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Abstract. This paper studies the impact of distance data inaccuracies on different methods 

for solving the capacitated vehicle routing problem. It is an experimental study examining 

how simple heuristics, state-of-the-art metaheuristics, and an exact algorithm behave under 

such inaccuracies. We investigate the two following questions: i) is it worth using 

sophisticated state-of-the art algorithms when data inaccuracies are greater or similar in 

their scale to algorithmic error gaps; ii) would the best algorithms be more attracted by 

inaccurate (e.g., erroneously shorter) distances and be disproportionally affected by 

inaccurate data? We conduct extensive experiments on the capacitated vehicle routing 

problem, considering instances ranging from 100 to 1,000 customers with different distance-

estimation inaccuracies. Interestingly, we respond to the first question in the affirmative and 

the second one in the negative: errors from data and algorithms tend to compound, such 

that state-of-the-art algorithms remain the better choice in all cases. Moreover, the impact 

of inaccurate data is fairly uniform over the algorithms, except for a simpler construction 

heuristic (Clarke and Wright algorithm) which seems disproportionally impacted by 

inaccurate data. 
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) seeks to find efficient
routes to transport goods from a depot to several customers using a fleet of
vehicles limited by their capacity. This problem is of significant interest to
researchers because any improvement in the methods developed for it can
result in significant savings for transportation companies. Although many
complex variants of the CVRP have been studied in the last decades, the
canonical CVRP remains challenging for large-scale instances. In this case,
one must often resort to heuristics and metaheuristics to produce solutions
of good quality in a reasonable amount of computation time.

Formally, the CVRP can be stated as follows. We consider a complete
graph G = (V,A), where V is the set of nodes and A is the set of arcs. The
set V contains the customers plus the depot. Each customer i ∈ V has a
demand qi that must be served exactly once by a vehicle. Each arc (i, j) ∈ A
between node i and node j is associated with a distance dij. A fleet of homo-
geneous vehicles of capacity Q is located at the depot. Each vehicle performs
one closed route that starts at the depot, delivers the demand to a subset
of customers, and returns to the depot at the end. The goal is to assign all
customers to vehicles and sequence the customers assigned to each vehicle to
minimize the total distance (or travel time) while not exceeding the capacity
of any vehicle.

In most practical cases, data (e.g., travel times) can be inaccurate due
to the devices and methods used to collect them, as well as possible human
errors. In view of this, though the development of more and more accurate
heuristics is interesting from a methodological standpoint, many practition-
ers would argue that sophisticated heuristics capable of approximating the
exact solutions within a fraction of percent errors do not pay off, given that
the magnitude of the errors in the data is likely larger than that of nowadays
heuristics. Going even further, in a similar fashion as learning algorithms,
some could suspect that state-of-the-art optimization algorithms applied to
inaccurate data may “overfit” and deliberately use arcs whose distances are
most underestimated.

In this paper, we conduct extensive experimental analyses to examine
these common beliefs. To this end, we design a controlled experiment consid-
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ering four CVRP heuristics and an exact method tested on instances ranging
from 100 to 1,000 customers with different distance-estimation inaccuracies.
We show that the two aforementioned beliefs are incorrect and that state-of-
the-art methods consistently produce solutions of better quality even when
considering the largest level of inaccuracy in the data. Moreover, the im-
pact of inaccurate data is fairly consistent over the algorithms, except for
the Clarke-and-Wright construction algorithm, which seems disproportion-
ally impacted by inaccurate data.

The rest of this paper is organized as follows. Section 2 reviews related
works, mostly from the machine learning literature, in which the impact of
inaccurate data on algorithmic performance is studied. Section 3 presents
our experimental setting, the heuristics considered, and the generation of test
instances with inaccurate distances from the datasets presented in [1] and
the 2021 DIMACS implementation challenge on vehicle routing problems [2].
Section 4 discusses our computational results and Section 5 concludes.

2 Related works

Extensive research has been conducted on the CVRP, but no paper has, to
our knowledge, analyzed the impact of data inaccuracies on the results of
classical heuristics, metaheuristics, and exact methods. The closest related
analyses come from the machine learning and data mining literature where
the impact of noise has been studied. Given that noise is unavoidable in
real-world problems, several methods in machine learning have been aimed
at identifying different types of noise and ways to handle them. For exam-
ple, the work reported in [3] reviews uncertainty and big data analytics and
discusses the impact of different sources of errors in the data and their con-
sequences. Methods to deal with noise and to measure it are also reported.
The authors in [4] additionally survey studies published between 1993 and
2018 about noise identification and mitigation.

Outside of the optimization and vehiclle routing domain, many papers in
machine learning study the impact of inaccurate data on solutions produced
by different algorithms. The following papers share a common approach by
comparing the sensitivity of different algorithms to different types and levels
of noise in the data. In [5, 6, 7, 8], simple learning algorithms like decision
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trees, naive Bayesian classifiers, Support Vector Machines (SVM), k-Nearest
Neighbors (k-NN), and logistic regression are considered. In [8], a new metric
called Equalized Loss of Accuracy (ELA) is proposed to evaluate different
algorithms based on their overall performance and their robustness to noise.
Also, the work in [9] reports an extensive comparison of different Bayesian
network structure learning algorithms under noise.

Multiple classifier systems (MCSs) that combine different learning algo-
rithms have also attracted the attention of researchers. MCSs are obtained
by combining different learning algorithms. Although MCSs are totally dif-
ferent from the algorithms used to solve the CVRP, it is also quite common
to combine different heuristics in problem-solving methods for the CVRP. In
[10], the authors study the behavior of MCSs under noise by combining the
decision tree algorithm C4.5, SVM and k-NN. Similar studies are reported
in [11, 12, 13] using MCSs based on AdaBoost, boosting, randomization and
bagging techniques.

In the data mining field, statistical analyses on the impact of noise (and
unbalanced datasets) on the performance of 11 learning algorithms have been
reported in [14]. In this work, the authors added noise to seven datasets
while controlling the overall amount of corrupted data. Through an analysis
of variance (ANOVA) they determine which factors, like the level of noise or
the percentage of noisy data in a given class, impact the most the considered
learning algorithms.

Overall, those studies indicate that noise is almost always present in real-
world applications and has a considerable impact on the performance of learn-
ing algorithms. Also, it is observed that different types of noise might impact
a particular algorithm differently. Thus, accuracy is not the only desirable
feature of an algorithm, but also its robustness to noise.

3 Experimental setting

In this section, we describe the experimental setting designed to evaluate
the impact of noise on different problem-solving methods for the CVRP.
First, the tested heuristics and metaheuristics are introduced. Then, the
benchmark instances are described. Finally, we explain how perturbations
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to these instances were generated to include different levels of noise in the
distances.

3.1 Solution algorithms

A large variety of heuristics have been proposed to solve the CVRP, from
simple heuristics to sophisticated metaheuristics. To analyze the impact of
noise on different types of methods, we considered the following approaches:

(a) The Clarke & Wright savings heuristic (CW) [15] starts with an initial
solution in which an individual route serves each customer. Then, it
evaluates for each existing route the “distance savings” due to merging
each route pair. These savings are then sorted from largest to smallest.
Starting at the top of the list of savings, the two routes associated with
the current saving are merged to form a single route. This process is
then repeated until no pair of routes can be merged without violating
the capacity constraints.

(b) The open source software Google OR-Tools (GORT) [16] is a generic
tool designed to solve various operations research problems, including
VRPs. Here, the user must define the data (instance) and write a high-
level algorithm that calls the required predefined functions to solve a
problem. For example, the user defines the method to compute the
initial solution, the local search method, the stopping criterion, etc.
In our case, we chose PATH CHEAPEST ARC to generate the initial
solution and GUIDED LOCAL SEARCH to perform the local search,
as recommended in the user manual for VRPs.

(c) The Slack Induction by String Removal (SISR) [17] is a recent meta-
heuristic based on the ruin-and-recreate paradigm where, at each iter-
ation, a part of the current solution is partially destroyed by remov-
ing several customers from the routes and by creating a new solution
through a reinsertion procedure. A simulated annealing criterion is
used to determine whether the new solution should be accepted as the
current solution. In the computational results, the parameter settings
suggested in [17] were used.
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(d) The Hybrid Genetic Search (HGS) [18] is the current state-of-the-art
metaheuristic for the CVRP. It is a hybrid genetic algorithm that com-
bines crossover operations for solution generation with a neighborhood
search for solution improvement. Additionally, the population is main-
tained to ensure a diversified search, and infeasible solutions are allowed
with adaptive penalties. For this algorithm, we rely on parameter set-
tings suggested in [18].

Regarding the stopping criterion, it should be noted that CW naturally
stops when it is impossible to merge two routes without violating the capacity
constraints. For GORT, SISR and HGS, the stopping criterion is set to a time
limit that depends linearly on the instance size, as in [18]. More precisely,
we use:

T (n) = 2.4 · n seconds (1)

per instance, where n is the number of customers. With this, the time limit
ranges from four minutes on an instance with 100 customers to 40 minutes
for 1,000 customers.

As previously mentioned, we also include experiments with an exact
branch-cut-and-price algorithm [19]. However, since this algorithm is lim-
ited in the size of problems that it can solve, our experiments with this
approach are applied only to a subset of smaller instances. This is covered
in a dedicated section (Section 4.2).

3.2 Test instances

We conducted our experiments on the 100 classical synthetic CVRP instances
from Uchoa et al. [1] with Euclidean distances, as well as 12 real-world in-
stances provided by the companies Loggi and ORTEC for the 2021 DIMACS
implementation challenge.

The six instances from Loggi contain 400 to 1,000 customers and come
from urban delivery services in some of the largest cities in Brazil. The dis-
tances provided in these instances were calculated from the urban networks.
The six instances from ORTEC contain between 241 and 700 customers and
were derived from the activities of a US-based grocery delivery service. In
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this latter case, the distances correspond to real driving times.

The Euclidean instances from Uchoa et al. [1] (usually called “Set X”)
have a size ranging from 100 to 1,000 customers. These instances were gen-
erated to reflect a variety of possible factors and situations. Their generation
has been driven by six main factors:

• n: number of customers (i.e., instance size)

• Dep: location of the depot, either C (center of the grid), E (corner of
the grid), or R (random);

• Cust : location of the customers, either R (random), C (clustered), or
RC(k) (mixed) with k ∈ {3, . . . , 8} clusters

• Dem: customer demand, which can be:

U : all demands equal to 1
1-10: demand from UD[1-10] (where UD[a,b] denotes a uniform
discrete distribution over interval [a, b])
5-10: demand from UD[5-10]
1-100: demand from UD[1-100]
50-100: demand from UD[50-100]
Q : demand from UD[1-50] or UD[51-100] depending if the cus-
tomer is located in an even or odd quadrant of the grid, respec-
tively
SL: many Small values, few Large values, that is, 70% to 95%
of demands are from UD[1-10], while the remaining demands are
from UD[50-100]

• r : approximation of the average number of customers per route (see
[1]).

3.3 Distance inaccuracies

It is common to observe data inaccuracies due, for example, to the use of
geolocalization devices to collect data. To account for these inaccuracies, we
introduce perturbations to the distances (or travel times) between each pair of
nodes. For a given distance dij, a value εij is generated by truncating a normal
distribution of mean 1 and standard deviation σ. Thus, the distribution is

6

Impact of Distance Data Inaccuracies on Vehicle Routing Algorithms: An Experimental Study

CIRRELT-2023-21



defined within the interval [1− σ, 1 + σ]. With this, a “noisy” distance d∗ij is
obtained by multiplying dij by εij, that is:

d∗ij = εij · dij. (2)

Larger standard deviations σ lead to larger perturbations to the original
distances. To analyze the impact of noise, six levels were considered in our
computational study: σ = 0.00 (no noise), and then σ = 0.01, 0.02, 0.05, 0.10,
and 0.15.

Let us denote the 100 instances of Set X as P1 to P100, where P1 is the
smallest instance and P100 is the largest one. For each original instance Pi
with i ∈ {1, . . . , 100} and noise level σ ∈ {0.01, 0.02, 0.05, 0.10, 0.15}, we
generated ten noisy instances j ∈ {1, . . . , 10}. In the following, each noisy
instance is denoted P σ

i,j. This leads to 100 × 5 × 10 = 5000 noisy instances.
Finally, in the case of σ = 0.00 (no noise), ten runs of SISR and HGS were
performed on each instance with different random seeds to obtain averages,
as in the other cases. For GORT, instead of random seeds, different orders
of customers were used because this algorithm is sensitive to the order of the
data.

Let sσij be the solution obtained with a given method on a noisy instance
P σ
i,j. We can evaluate the quality of this solution using the true distances

(ground truth) in the original instance Pi to obtain the true total distance
(cost) traveled by the vehicles, denoted as c(sσij). Then, considering si the
best-known solution of the original instance Pi and the corresponding cost
c(si) (see the Appendix), the percentage gap between the true cost of solution
sσij and the cost of the best-known solution si can be computed as:

Gapσij = 100

(
c(sσij)− c(si)

c(si)

)
. (3)

For an original instance Pi and a given noise level σ, the average percentage
gap over the ten corresponding noisy instances is calculated as:

Avgσi =
1

10

(
10∑
j=1

Gapσij

)
. (4)
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Finally, for a given noise level σ, the global average percentage gap over the
100 instances is calculated as:

Avgσ =
1

1000

(
100∑
i=1

10∑
j=1

Gapσij

)
. (5)

The noisy instances based on the 12 real-world instances of Loggi and
ORTEC were generated in the same way, leading to 12 × 5 × 10 = 600 noisy
instances overall.

4 Experimental study

Our experiments are divided into three parts. First, Section 4.1 examines
the impact of noise on the average gap of the four heuristics presented be-
fore, using the set of 5,000 noisy test instances derived from Set X. Next,
Section 4.2 conducts the same experiment for the exact method, using a sub-
set of small instances from Set X, and compares the results obtained with
our heuristic methods. Finally, Section 4.3 examines the impact of noise on
real-world instances using a set of 600 noisy instances derived from Loggi’s
and ORTEC’s applications. All algorithms have been run on an Intel Gold
6148 Skylake 2.4 GHz processor with 40 GB of RAM under CentOS 7.8.2003
(one thread).

4.1 Performance of the heuristics on set X instances
with inaccurate distances

We start our analysis by examining the average gaps Avgσi of each heuristic
on the ten noisy instances associated with each original instance Pi, i = 1,
..., 100, and each noise level σ, as defined in Equation (4). These results are
reported in Figure 1.

Clearly, the simplest constructive heuristic (CW) has the worst perfor-
mance. The solution quality achieved by GORT is better than that of CW
but still far below the solution quality of the two other metaheuristics SISR
and HGS. The performance of GORT seems to degrade as the instance size
increases, as indicated by the upward trend from left to right in the figure.
SISR and HGS are the best heuristics and produce similar results. Also, the
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Figure 1: Average gaps obtained on each original instance for each noise level

average gaps increase with the level of noise σ, which was expected, given
that the noisy instances differ more significantly from the original instances
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when there is more noise.

The figure also shows regular patterns that are a consequence of the de-
sign of the Set-X instances in [1]. More precisely, the benchmark is organized
into groups of five consecutive instances, such that the average number of cus-
tomers per route in a solution, as represented by attribute r, increases from
the first instance in a group to the fifth instance. Figure 1 thus indicates
that the average gap with the best-known solution increases with the aver-
age number of customers per route in a solution, with a peak for instances P5,
P10, P15, etc. This behavior is more apparent for CW. We made an exhau-
tive examination to determine possible relations between the gaps shown in
Figure 1 and the other Set-X instances attributes (n, Dep, Cust and Dem),
however, we did not find a strong relation.

An insightful view on the impact of noise is obtained when we consider
Avgσ, as defined in Equation (5), which is the global average gap with the
best-known solution over the 1,000 noisy instances, generated from the 100
original instances, for any given noise level. This is shown in Figure 2, where
each dot in the figure corresponds to the global average gap Avgσ for a given
heuristic and noise level σ. In this figure, we can observe that, on average,
the noise level has a greater impact on CW, compared with the three other
heuristics. To distinguish between HGS and SISR, a different scale is used
for the graph on the right. This graph indicates that HGS is slightly more
robust to noise than SISR.

The poor performance of CW is not much of a surprise. This is a pure
construction heuristic whose behavior is totally dependent on the ordering
of the savings (from largest to smallest) to merge routes. With inaccurate
distances, the ordering of the savings is very likely to change, thus leading
to bad decisions. And, as opposed to the three competing metaheuristics,
this construction heuristic has no way to recover later when bad decisions
are taken.

While Figure 2 shows the global average gaps Avgσ for each heuristic
and noise level σ, Figure 3 shows the standard deviations Stdσ of the cor-
responding global gaps which, obviously, increase with the noise level σ. As
in Figure 2, another scale is used in the graph shown on the right to distin-
guish between SISR and HGS. We can see that the standard deviations of
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Figure 2: Global average gaps with increasing values of σ for each heuristic.
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Figure 3: Standard deviation of global average gaps (large dots) with in-
creasing values of σ for each heuristic.

SISR are substantially larger than HGS on the original instances (no noise).
It means that the solutions produced via multiple executions of SISR (with
different seeds) on the same instance vary more widely from one execution to
the next. This difference gradually decreases as the level of noise increases
and both SISR and HGS meet at σ = 0.05, where the noise due to distance
inaccuracies start to dominate.

Table 1 shows the explicit global average gap values Avgσ for each heuris-
tic and noise level, which correspond to the dots in Figure 2, as well as the
corresponding standard deviation values Stdσ, which correspond to the dots
in Figure 3.

It is worth noting that a Wilcoxon signed-rank test, applied to every pair
of methods, showed a statistically significant difference in solution quality in
every case with a level of confidence of 95%.
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CW GORT HGS SISR
Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ

σ = 0.00 5.83 2.39 3.94 1.96 0.11 0.15 0.22 0.23
σ = 0.01 5.99 2.41 4.00 1.92 0.17 0.17 0.27 0.24
σ = 0.02 6.24 2.38 4.07 1.93 0.28 0.21 0.38 0.24
σ = 0.05 7.84 2.90 4.49 2.00 0.71 0.30 0.79 0.29
σ = 0.10 11.08 4.30 5.23 2.08 1.44 0.43 1.53 0.43
σ = 0.15 14.22 5.72 6.10 2.23 2.20 0.56 2.28 0.58

Table 1: Global average gaps and standard deviations for each method and
each noise level

4.2 Performance of an exact algorithm on set X with
inaccurate distances

In this section, we additionally consider the results of an exact branch-cut-
and-price (BCP) algorithm introduced in [19]. We analyze its sensitivity
to noise compared to that of the heuristics (except CW which was largely
outperformed by the other methods). For this analysis, we focus on the 13 in-
stances for which it was possible to obtain optimal solutions within 12 hours
of computation time for all seeds and noise levels (instances with index i =
1, 2, 3, 4, 6, 7, 12, 13, 16, 17, 18, 21, and 22). This subset of instances is
denoted P̂ in the following. We also consider two additional noise levels (σ
= 0.20, 0.25) to have a better sense of the behavior of SISR and HGS in the
presence of very large noise.

Figure 4 shows the global average gaps with the optimum over the 13 × 10
= 130 instances for each level of noise σ and each method, including BCP. The
methods SISR, HGS and BCP are so close on these relatively small instances,
with at most 200 customers, that they are difficult to distinguish even by
looking at the graph on the right, which uses a different scale. Accordingly,
Table 2 reports explicit global average gap values, which correspond to the
dots in Figure 4. In addition, the standard deviations of the corresponding
global gaps are shown. Obviously, the gap of BCP is null for σ = 0.00 (no
noise) since the original instances with true distances are solved optimally.

We observe that the difference between SISR and HGS stays approxi-
mately the same with increasing values of σ. Considering Table 2, the differ-
ence between the global average gap values Avgσ of SISR and HGS remains
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Figure 4: Global average gaps with the optimum for each method with in-
creasing values of σ. On the left, GORT, HGS and SISR are compared with
BCP; on the right, using a different scale, only HGS and SISR are compared
with BCP.

in the range of 0.03% to 0.05%, except for σ = 0.15 where it is equal to 1.84%
- 1.83% = 0.01%. While the difference between the global average gaps of
SISR and HGS stays about the same, both methods get closer to BCP with
increasing values of σ, to the point where HGS becomes in fact better than
BCP on average for σ = 0.15, 0.20, 0.25.

To evaluate the statistical significance of these results, we performed mul-
tiple pairwise Wilcoxon signed-rank tests, where the null hypothesis states
that solution quality is the same for the two methods involved in the test.
The p-values obtained are shown in Table 3. Basically, when a p-value is less
than or equal to 0.05, the null hypothesis is rejected and a statistically sig-
nificant difference is observed with a 95% confidence level. Although SISR,
HGS, and BCP are very close, statistically significant differences are observed
with a low level of noise (see the gray cells, where HGS outperforms SISR
and BCP outperforms both SISR and HGS). This is not the case for a high
level of noise. Even if the difference between the global average gaps Avgσ

of HGS and SISR stays about the same over the different σ values, no sta-
tistically significant difference is observed between the two methods for σ
values greater than or equal to 0.10, according to the Wilcoxon test. This
is the same when SISR and HGS are compared with BCP. Thus, when two
methods are very close with regard to solution quality, the superiority of one
method over the other gets blurred when a sufficiently high level of noise is
present (i.e., σ = 0.10 or more in our experiments).
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BCP GORT HGS SISR
Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ

σ = 0.00 0.00 0.00 2.18 0.87 0.01 0.01 0.05 0.06
σ = 0.01 0.04 0.03 2.24 1.00 0.05 0.04 0.09 0.11
σ = 0.02 0.13 0.08 2.31 1.04 0.13 0.09 0.17 0.11
σ = 0.05 0.47 0.22 2.66 1.08 0.48 0.23 0.53 0.26
σ = 0.10 1.11 0.38 3.29 1.15 1.13 0.40 1.16 0.41
σ = 0.15 1.84 0.48 3.99 1.24 1.83 0.47 1.84 0.46
σ = 0.20 2.53 0.67 4.81 1.21 2.52 0.70 2.56 0.68
σ = 0.25 3.40 0.88 5.61 1.29 3.38 0.90 3.42 0.91

Table 2: Global average gaps and corresponding standard deviations for each
method and each noise level

SISR vs HGS SISR vs BCP HGS vs BCP

σ = 0.00 6.03× 10−16 7.76× 10−16 7.41× 10−5

σ = 0.01 2.48× 10−8 4.21× 10−11 0.03
σ = 0.02 1.60× 10−5 2.76× 10−7 0.02
σ = 0.05 1.90× 10−5 3.03× 10−6 0.21
σ = 0.10 0.05 0.01 0.24
σ = 0.15 0.60 0.96 0.23
σ = 0.20 0.33 0.37 0.69
σ = 0.25 0.13 0.27 0.35

Table 3: p-values of Wilcoxon signed-rank test

4.3 Performance of heuristics on real-world instances
with inaccurate distances

Here, we examine the performance of our four heuristics over real data. For
this purpose, we tested these heuristics on the real-world instances of Loggi
and ORTEC. The best-known solutions for these instances can be found in
the Appendix. Noise was introduced into the distance data in the same way
as in the instances of Set X. Thus, the analysis is similar to that of Section 4.1.

Figure 5 shows the global average gaps Avgσ for each heuristic and noise
level σ over the 120 noisy instances, generated from the 12 real-world in-
stances. As in the previous experiments, CW is much more affected by noise
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than the other heuristics. Also, GORT remains far from SISR and HGS,
whatever the level of noise. SISR and HGS are again quite close and by
changing the scale (see the graph on the right), we observe that SISR is
more affected by noise than HGS. Table 4 explicitly reports the global aver-
age gaps Avgσ, in addition to the corresponding standard deviations Stdσ,
for each heuristic and each noise level. We observe that the difference be-
tween the global average gaps of the two methods increases from 0.29% with
σ = 0.01 to 0.56% with σ = 0.15 (no such increase was observed on Set-X
instances, see Table 1). In fact, HGS outperforms SISR by a wider margin
on the original (no noise) real-world instances when compared to the original
Set-X instances. That is, the differences between the global average gaps of
HGS and SISR are equal tof 0.28% and 0.11%, respectively.

As in Section 4.1, a Wilcoxon signed-rank test, applied to every pair of
methods, showed a statistically significant difference in solution quality in
every case with a level of confidence of 95%.
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Figure 5: Global average gaps obtained on real instances with increasing
values of σ for each heuristic.

5 Conclusions

This work has studied the performance of four heuristics and one exact
method for the CVRP over two sets of instances using different levels of
noise. The study first shows that not all methods are similarly impacted
by noisy distances. In particular, the CW heuristic is much more sensitive
to noise than the three other metaheuristics. Second, our results indicate
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CW GORT HGS SISR
Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ

σ = 0.00 6.10 1.65 4.25 1.71 0.14 0.17 0.43 0.34
σ = 0.01 6.31 1.89 4.86 1.92 0.19 0.18 0.47 0.31
σ = 0.02 6.93 1.77 4.91 1.93 0.30 0.22 0.59 0.37
σ = 0.05 8.93 1.94 5.50 2.17 0.70 0.27 1.04 0.39
σ = 0.10 12.75 3.04 6.55 2.30 1.51 0.36 1.95 0.59
σ = 0.15 16.72 3.71 7.65 2.16 2.43 0.47 2.99 0.65

Table 4: Global average gaps and corresponding standard deviations on real
instances for each heuristic and noise level

that better methods generally lead to better solutions, even in the presence
of noise, which is true for both the synthetic and real-world instances in
our test set. Accordingly, sophisticated state-of-the-art methods are still
preferable when data are inaccurate. We also observed that when two meth-
ods exhibit a sufficiently small, although statistically significant, difference
in performance on true data, this statistically significant difference vanishes
with high levels of noise. This situation occurred when we compared the two
state-of-the-art metaheuristics SISR and HGS with an exact method on a
subset of small instances from Set X with at most 200 customers. For fu-
ture work, it would be interesting to conduct similar studies for other, more
complex, variants of the CVRP, for example the VRP with time windows for
which many standard benchmark instances are available in the literature.
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Appendix

Table 5 shows the number of customers n and best known solution values
c(si), i = 1, ..., 100, for the Set-X instances from [1]. Table 6 shows the num-
ber of customers n and best-known solution values c(si), i = 1, ..., 12, for the
real-world instances provided by Loggi and ORTEC for the 2021 DIMACS
implementation challenge.

Instance i n c(si) Instance i n c(si) Instance i n c(si)

X-n101-k25 1 101 27591 X-n261-k13 35 261 26558 X-n502-k39 69 502 69226
X-n106-k14 2 106 26362 X-n266-k58 36 266 75478 X-n513-k21 70 513 24201
X-n110-k13 3 110 14971 X-n270-k35 37 270 35291 X-n524-k137 71 524 154593
X-n115-k10 4 115 12747 X-n275-k28 38 275 21245 X-n536-k96 72 536 94868
X-n120-k6 5 120 13332 X-n280-k17 39 280 33503 X-n548-k50 73 548 86700
X-n125-k30 6 125 55539 X-n284-k15 40 284 20215 X-n561-k42 74 561 42717
X-n129-k18 7 129 28940 X-n289-k60 41 289 95151 X-n573-k30 75 573 50673
X-n134-k13 8 134 10916 X-n294-k50 42 294 47161 X-n586-k159 76 586 190316
X-n139-k10 9 139 13590 X-n298-k31 43 298 34231 X-n599-k92 77 599 108451
X-n143-k7 10 143 15700 X-n303-k21 44 303 21736 X-n613-k62 78 613 59535
X-n148-k46 11 148 43448 X-n308-k13 45 308 25859 X-n627-k43 79 627 62164
X-n153-k22 12 153 21220 X-n313-k71 46 313 94043 X-n641-k35 80 641 63694
X-n157-k13 13 157 16876 X-n317-k53 47 317 78355 X-n655-k131 81 655 106780
X-n162-k11 14 162 14138 X-n322-k28 48 322 29834 X-n670-k126 82 670 146332
X-n167-k10 15 167 20557 X-n327-k20 49 327 27532 X-n685-k75 83 685 68205
X-n172-k51 16 172 45607 X-n331-k15 50 331 31102 X-n701-k44 84 701 81923
X-n176-k26 17 176 47812 X-n336-k84 51 336 139111 X-n716-k35 85 716 43387
X-n181-k23 18 181 25569 X-n344-k43 52 344 42050 X-n733-k159 86 733 136190
X-n186-k15 19 186 24145 X-n351-k40 53 351 25896 X-n749-k98 87 749 77314
X-n190-k8 20 190 16980 X-n359-k29 54 359 51505 X-n766-k71 88 766 114454
X-n195-k51 21 195 44225 X-n367-k17 55 367 22814 X-n783-k48 89 783 72394
X-n200-k36 22 200 58578 X-n376-k94 56 376 147713 X-n801-k40 90 801 73305
X-n204-k19 23 204 19565 X-n384-k52 57 384 65940 X-n819-k171 91 819 158121
X-n209-k16 24 209 30656 X-n393-k38 58 393 38260 X-n837-k142 92 837 193737
X-n214-k11 25 214 10856 X-n401-k29 59 401 66163 X-n856-k95 93 856 88965
X-n219-k73 26 219 117595 X-n411-k19 60 411 19712 X-n876-k59 94 876 99299
X-n223-k34 27 223 40437 X-n420-k130 61 420 107798 X-n895-k37 95 895 53860
X-n228-k23 28 228 25742 X-n429-k61 62 429 65449 X-n916-k207 96 916 329179
X-n233-k16 29 233 19230 X-n439-k37 63 439 36391 X-n936-k151 97 936 132725
X-n237-k14 30 237 27042 X-n449-k29 64 449 55233 X-n957-k87 98 957 85465
X-n242-k48 31 242 82751 X-n459-k26 65 459 24139 X-n979-k58 99 979 118987
X-n247-k47 32 247 37274 X-n469-k138 66 469 221824 X-n1001-k43 100 1001 72359
X-n251-k28 33 251 38684 X-n480-k70 67 480 89449
X-n256-k16 34 256 18839 X-n491-k59 68 491 66487

Table 5: Best-known solutions on Set-X instances
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Loggi ORTEC
Instance i n c(si) Instance i n c(si)

Loggi-n401-k23 1 400 336903 ORTEC-n242-k12 7 241 123750
Loggi-n501-k24 2 500 177176 ORTEC-n323-k21 8 322 214071
Loggi-n601-k19 3 600 113155 ORTEC-n405-k18 9 404 200986
Loggi-n601-k42 4 600 347059 ORTEC-n455-k41 10 454 292485
Loggi-n901-k42 5 900 246301 ORTEC-n510-k23 11 509 184529
Loggi-n1001-k31 6 1000 284356 ORTEC-n701-k64 12 700 445543

Table 6: Best-known solutions on real-world instances
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