the data is used to forecast the
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excess demand (again, the demand above the average). In the case of HSCs, the number of required

units per patient can represent the excess demand. Lum, Johndrow, Cardone, et al. [53] propose a

mathematical model that employs the daily average number of contacts between infected patients

and healthcare workers as a coefficient which is multiplied by the projection of hospitalization to

forecast the PPE demand. Several proposals have transformed daily pandemic data, such as daily

infections and hospitalizations, into PPE demand in any region. Furman, Cressman, Shin, et al.

[54] propose using a queueing model to predict the required PPE during the COVID-19 pandemic.

Nikolopoulos, Punia, Schäfers, Tsinopoulos, and Vasilakis [31] employ the growth rate of COVID-19

incidents in conjunction with a parameter that can capture the effect of the pandemic. Yom-Tov

and Mandelbaum [55] propose a time-varying queueing model to determine the required unit per

patient.

2.2 Supply chain visibility

Supply chain visibility is a critical component in a system’s performance, especially within the

healthcare industry, where any deficiency might result in grave consequences. The COVID-19

pandemic has again shown a lack of resiliency and robustness in the supply chain industry. Data

visibility remains one of the biggest challenges for managers, as shown during the initial stages of

the pandemic [56, 57]. With increasing capabilities in the information-sharing systems provided by

modern information technologies, the effect of data visibility on the supply chain industry has been

investigated more prominently [58–64]. There are numerous factors contributing to data visibility

problems within the supply chain industry. In general, and even more during a pandemic, three of

the most common issues regarding data visibility are: (1) erroneous data, (2) delay in data, and

(3) temporally aggregated data.

Since the late 1950s, the bullwhip effect has been associated with a lack of data visibility. Many

scholars point out the importance of information sharing and its impact on reducing the amplified

demand throughout the value chain [65–67]. Information inaccuracies and errors are among the

contributing factors to the bullwhip effect, which might result in under- or over-reporting demand

within a system. Lu, Feng, Lai, and Wang [68] provide two primary sources of data inaccuracy and

their impact on the system’s performance with regard to the bullwhip effect. They mention that

the errors might occur either during the information delivery to the next level (from downstream

to upstream) or during the collection of data from the customers. Their study concludes that data

sharing has contrasting beneficial values for the manufacturers depending on the source of the error.

Kwak and Gavirneni [69] further outline the negative impact of errors on the value of information

sharing, where it is best to assume the information is not available if the variance of information

errors outweighs that of the end-customer demands. Under- and over-reporting are also potential

sources of errors within the data. Multiple studies have been conducted on under-reporting of the

number of infected cases and how it might lead to ineffective preventive policies during the COVID-

19 pandemic [70, 71]. In addition, threats of shortages could result in a significant over-reporting
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of demand which is a major problem for a supply chain manager.

Another major contributing factor to DVIs is the information delay [72]. It is possible to quantify

the cost of information delay and the value of the most recent demand data. Munoz and Clements

[73] find that the disruption in the flow of information has a more obstructive effect on revenue than

the product delay. Moreover, Chen [74] provides a comparative analysis of production lead times

and information delays within different stages of a supply chain that entirely belongs to a single

firm. He concludes that within such settings, data lags are less costly than production lead times.

The results also show that, data delays in the upstream supply chain are less detrimental than in

the downstream supply chain. Hoberg and Thonemann [75] analyze the effect of the information

delay on echelon stock policies. They conclude that the presence of information delay deteriorates

the system’s performance. However, increasing the length of delay does not automatically translate

into a further decline in performance. Hosoda and Disney [76] explore a similar problem on a linked

two-level supply chain and find that not all levels benefit from shorter delays. In the context of

the COVID-19 pandemic, Sarnaglia, Zamprogno, Fajardo Molinares, Godoi, and Jiménez Monroy

[77] recognize the existence of data delay and propose a methodology for a forecasting model to

correct the notification delay. Closer to our study, Tucker and Wang [78] analyze the impacts of

homogeneous and heterogeneous delay in data on preventive policies in the United States. Their

results indicate that data delay could lead decision-makers to misinterpret these policies.

Temporal aggregation of data is another potential supply chain visibility issue. The manager

might receive the demand data aggregated and transmitted at lower frequencies than initially

collected. Temporal aggregation is defined as the process of transforming high-frequency time

series (e.g., daily) into a low-frequency time series (e.g., weekly) [79]. It is established that data

aggregation results in information loss [80] and variance reduction [81]. In the supply chain context,

the aggregation of data is associated with “risk-pooling” to reduce the demand uncertainty and

improve the planning and forecasting [82]. Rostami-Tabar, Babai, Syntetos, and Ducq [83] conclude

that the performance improvements through data aggregation are a function of the aggregation

level, among others. Yet, the aggregated data may not always be beneficial, as shown by Gfrerer

and Zäpfel [84], where robust production planning requires the disaggregation of the aggregated

production plan into a feasible detailed plan. However, in most inventory management systems,

the managers do not have access to the detailed demand; hence, the evolution of the demand is

unknown to the system. Jin, Williams, Tokar, and Waller [85] observe that beneficial impacts of

the data aggregation on the forecast depend on the demand signal’s autocorrelation, which does

not necessarily hold for all cases.

2.3 Positioning of the paper

As previously highlighted, several methods can be applied to forecast the product’s demand. How-

ever, firstly, it is not completely clear how these methods perform and compare to each other in

the context of a pandemic, both for the forecasting performance and for the resulting inventory
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management performance. In addition, while the compartmental model has been used extensively

to predict pandemic behavior, the information provided by this model is not generally used to

predict demand. We believe that relying on such information in the context of a pandemic could

potentially improve forecasts and lead to better performances.

Therefore, the first contribution of our paper is to analyze and compare different forecasting

methods using various types of data and assess their performance. In particular, we compare

two classic forecasting models (i.e., the näıve and Holt methods) and a forecasting model based

on an epidemiological model. In addition to the traditional statistical performance (e.g., root

mean square error), we also compare these methods with respect to their performance within an

inventory management system since a good forecasting performance may not necessarily result in

a good inventory management system. This comparison provides a better understanding of how

the forecasting process impacts the decision-making process and, consequently, the performance of

the system.

We also previously highlighted that data visibility is a challenge that has been studied for quite

some time. While it is known that data visibility influences performance, it is not clear how visibility

affects performance in the specific context of a pandemic. The HSC has suffered tremendously from

the lack of visibility in recent years, particularly during the pandemic. Therefore, there exists an

urgent need to increase our knowledge in this domain.

The second contribution of this paper is the study of different DVIs’ impact on inventory

management performance during a pandemic. We analyze the information delay in two distinct

formats: fixed and random lags. This approach enables us to analyze the impacts of lag elongation

as well as real-world situations where lag lengths are random. Similar to data delay, we investigate

the performance of the system under the influence of aggregated data in two formats: fixed and

random. Finally, we test the impact of both under- and over-reporting of demand (i.e., erroneous

data). To the best of our knowledge, this is the first study that investigates the impact of DVIs (i.e.,

data lag, aggregated data, and erroneous data) on the performance of an inventory management

system in the context of a pandemic.

3 Problem description

The inventory management problem under study is an inventory management problem of medical

supplies in healthcare facilities. In this problem, a manager controls the replenishment of a single

product (e.g., N95 respirators) for a specific region (e.g., country, province, city). Furthermore,

since we assume that facilities within this region can redistribute supplies among themselves as

needed, we only consider the aggregated demand for the region. The entire time horizon (i.e., the

duration of the pandemic wave) is divided into a series of decision epochs with a constant interval

of R days (i.e., R is the review period of the system). At each decision epoch, after observing the

current and previous states of the system (e.g., inventory), the manager decides the quantity of the
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product that needs to be ordered (if any) while minimizing the cumulative costs of the system.

The cost definition depends on the objective(s) to achieve. The costs can be defined as the

monetary value of the ordering and holding processes as well as the associated costs related to

the shortages. In practice, however, the focus was on the minimization of the shortages while

avoiding too much left-over inventory at the end of the wave. We now further describe the different

components of this dynamic system in the rest of this section. It is important to note that the

demand in this study is perishable; thus, the unfulfilled demand is considered to be lost.

3.1 State

At the beginning of each decision epoch k ∈ K = {1, 2, . . . ,K + 1} with fixed intervals (i.e., one

week), the system is in the state sk:

sk = (dk−1, qk, pk, uk) (1)

where dk−1 denotes the total demand during epoch k− 1, qk denotes the state of the inventory, pk

denotes the state of the pandemic, and uk denotes the state of the supplier.

The state of the inventory is given by qk =
(
qak , q

t
k

)
where qak is the available inventory level of

the region and qtk is the in-transit inventory vector. Note that the sign of qak indicates a shortage or

surplus of inventory, with a negative value indicating the former. The in-transit inventory consists

in a vector tracking the remaining units to be delivered according to how many epochs ago they

were ordered. This vector has a length of Lmax, which is the maximum lead time for the ordered

items rounded up to the nearest multiple of the fixed interval.

The state of the pandemic pk at the beginning of epoch k includes information on the daily

number of infections and hospitalizations since the previous decision epoch. It also contains in-

formation about the government protocol that outlines the consumption of PPE per hospitalized

patient, CCk, at healthcare facilities.

Finally, the state of the supplier uk provides information regarding the lead time, the lot size

as well as the supplier’s upper and lower limits regarding the quantity of products in each order.

3.2 Action

At each epoch k ∈ K \ {K + 1}, the manager takes an action ak ∈ A(sk), which is a feasible

placement of an order to a supplier; note that, at the epoch K + 1, the manager observes the

state, but takes no action. If there is no need for an order at epoch k, the action is ak = 0. This

action is mainly restricted by the state of the supplier uk, e.g., the supplier’s upper and lower limits

regarding the quantity of products in each order. Constraints such as the budget, storage space,

or political aspects are not considered in this study.
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The quantity of the order at epoch k, ak, is generally defined by a policy π which requires the

full history of states, i.e., ak = π(s1:k) where s1:k denotes the history of states up to epoch k, i.e.,

s1:k = (s1, s2, . . . , sk). Note that the policy is assumed to be stationary. Moreover, the policy is

history-dependent since the manager needs to have some knowledge of the historical data in order

to make a decision (e.g., to know whether we are in an increasing or decreasing trend in terms of

the number of infections). While it is possible to increase the state dimension to capture previous

states and recover a Markovian policy, this leads to the curse of dimensionality.

Through these actions, the manager tries to minimize the costs, which are described next.

3.3 Cost function

Generally, for a particular state sk and action ak, the manager incurs a cost C(sk, ak) at the end of

the epoch k, which can be a combination of the ordering, holding, and shortage costs. In particular,

it can be defined as

C(sk, ak) = cf1ak>0 + cuak + chq
a,+
k + csq

a,−
k (2)

where cf denotes the fixed ordering cost, 1 denotes the indicator function, cu denotes the variable

(or unit) ordering cost, ch denotes the unit holding cost, cs denotes the unit shortage cost, and qa,+k

and qa,−k denote respectively the positive (i.e., inventory) and negative (i.e., shortage) parts of qak .

3.4 Transition function

Once the manager takes an action ak, the system transitions into the next state sk+1 =

(dk, qk+1, pk+1, uk+1). The state components can be categorized as being independent or dependent

of the agent’s action. On the one hand, it is assumed that the components dk, pk+1 and uk+1 do not

depend on the agent’s action and are updated solely based on the evolution of the pandemic and

the characteristics of the supplier; the manager receives these data from external sources. Thus, we

assume that the agent’s action (i.e., the replenishment decision) does not influence the pandemic’s

evolution or the suppliers’ available inventory.

On the other hand, the inventory qk+1 = (qak+1, q
t
k+1) is directly impacted by the action ak. Let

yk+1,j denote a quantity that was ordered j epochs ago where j ∈ {1, 2, . . . , Lmax} and delivered

at the beginning of the epoch k+ 1. We assume yk+1,j is 0 when k+ 1− j < 1; in other words, we

assume no orders are passed before epoch 1. Then, the available inventory is updated as

qak+1 = qa,+k +

Lmax∑
j=1

yk+1,j − dk. (3)

Yet, it should be noted that in this paper, the demand of medical supplies is assumed to be
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perishable and cannot be back-ordered. Finally, each element j of the in-transit inventory vector

is updated as

qtk+1,j =

ak − yk+1,k if j = 1,

qtk,j−1 − yk+1,k+1−j if j = 2, . . . , Lmax .
(4)

where qtk+1,j is the quantity that was ordered j epochs prior to epoch k + 1.

3.5 Objective function

The objective of this problem is to determine an optimal policy π∗ that minimizes the total expected

cost over the (finite) time horizon, i.e.,

π∗ = argmin
π∈Π

E

[
K∑
k=1

C (sk, π(s1:k))

∣∣∣∣∣ s1
]

(5)

where Π is the set of all feasible policies and s1 is the initial state of the system.

Note, however, that even a single shortage may result in deaths within the context of medical

equipment. Hence, associating a specific cost to an equipment shortage (i.e., cs) is extremely

difficult. Therefore, in this study, our primary measure to compare the different solution methods is

the total number of shortages (i.e., the service level) over the time horizon. As additional measures,

we consider two types of inventory costs: the left-over inventory at the end of the time horizon

(hereon, LOI) and the average inventory cost (i.e., holding costs). Due to the high purchase cost of

PPE during the pandemic, we believe that the LOI has a more profound impact on the overall cost

of the system than the holding costs. For this reason, we selected the LOI as a secondary measure

in this study. We do provide, however, an analysis of the average inventory cost as well.

4 Solution methods

In this section, we provide methods that aim to approximate the optimal policy π∗ of Section 3.5.

In contrast to more advanced methods, these methods seek to mimic approaches that can be easily

used in practice, which can be greatly beneficial during fast-evolving situations such as pandemics

where the required data is scarce at best. In addition, since one objective of this work is to evaluate

the impact of data visibility on the performance of inventory management, these methods differ

in the type of data they use. In the rest of this section, we describe forecasting methods and the

inventory control method used in the decision-making process.
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4.1 Forecasting methods

The forecast of the demand is an essential part of the policy π, directly affecting the decision-making

process. Without such methods, the managers are forced to use their gut feelings to place an order,

which can be improved upon. In this section, we present three demand forecasting methods, which

can be grouped into two categories based on the types of data they require to make a forecast. The

first category consists in forecasting methods that employ demand data to develop a forecast. Most

of the classical statistical forecasting methods fall into this category. In the second category, the

forecasting method employs epidemiological data of the pandemic as well as government protocols

concerning the consumption of PPE. These two categories of methods have distinct methodologies

in the forecasting process, which is of importance for the results section. We employ the following

forecasting methods to estimate the demand during the first wave of the pandemic.

4.1.1 Methods using demand data

Numerous forecasting methods employ demand data as the primary source of information in their

forecasting process. However, a simple model such as the näıve method often performs reasonably

well in the absence of reliable historical data (i.e., the context of a pandemic) [31], while being more

practical than more advanced methods. We now describe two simple methods in more detail.

4.1.1.1 Modified näıve forecasting method Based on interviews with managers, a simple

forecasting method consists of identifying the maximum daily demand of the previous two epochs

(here, two weeks) in order to use it as the average daily demand over the forecasting period.

This is an adaptation of the näıve method [86] that takes the current epoch consumption as the

consumption in the next epoch. In particular, in this modified näıve method (hereon, the näıve

method), the forecast at epoch k of the total demand is given by

d̂Näıve
k = fk max

{
ddk−1, ddk−2

}
(6)

where fk is the forecast horizon (i.e., the length of forecast) in days at epoch k, and ddk−1 and

ddk−2 are respectively the maximum daily demand during epoch k − 1 and k − 2. Note that the

forecast d̂Näıve
k can go beyond the epoch k if fk is longer than one epoch. This method is the

benchmark for the computational study.

4.1.1.2 Holt forecasting method The second forecasting method using demand data is the

well-established Holt method [86]. It is widely used in the industry due to its relative ease of use

and ability to capture the demand’s trend. In the context of a pandemic, capturing the demand’s

trend is essential. However, it is not necessarily useful to model seasonality; we only model one
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wave of a pandemic in this work. The forecast at epoch k is given by

d̂Holt
k =

fk∑
h=1

(lk×R + hbk×R) (7)

where lk×R and bk×R denote respectively the estimates for the daily level and trend of the series

on day k ×R, and R is the review period in days. They are obtained with

lt = α ddt + (1− α) (lt−1 + bt−1) (8)

bt = β (lt − lt−1) + (1− β) bt−1 (9)

where ddt is the daily demand on day t, and 0 < α < 1 and 0 < β < 1 are smoothing parameters

for, respectively, the level and trend.

4.1.2 Method using epidemiological data – the SEIRHD model

To be able to use epidemiological data for inventory management, we adapt the susceptible-exposed-

infected-removed-hospitalized-discharged (SEIRHD) model (see Figure 1). In addition to the typ-

ical setup in the SEIR model [87], the SEIRHD model includes a path where subjects may be

hospitalized and then discharged. There are two types of subjects visiting healthcare facilities

during a pandemic, i.e., the infected and non-infected subjects. For the sake of this work, it is

assumed that the majority of PPE consumption within healthcare facilities occurs during the han-

dling, treatment, and discharge of infected subjects. Note that this paper analyzes specific types

of PPE, such as N95 respirators, which are recommended for utilization only during exposure to

infected subjects [88]. Hence, the SEIRHD model only tracks the number of hospitalizations of the

infected population in the hospitalized compartment, which is later used for forecasting purposes.

Susceptible
S

Exposed
E

Infected
I

Hospitalized
H

Discharged
D

Removed
R

Figure 1: The SEIRHD model

Furthermore, since the primary focus of this work is the demand for PPE within healthcare

facilities, infected subjects that do not visit these facilities are removed from the system and placed

into the removed compartment. Using the same analogy, the infected subjects discharged from the

healthcare facilities are moved into the discharged compartment. For the purpose of this work, we

do not distinguish between the recovered and dead population for both of these compartments. A
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description of the typical assumptions associated with such a compartment model is provided in

Appendix A.

4.1.2.1 Specification of the SEIRHD model Kermack, McKendrick, and Walker [41] for-

mulated the initial SIR model as a series of differential equations. The adaptation of these equations

to our compartment model is as follows

dS

dt
= −βSI

N
, (10)

dE

dt
=

βSI

N
− σE, (11)

dI

dt
= σE − pHγHI − (1− pH)γRI, (12)

dR

dt
= (1− pH)γRI, (13)

dH

dt
= pHγHI − γDH, (14)

dD

dt
= γDH, (15)

where S,E, I,R,H,D denote the population in each respective compartment (see Figure 1). The

other parameters are described in Table 1.

Table 1: Parameters of the SEIRHD model

Parameter Description

N Total population
β Number of contacts per unit time, multiplied by the probability of transmission

in a contact between a susceptible and an infected subject
σ Per-capita incubation rate, i.e., transition rate of exposed subjects to the

infected class
pH Probability of hospitalization of infected subjects
γR Per-capita rate of recovery and death of non-hospitalized subjects
γH Per-capita rate of hospitalization
γD Discharge rate of hospitalized subjects (dead and recovered)
R0,1 Initial R0

R0,2 Final R0

t0 Midpoint of the logistic function
κ growth rate of the logistic function

With the addition of the hospitalized compartment, the proposed model can predict the disease’s

behavior during an outbreak and, more importantly, the number of hospitalizations at healthcare

facilities. However, to do so, the model requires correct parameter values. First, several parameters

can be assumed as fixed through time and can be determined a priori by using data from various

sources. In particular, the total population N of the region can be retrieved from governmental
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data. In addition, since the inverse of the parameter σ corresponds to the incubation period, it

is possible to compute this parameter value as σ = 1/tincubation , where tincubation corresponds to

a commonly agreed incubation period (in days) for COVID-19; as explained in Appendix A, we

don’t stratify this incubation period by, for example, age groups since this additional complexity

would not lead to additional insights in the case of this study. Furthermore, the hospital’s discharge

rate can be estimated as γD = 1/tALOS , where tALOS is the average length of stay in days. The

probability of hospitalization of infected subjects pH can be computed as the ratio between the

total number of hospital admissions of infected subjects and the total number of infected subjects.

Then, the parameter β is linked to the basic reproduction number R0, an important parameter in

epidemiological studies which was first introduced by Macdonald [89]. R0 describes the intensity of

disease transmission, which may change over the course of a pandemic depending on the evolution of

disease characteristics (e.g., variants), as well as public and government preventive actions. Hence,

similarly to other studies [90, 91] that use the logistic function within epidemiological models, we

model a varying R0 that transitions between two values, i.e., from an initial value R0,1 to a final

value R0,2, according to a logistic function, and we estimate the varying β from these R0,1 and R0,2

values using Lemma 1. The proof of Lemma 1 is provided in Appendix B.

Lemma 1. For the SEIRHD model, the parameter β can be computed as

β =

[
R0,1 −R0,2

1 + e−κ(t0−t)
+R0,2

]
(pHγH + (1− pH)γR) (16)

where t denotes the time at which β is estimated, t0 and κ denote the logistic function’s midpoint

and growth rate, respectively. The other parameters are defined in Table 1.

Finally, the remaining parameter values, γR, γH , R0,1, R0,2 and t0, are obtained by fitting the

curves of the SEIRHD model to longitudinal data, which includes the daily number of infections,

of hospital admissions, of hospitalizations, and of hospital discharges. Further details on the fitting

process are provided in Section 5.

4.1.2.2 Demand forecasting with the SEIRHD model Once a forecast of the hospitaliza-

tions is established, it is possible to forecast the consumption of PPE with the government protocol

observable in the element pk of the state sk. Each Canadian province mandates a specific set of rec-

ommendations in dealing with COVID-19-related patients [92]. These government protocols detail

the consumption of PPE for all healthcare workers, even those not in close proximity to COVID-19

patients. Assuming that there is always an active protocol and that it is closely respected, it is

possible to estimate the consumption of PPE based on the daily number of hospitalizations of the

SEIRHD model as

d̂SEIRHD
k = H(fk)CCk (17)
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where H(fk) denotes the total number of hospitalization days over the forecast horizon of epoch

k, and CCk denotes the coefficient of consumption observed at the beginning of epoch k, i.e., the

daily number of PPE per hospitalized COVID-19 patient as outlined in the government protocol.

Note again that the forecast horizon fk can be longer than one epoch.

It is important to highlight that this method only predicts the consumption of PPE associated

with infected patients in healthcare facilities. Yet, during the height of the pandemic, many health-

care facilities shut down most of their daily routine operations to attend to COVID-19 patients.

Therefore, the majority of patients at any given time in these centers were COVID-19-related.

In addition, note that some PPE, such as N95 respirators, may be used exclusively with infected

patients.

4.2 Inventory control – periodic review system

Once a forecast is made, the next step within the policy π is the computation of the quantity to

order. The manager must minimize the cost function while respecting the system’s constraints.

The inventory control method also impacts the system’s performance; hence advanced methods

such as robust optimization may be envisioned. However, to be representative of actual methods

used in practice, we use the popular periodic review system [93] that is well-known for its efficiency

and ease of use.

By using the forecasting methods described in Section 4.1, the manager obtains the predicted

demand over the forecast horizon fk at each epoch k. It is then possible to compute the reorder

point (ROP) in the context of uncertain demand as

ROP = d̂R+L + zRMSE
√
R+ L (18)

where R denotes the review period in days, L denotes the lead time in days, d̂R+L denotes the total

predicted demand over the R + L period, z denotes the factor associated with the (1− α) service

level, and RMSE denotes the root mean square error of the forecast in the last review period. We

refer the reader to Section 2.10 of Axsäter [94] for details on how to use the forecast errors to

determine the safety stocks. It is important to note here that the forecast horizon fk may be longer

than R + L, since the forecast may take into account days before the current epoch in the case of

the lagged data scenario (see Section 5.2.2). Thus, we omit the quantity before the current epoch

when computing d̂R+L. With this method, the ROP’s value is dynamic and re-calculated at each

epoch.

Finally, the quantity ordered ak is given by ROP − qa,+k subject to the supplier’s minimum and

maximum order quantities and rounded to the upper lot size. In particular, if ROP − qa,+k is above

the supplier’s maximum order quantity or below the minimum order quantity, then ak equals this

supplier’s maximum or minimum order quantity, respectively.
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5 Computational study

This section presents different scenarios designed to address a specific visibility issue within the

healthcare supply chain. In Section 5.1, the simulation process of the demand, as well as the

required parameters, are described. The detailed description of each scenario and their relevant

results are then presented in Section 5.2. Finally, in Section 5.3, we provide a discussion.

5.1 Data and parameters

Tracking PPE inventory is a difficult task, if at all possible. These types of equipment are often

located at multiple (official and unofficial) locations within a healthcare facility, which prevents

a physical inventory count. As a consequence, daily consumption data of PPE is generally not

available. Furthermore, even in the rare cases where this daily consumption data may be available

(e.g., due to strict control measures for the allocation of PPE), it generally does not necessarily

correspond to the daily demand data. In the particular case of the COVID-19 pandemic, healthcare

workers often had to reuse their PPE due to major PPE shortages. The daily demand data is,

thus, severely censored.

For these reasons, this study relies on simulated data, which is based on the pandemic data.

Similarly to Lum, Johndrow, Cardone, et al. [53], we assume that the major driving force behind

the high demand for PPE is the pandemic, i.e., we assume there exists a strong positive association

between the demand and the pandemic-related variables such as the number of infections and

hospitalizations because of the government protocols that enforced the number of PPE consumption

per patients. While we acknowledge the existence of other factors that influence demand data, these

are omitted in this study since the objective is to understand the effect of data visibility and not

to reproduce exactly demand data during a pandemic.

This paper employs the data for the Canadian province of British Columbia (BC). In particular,

the population of the region consists of 5,147,712 inhabitants [95]. The number of infections is

obtained through the daily government updates [96], see Figure 5a in Appendix C. Furthermore,

data from the Canada Institute for Health Information (CIHI) [97] provides the COVID-19-related

daily hospital admissions, discharges, deaths, and the average length of stay (e.g., see Figure 5b

in Appendix C for trend of the number of hospitalized patients in BC). The daily number of

hospitalizations is acquired by subtracting the daily discharges and deaths from the daily hospital

admissions. In addition, the incubation period, tincubation = 5.1 and the average length of stay

tALOS = 12.2 in Section 4.1.2.1 are derived from this CIHI data.

We then multiply the number of hospitalizations by the coefficient of consumption (i.e., a factor

associated with the government protocol prescribing the number of PPE to use per hospitalization)

to simulate the number of PPE that are used. As previously discussed, this study assumes these

protocols are followed closely. We believe this is a proper method to simulate the demand associated
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with a pandemic since, during the first wave of the pandemic, due to shortage concerns, some

specific types of PPE, such as the N95 respirators, were prescribed to be used only for the handling

of COVID-19 patients. Therefore, employing hospitalization as a trigger for the demand seems

reasonable. To create a more realistic setting where some divergences from the government protocol

are to be expected, we assume that the consumption coefficient CCsim is a normally distributed

random variable, resampled daily, with mean µCC and standard deviation σCC , i.e.,

CCsim ∼ N (µCC , σ
2
CC). (19)

Furthermore, we control the signal-to-noise ratio (SNR) (i.e., the inverse of the coefficient of vari-

ation) of this distribution throughout the different iterations to control the mean relative to the

spread. The SNR is defined as

SNR =
µCC

σCC
. (20)

Note that CCsim is the consumption coefficient used to generate the demand data and that it

can change from one day to the next. It differs from the previously discussed CCk, which is the

government protocol value. In particular, CCk is fixed to µCC in our first three scenarios, while it

differs from that value for the last scenario on erroneous data.

The decision epochs are seven days apart, as a weekly review of the system is a common practice.

The additional parameters used in all scenarios of this study are the number of units per case, the

supplier’s order limits per case, the service level, and the lead time. Each parameter is uniformly

sampled in each iteration from a continuous or discrete interval defined in Appendix C and is then

kept fixed throughout the iteration; these intervals are chosen to be as realistic as possible and to

yield as many insights as possible. Overall, 1,000 iterations are executed for the base scenario using

Python 3.7, and the obtained data is reused in the other scenarios to improve comparability. For

each individual iteration, at every decision epoch, we observe the demand, make a forecast, take

an action, record the performance of the system, and then move to the next epoch. Also note that

each iteration is addressed by the three forecasting methods previously described.

Finally, the fitting process of the proposed epidemiological model (i.e., the SEIRHD model)

is done with the lmfit package in Python by performing a grid search and minimizing the least

square error while searching within pre-specified ranges for these parameters. These ranges consist

of realistic values for these parameters and are provided in Table 11 of Appendix C with the

other parameter values. Note that we use this curve fitting process to estimate the least number

of parameters possible since this curve fitting is complex and subject to multiple local optima,

especially when trying to fit multiple parameters. This is why several parameters are estimated a

priori from various data sources.
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5.2 Results

We study the following four settings: (1) a scenario without DVI as previously described (i.e., the

base scenario), (2) a scenario with lagged data, (3) a scenario with temporally aggregated data, and

(4) a scenario with erroneous data. The base scenario is assumed to be the benchmark for the other

scenarios since there is no modification to the simulated data. For each scenario, the forecasting

methods are evaluated on the percentage bias (PBIAS), root mean square error (RMSE), and mean

absolute percentage error (MAPE). For each iteration i, these measures are computed as

PBIASi =
100

K

K∑
k=1

fk∑
h=1

dd̂k,h − ddk,h
fkddk,h

, (21)

RMSEi =
1

K

K∑
k=1

√∑fk
h=1(dd̂k,h − ddk,h)2

fk
, (22)

MAPEi =
100

K

K∑
k=1

fk∑
h=1

∣∣∣∣∣dd̂k,h − ddk,h
fkddk,h

∣∣∣∣∣ , (23)

where, with a slight abuse of notation, dd̂k,h is the h-step ahead forecast in epoch k of iteration

i, and ddk,h is the daily demand h days after the beginning of epoch k in iteration i. Note that

we observe the states of the epochs k = 1, 2, . . . ,K + 1, which contain the demand of the epochs

k = 0, 1, . . . ,K, but only forecast and take an action in the epochs k = 1, 2, . . . ,K. This explains

the range of the summations of the previous and following equations. We report the average of

these measures over all iterations.

Furthermore, since the end goal is to analyze the performance of these forecasts with respect

to inventory management, we also evaluate the periodic review system performance when using

these forecasts. As discussed in Section 3.5, this is done by evaluating the shortages and left-over

inventory at the end of the time horizon (LOI). In particular, to improve the comparability of the

results across the different iterations, we evaluate these methods on the relative shortage (RS) and

relative left-over inventory (RLOI) measures, i.e.,

RSi =

∑K+1
k=1 qa,−k∑K
k=0 dk

× 100, (24)

RLOIi =
qa,+K+1∑K
k=0 dk

× 100. (25)

Unless specified otherwise, we assume that the forecast horizon fk is constant throughout the

decision epochs k and that, for each iteration i, fk corresponds to a period that includes the

following epoch and the lead time used in iteration i, i.e., fk = R+L. Finally, note that the näıve

method is assumed to be the benchmark in each scenario since it is the simplest forecasting method

and is used commonly in practice.
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5.2.1 Scenario 1: Base scenario

As a benchmark for our study, we first create a scenario where the manager receives the required

data in an ideal setting. The data is updated daily and passes through the forecasting process and

inventory control at each epoch. The results are provided in Table 2.

Table 2: Mean base scenario results over the 1,000 iterations

Method PBIAS RMSE MAPE RS RLOI

SEIRHD 372.39 717.45 388.02 5.65 35.80
Holt 73.3 222.6 156.49 11.08 36.13
Näıve 210.6 264.05 248.53 11.95 58.4

In this scenario, even though the Holt method has the best performance across the forecasting

measures (i.e., PBIAS, RMSE, and MAPE), the SEIRHD method outperforms the other methods

on the RS and RLOI measures. To explain this counter-intuitive outcome, we analyzed PBIAS

before and after the maximum demand (i.e., the peak) in each iteration, only for epochs in which

the system placed an order. We refer to these periods as the pre-peak and post-peak periods in

Table 3. Note that the demand follows a similar trend to the daily number of hospitalized patients

(i.e., Figure 5b in Appendix C).

Table 3: Mean base scenario percentage bias (PBIAS), before and after peak demand

Method Pre-peak Post-peak

SEIRHD 538.19 105.99
Holt 55.95 178.40
Näıve 13.49 512.43

During the pre-peak period, the SEIRHD method does not have access to enough data to make

accurate forecasts. As a result, the forecasts are over-estimated during this period, which forces the

system to place orders with higher quantities. This additional inventory later helps the system when

the supplier’s capacity is insufficient for the demand and, hence, explains the better performance

with respect to the relative shortage. This conclusion holds regardless of the supplier’s capacity,

where we observe similar trends when the supplier’s capacity is not limited, albeit at lower RS

levels for all methods. Furthermore, once the demand has plateaued, the SEIRHD method can

capture the trend and obtains the best forecasts on average in terms of the percentage bias. This

performance in the post-peak period leads the SEIRHD method to generate the best RLOI.

In contrast, the Holt method exhibits a much lower percentage bias in the pre-peak period than

the SEIRHD method, affecting its RS. Furthermore, the performance of the Holt method declines

in the post-peak period, which affects its RLOI. These explanations also apply to the näıve method

with an even greater effect on the RS and RLOI. Overall, the SEIRHD and Holt methods perform

better than the näıve method.

 
The Effect of Visibility on Forecast and  Inventory Management Performance during the COVID-19 Pandemic 

18 CIRRELT-2023-14



5.2.2 Scenario 2: Lagged data

An important aspect of data visibility is the delay in the data flow. In a supply chain, managers are

frequently deprived of the latest version of the data. In the particular case of COVID-19, it often

took several days to collect the data from the different hospitals. In this scenario, we investigate

this common phenomenon by analyzing two distinct lag formats (i.e., fixed and dynamic lag) within

the simulated data. The lag is defined as the time in days between the date data is captured and

when data is available to the managers. In this scenario’s first version, the lag applied to the data

is fixed for all iterations. We then gradually increase the fixed lag to understand its impact on the

system. It is important to note that, since a forecast begins at the last known date of the data,

the lag period is also included in the forecast horizon fk; formally, fk = R+L+ lag . However, the

forecasted demand during the lag period is removed prior to applying the periodic review system

since this perishable demand has already been realized. The lag is applied to the data from the

base scenario. Figure 2 presents the results for the fixed lagged data.

The negative impact of the data delay on the system performance can clearly be established

in Figure 2 for the Holt and näıve methods. The gradual increase of the lag length results in the

continuous augmentation of the shortage level. In the extreme case of a fixed lag of 14 days, the

Holt method experiences 48% more RS than the case with no lag, i.e., the base scenario. A similar

pattern is also observed for the näıve method. Furthermore, the SEIRHD method also follows this

behavior, where the relative shortage measure has a general upward trend. However, increasing the

lag can also be beneficial for this method, as shown with the various local minima of the SEIRHD

method in Figure 2a. By increasing the lag length, the forecast horizon fk has effectively been

increased. Note that the SEIRHD method tends to over-forecast during the early epochs and that

these forecasts are shaped as an exponential function. Hence, by increasing the lag, the magnitude of

these over-forecasts is increased, and if the supplier’s capacity is not binding, the relative shortages

are reduced accordingly. Therefore, even though the SEIRHD method generally follows a similar

diminishing performance for the RS and RLOI measures, the behaviour fluctuates with greater

volatility toward the larger lag values. The rise in the RLOI of both the Holt and näıve methods

can also be observed, albeit to varying degrees, caused by continuous over-forecasting, especially

during the post-peak demand period.

In order to emulate real-world circumstances where the delay in the data might not be fixed,

dynamic lags are also generated. In particular, 1,000 (K + 1)-dimensional vectors of lag values are

sampled from the discrete uniform distribution W = {0, 1, . . . , 14}; we assume that the maximum

delay within the data does not exceed 14 days (i.e., two weeks). We then apply each of the 1,000

lag vectors to the 1,000 data sets from the base scenario for a total of 1,000,000 iterations. Table 4

provides the results of the dynamic lag.

Despite producing the worst forecasts, the SEIRHD method provides the best performance

on both the RS and RLOI measures. The delay in the delivery of the data interferes with the

forecast process, resulting in over-forecasts as shown in Table 5. As a result, the system orders
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(a) Relative shortage

(b) Relative LOI

Figure 2: Relative shortage and LOI for the fixed lagged data. The shaded region represents the
95% confidence interval.

more products before the peak, which lowers the relative shortage compared to the base scenario.

In contrast, since the Holt and näıve methods considerably under-estimate the demand in this

scenario versus the base scenario, they obtain worse relative shortages than in the base scenario.

An additional analysis of the PBIAS results reveals that the accuracy of the system is better

with the SEIRHD method than the other methods after epoch 10 (which is after the peak demand).
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Table 4: Mean dynamic lag results over the 1,000,000 iterations

Method PBIAS RMSE MAPE RS RLOI

SEIRHD 5664.34 14901.77 5690.39 4.56 37.97
Holt 93.37 299.71 222.6 13.36 43.44
Näıve 221.48 301.14 285.49 14.96 62.07

Table 5: Mean dynamic lag percentage bias (PBIAS), before and after peak demand

Method Pre-peak Post-peak

SEIRHD 8201.85 3971.36
Holt 25.04 331.09
Näıve -27.14 592.28

In particular, the PBIAS results of the SEIRHD, Holt and näıve methods are respectively 97.99%,

291.22% and 689.83%. This is caused by the random lag delaying the realization of the maximum

demand. Therefore, having enough time to adjust the inventory level after epoch 10, the SEIRHD

method produces the lowest RLOI, comparable to that of the base scenario. In contrast, the over-

forecasts in the Holt and näıve methods appear to take place primarily after epoch 10, resulting in

higher RLOI than the SEIRHD method.

5.2.3 Scenario 3: Temporally aggregated data

Another potential problem with regard to the supply chain’s visibility is the granularity of the

data. In this scenario, the data is not reported on a daily basis, and only the total sum of a specific

variable (e.g., the demand) since the last report is available. Hence, the evolution of the daily

demand is unknown to the manager, which could hinder the performance of the system.

For this scenario, we investigate aggregated data received at different frequencies, hereon the

period info. This aggregated data represents the total demand of PPE over the period info. The

daily behaviour of the demand is assumed to be unknown during the forecasting process. However,

the products are consumed based on the actual daily demand. Moreover, we apply the same

granularity to the pandemic data that is used by the SEIRHD model.

Similar to Section 5.2.2, we analyze the impact of two distinct formats of temporally aggregated

data. We first apply a fixed period info on the data for all iterations during the entire simulation

and then vary its value based on the set PI = {1, 2, . . . , 30}. This setting analyzes the period info’s

influence on the system’s performance. It is important to mention that since the data is aggregated

and reported based on specific period info, there exists the possibility of a lag within the system if

the period info is not a multiple of seven days (i.e., the duration of an epoch). The lag is defined

here as the number of days between the date of the last reported aggregated data to the date of

the epoch that is being analyzed. Figure 3 presents the results for this part.
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(a) Relative shortage

(b) Relative LOI

Figure 3: Relative shortage and LOI for the fixed period info. The shaded region represents the
95% confidence interval.

Figure 3a illustrates the negative impact of the temporally aggregated data on the RS measure.

The number of shortages increases as the data becomes coarser. The Holt and näıve methods follow

the upward pattern in their shortages, with the Holt method almost matching the näıve method’s

results for large period info due to the lack of proper data for its fitting process. Additionally,

even though the RS measure of the SEIRHD method generally increases as the period info is
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increased, the SEIRHD method performs considerably better than the other methods. However,

the behaviour of the SEIRHD method becomes unpredictable and erratic once the period info goes

above the 20 days mark. The greater temporal aggregation of data pushes the SEIRHD method to

display substantial over- or under-forecasts, resulting in fluctuating behaviour. The same behaviour

is observed for the RLOI results of the SEIRHD method, albeit with a slightly smoother upward

pattern. The results of the RLOI measure in Figure 3b provide an interesting finding regarding the

performance of the näıve method, which holds a relatively steady level of RLOI, between 55% to

60%. An important observation is that the näıve method outperforms both the Holt and SEIRHD

methods on the RLOI measure when the period info is large enough (i.e., around 30 days), indicating

the reliability of the more advanced methods is challenged as the data becomes coarser.

For the second part of this scenario, we investigate the effect of dynamic period info on the

system. This setting reflects real-world situations where the medical centers send their total con-

sumption data at random frequencies. To do so, we generate 1,000 vectors of period info values,

uniformly sampled from PI, and apply them to the 1,000 iterations of the base scenario, leading

to a total of 1,000,000 iterations. Table 6 presents the results of the dynamic period info.

Table 6: Mean dynamic period info results over the 1,000,000 iterations

Method PBIAS RMSE MAPE RS RLOI

SEIRHD 11604.61 15878.67 11699.44 12.34 33.49
Holt 159.35 293.56 250.48 17.69 59.93
Näıve 117.68 267.25 215.09 18.53 58.08

As with the fixed period info, the SEIRHD method outperforms the other two methods on

the RS measure due to the over-forecasts in this method. The analysis of the bias distribution in

Table 7 provides additional explanations on the performance of the system.

Table 7: Mean dynamic period info percentage bias, before and after peak demand

Method Pre-peak Post-peak

SEIRHD 19593.08 9518.87
Holt -56.50 485.89
Näıve -65.31 375.69

As a consequence of dynamic period info, the Holt and näıve methods experience significant

under-forecasts before the peak demand, resulting in large RS values. After the peak demand, the

Holt method exhibits over-forecasting, which forces the system to place more orders for epochs with

much lower demand, and as a result, its RLOI measure is considerably higher than in Scenario 1.

However, the results of the SEIRHD method in Table 7 require further analysis since the over-

forecasts, both before and after the peak, still translate into the best RLOI value across the different

scenarios. A detailed explanation of this ambiguity is provided in Section 5.3.
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5.2.4 Scenario 4: Erroneous data

In this scenario, we explore the impact of erroneous data on the performance of the system. There

exists a possibility of under- or over-reporting by healthcare facilities within the input data, which

influences the forecasting process and, consequently, the performance of each method. To achieve

the setting of this scenario, we multiply CCsim by a deviation parameter, δCC , before generating

the demand data for the näıve and Holt methods. For the SEIRHD method, the consumption

coefficient CCk is instead adjusted to CCk = δCCµCC .

In this scenario, we vary the deviation parameter, δCC , in the range [0, 7] by increments of

0.25. Thus, the data is simulated to be under-reported when the deviation parameter is in the

range [0, 1). In particular, note that no data is reported with δCC = 0 and, hence, the forecasts

are null; yet, the system still orders due to the high resulting RMSE in Equation 18. In contrast,

it is simulated to be over-reported when δCC ∈ (1, 7]. Note that δCC = 1 corresponds to the base

scenario. The modified demand data is fed directly into the forecasting model for the methods that

use the demand data (i.e., the Holt and näıve methods). For the SEIRHD method, it is assumed

that the coefficient of consumption employed in the forecasting process (see Equation 17) is being

reported by the healthcare facilities; thus, it contains the same erroneous δCC as in the demand

data. Moreover, the data is assumed to be collected daily and provided to the system at each

epoch, similar to the base scenario. Figure 4 presents the results of this scenario.

It is clear from the results that δCC has an inverse effect on the RS measure. On the one hand,

increasing the level of under-reporting results in significant exponential growth of the RS measure

for all forecasting methods. On the other hand, even though over-reporting the data improves

the RS measure considerably at the beginning, the impact becomes less significant as we continue

increasing the over-reporting level. Note, however, that the shortages are never entirely eliminated.

Furthermore, the SEIRHD method consistently outperforms the other methods in the RS measure,

primarily due to the over-forecasts before the peak demand. Finally, the RLOI measure is also

affected by δCC with which it has a strong positive association; Figure 4b reveals that as δCC

becomes larger, the system experiences higher RLOI.

5.3 Discussion

The forecasting methods that are employed in this paper provide valuable insights into the forecast-

ing process of PPE demand during a pandemic. We conclude that in the absence of any historical

data (e.g., in the first few epochs), the näıve method is the only model that can produce reason-

able forecasting results, which do not necessarily translate into enhanced inventory management

performance due to external factors such as the supplier’s lead time and capacity. As more data

is provided to the system, the epidemiological model produces more accurate results, as shown in

Table 3. We also analyzed the impact of DVIs on the performance of an inventory management

system within the context of the COVID-19 pandemic. We present a unique scenario for each DVI

 
The Effect of Visibility on Forecast and  Inventory Management Performance during the COVID-19 Pandemic 

24 CIRRELT-2023-14



(a) Relative shortage

(b) Relative LOI

Figure 4: Relative shortage and LOI for the erroneous data

that first quantifies the direct impacts of the issue when its magnitude is gradually increased. In

general, increasing the DVI magnitude diminishes the system’s performance albeit to varying de-

grees, which is evident from Fig 2 and Fig 3. Moreover, we randomize the DVI of the delayed and

temporally aggregated data scenarios to mimic real-world situations. For a system that experiences

random temporal aggregation of data, a performance deterioration in the RS measure is observed

in comparison to the base scenario (see Table 6). In contrast, the presence of a random lag causes
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the system to produce a lower RS than the base scenario for the SEIRHD method (see Table 4).

In Scenario 4 where the system is dealing with erroneous data, it is observed that artificial aug-

mentation of the demand leads to improved performances, but at higher costs due to higher RLOI

levels.

Additional analyses are, however, required. In particular, the scenario with the applied ran-

domized lags requires additional analyses, since it generates inconsistent results when the system

employs the SEIRHD method. The presence of DVIs in the first three scenarios generally deterio-

rates the performance of the system for both the RS and RLOI measures. However, the RS measure

of the SERIHD method improves when the system is exposed to randomized lags. These contra-

dictory results can be explained through Table 8 that characterizes the forecasts of the SEIRHD

method for the different scenarios considered in this study. When a system experiences a ran-

domized DVI (i.e., dynamic lagged data and dynamic temporally aggregated data), the SEIRHD

method produces larger and more frequent under-forecasts than in the base scenario. At the same

time, the magnitude of the over-forecasts is amplified exponentially. In the case of the dynamic lag,

despite the fact that the occurrence of the under-forecast portion is larger than the base scenario,

both measures of the over-forecast portion (i.e., the occurrence and the mean percentage) force

the system to place additional orders during the pre-peak epochs, which in turn assist the system

to have a lower RS value than the base scenario. In comparison, even though the mean of the

over-forecast portion for the temporally aggregated data is quite large, it is not frequent enough to

affect the RS measure.

Table 8: Forecasting behaviour for SEIRHD method across the scenarios

Scenario Estimation Occurrence Mean
% %

Base
Under-forecast 16.7 -9.4
No bias 1.4 0.0
Over-forecast 81.9 380.9

Dynamic lagged data
Under-forecast 22.6 -31.4
No bias 1.3 0.0
Over-forecast 76.1 6309.8

Dynamic temporally aggregated data
Under-forecast 66.7 -67.1
No bias 0.5 0.0
Over-forecast 32.8 31818.2

We also perform a linear regression analysis on the RS results of both the lagged and temporally

aggregated data when the applied distortion is fixed throughout each iteration. Table 9 presents

the slope of the fitted lines for each method. We observe that the SEIRHD method is the least

affected by the gradual increase in the lag among all forecasting methods since it has the smallest

slope. On the other hand, if the system is expecting an increase in the temporal aggregation of

data, the näıve method produces more stable results than the other methods. Finally, the Holt
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method exhibits mid-range performances compared to other methods regardless of the source that

causes the distortion. However, it is not possible to directly compare these slopes across the two

scenarios since increasing the lag by one day is not necessarily equivalent to increasing the data

aggregation by the same amount. Therefore, we cannot firmly state that one type of DVI is worse

than the other. The analysis of each issue should be performed independently.

Table 9: Slopes of the fitted linear regressions on the relative shortages

Method Lagged data Temporally aggregated data

SEIRHD 0.08 0.44
Holt 0.36 0.36
Näıve 0.40 0.28

In Section 3.5, we provided our justification for the use of the LOI instead of the average inven-

tory. Nonetheless, we also analyze the average inventory for the base scenario, and the randomized

lagged data and temporally aggregated data scenarios. Similarly to Equation 25, the relative inven-

tory (RI) is used to improve the comparability of the results, i.e., RIi = 100×
∑K+1

k=1 qa,+k /
∑K

k=0 dk.

Table 10 presents the results of our analysis.

Table 10: Relative inventory

Scenario SEIRHD Holt Näıve
% % %

Base 416.65 244.54 309.78
Dynamic lagged data 421.47 265.69 309.7
Dynamic temporally aggregated data 306.51 293.14 282.08

The RI measure provides additional insights into the overall cost of the system in each scenario.

While the SEIRHD method generates the best results with respect to RS and RLOI in scenarios

1 to 3, its RI is considerably inferior to the other methods particularly for the base and dynamic

lagged data scenarios. The RI results of the SEIRHD method are linked to its significant over-

forecasting behaviour during the pre-peak epochs resulting in higher inventory and consequently

higher holding costs than the other methods. Furthermore, the performance of the Holt and näıve

methods with respect to the RI appears to be associated with their RLOI and follows a similar

pattern.

In the case of Scenario 4, it is shown in Figure 4a that the RS measure never gets to zero as δCC

is increased, while the RLOI measure is increasing at a steady pace. The supplier’s capacity is the

main obstacle to the complete elimination of shortages. The limitations imposed by the supplier’s

capacity become more prominent in this scenario since at high δCC values, the remaining shortages

occur during the epochs where the supplier’s capacity has already been reached. Hence, artificially

increasing the demand does not have an impact in these epochs. It should again be noted that while

erroneous data has a significant impact on the performance of the system, it can not be directly

 
The Effect of Visibility on Forecast and  Inventory Management Performance during the COVID-19 Pandemic 

CIRRELT-2023-14 27



compared with the other DVIs.

Even though none of the previous literature studied the impact of DVIs on inventory man-

agement performance in the context of a pandemic, our results are aligned with several previous

studies. In particular, the analysis of the RS results for the Holt and näıve methods are comparable

to those acquired by Hoberg and Thonemann [75], where the system’s performance deteriorates as

the data lag increases. Yet, similar to the results presented by Hosoda and Disney [76], we also

conclude that not all systems benefit from shorter lags, as evident by the results of the SEIRHD

method where, due to the over-forecasting, the RS measure is improved with a dynamic lag over

the base scenario that has no lag. Regarding the data aggregation, there exist contrasting views

among scholars where both positive [82, 83] and negative [85] impacts on the system have been

observed depending on the settings of the studies. Our results from Scenario 3 point toward the

fact that the temporal aggregation of data worsens the system’s performance. Finally, as presented

by Kwak and Gavirneni [69], erroneous data can potentially hinder the performance of a system,

which is similar to our findings in Scenario 4 with under-reported data. Overall, our study confirms

that several previous findings still hold in the case of inventory management during a pandemic.

Finally, our study brings practical insights for managers and their inventory planning activities.

For example, it is possible for the managers to observe the quantitative impact of the lag on the

system’s performance with the fixed lag results of Scenario 2. With these results, the managers

can perform a cost-benefit analysis to determine if reducing the delay in the data is appropriate.

Furthermore, as mentioned previously, the temporal aggregation of data is a major DVI in the

Canadian healthcare system, unlikely to be solved in a timely manner. In that regard, our findings

of Scenario 3 can assist policymakers in estimating the potential level of reduction in shortages

should future enhancements in the healthcare system improve the granularity of the data. Moreover,

Scenario 4 provides two valuable practical insights to managers in different echelons of the decision-

making process. First, there exists a point for all forecasting methods from which a further increase

in over-reporting only results in higher inventory costs in the form of left-over inventory and minimal

to no improvements to the shortages. Hence, the results of Scenario 4 become particularly useful

to a cost-benefit analysis of the issue of over-reporting. Second, we have observed the significant

consequences of under-reporting, and even though it seems unlikely that such situations might

occur, the managers should identify the potential sources of under-reporting in the system and

act accordingly to prevent this behaviour. Under-reporting could result from numerous sources

within the data structures of HSCs. For a system that employs a demand-based forecasting model,

the lack of an adequate inventory tracking system could be a potential source of under-reporting;

whereas due to limited testing capacities, the system with an epidemiological-based forecasting

model might receive under-reported data [70, 71]. These are but a few examples of areas where

a manager should investigate. Once the under-reporting is detected in the system, the manager

can employ our analysis to indicate the additional shortages imposed by this DVI, assuming the

percentage of under-reporting can be estimated. Lastly, it should be pointed out that the managers

may not be in the exact same context on which the results of this paper are based. However, by
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re-generating the proposed simulation according to their region’s specific settings and parameters,

the exact impact of the DVIs could be examined.

6 Conclusions

Visibility is a major contributing factor to the performance of healthcare supply chains. The

COVID-19 pandemic further amplified the system’s shortcomings in this regard, both in the up-

stream and downstream segments of the supply chain system. In this paper, we analyzed the

impacts of data visibility on the performance of an inventory management system during a pan-

demic. We considered four scenarios where the first one contains no DVI and is the base scenario.

In the second scenario, the system experienced delays in the flow of information. Then, the tem-

poral aggregation of data was addressed in the third scenario. Finally, the final scenario examined

the under- and over-reported demand. From these scenarios, we concluded that while the SEIRHD

method is not producing the best forecasts, its RS and RLOI results are often superior to those

of the other methods. The benchmark method, the näıve method, which is widely used in health-

care facilities, has consistently performed worst in all categories. There are, therefore, areas for

further enhancements. We also observed that, in most cases, the existence of DVIs diminished the

performance of the system.

In our study, it was assumed that the demand pattern follows the hospitalization curve as was

also theorized in other studies (e.g., [53]). We believe this assumption is realistic since government

protocols enforce the number of PPE consumed per patient. However, other factors, such as panic

purchasing behaviours, may cause some degrees of deviation. We tried to alleviate this limitation

by implementing random noise over the data, but additional studies could analyze if our results

still hold with these other factors. Furthermore, our findings only hold for products that are

required primarily in the context of COVID-19-positive patients and may not be applicable to

other types of PPE, such as surgical masks, that are frequently distributed in other organizations

and among the general public. Then, the epidemiological data in this study is based on only one

Canadian province, which follows a pattern similar to those observed worldwide. However, the

timing of the peak hospitalization and the length of the wave, to name a few, differ not only across

different countries but also across different waves. Thus, our results may not necessarily hold in

all contexts. Future research could investigate our results in different epidemiological settings,

such as the occurrence of multiple peaks of demand or elongated waves. For example, Perakis,

Singhvi, Skali Lami, and Thayaparan [98] propose a forecasting method for multiple waves. We

also encourage future studies to investigate and include the baseline demand as well as the demand

that stems outside of the hospitals. The baseline demand is defined as the need for a product that

is not caused by the presence of COVID-19 patients in hospitals. Furthermore, combinations of

DVIs could also be part of future research where multiple DVIs are applied simultaneously to the

the system. A final interesting research avenue is to go beyond the periodic review system and
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assess the impacts of data visibility when using optimization methods for inventory management.
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A Assumptions of the SEIRHD model

The following five assumptions are implied by the SEIRHD model.

Assumption 1. The duration of the disease outbreak is short enough to exclude the natural births

and deaths in the population of the studied region. This implies that the total population, N , is

constant during this study. Therefore, N can be formulated as

N = S + E + I +R+H +D. (26)

Assumption 2. The rate of transmission is proportional to the contact between the susceptible and

infectious populations. In the SEIRHD model, this rate is assumed to be constant.

Assumption 3. The demographics of the population are homogeneous enough so that the rate of

removal, either recovery or death, is constant. Even though the immune system of different age

groups varies significantly in regard to a specific type of disease, the average transmission rate for

the entire population is assumed to be relatively constant.

Assumption 4. In the SEIRHD model, the immunity achieved by the subjects who survived the

outbreak is long enough that there will be no re-infection for the duration of the study.

Assumption 5. The beginning of a possible outbreak is defined as the time when the first infection

is introduced to the model, denoted by t = 0.

B Proof of Lemma 1

Proof. Following the next generation method [99–101], we define the vector x where each element

xi denotes the number of subjects in the ith compartment. Let Fi(x) be the rate of appearance

of new infections in compartment i and let Vi(x) = V −
i (x) − V +

i (x), where V +
i (x) and V −

i (x) are

respectively the rate of transfer of subjects into and out of the ith compartment, by other means

than infection.

Then, we can form the next generation matrix FV −1 where the matrices F and V are con-

structed from the partial derivatives of Fi and Vi over the three compartments that contain infected

subjects (i.e., the exposed, infected and hospitalized compartments). Specifically,

F =

[
∂Fi(x0)

∂xj

]
and V =

[
∂Vi(x0)

∂xj

]
,

where x0 is the disease-free equilibrium (i.e., S = N and the other compartments are empty) and

i, j refer alternatively to the exposed, infected and hospitalized compartments.
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With Equations 11, 12 and 14, this translates to

F =

0 β 0

0 0 0

0 0 0

 , V =

 σ 0 0

−σ pHγH + (1− pH)γR 0

0 −pHγH γD

 ,

and

FV −1 =


β

pHγH+(1−pH)γR

β
pHγH+(1−pH)γR

0

0 0 0

0 0 0

 . (27)

The basic reproduction number, R0, is then given by the spectral radius (i.e., the dominant

eigenvalue) of the matrix FV −1, i.e.,

R0 =
β

pHγH + (1− pH)γR
. (28)

Finally, to obtain Lemma 1, we replace R0 in Equation 28 with a varying basic reproduction

number, i.e.,

R0(t) =
R0,1 −R0,2

1 + e−k(t0−t)
+R0,2, (29)

where the various parameters are defined in Table 1. Solving for β results in

β =

[
R0,1 −R0,2

1 + e−k(t0−t)
+R0,2

]
(pHγH + (1− pH)γR) . (30)
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C SEIRHD and simulation parameters

Table 11 presents the value or range for the parameters of the SEIRHD model.

Table 11: Parameter values of the SEIRHD model

Parameter Value

N 5,147,712
β Computed with Lemma 1
σ 1/5.1
pH 18.88%
γR [0.1, 0.7]
γH [0.1, 0.7]
γD 1/12.2
R0,1 [1.5, 10]
R0,2 [0, 10]
t0 [50, 120]

Table 12 outlines the value, interval or set employed for the different parameters of the simula-

tion.

Table 12: Simulation parameters

Parameter Value

Mean consumption coefficient (µCC), units per patient {3, 3.5, . . . , 7}
Signal-to-noise ratio (SNR) [2, 10]
Number of units per case 12
Supplier’s minimum order quantity, cases {1, 2, . . . , 12}
Supplier’s maximum order quantity, cases {200, 201, . . . , 400}
Service level (1− α), % {95, 95.1, . . . , 99.9}
Lead time (L), days {5, 6, . . . , 30}

Figure 5 presents some of the data from British Columbia that were used in the simulation.
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(a) Daily number of new infections

(b) Number of hospitalized patients

Figure 5: British Columbia data
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