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Abstract. Intensity modulated radiation therapy is one of the widely used methods for
cancer treatment worldwide. The beam angle selection, fluence map optimization, and
leaf sequencing are the three decision-making problems in IMRT. In this work, we
investigate the direct angle and aperture optimization, which addresses the mentioned
problems in an integrated framework. According to the conflict in the acceptable level for
dose receiving between the tumor and the healthy organs, this problem is inherently
multiobjective. We use a multiobjective mixed-integer nonlinear programming model for
the problem where the penalty of under and over dose from the prescribed dose for each
patient organ is considered as an objective function. Due to the number of objectives and
dimensions of the problem, first, we develop three classic many-objective metaheuristic
algorithms, NSGA-11l, MaOPSO, and NSDE-R, as the solution approaches. To find more
acceptable solutions, we develop a new version of many-objective metaheuristic
algorithms, which adjust the reference points based on the decision-maker's preferences
and the obtained results during the procedure, so-called variable reference point many-
objective metaheuristic algorithms. The new approach is implemented for the IMRT
treatment problem by integrating a set of non-linear clinical criteria, called dose-volume
criteria, as the decision-maker preferences to find more acceptable clinical solutions. We
evaluate the performance of the many-objective algorithms using 10 liver cases from the
TROTS data set. The results are compared using several computational and clinical
criteria. Based on the results, the improved algorithms can successfully consider the
preferences without imposing a high computational cost.
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1. Introduction

Cancer, as one of the diseases with a high mortality rate, is the result of the abnormal growth of
body cells. Several techniques have been used for the treatment of this disease, including surgery,
chemotherapy, and radiation therapy. Among these techniques, radiation therapy is one of the
widely used methods that at least 50% of cancer patients may experience during their treatment
process (Atun et al., 2015). In external radiation therapy, as the most common method, the
radiation source is placed outside the cancer patient’s body, such as intensity modulated radiation
therapy (IMRT) (Ehrgott et al., 2010), and volumetric modulated arc therapy (VMAT) (Dursun
et al., 2019). This research focuses on IMRT as one of the most widely used external radiation
therapy methods. In IMRT) a linear accelerator (linac) positioned on a gantry delivers radiation to
the patient body from various angles. Each beam’s intensity is modified using a device on the head
of the gantry known as a Multi-Leaf Collimator (MLC). The MLC is composed of two opposing
banks of leading and trailing metal leaves that may be automatically moved in the direction of one
another. Each beam is also divided into a grid of rectangular shapes called beamlets. A beamlet
is thus identified to be open if neither the leading nor the trailing leaves are blocking it, and the
intensity is determined by the direction in which the leaves are moving. An efficient treatment
plan should be provided to deliver the desired radiation dose to the tumor while simultancously
minimizing the side effects on the healthy organs.

The design of a treatment plan in IMRT requires decision-making in three sub-problems: (1)
beam angle optimization (BAO), (2) fluence map optimization (FMO), and (3) leaf sequencing
(LS) (Ehrgott et al., 2010). In BAO, a limited number of directions are selected from a set of
available beam directions, and the best possible locations are specified for the positioning of the
gantry (Ehrgott et al., 2010). The dose intensity map for each selected beam direction is de-
termined by solving the FMO problem (Shepard et al., 1999). In the last phase, a sequencing
problem is investigated to determine the leaves’ position for delivering the fluence map in a limited
set of apertures (Tagki and Cevik, 2013). These problems were solved sequentially in the classic
approach to providing an applicable treatment plan. In this sequential approach, each subprob-
lem’s solution quality highly depends on the output quality of the previous subproblem, and the
procedure may be very time-consuming for the treatment planner (Hou et al., 2003). Considering
these difficulties, researchers tried to address the subproblems in the integrated frameworks. In
this way, the beam orientation optimization (BOO) problem was presented by Hou et al. (2003)
to integrate the BAO and FMO problems. In addition, the direct aperture optimization (DAO)
problem was developed to determine the aperture shapes and intensities, considering a set of given
beam directions (Romeijn et al., 2005). Finally, Fallahi et al. (2022b) presented direct angle and
aperture optimization (DAAQO), in which the selection of beam directions, calculation of intensity
map, and the sequencing of MLC are performed simultaneously. They formulated DAAO as a
single-objective problem using the quadratic dose penalty objective function, which minimizes the
penalty of under and over dose from the prescribed dose for each organ of the patient.

Regarding the dose-receiving conflict between the tumor and healthy organs, the IMRT treat-
ment planning problems fall into the multiobjective optimization problems category. Although
the weighted sum method is one of the widely used approaches in the literature, the formulation
of problems by using single objective functions significantly reduces the quality of the calculated
treatment plan, and increases the computational cost. In this research, we present a multiobjective
DAAO problem, in which each patient organ can be considered an objective function based on
the oncologist’s opinion. The approach provide a set of Pareto treatment plans for the clinical
decision-maker. Given the possibility of more than three objective functions, first, we employ the
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many-objective metaheuristics, the new generation of multiobjective metaheuristics, as the solu-
tion approach. Moreover, we develop new variants of many-objective metaheuristics by integrating
the preference of decision-makers into the search process. These new versions will be introduced as
variable reference point (VR) many-objective metaheuristics. We implement this approach for the
multiobjective DAAO problem based on nonlinear Dose Volume Histogram (DVH) criteria, which
are common measures used by oncologists to assess the effectiveness of plans in the real world.
This approach enables the clinical decision-makers to choose their preferred treatment plan from
a Paret set of DVH acceptable plans. In summary, the main contributions of this paper can be
expressed as follows:

1. Presenting a multiobjective DAAQO problem, in which dose variation penalty for each patient’s
organs can be considered as an objective function.

2. Designing three classical NSGA-III, MaOPSO, and NSDE-R many-objective metaheuristic
algorithms as the solution approach.

3. Developing variable reference point many-objective algorithms, as preference-based many-
objective metaheuristics, by integrating decision makers’ preferences into the classical algo-
rithms.

4. Utilizing DVH criteria, as clinical decision makers’ preferences, to apply variable reference
point position metaheuristics to the multiobjective DAAO problem.

5. Evaluating and analyzing the performance of the developed many-objective framework on
10 real liver cases from the TROTS dataset.

The remainder of this paper is organized as follows: In Section 2, the literature on the multi-
objective IMRT treatment planning problems is reviewed. In Section 3, the multiobjective DAAO
problem is presented and mathematically formulated. In Section 4, three many-objective meta-
heuristic algorithms are presented as the solution approach, and a new design of these algorithms
is developed by integrating the DVH clinical criteria. In Section 5, the efficiency of the algorithms
is investigated by solving the problem for 10 real cases of liver cancer, and the computational
results are broadly discussed. In Section 6, the research is concluded, and some insights for future
studies are proposed.

2. Literature review

The first application of mathematical optimization for radiation therapy treatment planning
was proposed by Bahr et al. (1968) using a lincar programming model. After, a broad range
of operations research applications appeared in radiation therapy treatment planning literature
(Mahnam et al., 2019; Lim et al., 2020; Chan and Misi¢, 2013; Zaghian et al., 2018). The prob-
lem is inherently multiobjective regarding the conflict between the dose received by the tumor and
healthy organs and the related criteria. In several works, these objectives are integrated or weighted
based on experts’ opinions, which finally results in a single objective function. In addition, there
are other approaches in the literature which result in a set of non-dominated plans, e.g. Pareto
optimality approach. We provide a brief review of these studies, specifically based on heuristic and
metaheuristic algorithms, on the IMRT treatment planning literature. More details on optimiza-
tion methods and multiobjective approaches in radiation therapy treatment planning are available
in the comprehensive review papers by Ehrgott et al. (2010),Craft (2013), and Breedveld et al.
(2019).

Various metaheuristic algorithms have been proposed for the FMO problem, e.g., simulated
annealing (Webb, 1994; Bertsimas et al., 2013), bat algorithm (Kalantzis and Lei, 2014), quantum
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annealing (Nazareth and Spaans, 2015), and levy-firefly (Kalantzis et al., 2016). Also, there
has been an increasing attention to the single-objective integrated problems, including BOO and
DAO. For the BOO problem, several heuristic and metaheuristic algorithms, such as conjugate
gradient (Li et al., 2005¢), ant colony optimization (Li et al., 2005a), particle swarm optimization
(Li et al., 2005b), and variable neighborhood search (Freitas et al., 2020), have been proposed.
For the DAO problem, several heuristic and metaheuristic single-objective algorithms have been
developed, such as genetic (Li et al., 2003), tabu search (Rocha et al., 2012), stochastic local
search (Cdceres et al., 2021), differential evolution (Fallahi et al., 2022a), and column generation
(Mueller et al., 2022). Recently, Ripsman et al. (2022) has developed a stochastic DAO problem
under breathing motion uncertainty. A robust optimization approach was suggested and solved
the model via a candidate plan generation heuristic algorithm. Habib et al. (2022) studied a
sliding windows IMRT treatment planning, in which the possibility of leaves moving during the
dose irradiation time was considered by some deliverability constraints. The presented linear
programming model was solved by the CPLEX solver. Moreover, in one of recent works, Fallahi
et al. (2022b) developed the single-objective direct angle and aperture optimization (DAAQO) as
a new integrated model addressing BAO, FMO, and DAO simultaneously. They implemented an
adaptive hybrid metaheuristic algorithm as the solution approach for this problem.

The single-objective approach does not necessarily result in clinically acceptable plans and
requires trial-and-error with different parameters, which is time-consuming in practice. In fact,
there may be a need for several runs to have an acceptable plan from the oncologist’s viewpoint.
The multiobjective approaches enable the users to choose the preferred plan from a Pareto set of
treatment plans without any significant computational effort.

Kiifer et al. (2000) first introduced the multiobjective FMO problem, and solved it using a
multicriteria algorithm with a special search strategy that does not require the evaluation and
comparison of all Pareto solutions. Craft ct al. (2007) proposed a two-stage approach for the
multiobjective FMO. In this approach, a near-acceptable single solution was calculated as the base
of the Pareto approach in the first iteration. Then, they tried to use dosimetry criteria for providing
a set of Pareto plans. Shao and Ehrgott (2008) presented a linear multiobjective model for the
FMO problem, and solved this model using a sandwich algorithm. Cabrera et al. (2014) considered
the multiobjective FMO as a positively homogeneous multiobjective optimization problem. An
algorithm was presented in which one of the objective functions is converted to a constraint, and the
number of objective functions is reduced. Wilkens et al. (2007) designed a goal programming-based
heuristic algorithm to simultaneously address different objective functions in the FMO problem.
Jee et al. (2007) solved the multiobjective FMO problem using a lexicographic ordering approach.
In this method, the objective functions were categorized to be solved hierarchically. Also, Breedveld
et al. (2009) suggested a two-step epsilon constraints algorithm to solve the multiobjective FMO
problem.

Based on the multiobjective algorithms proposed for FMO, the multiobjective BOO problem,
i.e., the integration of FMO and BAO, has been studied. Schreibmann et al. (2004) first pro-
posed the multiobjective BOO and selected the beam directions using the non-dominated sorting
genetic algorithm-II (NSGA-II) algorithm, and estimated the fluence map based on the Shanno
algorithm. Fiege et al. (2011) investigated a new design of multiobjective genetic algorithm, called
Ferret, for the multiobjective BOO problem. This algorithm was able to solve the BAO and
FMO simultaneously. Breedveld et al. (2012) proposed the iCycle algorithm, which takes into
account decision-maker’s preferences in multi-criteria optimization of beam angles and intensity
profiles. Cabrera-Guerrero et al. (2018) solved the multiobjective BOO by combining an exact
and a metaheuristic algorithm. A local search algorithm, as a metaheuristic, was responsible for
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computing the beam directions, and the fluence maps were obtained using an exact algorithm
based on the epsilon constraint method. Cabrera-Guerrero and Lagos (2022) presented three local
search algorithms for the multiobjective BOO problem. These algorithms had a more reasonable
computational time than some previous well-known algorithms.

There are several works that have addressed the multiobjective DAO problem. Lin et al.
(2017) formulated the multiobjective DAO problem using a linear model. This work proposed
an integrated normal boundary intersection (RNBI)-column generation approach as the solution
methodology. In this methodology, RNBI utilizes the column generation to solve a series of linear
programming subproblems, which produce a set of Pareto solutions. Cao et al. (2011) designed
an NSGA-IT algorithm to tackle the multiobjective DAO, and demonstrated that the proposed
method is capable of providing acceptable treatment plans. Salari and Unkelbach (2013) proposed
a multiobjective column generation algorithm, in which apertures are added sequentially to improve
the quality of the Pareto front.

In this paper, we propose a multiobjective DAAO problem, that involves the optimization of
beam directions, intensity maps, and aperture shapes simultancously, where cach patient structure
can be considered as an objective function. To this end, we develop an efficient many-objective
metaheuristic algorithm to provide a set of non-dominated treatment plans. First, we design and
implement three classic many-objective metaheuristics, namely NSGA-III, MaOPSO, and NSDER.
Next, we introduce new versions of these algorithms that consider decision-makers’ preferences
during the search process. Finally, we apply the newly developed algorithms to the DAAQO problem
using the DVH criteria as the preference of medical decision-makers.

3. Problem statement

In this section, we present the mathematical model for the multiobjective DAAO problem. The
formulation is an extension of the model proposed by Fallahi et al. (2022a) for the multiobjective
framework.

In IMRT treatment planning, there is a set of candidate beam directions b € {1,..., B} for
positioning the gantry around the couch. The total number of beam directions should not exceed
w as an upper threshold. To deliver dose from a beam direction, a sequential set of apertures is
required, each is formed by the multileaf collimator. The MLC is assumed as a rectangle with
ie€{l,...,I}rowsand j € {1,...,J} columns. Each beam is also divided into a grid of beamlets
through the intersection of MLC rows and columns. The position variables [¥ and ¥ determine
the left and right leaves in row ¢ of aperture k. If any of leading or trailing MLC leaves block the
beamlet (7, j) of aperture k, then it is blocked, and :cfj = 0. Otherwise, the beamlet is on, i.e.,
xfj = 1. According to each aperture k, we assign a binary variable d, which determines whether
aperture k € {1,..., K,} is activated or not.

To formulate the dose distribution in patient’s body, each structure s € {1,...,S5} is divided
into a set of small cubic volumes v € {1,..., Vi}, so-called voxels. The dose-influence matrix D?i, o
in Gy/Mu provides an estimate of the dosage that voxel v will receive from beamlet (i, j) at unit
intensity, where Gy is the unit of dose intensity (1J/Kg) and Mu is monitor unit.

In summary, the following notations are used in this formulation:

Sets

— S, the set of patient’s structures;
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— N C S, a subset of structures as objective functions;

— B, the set of candidate beam directions;

— I, the set of available rows in MLC;

— J, the set of available columns in MLC;

— K, the set of allowable apertures in beam direction b € B;
— V4, the set of voxels in structure s € S

Parameters

b
N D(m’)w
b e B;

the absorbed dose to voxel v from 1 Gy dose delivered by beamlet (7, j) in direction

— 1, the lower limit on the number of chosen beam directions;

— 7, the upper limit on the number of chosen beam directions;

— w, the upper limit for the number of apertures per chosen beam direction;

— R, the upper limit for the dose intensity per aperture;

— d, the underdose threshold for all voxels in structure s € .S,

— d, the overdose threshold for all voxels in structure s € S;

— M, a big number;

Variables

— 6, € {0,1}, a binary decision variable, with ¢, = 1 if the beam direction b is selected, and
0, = 0 otherwise;

— ¢/*, a continuous decision variable, indicating the dose intensity for aperture k;

— 0 € {0,1}, a binary decision variable, with d, = 1 if the aperture k is selected, and J; = 0
otherwise;

— [¥, an integer decision variable, showing the left leaf position in row i for aperture k;

— r¥ an integer decision variable, showing the right leaf position in row i for aperture k;

— q:fj € {0,1}, a binary decision variable, with :zzfj = 1 if the beamlet (7, j) of aperture k is open,
and xfj = 0 otherwise;

— 2, a continuous decision variable, showing the received dose of voxel v;

The multiobjective mathematical formulation of the DAAO problem is as follows:
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J
doah=rf -l -1 Vk e Ky, Ybe B,YieT (10)
j=1
o, € {0,1} Vb e B (11)
Jr € {0,1} Vk € Ky, Vb € B (12)
), € {0,1} Vk e Ky, VbEBYicI,VjeJ (13)
ke 7z y e RE Vk € Ky, ¥b € B,Vi € T (14)

Constraints (2) determine the delivered dose to voxel v of structure s. Constraint (3) restricts
the number of selected beam directions to the defined thresholds. Constraints (4) imply that the
dose irradiation is only possible for the selected beam directions. These constraints concerning
the machine specifications also define the maximum intensity level. Constraints (5) guarantee
that there is no dose irradiation from the closed apertures. Constraints (6) specify the limited
number of apertures in each beam direction. There is a set of limitations on the sequencing of the
leaves. Constraints (7) guarantee that the left leaves in each row be placed before the right leaves,
also known as interdigitation constraints. Constraints (8) show the possible position of the right
leaves. If a beamlet be blocked by right and left leaves, the related binary of that beamlet should
be equal to zero, and this is ensured by constraints (9) and (10), respectively. Conversely, the dose
irradiation from the open beamlet is possible, and this is expressed via constraints (11). Finally,
the type of the decision variables is presented by constraints (12) to (14).

In this research, we assume that a subset of structures N C S is taken into account for multiple
objectives in the model. To formulate the objective functions, we utilize the least squares objective
function, which penalizes the dose received by each voxel of each organ. This objective is commonly
used by other researchers and commercial radiation therapy treatment planning systems in practice
(Ehrgott et al., 2010; Romeijn et al., 2005; Mahnam et al., 2017). The n'* objective function of
the problem regarding structure n € N C S is formulated as follows:

fol2) = Sl — 4+ [~ 2% (15)

'UEVn
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where [o]% is the maz{0,e}. In a real MLC device with 16 rows and six columns (Breedveld

and Heijmen, 2017), the potential combinations of MLC leaf positions for a single aperture in a
beam direction is around 18,477 x 10'°. Although previous research has shown that the objective
function is convex (Romeijn et al., 2005), this model is a mixed-integer nonlinear mathematical
model based on binary variables in the feasibility space and nonlinearity in the objective function.
Due to the model’s complexity and size, a multiobjective DAAQO approach using commercial solvers
or exact algorithms may not produce high-quality treatment plans within a reasonable time and
may not be practical (Fallahi et al., 2022b). In the next section, we will discuss the many-objective
metaheuristic approaches employed as the solution methodology for the problem.

4. Solution methods

The DAAO problem may involve more than three objectives simultaneously. In such cases,
traditional multiobjective metaheuristics may not perform well in searching the solution space.
The exponential rise in non-dominated solutions number and the high computational cost of com-
puting performance measures pose challenges to these algorithms in solution spaces with more
than three objectives (Deb and Jain, 2013). To address these issues, many-objective metaheuristic
algorithms, as a new generation of multiobjective metaheuristics, have been developed and pre-
sented in recent years. The many-objective algorithms have been used as the solution approach
for a wide range of optimization problems, including knapsack, traveling salesperson, production
scheduling, line balancing (Jaszkiewicz, 2018; Fang et al., 2019; Sun et al., 2021; Sahinkoc and
Bilge, 2022). Many-objective metaheuristics can be categorized into two approaches: reference
point-based algorithms and indicator-based algorithms. Reference point-based algorithms, such
as non-dominated sorting genetic algorithm-III (NSGA-III) (Deb and Jain, 2013), many-objective
particle swarm optimization (MaOPSO) (Figueiredo et al., 2016), and non-dominated sorting dif-
ferential evolution algorithm based on reference points (NSDE-R) (Reddy and Dulikravich, 2019),
use reference points to balance the trade-off between convergence and diversity and guide the
search towards the Pareto front. Indicator-based algorithms, such as indicator-based evolutionary
algorithm (IBEA) (Zitzler and Kiinzli, 2004) and hypervolume-based estimation algorithm (Hypk)
(Bader and Zitzler, 2010), use indicators such as hypervolume or inverted generational distance
for their search process.

In this resecarch, we employ the reference point-based many-objective algorithms as the solu-
tion approach for the multiobjective DAAO. To this end, we develop the NSGA-III, MaOPSO,
and NSDE-R algorithms, as the many-objectives version of genetic algorithm, particle swarm op-
timization, and differential evolution. In addition, to improve the algorithm’s performance, we
propose a new extension of these algorithms by integrating the decision maker’s preferences into
the search process. To the best of our knowledge, there has been limited attempts to incorporate
decision-maker’s preferences into the many-objective search procedure. In a related work, Vesikar
et al. (2018) proposed a static reference point modification approach to handle preferences in the
NSGA-III algorithm. In this approach, the reference point positions are predefined based on the in-
put preferences and are fixed during the algorithm. However, we propose a more general approach
that dynamically determines the reference point positions based on search process information and
feedback from the algorithm. This approach can handle situations where decision-makers do not
have enough information about the desired points. We introduce variable reference point (VR)
modified versions of many-objective algorithms as VR NSGA-III, VR MaOPSO, and VR NSDE-R
algorithms. Finally, we use the DVH criteria, as the preference of medical decision-makers, to
implement the new VR many objective metaheuristics for our multiobjective DAAQO problem.

CIRRELT-2023-15 8
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4.1. Reference point-based many-objective algorithms

The use of a set of reference points to direct the algorithm during the search process is the
primary characteristic of reference point-based many-objective metaheuristic algorithms. These
algorithms employ a systematic simplex lattice design to generate the reference points (Das and
Dennis, 1998). These reference points are positioned on a hyperplane that intersects with each
objective axis at point 1. Let N denote the number of objectives, and d specifies the division
number for each axis. Then, the total number of reference points in set H is calculated as follows:

= ("1 (16)

In addition to the generation of reference points, two standard steps in the iterations of many-
objective algorithms as (1) hyperplane reconstruction using population normalization, and (2)
association of the individuals with the reference points. The details of these steps are described in
the following sections.

4.1.1. Hyperplane reconstruction using population normalization

Many-objective metaheuristics aim to converge to the Pareto front by repeatedly construct-
ing a hyperplane in each iteration, positioning individuals on it, and associating the positioned
individuals with the reference points. Let S; be the set of available individuals in iteration t.
The ideal point z* includes the best values of all objectives in S; as z* = (2],25,...,25). On the
contrary, the extreme solution for each objective ¢ € N is obtained to establish an extreme vector
E =(ey,ez,...,en)T. The solution x; is called an extreme solution according to i axis based on
the achievement scalarizing function (ASF) as follows:

where w; is the weight vector of i*" objective. In addition, the intercept vector (a;,as,...,ay) can
be calculated using the following equation:

(18)

where b =(1,1,...,1)”. Note that if rank(E) < N or a;, < 0V k = 1,...,N, a;, is set to 2J"**, which
is the maximum (worst) value of k* objective in the population. Using the ideal point z* and
intercept vector (ai,as,...,ay), the normalized objective function values of j* individual can be
calculated as follows:

fixy) = (filxy) = =) /@i = =) (19)

The pscudo-code for hyperplane reconstruction using population normalization is presented as
Algorithm 1.

4.1.2. Association of the individuals with the reference points

After normalizing the population, we assign a reference point to each normalized individual.
To this end, we consider a reference line [, for each reference point h € H, which connects the
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Algorithm 1 Hyperplane reconstruction

Require: S, (Population in iteration t), N (Number of objectives), Np,, (Population size)
Ensure: S}' (Normalized population in iteration ¢)

1: for i <~ 1 to N do

2 Determine the ideal point: 2z} = Minjeg, fi(x;);
3: end for

4: for j <1 to Ny, do

5: for ¢ <+ 1to N do

6: Translate objective j of individual i: fl(a},) = fi(z;) — Z7;

7 end for

8: end for

9: for i <+ 1to N do
10: Determine the extreme point for objective ¢ using ASF function in Equation (17);
11: end for
12: Determine the intercept vector A using Equation (18);
13: for j < 1 to Nyop do
14: for i <~ 1to N do

15: Normalize objective j of individual ¢ using Equation (19);
16: end for
17: end for

reference point to the origin point. We then compute the perpendicular distance between each
individual and its associated reference line as follows:

d(zj,ln) = [|(x; = Lyln/[1IDII- (20)

Finally, we assign each individual j with the reference point [, with minimum perpendicular dis-
tance. Note that multiple individuals may be associated with a reference point, or no individual
may be associated with a reference point. The algorithm for this procedure is detailed in Algorithm
2. For instance, the reference points and reference lines on the hyperplane for three objectives are
graphically shown in Figure 1.

Many-objective algorithms utilize the normalized individuals and their associated reference
points to guide the search process using specific operators based on each algorithm. The details
for each algorithm are explained in the following subsections.

Algorithm 2 Association process

Require: S} (Normalized population in iteration ¢), |H| (Reference points number), N, (Population size)
Ensure: 7(z; € SI')(Nearest reference point), d(z; € S}V)(Distance between individual and nearest reference point)
1: for h + 1 to |H| do
2 Compute the corresponding reference line lp;
3: end for
4: for j <1 to Npyp do
5: for h < 1 to |H| do
6 Calculate the distance between z; and I,;
7 end for
8 Assign the reference point: w(z;) = I: argminpend(z;,1);
9: end for

4.1.83. The NSGA-III algorithm

The NSGA-III algorithm, developed by Deb and Jain (2013), is one of the earliest metaheuris-
tics developed specifically for many-objective optimization. The pseudo-code for the NSGA-III
algorithm is provided in Algorithm 3.
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Figure 1: The positioning of reference points and lines on the hyperplane for three objectives

At the " iteration of NSGA-III, the population S; generates the offspring population Q
using the crossover and mutation operators (lines 2-4). These operators use predefined crossover
probability P.. and mutation probability P, parameters, as proposed by Deb et al. (2002). Using
the non-dominated sorting operator, the combined population P, = S; U @), is categorized into
non-dominated fronts (lines 5-6). The individuals are then gradually added to the next iteration
parent population S;,1, based on the order of fronts, until the size of S;;; becomes larger than or
equal to population size N,,, (lines 7-10).

After adding the individuals from front [ to Siiq, if [Sit1| = Npep, all selected solutions become
the parents’ population S;, 1, and the algorithm proceeds to the next iteration. However, if |Syy1| >
Npop (line 11), all solutions from the previous I — 1 fronts are selected for inclusion in the next
parent population Sy (line 12). Then, N, — [S:41| parents should be selected from the front Fj.
The algorithm selects the remaining individuals using a niche preservation operator. To this end,
the hyperplane reconstruction and individual association steps are performed (lines 13-14).

NSGA-IIT defines the niche count parameter pj, as the number of associated individuals from
Si+1/F; for each reference point h € H (line 15) and determines H,;, = Minpegpy as the set of
reference points with minimum py, (line 16). A reference point j should be randomly selected from
Hopin, (line 17). If p; = 0 (line 18), it means no individual in previous fronts are associated with
this reference point. There are two possible scenarios with respect to the number of individuals
associated with reference point j in the current front I: (1) At least one individual in the current
front [ is associated with j. In this case, the individual with the minimum perpendicular distance
to j is selected. Then, the value of p; is increased by one (lines 19-21). (2) No individual in the
current front [ is associated with 7. In this case, the reference point j is excluded from consideration
for individual selection in this iteration (lines 22-23). When p; > 1, at least one individual j in
previous fronts is associated with this reference point (line 25). In this case, one of the individuals
in the current front is selected randomly. Note that when an associated individual is selected, the
pj is increased by one (lines 26-27).

4.1.4. The MaOPSO algorithm

The MaOPSO algorithm, introduced by Figueiredo et al. (2016), is the many-objective exten-
sion of the PSO algorithm. The pseudo-code of this method is provided in Algorithm 4.

Unlike NSGA-IIT, MaOPSO uses an external archive, denoted by Ay, in each iteration ¢ to store
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Algorithm 3 NSGA-III algorithm

Require: Maz;; (Maximum iteration), Nyop, (Population size), P, (Crossover probability), Pp. (Mutation prob-
ability), So (Initial population), |H| (Reference points number)
Ensure: Sjqs,, (Final population)
1: for it + 1 to Max;; do
2: Apply crossover operator using crossover probability P,,.;
3: Apply mutation operator using mutation probability P,.;
4: Generate offspring population Qy;

5 Establish combined population P, = S; U Qy;

6: Sort individuals in non-dominated fronts Fi,Fb,..;
7: while |Si41] > Npop do

3: Sit1=Si11UF

9: l=1+1,;

10: end while

11: if |S;41] > Npop then

12: Spe1 = Ul Fy;

13: Reconstruct Hyperplane using population normalization;

14: Associate individuals with the reference points;

15: Compute niche count for each reference point h € H;

16: Determine the set of reference points with minimum niche count H,,;,, = Minpcpgpn;
17: Select a random reference point in H,,;, as j;

18: if p; =0 then -

19: if There is at least one individual in front [ that is associated with j then
20: Select the individual with minimum perpendicular distance distance to j;
21: p;=p;+1

22: else

23: Exclude j for individual selection in iteration ¢;

24: end if

25: else

26: Select one of the associated individuals to j randomly;

27: p;=p; t 1

28: end if

29: end if

30: end for

the non-dominated solutions. This archive is updated using the positions of the particles and the
latest archive (line 2).

The algorithm updates the hyperplane and associates particles with reference points using the
ideal and intercept points obtained from external archive A; (lines 6-7). Subsequently, MaOPSO
computes density measure p, and convergence measure p, for each particle a € A; to select the
global best positions Gbest! and prune the archive. Assuming that individual a associated with
the reference point 7, the density measure p, denotes the total number of associated particles
to reference points j (line 9). In addition, the convergence measure of the solution a is the
corresponding value of the ASF function, which is calculated using Equation (17) (line 10). To
select Gbest!, the algorithm divides particles into two sub-populations, S} and S§ (line 12). For
each particle i € S, the algorithm assigns the extreme solutions of the archive as Gbest?.

Let € =eq,e9,...,en be the set of N extreme solutions where 2 C A;. These extreme solutions
are uniformly assigned to the particles in sub-population S} (lines 13-15). For sub-swarm S%, the
algorithm simultaneously uses density and convergence measures to assign Gbest!l. Assuming i
and j are the indices of two solutions randomly selected from the external archive. If p; < i, the
algorithm selects solution j as the global best position of the particle. However, if u; = p, the
convergence measure is used for comparison. In this case, solution i is selected as the global best
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Algorithm 4 MaOPSO algorithm

Require: Maz;; (Maximum iteration), Npop (particle number), w (Inertial weight), ¢; (Cognitive parameter),
¢ (Social parameter), wgamp (Weight modification factor), Sy (Initial population), Ao (Initial archive), |H|
(Reference points number), Archg;,. (Archive size)

Ensure: A, (Last generation archive)

1. for t < 1 to Max; do

2: Update external archive: A; = A;_1 U S;_q;

3 if |A;| > Archg;.. then

4: Prune archive using density and convergence measures p, and pg;

5: end if

6.

7

8

Reconstruct hyperplane using population normalization;
Associate the particles with the reference points;
for a < 1 to Archg;,. do

9: Calculate the density measure y,, for particle a;
10: Calculate the convergence measure p, for particle a;
11: end for

12: Divide the population into two sub-population S% and S%;
13:  for j < 1to |St| do

14: Select Gbest} from the extreme points;

15: end for

16:  for j < 1 to |Si| do

17: Select Gbestﬁ- from the archive using density and convergence measures;
18: end for

19: for j <1 to Ny, do

20: if Current position dominates of particle j the previous position then
21: Set the current position as Pbest;- for particle j;

22: else if Previous position of particle 7 dominates the current position then
23: Set the previous position as Pbest?;

24: else

25: Set the position minimum perpendicular distance as Pbest?;

26: end if

27: end for

28: for j <1 to Ny, do

29: Update the velocity of particle j;

30: Update the position of particle j;

31: end for

32: Apply polynomial mutation operator;

33: end for

position if p; < py (lines 16-18).

To determine the personal best position Pbest! of each particle 4, the algorithm compares
the current and previous positions of particles based on their objective functions. If either of
the two positions dominates the other, it is selected as Pbest!, (lines 20-23). If two positions
are non-dominated with respect to each other, the algorithm chooses the position with the lower
perpendicular distance to the ideal point as Pbest! (lines 24-25).

Finally, the MaOPSO algorithm updates the particles’ position in the solution space using
the assigned global and personal best positions (lines 28-31). To prevent premature convergence
and maintain diversity, a polynomial mutation is applied to 15% of the particle population (line
32). If the number of solutions in the archive exceeds its capacity, the archive is truncated at the
beginning of the next iteration. (lines 3-5). The algorithm prioritizes the density measure when
truncating the archive, and employs the diversity measure if two solutions are incomparable in
terms of the density measure.
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4.1.5. The NSDE-R algorithm
Reddy and Dulikravich (2019) proposed the NSDE-R algorithm, a many-objective DE algo-
rithm. The pseudo-code for NSDE-R is presented in Algorithm 5.

Algorithm 5 NSDE-R algorithm

Require: Max;; (Maximum iteration), Nyop, (Population size), F' (Mutation scale factor), P, (Crossover proba-
bility), So (Initial population), |H| (Reference points number)

Ensure: Sjqs,, (Final population)

1: for it + 1 to Max;; do

2 Apply classical and convex mutation operators using mutation scale factor F;

3 Apply crossover operator using crossover probability P,,;

4 Reconstruct hyperplane using population normalization;

5: Associate the individuals with the reference points;
6
7
8

Sort the individuals in non-dominated fronts Fy,F5,..;
while |Siy1]| > Npop do
: Sty1 = Se11 U Fy;
9: l=1+1,;
10: end while
11: if |S;41] > Npop then

12: Spe1 = Ul Fy;

13: Compute niche count pp, for each reference point h € H;

14: Determine the set of reference points with minimum niche count H,,;, = Minpeppn;
15: Select a random reference point in H,,;, as j;

16: if p; =0 then -

17: if There is at least one individual in front [ that is associated with j then
18: Select the individual with minimum perpendicular distance distance to j;
19: p; =p;+ 1

20: else

21: Exclude 7 for individual selection in iteration ¢

22: end if

23: else

24: Select one of the associated individuals to j randomly;

25: p;=pr; 1

26: end if

27: end if

28: end for

At the t" iteration of NSDE-R, the parent population S; generates the offspring population Q;
by applying the classical and convex mutation operators of the DE algorithm (line 2). In addition,
a crossover operator is utilized based on a crossover probability P, (line 3). After, the hyperplane
is reconstructed using normalized objective values of the combined population P, = S;UQ; (line 4).
Each individual in the combined population P, is associated with a reference point (line 5). The
combined population P; is then sorted into non-dominated fronts (line 6). Based on the order of
fronts, the individuals are gradually added to the next iteration population Sy 1, until [Siy1| > Nyop
(lines 7-10). If Sy = | Npop|, the added solutions are chosen as the next iteration population, and the
algorithm proceeds to the next iteration. However, if S; > | N, the solutions from the previous
[ — 1 layers are retained in S;;; (line 12). Similar to the NSGA-III algorithm, |Npe,| — Piyq
individuals should be chosen from the last layer F; using a niche preservation operator.

After the association, p; should be increased by one (lines 23-25).

In the NSDE-R algorithm, the number of associated individuals from S;;1 = S;1/F] to the
reference line A is the niche count py, of the corresponding reference point (line 13). The algorithm
identifies the set of reference points with the minimum pj, as Hin = Minpempn (line 14). Next,
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the algorithm selects a random reference point in the set H;, as j (line 15). If p; = 0 and there
is at least one associated point in front F;, the algorithm selects the solution with the shortest
perpendicular distance to j for adding to Sy, and pj is incremented by one (lines 17-19). If there is
no associated point in the last front [, the reference point is not considered for selecting individuals
(lines 20-21). In the case of p; > 1, a randomly selected individual from front [ is associated with
this reference point and added to P,,;. After the association, p; should be increased by one (lines
23-25).

4.2. Variable reference point many-objective algorithms

The classic many-objective metaheuristic algorithms employ evenly distributed reference points
to compute Pareto solutions with the maximum possible diversity. However, in practice, the
decision-makers may prefer particular regions or solution in the Pareto front. In other words,
they may be interested in Pareto solutions with certain features rather than an entire Pareto front
estimation with a high level of diversity. The IMRT treatment planning problem is a clear example,
where the oncologists prefer the clinically acceptable solution to many other impractical solutions
in the Pareto front, while these preferences are not considered in the model due to their complexity.
In this problem, some non-dominated treatment plans can not be used in practice due to the lack
of dose delivered to the tumor. Thus, we propose a variable reference point (VR) extension of
the many-objective algorithms to integrate decision-maker’s preferences into the traditional many-
objective metaheuristics. This framework will be presented in the next section. Then, we provide
our approach to implement the VR framework for the multiobjective DAAO problem.

4.2.1. The proposed variable reference point framework

The aim of the proposed VR framework is to modify the classic many-objective approach by
dynamically adjusting the position of reference points during the search process based on the
decision-maker’s criteria for obtaining results.

Consider a set of V' desired points in a N objective space problem. The decision maker should
determine their desired objective values for each point as an input matrix of size Gy« n.If the
decision-maker is uncertain about the preferred points at the beginning of the process, these points
can be randomly initialized. However, the priority of objective functions for each desired point
should be determined as an input matrix Py y. This matrix includes binary values from 1 to N,
where the objective with the highest priority is assigned 1, and N is assigned to the lowest priority
objective. Then, the desired point v € V is normalized using the normalization Equation (19),
and the normalized value is denoted by ©. The projection of © onto the hyperplane is calculated
by determining a reference line, which connects the ideal point to © as follows:

. \/N(@O — Z())
fo.(1,.., )T
where z is the initial ideal point, e is one of the extreme points such as (1,0,...,0)T. Then, the

initial |H| reference points are transformed around the normalized desired point. The algorithm
obtains the center of gravity of reference points as follows:

||
c= Zl’gi n (22)

Then, the transformation of the reference points around v is computed with respect to value ¢ as
follows:

fo + 2o, (21)

0

Qs = (up —¢) +ay x H (23)
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where «; is a shrinkage factor that controls the focus of |H| reference points around the desired
points ©. A higher value of «a; results in a tighter clustering of the reference points around the
desired point. This procedure is repeated for all V' normalized desired points.

As previously mentioned, the decision-maker may not have sufficient information about the
precise objective values of preferred solutions. Additionally, they may specify certain regions that
not be accessible for the algorithm. Therefore, the positions of initially generated reference points
are assumed to be variable. This ensures that the algorithm explores the desired region and its
neighborhood as much as possible. For this goal, the desired points are adjusted at specific stages
of the search process.

The many-objective algorithm stores the best solutions for each objective function in an external
archive. Then, according to the priority matrix P for each desired point, the algorithm assigns
values to the objectives. We refer to the modification of the algorithms based on this procedure
as VR NSGA-III, VR MaOPSO, and VR NSDE-R algorithms. The general pseudo-code of the
presented scheme is provided in Algorithm 6.

Algorithm 6 The proposed variable reference point many-objective framework

Require: V (Set of desired points), a (Set of shrinkage factors), P (Priority matrix), |H| (Reference points number)

1: forv<+ 1toV do

2: Normalize desired point v using Equation (19);

3: Project normalized desired point © on the hyperplane using Equation (21);

4: Compute the centre of gravity ¢ using Equation (22);

5: Transform reference point set H around the desired point projection ¢ using Equation (23);
6: end for

7: Execute the many-objective algorithm;

8: if Position update is necessary then

9: for v+ 1toV do
10: Update the desired point v using the priority matrix P;
11: Normalized desired point v using Equation (19);
12: Project normalized desired point ¥ on the hyperplane using Equation (21);
13: Compute the centre of gravity ¢ using Equation (22);
14: Transform reference point set H around the desired point © using Equation (23);
15: end for
16: end if

A general overview of the proposed procedure is also graphically shown in Figure 2. In this
example, there are two desired points with two sets of corresponding reference points. The many-
objective algorithm updates the position of two desired points once every ten iterations. Then,
the reference points are transformed around the projection of the updated desired points.

4.2.2. Variable reference point framework implementation for multiobjective DAAQO

In this section, we present our VR many-objective approach to the multiobjective DAAO
problem using DVH criteria, with the aim of improving the algorithm’s performance in obtaining
clinically acceptable plans. The DVH diagram is one of the most commonly used tools the on-
cologist utilizes to evaluate the quality of treatment plans. This diagram shows the relationship
between the structure’s volume and the radiation dose, by determining the percentage of the struc-
ture which receives a certain dose or above that. For example, V,, = x states that no more than
2% of the structure receives radiation doses more than y Gy. As explained before, the VR many
objective algorithms need a set of desired points as the input to search for the solutions. According
to the importance of clinical criteria in the multiobjective DAAO problem, we employ DVH points
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Figure 2: A general overview of the proposed procedure for VR many-objective algorithms

as the input desired points for the algorithms. These points will guide the optimization process
towards achieving the desired dose-volume constraints that are critical for patient treatment.

Since the exact corresponding objective values of desired DVH points are unknown, we ran-
domly initialize a set of desired points. To determine the priorities of DVH for each desired point,
we use a priority matrix P. For instance, the first desired point can be assigned to the non-
dominated solution with the best DVH value for the tumor objective. Similarly, other points can
be assigned to the DVH points for the other structures. During the search process, the algorithm
updates the objective values of these points and the position of reference points with respect to
the priority of DVH points for structures.

4.83. Solution encoding

An appropriate solution encoding scheme is necessary to ensure the efficiency of the metaheuris-
tic algorithm. One challenge in solving the presented DAAQO problem is the sequential dependency
of problem variables. This work uses a six-vector hierarchical solution encoding for the problem.
The vectors represent the number of beam directions, the set of selected beam directions, the
number of apertures, the apertures’ intensities, and the position of the left and right leaves. Fig-
ure 3 shows the solution encoding for an individual in the population. Since the simultaneous
assignment of values to the vectors is not possible, the operators are applied based on the order
of vectors. First, the number of beam directions is determined. Then, the set of beam angles is
specified based on the number of beam directions. This procedure continues until the left and
right leaves position for each aperture of each direction is determined.

5. Computational results

This section investigates the performance and efficiency of the presented multiobjective model
and many-objective metaheuristic algorithms using a real-world data set of cancer patients. All
many-objective metaheuristics are implemented in MATLAB R2017b language and executed on a
computer equipped with an Intel Xeon E312 CPU and 64 GB RAM.
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Figure 3: The solution encoding scheme

5.1. Data description

We evaluate the performance of the proposed model and algorithms using real-world data from
The Radiotherapy Optimisation Test Set (TROTS) dataset (Breedveld and Heijmen, 2017). We
use the liver cases from TROTS, which consist of 10 patients. In this study, we consider the spinal
cord, heart, and right kidney as the primary healthy organs in the problem. Thus, the least square
objective of planning target volume (PTV) and the three healthy organs are the four objective
functions of the problem. The acceptable threshold for the PTV of all liver cases is considered
to be between 55 and 75 Gy (Breedveld et al., 2019). In addition, maximum 1% of the spinal
cord and heart should receive a dose upper than 18 Gy and 30 Gy, respectively. For the right
kidney, no more than 35% of the organ can receive a maximum dose of 15 Gy. The dose delivery
intensity is constrained to be within the interval of [0, 25] (MUs/aperture). The treatment process
is implemented during 14 fractions, where a 5 Gy dose should be delivered to the tumor per each
fraction.

5.2. Performance measures

For many-objective algorithms, which report a set of non-dominated solutions, objective func-
tion values cannot be directly employed to compare the algorithms’ performance. Several measures
are commonly used for comparing the performance of multiobjective algorithms. A comprehensive
discussion of these measures is presented in Audet et al. (2021). In this study, we use the following
four measures to evaluate the many-objective algorithms and gain insights into their solutions:

1. Overall non-dominated vector generation measure: This measure indicates the number of
solutions in an estimated Pareto front by the algorithm. The higher values for the overall
non-dominated vector generation measure are more acceptable.

2. Diversity measure: The diversity measure evaluates the spread of solutions in an estimated
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Pareto front. This measure is obtained as follows:

|XN|

Diversity(X) = Z max(|z; — y;|) (24)
i=1

where |x; — ;| is the Euclidean distance between two adjacent solutions on the estimated
Pareto front. The higher values for the diversity measure are more acceptable.

3. Spacing metric: The Spacing metric quantifies the variability in the distances between solu-
tions in the Pareto front approximation set. Let X be the set of Pareto solutions generated
by a multiobjective algorithm. The spacing metric for the solutions in X is as follows:

[ X
Spacing(X) = (ﬁ) Z(J— dy(x;, Xn\{z:}))? (25)

i=1

where d (i, Xn\{:}) = min,ex,\(+,}(|[7 — 2;(|)1 is the distance of z; € X,, to the Xn\{z;}
set. In addition, d is the average of all d(x;, Xy\{x;}) for i = 1,..,|Xn|. The lower values
for the spacing measure are more acceptable.

4. CPU time measure: This metric calculates the required time of an algorithm to solve the
problem. CPU time measure is used to compare the computational cost of algorithms. The
lower values for the CPU time measure are more acceptable.

5.53. Parameter calibration

The value of input parameters highly impacts the efficiency of metaheuristics. In this situation,
the trial-and-error-based approaches may be very time-consuming and they do not guarantee a
proper performance level of algorithms. We employ the Taguchi design of experiments (DEO), as
one of the well-known and simplest statistical approaches, which is successfully used for parameter
tuning of a wide range of metaheuristic algorithms in the literature. Taguchi divides the affecting
factors on a response variable into two groups signal (5)0 factors and noise (V) factors. Then,
a series of experiments are designed to determine the best level of S factors in such a way that
the response value is optimized. To control the experiment’s number, orthogonal arrays are used
by Taguchi instead of a full factorial design. Analysis of variance (ANOVA) and analysis of
signal-to-noise ratio (S/N) are two approaches that are used to analyze the results of experiments
(Sadeghi et al., 2014). While ANOVA can be only used for experiments with one replication, the
S/N analysis approach can be applied for experiments with multiple replications. The results of
metaheuristics vary among runs regarding their inherent random behavior. Therefore, we tune the
parameters using the S/N ratio, which is calculated as follows for a minimization problem:

S/N = —10log() (y})/k) (26)

i=1

where y; is the value of response in 4" replication, and k is the total number of replications. The
algorithms and the three levels considered for optimization are presented in Table 1.
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Table 1: The three considered levels of many-objective algorithms for parameter tuning

Many-objective algorithm Number Name Level 1 Level 2 Level 3

1 Npop 20 25 30
2 |H| 30 45 60
NSGA-IL & VR NSGA-IIL P 070 000 0.05
4 P 010 050  0.70
1 Nypop 20 25 30
2 Archgize 30 35 40
3 |H| 30 45 60
MaOPSO & VR MaOPSO 4 C 1 1.5 2
5 Cs 15 2 2.5
6 w 090 095  0.99
7 Waamp  0.95 0.99 1
1 Npop 20 25 30
2 P., 090 095  0.99
NSDE-R & VRNSDE-R ] 20 P p
4 F 050  0.90 1.40

Case #1 from the dataset is used as the input problem for all six algorithms. We run each
orthogonal array in five replications. In each replication, the spacing measure is considered as the
response variable (Shahidi-Zadeh et al., 2017). To ensure a fair comparison and equal access of
algorithms to computational resources, we set the number of function evaluations (NFE) to 1500
as the stopping criterion. The main effects plots of S/N ratio are provided in Figure 4. In these
figures, the optimal level is the one with the highest mean of S/N. In addition, the obtained
optimal parameter levels are summarized in Table 2.
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Figure 4: The main effects plots for signal-to-noise ratio of many-objective metaheuristic algorihtms
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Table 2: The optimal parameter levels of the many-objective algorithms

Algorithm  Parameter number Parameter name  Optimal level Algorithm Parameter number Parameter name Optimal level

1 Nyop 20 1 Npop 30

2 |H| 30 2 |H]| 30
NSGA-IIT 3 P 0.70 VR NSGA-IIT 3 P, 0.95

4 P 0.10 4 Py 0.50

1 Npop 25 1 Npop 30

2 Archgize 40 2 Archgize 35

3 |H| 45 3 |H| 30
MaOPSO 4 4 2 VR MaOPSO 4 4 1

5 Cy 1.5 5 Cy 2

6 w 0.90 6 w 0.95

7 wdamp 0.95 7 wdamp 0.99

1 Nyop 25 1 Npop 20

2 P, 0.99 2 P, 0.95
NSDE-R 3 \H]| 45 VR NSDE-R 3 \H]| 45

4 F 1.40 4 F 0.90

5.4. Results discussion

The input parameters of algorithms are set to the obtained optimal values by the Taguchi
method. As the results may vary across different executions, each algorithm is run five times for
each case to obtain reliable and statistically significant results. For the VR algorithms, the best
clinically acceptable solution is the considered desired point. According to the high importance of
clinically acceptable solutions in the multiobjective DAAO problem, we separate these solutions
from the other Pareto solutions for each algorithm and only consider them in our comparisons.

First, the overall non-dominated vector generation measure is presented in Table 3. As can be
seen in the table, the overall non-dominated vector generation measure of each VR algorithm is
better than the classical versions. This means that the VR algorithms consider the DVH criteria in
their search process using the input desired point. The change in the search direction of algorithms
can also be seen in the parallel coordinate plots of algorithms, which are shown in Figure 5.

The normalized parallel coordinated plot is a data visualization tool that is commonly used
to represent the results of many-objective algorithms. The plot consists of multiple parallel axes,
each representing an objective function, and a line connecting the values of each objective function
for each Pareto solution. The data is normalized by dividing each objective by the range of values
for that objective. This results in a plot displaying objectives on the same scale. As can be seen
in Figure 5, the number of Pareto solutions with lower values of the PTV objective function are
increased in the VR algorithms compared to their classical versions.

Table 3: The overall non-dominated vector generation measure results of the many-objective algorithms

Case NSGA-IIT VR NSGA-IIL MaOPSO VR MaOPSO NSDE-R VR NSDE-R
#1 7.40 12.20 6.40 12.60 2.75 3.20
#2 4.60 6.80 6.80 6.60 1.40 2.00
#3 3.60 7.00 4.00 9.00 2.00 2.00
#4 7.00 3.80 4.00 5.00 2.25 3.80
#5 3.80 8.80 8.00 8.40 1.50 3.00
#6 4.40 9.80 7.00 11.20 2.67 4.60
#7 2.40 4.20 2.20 6.00 2.00 1.75
#8 4.60 11.00 8.40 12.60 2.60 3.20
#9 3.40 6.80 2.60 7.00 1.67 1.50
#10 4.60 5.80 6.40 8.60 1.80 4.00
Average 4.58 7.62 5.58 8.70 2.06 2.90
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Figure 5: Parallel coordinate plot of many-objective algorithms for Case #2

Next, the algorithms are compared using the diversity measure. The diversity of clinically
acceptable solutions of algorithms is presented in Table 4. As expected, the increase in overall
non-dominated vector generation of VRPP algorithms causes an increase in the diversity measure.
Such increases in diversity provide more options for clinical decision-makers to select the proper
treatment plan. Similar to overall non-dominated vector generation, the maximum diversity be-
longs to the VR MaOPSO algorithm.

Spacing is the third measure for the performance comparison of algorithms, and the results are
provided in Table 5. The results show that the spacing measure of classical algorithms is better
than their new versions. As noted by Audet et al. (2021), when the Pareto solutions form separate
clusters, the spacing measure becomes less effective. In other words, the spacing measure is highly

Table 4: The diversity measure results of the many-objective algorithms

Case NSGA-IIT VR NSGA-III MaOPSO VR MaOPSO NSDE-R VR NSDE-R
#1 15.26 25.73 10.33 21.20 6.88 8.22
#2 7.52 11.06 13.55 14.83 4.32 5.64
#3 7.80 9.58 8.97 17.48 2.65 4.32
#4 7.03 7.88 9.55 9.88 2.44 9.64
#5 3.81 11.55 10.74 12.63 3.92 4.53
#6 9.55 13.56 17.37 22.50 8.44 9.13
#7 7.11 9.30 3.75 13.71 4.93 5.63
#8 9.86 18.02 15.86 23.21 8.60 10.18
#9 7.88 14.36 7.70 17.60 4.94 7.22
#10 9.43 10.28 14.75 14.99 4.28 10.41
Average 8.53 14.03 11.26 16.80 5.14 7.49
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sensitive to the distribution of mutual distances between solutions on the Pareto front. Thus,
while an algorithm may yield a higher number of solutions and greater diversity, it can still have
a higher spacing measure due to the particular distribution of the solutions on the front. For the
presented algorithm, an increase in the number of clinically acceptable solutions results in more
variation in the mutual distances between the solutions, leading to an increase in the value of the
spacing measure for VR algorithms. MaOPSO discovers more clinically acceptable solutions with
greater diversity, resulting in an increase in the spacing measure for this algorithm. The NSDE-R
algorithm achieves the minimum spacing.

Table 5: The spacing measure results of the many-objective algorithms

Case NSGA-III VR NSGA-III MaOPSO VR MaOPSO NSDE-R VR NSDE-R
#1 0.79 0.96 0.38 0.74 0.55 0.55
#2 0.78 0.91 0.92 0.81 0.12 0.35
#3 1.15 0.61 0.30 0.61 0.00 0.79
#4 0.53 0.64 0.70 0.52 0.61 1.01
#5 0.45 1.10 0.81 0.88 0.00 0.36
#6 0.92 0.88 0.61 0.98 0.63 0.74
#7 0.29 0.75 0.35 0.58 0.14 0.35
#8 0.70 0.95 0.49 0.82 0.39 0.62
#9 0.58 0.76 0.22 0.87 0.00 0.35
#10 0.79 0.61 0.68 0.52 0.03 0.35
Average 0.70 0.82 0.55 0.73 0.25 0.55

As the last measure for the comparison of algorithms, the CPU times are summarized in
Table 6. The CPU time of classical many-objective algorithms is lower than that of the VR
algorithms. Although the VR algorithms require more CPU time, the increase is not significant.
The results show that the difference between NSGA-III, MaOPSO, and NSDE-R with their VR
versions is approximately 5.24%, 5.02%, and 5.34%, respectively. Such increases in CPU time
do not significantly affect the performance, and the VR algorithms can search for solutions in a
reasonable time. Moreover, the MaOPSO algorithm, which also obtains higher-quality solutions,
has the maximum average CPU time.

The boxplots of considered measures are presented in Figure 6 to provide a better insight into
the performance of many-objective algorithms. Moreover, to provide a better insight, the CT scan

Table 6: The CPU time measure results of the many-objective algorithms (S)

Case NSGA-IIT VR NSGA-II MaOPSO VR MaOPSO NSDE-R VR NSDE-R
#1 121.17 126.80 163.11 173.55 132.75 139.13
#2 76.31 81.08 124.95 131.37 91.47 96.14
#3 190.90 201.74 213.55 227.10 177.26 186.86
#4 141.15 149.98 162.11 172.02 131.26 138.25
#5 135.95 141.53 157.96 167.51 120.06 126.06
#6 114.64 119.36 152.72 158.91 117.87 122.25
#7 173.66 182.45 202.20 208.27 156.48 166.12
#8 182.77 193.32 214.43 224.88 167.90 179.42
#9 183.82 193.05 219.63 230.83 172.05 183.18
#10 150.95 159.32 192.03 198.74 144.53 150.43
Average 147.13 154.86 180.27 189.32 141.16 148.78
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for one of the obtained clinically acceptable solutions of each algorithm for Case #2 is shown in
Figure 7.
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Figure 7: The CT scan of an obtained clinically acceptable solution for Case #2
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5.5. Comparison to NSGA-II in the literature

Finally, we have compared our most powerful many-objective algorithm, VR MaOPSO, to one
of the state-of-the-art multiobjective algorithms in the literature, NSGA-II, to identify clinically
acceptable solutions. NSGA-IT has been designed and implemented for several IMRT treatment
planning problems in recent years, including BOO, FMO, and DAO (Cao et al., 2011; Schreibmann
et al., 2004; Li et al., 2009). To this end, we implement the NSGA-II algorithm for all 10 liver
cases of the TROTS data set. Table 7 presents VR MaOPSO and NSGA-II comparison results in
terms of the considered performance measures.

Table 7: The comparison of VR MaOPSO and NSGA-II algorithms

Case Overall non-dominated vector generation Diversity Spacing CPU time
VR MaOPSO NSGA-II VR MaOPSO NSGA-II VR MaOPSO NSGA-II VR MaOPSO NSGA-II

#1 12.6 3.1 21.20 6.60 0.74 0.61 173.55 208.06
#2 6.6 2.2 14.83 3.31 0.81 0.50 131.37 136.23
#3 9.0 1.8 17.48 3.16 0.61 0.90 227.10 338.43
#4 5.0 2.8 9.88 2.81 0.52 0.36 172.02 246.18
#5 8.4 1.5 12.63 1.81 0.88 0.24 167.51 239.16
#6 11.2 2.0 22.50 4.06 0.98 0.53 158.91 210.59
#7 6.0 1.0 13.71 3.12 0.58 0.16 208.27 296.22
#8 12.6 2.1 23.21 4.70 0.82 0.47 224.88 322.08
#9 7.0 1.6 17.60 3.50 0.87 0.36 230.83 335.93
#10 8.6 2.3 14.99 4.20 0.52 0.62 198.74 260.40
Average 8.7 3.1 16.80 3.73 0.73 0.47 189.31 259.33

The results indicate that VR-MaOPSO outperforms NSGA-II in terms of its ability to produce
clinically acceptable solutions within a shorter time frame. We observed that the VR-MaOPSO
algorithm generates a larger number of diverse solutions than the NSGA-II algorithm. Additionally,
consistent with prior comparisons, the NSGA-II algorithm demonstrates a lower spacing measure
due to its limited number of acceptable solutions. Overall, these findings emphasize the efficacy of
the VR-MaOPSO algorithm in addressing multi-objective optimization problems that have clinical
applications.

6. Conclusion

This paper proposed a multiobjective framework for the DAAO problem in IMRT treatment
planning, which simultaneously optimizes the beam directions, intensity map, and MLC sequences.
The proposed framework enables the clinical decision-makers to consider each desired organ of a
patient as an objective function and helps them to determine the proper plan from a set of Pareto
solutions. The problem is formulated using a non-linear programming mathematical model. Re-
garding the nonlinearity, dimension, and the possible number of objective functions, an applica-
tion of reference point-based many-objective metaheuristic algorithms is presented as the solution
approach. First, three classical many-objective metaheuristic algorithms are designed and imple-
mented, including NSGA-III, MaOPSO, and NSDE-R. Next, the importance of clinical criteria
motivated us to modify these classical algorithms and present a new version based on the decision-
makers preferences. For this goal, the new extensions of algorithms were presented as the VR of
many-objective algorithms. These algorithms can modify the algorithms by changing the position
of reference points to actively consider the decision-maker preferences during the search procedure.

The performance of six proposed many-objective algorithms in solving the multiobjective
DAAO problem was investigated using 10 liver cases data from the TROTS dataset. We calibrated
the input parameters of many-objective metaheuristics utilizing the Taguchi design of experiments
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as a systematic statistical method. Four performance measures including overall non-dominated
vector generation measure, diversity, spacing, and CPU time were used to compare the algorithms.
The analysis of the results revealed that the new extended algorithms could successfully consider
the decision-makers preferences in a proper manner. More specifically, the algorithms can improve
the number and diversity of clinically acceptable solutions while the increase in computational
cost is negligible. It is noteworthy to mention that the quality of the obtained solutions by VR
MaOPSO is higher than the other algorithms in terms of clinical criteria.

For the extension of the current paper, several directions can be considered. The present mul-
tiobjective DAAQO problem assumes that all parameters are in deterministic form. Reformulating
the model under uncertainty in some parameters, such as the tumor progress status or breath-
ing motion, is interesting. In addition, we use a single type of objective function for all organs.
Different varieties of objective functions, such as biological ones can be considered for organs in
the multiobjective DAAO problem. From the solution methodology viewpoint, machine learning
algorithms, such as Q-learning, can be utilized to adapt reference points in VR algorithms.
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