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Abstract. The increasing availability of sophisticated information and communication 
technology has stimulated new research within the distribution logistics area in the last few 
decades. Real-time information is crucial to ensure not only the competitiveness of a 
company but also its survival in the e-commerce era. Companies try to offer delivery to their 
customers within a few hours of receiving a request. In addition, real-time information can 
be exploited in systems that operate under emergencies, where response time is critical. 
We model and solve a multi-vehicle inventory-routing problem in which new service 
requests are revealed dynamically over time, called real-time or online. For this problem, 
we propose a class of online algorithms and present a competitive analysis to evaluate its 
performance from a theoretical perspective. Our approach is based on the solution of an 
integer programming model through a tailored branch-and-cut method in which several 
families of valid inequalities are separated and dynamically introduced in the model. The 
results of an extensive computational experience are also described. Based on these tests, 
we show that the ratios between the results obtained by our online algorithms and the offline 
ones are low, demonstrating the effectiveness of our approach.   
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1 Introduction

Over the last few decades, Information and Communication Technology (ICT) has
been widely recognized as the primary enabler for increasing supply chain perfor-
mance and supporting critical logistics services, especially in transportation contexts
[26]. To highlight the value of information, Viet et al. [59] examine papers published
from 2006 to 2017. In particular, they point out that the literature is rich in as-
sessing the value of information in inventory decisions. Yet, there are opportunities
for research in other areas, such as transportation and supply. Furthermore, they
emphasize how access to more information in a supply chain can be challenging and
that information sharing requires a high level of trust between the parties. In addi-
tion, collecting and transferring information need investments in ICT infrastructures.
This investment per se does not ensure improved performance, even if it is signifi-
cant. To reach its full potential, one must make the most intelligent usage possible
of the hardware being deployed and the huge amount of data it provides.

Management Science and Operations Research play a key role in this challenge
since developing powerful algorithms to support decision-making processes is funda-
mental in real-world applications. Within these disciplines, the same decision prob-
lems can be classified according to information availability. Specifically, the problems
concerning supply chain and logistics can be distinguished based on an important
dimension of information, i.e., evolution [53], which is related to the availability of
information that changes over time. Based on this dimension, two main categories
of problems can be identified: static vs. dynamic problems.

A static problem is characterized by input known beforehand. Knowledge may
come in various forms. For instance, static and stochastic problems are characterized
by inputs known as random variables with a given probability distribution. In most
studies concerning this type of problem, decisions are made a priori, and only minor
changes are allowed afterward. Instead, in a dynamic problem, a part or all of the
input is unknown and revealed incrementally during the design or execution of the
plans. Consequently, the plans are redefined in an ongoing fashion. In distribution
problems, for instance, logistics support such as geographic information systems,
global positioning systems, traffic sensors, and smartphone technologies can be jointly
used to collect and transmit data in real-time to different stakeholders. For these
characteristics, these problems are referred to as online or real-time [32].

Here we study a dynamic problem in the distribution logistics area. Specifically,
we deal with a dynamic version of the classical inventory-routing problem (IRP)
introduced by Archetti et al. [5] and widely studied in the last decades. The IRP is
an integrated combinatorial optimization problem arising when customers transfer
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the responsibility for inventory replenishment to the supplier, who must decide when
to visit each customer, how much to deliver, and how to sequence customers in
one or more vehicle routes. The business model associated with IRPs is known as
vendor-managed inventory (VMI). In the version studied in this paper, a fleet of
vehicles has to serve requests incrementally revealed over a finite time horizon and
unpredictable in advance (real-time or online demands). Therefore, in the following,
we also refer to our problem as the Online IRP (O-IRP). With access to real-time
information, suppliers can react to changes in demand patterns and make online
decisions continuously to adjust and improve routes accordingly.

In designing the O-IRP we have been inspired by current practices in VMI systems
and the new features of routing problems in the e-commerce era, which is strongly
characterized by uncertainty [45]. While in the industrial sector, one of the main
assumptions in IRPs is related to how deliveries can be anticipated concerning the
day the product is needed, in the e-commerce era, orders are placed online, and there
is an explicit request, or at least an expectation, of quick delivery times. Therefore,
all the demand should be satisfied promptly without backlogging [4]. Furthermore,
the O-IRP arises in emergency settings, e.g., in the blood supply chain, where a
blood collection center monitors the demands at hospitals and determines an optimal
distribution scheme [48]. Blood management is particularly complex due to the high
uncertainty concerning demand, its perishable nature, strict storage and handling
requirements, and the vastness of operations. Satisfying unpredictable demands is
vital in this and many other contexts.

To tackle the O-IRP we propose a class of online algorithms that has to make
irrevocable decisions without full knowledge of the problem instance. Complying
with the nature of the O-IRP, our solution approach has complete knowledge of the
past but no or just partial knowledge of the future. This paper makes the following
contributions to the literature: (i) we deal with a problem in the area of inventory
routing where the literature is scarce with respect to real-time inputs; (ii) we propose
a class of online algorithms for the O-IRP; to the best of our knowledge, ours is
the first online optimization method associated with theoretical and computational
competitive analysis for an IRP; (iii) to solve the integer program on which the
online algorithms are based, a tailored branch-and-cut is used; our branch-and-cut
uses strong theoretical and methodological results from the literature.

The remainder of this document is organized as follows. Some related studies in
the scientific literature are discussed in Section 2. A formal description of the O-IRP
is given in Section 3. Section 4 illustrates the class of online algorithms proposed for
the O-IRP, while Section 5 presents a theoretical competitive analysis for this class
of algorithms. Section 6 illustrates the solution process for the integer programming
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model on which the online algorithms are based. Section 7 describes the results of
an extensive experimental study. Conclusions follow in Section 8.

2 Literature review

This section summarizes the fundamental concepts of online optimization and dis-
cusses some pertinent works in this field. In addition, we briefly describe some studies
concerning IRPs, with a particular focus on real-time data.

2.1 Approaches to uncertainty and online algorithms

Here we propose a classification of the main modeling frameworks for combinatorial
optimization problems, where the position of online optimization can be evaluated in
perspective. This classification, inspired by Bianchi et al. [15], considers two aspects:
the way uncertain information is formalized (degree of uncertainty) and when uncer-
tain information is revealed with respect to when decisions must be taken (degree of
dynamism). Although it is possible to quantify the degree of dynamism of a prob-
lem, we simplify the discussion by only distinguishing between static and dynamic
problems as previously discussed (see the horizontal axis of Figure 1, adapted from
Bianchi et al. [15]). Concerning the degree of uncertainty (vertical axis of Figure 1),
the lowest level is represented by perfect knowledge of input (absence of uncertainty).
On the contrary, the highest level is represented by total uncertainty. In between, it
is possible to (i) consider a probabilistic distribution or process for the problem data,
(ii) model the data using fuzzy logic, or (iii) to introduce sets for uncertain param-
eters rather than probabilistic distributions. Then, different modeling frameworks
are commonly adapted.

Deterministic optimization considers static problem models with perfect knowl-
edge of the input. Stochastic optimization implies that probability distributions are
known or can be accurately estimated in static and dynamic settings. Various meth-
ods can solve the problems formulated as stochastic programs, as described in Birge
and Louveaux [16]. Fuzzy and robust optimization represent alternative frameworks
for combinatorial optimization problems when probabilistic distributions are unavail-
able. In particular, uncertain parameters are represented by fuzzy numbers in fuzzy
programming [60] and by sets or intervals in robust optimization [30]. When the
degree of uncertainty increases, online optimization comes into play. Especially in
real-time applications, the problem data are at most partially available when irrevo-
cable decisions must be taken (e.g., only the demands of some customers are known);
in extreme cases, the decision maker has to act with no knowledge of future inputs.
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Figure 1: Modeling frameworks for combinatorial optimization problems (conceptual
classification, inspired from Bianchi et al. [15])
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Here we focus on online optimization, the modeling framework selected to solve
the O-IRP described in this paper. Online problems had already been investigated in
the 1970s and early 1980s, but an extensive and systematic study was only published
in 1985. Specifically, to evaluate the performance of an online algorithm, Sleator and
Tarjan [56] suggested comparing it to an exact offline algorithm. After that, Karlin
et al. [43] introduced the concept of competitive analysis. An online algorithm ALG
is c-competitive (with c ≥ 1) if, given any problem instance I, the cost ALG(I) of
the solution given by the online algorithm ALG is no more than c times the cost
OPT (I) of an exact offline algorithm with full knowledge of the instance in advance:

ALG(I)

OPT (I)
≤ c, for any problem instance I.

The smallest c such that ALG(I) ≤ c × OPT (I) is called the competitive ratio
of ALG. For the sake of simplicity, in the following, we will omit the reference to I.
Comprehensive surveys on online optimization are given by Borodin and El-Yaniv
[17] and Albers [3], whereas Jaillet and Wagner [40] focus on online vehicle routing
problems.

Recently, online algorithms have been successfully applied by Bergé et al. [8] for
the online k-Canadian traveler problem in which a traveler has to traverse an undi-
rected graph and can discover blocked edges when arriving at one of its endpoints,
and by Chen et al. [19] for a machine minimization problem in which jobs with hard
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deadlines arrive online over time at their release dates. We refer the interested reader
to Höhne et al. [37, 38, 39] for overviews of recent research on online algorithms.

2.2 Inventory-routing

The literature is rich with contributions related to inventory management problems
[6] as well as node, arc, and general routing problems [25, 58]. Although integrated
problems have been studied less extensively, the IRP has received much attention
since it was introduced by Bell et al. [7] for the integrated inventory management and
distribution of liquefied industrial gases. Thereafter, the IRP has been associated
with a large variety of applications. For instance, Christiansen et al. [20] consider a
maritime environment where a heterogeneous fleet of bulk ships transports multiple
non-mixable cement products from suppliers to regional silo stations along the coast
of Norway. Bertazzi et al. [14] describe the impact of a VMI system applied to
nanostores in a South East Asian city. These nanostores belong to the Procter &
Gamble supply chain that is resupplied according to a VMI model. McKenna et al.
[50] investigate dispatching and routing policies for the resupply of geographically
dispersed units operating in a combat environment through unmanned aerial cargo
vehicles; in the experimental phase, the authors construct a hypothetical military
scenario based on contingency operations in Afghanistan by the United States Army
which utilizes a VMI model for its resupply operations. The IRP is also employed by
Gaur and Fisher [31] and Laganà et al. [44] to model the distribution of products in
supermarket chains, Popović et al. [54] to study the fuel delivery in petrol stations
inventory management, Çankaya et al. [61] for the distribution of humanitarian relief
supplies in disaster operations management, and Cárdenas-Barrón and Melo [28] for
the collection of waste vegetable oil in reverse logistics. We refer to Coelho et al.
[23] for a review on the deterministic and stochastic IRPs and their applications
and to Bertazzi and Speranza [9, 10] tutorials on the single and multi-vehicle IRPs.
Most studies are carried out in static settings using deterministic optimization, which
assumes a fully specified input. The problem we study in this paper is a dynamic
version of the classical IRP introduced by Archetti et al. [5]. We omit the references to
papers that studied this deterministic problem with fully specified input as we focus
on studies in which the knowledge of input is not perfect to classify our problem
correctly.

Hvattum et al. [36], Niakan and Rahimi [51], and Solyalı et al. [57] investigate un-
certain IRPs within stochastic, fuzzy, and robust frameworks, respectively. Bertazzi
et al. [11] study an IRP in which a supplier has to serve a set of retailers whose
stochastic demands must be satisfied over a given time horizon according to an
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order-up-to-level policy. An inventory cost is applied to any positive inventory level,
while a penalty cost is charged, and the excess demand is not backlogged whenever
the inventory level is negative. They propose a hybrid rollout algorithm and evaluate
its performance on a large set of randomly generated instances. Coelho et al. [24]
solve the dynamic and stochastic version of the IRP under two different policies:
the first one uses a reactive framework, in which future delivery decisions are solely
based on the current state of the inventory of the customers; the second uses demand
forecasts to support future decisions. Amongst other conclusions, the authors show
that using stochastic information to generate better solutions is possible, albeit at
the expense of more computing time. Bertazzi et al. [12] study an IRP in which the
supplier has a limited production capacity and the stochastic demand of the retailers
is fulfilled with outsourced transportation services. They show that considering the
average values of the customers’ demands can produce a total expected cost infinitely
worse than the one accounting for the overall probability distribution of the demands.
Hence, they propose a stochastic dynamic programming formulation of the problem
providing an optimal policy for small-size instances of the problem and allowing to
design a matheuristic algorithm that integrates a mixed-integer linear programming
model into a lookahead rollout policy, which can solve realistic size problem instances.
Bertazzi et al. [13] study an IRP with stochastic demands and an outsourced fleet
of vehicles. Since the demand’s probability distribution is unknown, they adopt a
min-max approach to find robust policies for a dynamic programming formulation
of the problem. They propose a min-max matheuristic to solve benchmark instances
and show that it is very effective. Brinkmann et al. [18] present a dynamic and
stochastic IRP for bike-sharing systems to avoid unsatisfied demand. The authors
propose a dynamic lookahead policy that simulates future demand over a predefined
horizon to anticipate potential future demands in the current inventory decisions.
Achamrah et al. [1] model a dynamic and stochastic IRP that considers two flexible
instruments of transshipment and substitution to mitigate shortages at the customer
level. An approach based on the hybridization of mathematical programming, ge-
netic algorithms, and deep reinforcement learning is presented, and different demand
distributions are examined in the experiments. Other IRPs in uncertain and dynamic
settings are studied by Giesen et al. [33, 34, 35].

Jarugumilli and Grasman [41], Nolz et al. [52], Raba et al. [55], Liu and Lin
[47], and Cubillos et al. [27] deal with real-time information coming from specific
ICT infrastructures. In particular, Jarugumilli and Grasman [41] emphasize the
importance of Radio Frequency Identification (RFID) technology in VMI systems
and provide a methodology for the dynamic control of RFID-enabled IRPs where a
single distribution center serves a set of customers. In this scenario, RFID technology
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enables efficient control of inventory distribution by exchanging real-time information
upon arrival at each location. RFID technology is also considered by Nolz et al. [52]
to manage the collection of infectious medical waste. The materials to be collected
are produced by patients in self-treatment, stored at pharmacies, and picked up
by local authorities for disposal. The reverse logistics problem is formulated as a
collector-managed IRP and encompasses stochastic aspects. Real-time information
on inventory levels at each pharmacy can be used daily to revise the planning of
collection tours. Raba et al. [55] present a reactive approach for the stochastic IRP
in the context of a supply chain for the animal-feed industry. Their approach, based
on the combination of a biased-randomized algorithm with Monte Carlo simulation,
allows using sensors to obtain updated data on customers’ demands at the end of
each period and reoptimizes the distribution process for the remaining periods of a
finite planning horizon. Liu and Lin [47] explicitly consider CO2 emission cost and
propose an online distribution system of an IRP with simultaneous deliveries and
returns. In their study, a mobile device, the vehicles’ position, and Google Maps are
integrated into an online decision support module. Cubillos et al. [27] investigate an
IRP with stochastic demand in which the knowledge of the demands can be updated
by using sensor information to make delivery decisions.

To our knowledge, online algorithms with a specified competitive analysis for real-
time IRPs are missing in the scientific literature. This work contributes to covering
this gap in the literature.

3 Problem description

This section formally presents our O-IRP, where demands are revealed over time. At
each period, based on the demands revealed so far, a decision is made by an online
algorithm that makes irrevocable decisions without full knowledge of the problem
instance. Let G = (V,E) be an undirected, weighted, and simple graph, where
V = {0, 1, . . . , n} is the vertex set and E = {(i, j) | i, j ∈ V, i < j} is the edge
set. The set of vertices is divided into the supplier, represented by vertex 0, and
customer vertices, defined by V ′ = V \ {0}. Each vertex i ∈ V is associated with
a unit inventory cost hi, a maximum inventory level Ui, and an initial inventory
level I0i ≤ Ui. Since using an order-up-to-level policy fulfilling the residual inventory
capacity of the retailers can produce high inventory costs due to the unpredictable
demands of the customers in the online context, we adopt a maximum-level policy.
A routing cost cij is associated with every edge of (i, j) ∈ E. The fleet is assumed
to be homogeneous, and the transportation capacity of the vehicle is defined by
Q. We denote by K = {1, . . . , K} the vehicles set. Let T = {1, 2, . . . , T} be the
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set of periods of the time horizon. For each period t ∈ T , we define the subset
Tt(γ) = {t, t + 1, . . . ,min[t + γ, T ]} ⊆ T , where γ is an integer number between 0
and T − 1.

For each period τ ∈ Tt(γ), we know the quantity rτ made available at the supplier
and some information d̂τi on the demand dτi of each customer i ∈ V ′. In particular, at
the beginning of period t, we assume to have perfect information on the demand dti of
each customer i, i.e., d̂ti = dti, where dti ≤ Ui. Instead, for each of the future periods
τ = t+1, t+2, . . ., min[t+ γ, T ], we assume to have perfect information for a given
percentage of the customers and no information at all for the remaining customers.
Therefore, d̂τi is either equal to 0 or dτi ≤ Ui for each customer i at these periods.
Note that each customer’s demand information can differ in different periods. We
assume that the quantities rτ and the number of vehicles K are such that at least a
feasible solution exists for any value of γ.

Taking into account that the information on the demand is revealed at each period
t ∈ T for the set of periods τ ∈ Tt(γ) only, the aim is to determine the quantity
to deliver to each customer and the routes to travel at each period t ∈ T such that
the sum of the total inventory cost at the supplier and the customers and the total
routing cost is minimized.

4 Online algorithms

In this section, we describe the class of online algorithms we propose, referred to as
ALG(γ). Using these algorithms, at the beginning of each period t ∈ T , the following
mixed-integer linear programming model O-IRPt(γ) is solved, and only the values of
the variables at time t are stored (see Algorithm 1).

Algorithm 1: Class of online algorithms ALG(γ)

1 Input:
2 for t ∈ T do
3 Solve model O-IRPt(γ)
4 Store the values of the variables at time t

5 end
6 Return the corresponding value of the objective function

Let Iτi be a continuous variable representing the inventory level at vertex i ∈ V
at the end of period τ ∈ Tt(γ) for a given t ∈ T . Let ykτi be a binary variable equal
to one if vertex i ∈ V is visited by vehicle k ∈ K in period τ ∈ Tt(γ). Routing
variable xkτ

ij is equal to the number of times the edge (i, j) ∈ E is used by vehicle
k ∈ K in period τ ∈ Tt(γ). Since G is a complete graph, these variables are binary
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for each edge (i, j) ∈ E such that i ̸= 0 while they can assume values in {0, 1, 2} for
each edge incident to 0. The quantity of product delivered by vehicle k in period

τ to customer i is given by qkτi . Let D̂t
i = max

{ ∑
τ∈Tt(γ)

d̂τi − I t−1
i , 0

}
be the total

quantity that must be delivered to customer i in periods τ ∈ Tt(γ) starting from the
beginning of period t. Then, the O-IRPt(γ) formulation is given by (1a)–(1o).

O-IRPt(γ) = min
∑
i∈V

∑
τ∈Tt(γ)

hiI
τ
i +

∑
(i,j)∈E

∑
k∈K

∑
τ∈Tt(γ)

cijx
kτ
ij (1a)

subject to

Iτ0 = Iτ−1
0 + rτ −

∑
i∈V ′

∑
k∈K

qkτi , ∀τ ∈ Tt(γ) (1b)

Iτi = Iτ−1
i +

∑
k∈K

qkτi − d̂τi , ∀i ∈ V ′,∀τ ∈ Tt(γ) (1c)∑
k∈K

qkτi ≤ Ui − Iτ−1
i , ∀i ∈ V ′,∀τ ∈ Tt(γ) (1d)

qkτi ≤ Uiy
kτ
i , ∀i ∈ V ′,∀k ∈ K,∀τ ∈ Tt(γ) (1e)∑

τ∈Tt(γ)

∑
k∈K

qkτi = D̂t
i , ∀i ∈ V ′ (1f)

∑
i∈V ′

qkτi ≤ Qykτ0 , ∀k ∈ K,∀τ ∈ Tt(γ) (1g)∑
j∈V,i<j

xkτ
ij +

∑
j∈V,j<i

xkτ
ji = 2ykτi , ∀i ∈ V, ∀k ∈ K,∀τ ∈ Tt(γ) (1h)∑

i∈S

∑
j∈S,i<j

xkτ
ij ≤

∑
i∈S

ykτi − ykτm , ∀S ⊆ V ′, ∀k ∈ K,∀τ ∈ Tt(γ), ∀m ∈ S

(1i)∑
k∈K

ykτi ≤ 1, ∀i ∈ V ′, ∀τ ∈ Tt(γ) (1j)

Iτi ∈ R+, ∀i ∈ V, ∀τ ∈ Tt(γ) (1k)

qkτi ∈ R+, ∀i ∈ V ′,∀k ∈ K,∀τ ∈ Tt(γ) (1l)

xkτ
0j ∈ {0, 1, 2}, ∀j ∈ V ′,∀k ∈ K,∀τ ∈ Tt(γ) (1m)

xkτ
ij ∈ {0, 1}, ∀i ∈ V ′, ∀j ∈ V ′,∀k ∈ K, ∀τ ∈ Tt(γ) (1n)

ykτi ∈ {0, 1}, ∀i ∈ V, ∀k ∈ K,∀τ ∈ Tt(γ). (1o)
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The objective function (1a) minimizes the inventory costs at the supplier and at
customers’ locations and the routing costs. Constraints (1b) and (1c) impose inven-
tory conservation for the supplier and the customers. Constraints (1d) define the
inventory capacity of the customers. Constraints (1e) link the delivery variables q to
visiting variables y. Constraints (1f) guarantee that the total quantity sent to each
customer satisfies the total demand of the customer exactly. Constraints (1g) impose
the vehicle capacity. Constraints (1h) and (1i) are degree and subtour elimination,
respectively, and constraints (1j) ensure that at most one vehicle visits a customer
at each period. Constraints (1k)–(1o) define the nature and domain of the variables.

To solve O-IRPt(γ) in Algorithm 1, we propose a branch-and-cut algorithm (see
Section 6). Note that the offline problem, i.e., the deterministic problem in which
the demands of all customers in periods 1, 2, . . . , T are known at time 1, corresponds
to model (1a)–(1o) in which t = 1, γ = T −1 and perfect information on the demand
of each customer for each period of the corresponding set Tt(γ) is assumed. The of-
fline problem is fundamental to evaluating the performance of our online algorithms.
Although the above-introduced notation and model do not refer to information level
(for readability issues), in the following, we will use O-IRP1(T − 1) to denote the
offline problem.

We consider the following online algorithms in the class ALG(γ):

• ALG(0): we have perfect information on the demands of all customers in the
current period t, i.e., d̂ti = dti for i ∈ V ′, and no information on the remaining
demands, i.e., d̂τi = 0, for i ∈ V ′ and τ = t+ 1, t+ 2, . . . ,min[t+ γ, T ];

• ALG(1): we have perfect information on the demands of all customers in the
current period t and the demands of some customers in period t + 1, and no
information on the remaining demands;

• ALG(2): we have perfect information on the demands of all customers in the
current period t and the demands of some customers in periods t+1 and t+2,
and no information on the remaining demands;

• ALG(3): we have perfect information on the demands of all customers in the
current period t and the demands of some customers in periods t + 1, t + 2,
and t+ 3, and no information on the remaining demands;

• ALG(4): we have perfect information on the demands of all customers in the
current period t and the demands of some customers in periods t + 1, t + 2,
t+ 3, and t+ 4, and no information on the remaining demands.
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The percentage of the customers for which the demand is known at each time period
τ = t + 1, t + 2, . . . ,min[t + γ, T ] leads to different versions of the corresponding
algorithms. In the experimental phase, we focus on one version of algorithms ALG(γ),
with γ = 0, 1, 2, 3, 4, in which the demand of 100% of the customers is known for
each period in the corresponding set Tt(γ).

5 Competitive analysis of ALG(γ)

To derive a theoretical competitive analysis of our class of algorithms ALG(γ), the
main ideas rely on building a tight competitive ratio by approximating with an upper
bound the cost obtained by online algorithm ALG(γ), and with a lower bound on the
optimal cost of the offline problem O-IRP1(T − 1). Specifically, the offline problem
O-IRP1(T−1) is challenging since it generalizes the Vehicle Routing Problem (VRP),
an NP-hard problem [58]. Therefore, a good approximation of the overall routing cost
of an optimal offline solution is obtained by solving an instance of the Split Delivery
VRP (SDVRP). When all the customer demands are known a priori, the routing cost
of the offline problem O-IRP1(T − 1) cannot be less than or equal to the optimal
cost of an SDVRP instance. By allowing deliveries to be split, we approximate the
multi-period aspect of the IRP, where several deliveries to a customer can take place
in different periods.

In this section, we provide a competitive analysis of algorithms ALG(γ) when the
number of vehicles K is such that a feasible solution exists for any online algorithm.
Let zSDV RP (Di) be the optimal cost of the SDVRP when quantity Di is delivered to
customer i, hmax = maxi∈V hi, hmin = mini∈V hi, ALG

(γ) be the cost obtained by the
online algorithm ALG(γ), and OPT be the optimal cost of the offline IRP.

Theorem 1. ALG(γ)

OPT
≤ max{hmax

hmin
, T}.

Proof. Consider first the inventory cost. Note that, for each period t ∈ T , the total
inventory level, obtained by summing up I t0 in equation (1b) and

∑
i∈V ′ I ti in equa-

tions (1c), i.e., Bt =
∑

i∈V I ti =
∑

i∈V I0i +
∑t

ρ=1 rρ −
∑

i∈V ′
∑t

ρ=1 d
ρ
i , is independent

of the value of the variables of the problem. Therefore, the total inventory cost is
not lower than hminB and not greater than hmaxB, where B =

∑
t∈T Bt.

Consider now the routing cost. A lower bound is obtained by solving the SDVRP
when the quantity delivered to each customer i is Di = max

{∑
t∈T dti − I0i , 0

}
, i.e.,

the routing cost is not lower than zSDV RP (Di). The set of routes in any feasible
solution of the offline problem O-IRP1(T − 1) provides a feasible solution to the
SDVRP when the quantity delivered to each customer i is max

{∑
t∈T dti − I0i , 0

}
.
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Let us now compute an upper bound on the cost generated by the algorithm
ALG(γ). As shown before, an upper bound on the inventory cost is given by hmaxB.
An upper bound on the routing cost of this solution can be obtained by using, at
each period t ∈ T , the routes found in the lower bound computation. These routes
are feasible for any quantity delivered to each customer i at each period t less than
or equal to the total quantity

∑
t∈T dti − I0i delivered to i over the time horizon

T . Therefore, an upper bound on the routing cost can be obtained by delivering a
quantity in [0,

∑
t∈T dti−I0i ] to each customer in each t ∈ T . Hence, the corresponding

routing cost is zSDV RP (Di)T . Therefore,

ALG(γ) ≤ hmaxB + zSDV RP (Di)T,

while

OPT ≥ hminB + zSDV RP (Di).

Therefore,

ALG(γ)

OPT
≤ hmaxB + zSDV RP (Di)T

hminB + zSDV RP (Di)
≤ max

{
hmax

hmin

, T

}
.

The last inequality holds because, if a
c
= ϕ and b

d
= η, then a+b

c+d
= cϕ+dη

c+d
≤

(c+d)max{ϕ,η}
c+d

= max{ϕ, η} = max{a
c
, b
d
}.

Since the competitive ratio provided in the previous theorem is based on an
upper bound of the cost of online algorithms ALG(γ) and a lower bound based on
the optimal cost of the offline problem, it is now important to show that the ratio is
not overestimated in the worst case for the simplest algorithm in the class, i.e., when
γ = 0.

Consider first the following instance to prove that the bound hmax

hmin
is tight: time

horizon T , n = 2 customers, c0i = 2 for each customer i, c12 = 0, initial inventory level
at the supplier I00 = 2, initial inventory level at each customer I0i = 0, inventory cost
at the supplier h0, inventory cost at each customer i hi < h0, maximum inventory
level at each customer i Ui = 1, transportation capacity Q = 2, production rate
rt = 0 in periods 1, 2, . . . , T − 1 and rT = 2, demand of customer i in periods
t = 1, 2, . . . , T−1 dti = 0 and dTi = 1 for the remaining time periods. Note that in this
instance, three different routes can be used: 0 → 1 → 0, 0 → 2 → 0, 0 → 1 → 2 → 0.
The cost of each of these routes is 4. Let us first focus on the solution provided by
ALG(0). Since the demand in the period t = 1 is 0 units, given constraints (1f), then
0 units have to be delivered to each customer. The same happens for all successive
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periods less than T . At period T , since the demand dTi = 1 for both customers, 1
unit is delivered to each of them using the route 0 → 1 → 2 → 0. Hence, the total
cost of the solution provided by ALG(0) is

ALG(0) = 2h0(T − 1) + 2h0 + 4.

Consider now the following feasible solution to the offline problem: in period 1, 1
unit is delivered to each customer; no deliveries occur in successive periods. Since
the corresponding cost is 2hi(T − 1) + 2h0 + 4, then

OPT ≤ 2hi(T − 1) + 2h0 + 4

Therefore, in this instance

ALG(0)

OPT
≥ 2h0(T − 1) + 2h0 + 4

2hi(T − 1) + 2h0 + 4
→ h0

hi

=
hmax

hmin

T → ∞.

Consider now the following instance to prove that the bound T is tight: time
horizon T , n = 2 customers located at unit distance from the depot and at zero
distance from each other, initial inventory level at the supplier I00 = 2T − 2, initial
inventory level at each customer I0i = 0, inventory cost at each customer i hi < 1,
inventory cost at the supplier h0 = hi/T , maximum inventory level at each customer
i Ui = T , transportation capacity Q = 2T , production rate rt = 2 at each period t,
demand dti = 1 at a customer i at each period t. Note that in this instance, three
different routes can be used: 0 → 1 → 0, 0 → 2 → 0, 0 → 1 → 2 → 0. The cost of
each of these routes is 2.

Let us focus on the solution provided by ALG(0). Since for each customer i
the initial inventory level I0i is 0, and the demand in period 1 is 1 unit, and given
constraints (1f), 1 unit has to be delivered to each customer i. The same happens
for all successive periods.

Hence, the total cost of the solution provided by ALG(0) is

ALG(0) = hi2(T − 1) + 2T.

Consider now the following feasible solution: T units are delivered to each cus-
tomer in period 1, and zero units in the successive periods. Since the corresponding
cost is:

h0[2+4+. . .+2(T−1)]+2hi[(T−1)+(T−2)+. . .+0]+2 =
hi

T
2
T (T − 1)

2
+2hi

(T − 1)T

2
+2 =
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= hi(T
2 − 1) + 2,

then OPT ≤ hi(T
2 − 1) + 2.

Therefore, in this instance

ALG(0)

OPT
≥ hi2(T − 1) + 2T

hi(T 2 − 1) + 2
→ T hi → 0.

We remark that competitive analysis provides a worst-case measure since we ask
that the outcome expressed by Theorem 1 be worth every instance. Alternatively,
the performance of the online algorithms must be within a given threshold on inputs
generated by a worst-case adversary. From this perspective, any competitive analysis
has the disadvantage of being pessimistic. However, in some complex real-world
applications such as inventory routing, there may be situations in which (worst-case)
guarantees on performance are necessary. In this case, competitive analysis or other
similar investigations are fundamental.

As Karlin [42] suggested, theoretical measures should be complemented by empiri-
cal studies to evaluate the performance of online algorithms. Sometimes, competitive
algorithms associated with high ratios may perform better in practice than the the-
ory would suggest. A thorough analysis combining competitive ratios and average
results provides a better assessment of the performance of an algorithm than just
using average results. While a competitive ratio provides an understanding of the
worst possible performance of an algorithm, computational results are limited to the
set of instances used in the computational experiments. To this end, in Section 7, we
present an extensive computational study of the online algorithms proposed in this
article where we show that the practical results lead to actual ratios are much lower

than max
{

hmax

hmin
, T

}
. In fact, we observe empirical ratios seldom larger than 1.5.

6 Solution algorithm for the O-IRPt(γ)

We solve the O-IRPt(γ) through a branch-and-cut algorithm. We point out that the
branch-and-cut algorithm does not represent the core of this work, but it is used
as a tool to solve the O-IRPt(γ) model. Hence, the following section provides a
quick overview of some known valid inequalities that are used to strengthen the LP
of the mathematical formulation (1a)–(1o) at the nodes of the branch-and-bound
tree. We remark that all the valid inequalities reviewed in Section 6.1 are facets for
the polytope of the linear relaxation of (1a)–(1o). Section 6.2 summarizes how the
algorithm works.
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6.1 Valid inequalities

Valid inequalities (2)–(4) were introduced by Archetti et al. [5] and adapted to the
IRP by Coelho et al. [22]. Symmetry breaking constraints (5) and (6) were used by
Coelho and Laporte [21].

xkτ
0i ≤ 2ykτi , ∀i ∈ V ′,∀k ∈ K,∀τ ∈ Tt(γ) (2)

xkτ
ij ≤ ykτi , ∀i, j ∈ V ′,∀k ∈ K, ∀τ ∈ Tt(γ). (3)

Constraints (2) and (3) are referred to as logical inequalities. They enforce the
condition that if the supplier is the predecessor of customer i ∈ V ′ in the route of
vehicle k at time τ , i.e., xkτ

0i = 1 or 2, then i must be visited by the same vehicle at
time τ , i.e., ykτi = 1. Similary, if the edge (i, j) is traveled by vehicle k at time τ ,
i.e., xkτ

ij = 1, then i must be visited by the same vehicle at time τ , i.e., ykτi = 1.

ykτi ≤ ykτ0 , ∀i ∈ V ′,∀k ∈ K, τ ∈ Tt(γ). (4)

Constraints (4) include the supplier in the route of vehicle k if at least one cus-
tomer is visited by this vehicle at time τ .

At each period τ , there are two main symmetry issues due to the presence of
identical vehicles. First, if Kτ ≤ K denotes the number of vehicles to dispatch in
period τ , there are

(
K
Kτ

)
ways to select Kτ vehicles from K. To break this symmetry,

constraints (5) allow vehicle k to be dispatched only if vehicle k−1 is also dispatched.
Second, among the Kτ vehicles, there are Kτ ! ways to exchange the vehicles among
the routes they can be assigned to. Hence, the total number of symmetric solutions

in period τ is
[(

K
Kτ

)
·Kτ !

]
. To address the second symmetry issue, constraints (6)

come into play. They state that if the customer i is assigned to the vehicle k in
period τ , vehicle k − 1 must serve a customer with an index smaller than i in the
same period. These constraints are inspired by those proposed by Fischetti et al. [29]
and by Albareda-Sambola et al. [2], and already used in on IRP setting by Coelho
and Laporte [21].

ykτ0 ≤ yk−1,τ
0 , ∀k ∈ K \ 1, ∀τ ∈ Tt(γ) (5)

ykτi ≤
∑
j<i

yk−1,τ
j , ∀i ∈ V ′,∀k ∈ K \ 1,∀τ ∈ Tt(γ). (6)

Inequalities (7) and (8) were presented in Lefever [46] and they improve the
bounds on the continuous variables Iτi and qkτi .
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Iτi ≥ I0,τi , ∀i ∈ V ′,∀τ ∈ Tt(γ) (7)

qkτi ≤ Ui − I0,τi , ∀i ∈ V ′, ∀k ∈ K,∀τ ∈ Tt(γ), (8)

where

I0,τi = max

{
0, I0i −

τ∑
t′=1

dt
′

i

}
, ∀i ∈ V ′,∀τ ∈ Tt(γ).

6.2 A Branch-and-cut algorithm

The branch-and-cut algorithm solves the formulation presented in Section 4 by sepa-
rating the subtour elimination constraints (1i) at each node of the branch-and-bound
tree. The initial LP is defined by (1a)–(1h), (1j)–(1l), and the linear relaxation of
the non-negativity and integrality conditions (1m)–(1o). Moreover, valid inequalities
(2)–(8) are added to the initial LP to improve the root node lower bound quality.
Subtour elimination constraints (1i) are separated using the CVRPSEP package of
Lysgaard et al. [49]. All the violated inequalities found are added to the LP.

7 Computational results

This section presents the computational experiments designed to evaluate our pro-
posed approach. We first provide details about the instances and hardware used in
the experimental phase. In Section 7.1, we present the numerical results concerning
the five classes of online algorithms described in Section 4 (γ = 0, 1, 2, 3, 4). In Sec-
tion 7.2, we present the numerical results concerning online algorithms associated
with particular demand scenarios and belonging to a further class.

All implementations were in C++ under Gurobi’s API, version 9.5.2. Computa-
tional tests were executed on a computer with an AMD Rome 7532 CPU 2.40GHz
× 24 processor with 256MiB cache memory and 48GiB of RAM. A time limit of
7200 seconds was considered for the branch-and-cut algorithm. All detailed solu-
tions appear in appendices described later and online at https://www.leandro-

coelho.com/online-irp-algorithms/.
The tests were carried out on the instances introduced in Archetti et al. [5],

where the number of customers ranges between 5 and 50 and the number of periods
is T = 3 or T = 6. In particular, for T = 6 we only selected the instances with
30 customers at most. This is because the branch-and-cut algorithm described in
Section 6.2 deteriorates quickly when the number of customers is greater than 30,
which impacts the evaluation of the empirical competitive ratio for ALG(γ). The
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instances are divided into two classes according to their inventory holding costs.
Instances of the class “Low Cost” have hi ∈ [0.01, 0.05] and h0 = 0.03, while “High
Cost” refers to the instances with hi ∈ [0.1, 0.5] and h0 = 0.3.

For each instance under consideration, we have used K = 1, 2, 3, 4, 5. The multi-
vehicle instances are obtained as in Coelho and Laporte [21], dividing the original
vehicle capacity Q by K. This sometimes leads to infeasibility as customer demand
exceeds the vehicle capacity. So we have not considered these instances. To dis-
tinguish the results where these cases occur, we have used a superscript value l,
with l = 1, . . . , 4, to denote the number of feasible instances in which the results
are averaged. If no superscript value is shown, then all five instances are feasible.
In particular, we used this superscript in Tables 5 and 6, and the tables of Appen-
dices A–C.

7.1 ALG(γ) results

Table 1 summarizes the computational results of these first experiments on all in-
stances with T = 6. Each row of the table represents one version of our algorithm
with average results over all numbers of customers (ranging from 5 to 30) and ve-
hicles (ranging from 1 to 5). Each version of the algorithm differs by the amount
of information known beforehand, i.e., the uncertainty level. The columns indicate
the solution value (UB), lower bound (LB), gap (Gap (%)), the runtime in seconds
(Time (s)), and the empirical competitive ratio Z obtained by dividing the solution
of the considered algorithm by the best lower bound of the deterministic problem:

Z =
UB(ALG(γ))

LB(O-IRP1(T − 1))
. (9)

The results of Table 1 show that even a sophisticated state-of-the-art branch-and-
cut algorithm cannot solve the deterministic problem O-IRP1(T−1) to optimality for
all instances. Indeed, for the low cost instances, the average optimality gap remains
at 7.53% with a runtime of almost 1h. As the number of customers and vehicles
increases, the problem becomes much harder, and several instances are not solved to
optimality within the 2h time limit. For high cost instances, the average gap is lower,
but the conclusions remain the same. When we apply algorithm ALG(0), i.e., the
version of the algorithm in which only the demands of the customers of the current
period are known, most subproblems are small enough to be solved to optimality in
about 5 min on average, as we solve the problem with little information one period
at a time. This lack of information leads to solutions where the decision maker must
route the vehicles and make delivery plans that are not ideal, as indicated by the
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ratio Z of 1.58 (low cost) and 1.32 (high cost). This means that these solutions are
58% (32%) more costly than the deterministic solution with full information. As
the information about the demand of the customers is considered for period t + 1
in algorithm ALG(1), we observe runtimes that start to increase as the problems
solved contain a bit more information, but the ratios decrease from 1.58 to 1.36
(low cost) and 1.32 to 1.19 (high cost). As most information becomes available in
version ALG(4), the solutions become similar to those of the deterministic version,
the runtimes also increase to similar levels, and the ratios become only 1.11 and 1.05.

Table 1: Average computational results of each algorithm for all instances with T = 6

Low cost High cost
Algorithm UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

O-IRP1(T − 1) 8081.13 7186.91 7.53 3390.56 – 14152.68 13305.72 4.19 3473.81 –

ALG(0) 11377.62 11368.32 0.06 323.08 1.58 17509.02 17501.05 0.03 328.68 1.32

ALG(1) 9822.76 9760.79 0.42 957.01 1.36 15854.20 15803.58 0.21 920.24 1.19

ALG(2) 8756.35 8556.12 1.45 1700.46 1.20 14853.08 14653.21 0.88 1620.86 1.11

ALG(3) 8159.83 7684.83 3.77 2448.26 1.12 14275.60 13812.29 2.16 2315.48 1.06

ALG(4) 8127.77 7211.25 7.54 3338.27 1.11 14206.36 13375.75 4.08 3208.88 1.05

These results strongly indicate two meaningful conclusions. First, one can achieve
results very similar to those of the deterministic version of the problem without
full knowledge of the instance data. In fact, version ALG(4) sees the demand of
the customers in the current period and four periods ahead (five out of the six
periods of these instances) but finds solutions in a rolling horizon fashion that are
sometimes just as good. Secondly, the ratios observed are very tight and, indeed,
much lighter in practice than anticipated in theory; recall that from the theoretical
analysis of Section 5, we would expect competitive ratios for the online algorithms of

max
{

hmax

hmin
, T

}
, which in these instances would mean a ratio of max

{
0.05
0.01

, 6
}
= 6 (low

cost) and max
{

0.5
0.1

, 6
}
= 6 (high cost). However, we see ratios close to 1.0 and often

less than 1.5. Detailed results over the different number of customers and vehicles,
presented in the tables of Appendix A, show that looking only at the current period
and three periods ahead (ALG(3)) is sometimes sufficient for the algorithm to find
the same optimal solution as the algorithm with full information. When looking four
periods ahead, in most instances with one and two vehicles, the solution is optimal
as in the version with full knowledge of the demand.

The results for the instances with a shorter planning horizon of T = 3 are shown
in Table 2. Here, the information described is the same as that of Table 1, but it
only makes sense to use ALG(γ) with γ = {0, 1}. We start again with the solution
of the deterministic algorithm with full knowledge of the demand O-IRP1(T − 1),

Online Algorithms for the Multi-Vehicle Inventory-Routing Problem with Real-Time Demands

18 CIRRELT-2023-23



where we see that the branch-and-cut algorithm has a smaller optimality gap of
4.67% (low cost instances) and 2.23% (high cost instances). Solving the problem
one period at a time and without any information on the future demands, we see
from ALG(0) that even though the runtimes are shorter (smaller problems solved at
every period), the solution quality deteriorates with a ratio of 1.42 (low cost) and
1.19 (high cost). As these instances are smaller, the deviation with respect to the
instances of six periods is also smaller, and a ratio of less than 50% worse solutions is
attained. By increasing the amount of information available (ALG(1)), one decreases
the uncertainty and improves the quality of the solutions, with ratios decreasing to
1.26 (low cost) and 1.10 (high cost).

Table 2: Average computational results of each algorithm for all instances with T = 3

Low cost High cost
Algorithm UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

O-IRP1(T − 1) 3740.28 3449.05 4.67 2154.23 – 8453.68 8150.83 2.23 2129.40 –

ALG(0) 4929.67 4883.92 0.61 823.65 1.42 9640.09 9594.99 0.30 835.66 1.19

ALG(1) 4407.98 4231.31 2.07 1440.36 1.26 9042.75 8919.42 0.82 1404.76 1.10

Detailed results for each algorithm, shown in the tables of Appendix B, indicate
that ratios as tight as 1.03 are obtained for some instances. Again, this confirms
that this kind of online algorithm performs very well in practice, solving difficult
problems in small steps, yielding very competitive solutions, and presenting empirical
competitive ratios much better than the theoretical guarantees of max

{
0.05
0.01

, 3
}
= 5

(low cost) and max
{

0.5
0.1

, 3
}
= 5 (high cost).

A fundamental outcome of our computational experiments is that the numbers of
customers and vehicles do not significantly affect the value of Z. First, we focus on
the change in the number of customers. The variation of the ratio Z does not have
a net increasing or decreasing trend. For example, we focus on the online algorithm
with the lowest degree of information, i.e., ALG(0). In addition, we consider the
case T = 3 to have a higher variation in the number of customers (recall that we
solved instances with up to 50 customers for T = 3, and up to 30 customers for
T = 6). Figure 2, which refers to Table 15 of Appendix B, plots the average values
of ratio Z as the number of customers varies by distinguishing these values based
on the number of vehicles K. The case “High Cost” (Figure 2b) emerges a rather
constant trend represented by flat curves. The performance is less clear for the case
“Low Cost” (Figure 2a). A slightly increasing trend would arise when the number of
vehicles increases. However, higher Z values as the number of customers and vehicles
increases are mainly due to the difficulty in solving the IRP instances at each time
t, as already highlighted.
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Figure 2: Average value of ratio Z as the number of customers varies for ALG(0) and
T = 3
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Second, to better analyze the performance of the online approach for the number
of vehicles, we grouped all the instances without distinguishing them based on the
number of customers. Tables 3 and 4 show the average values obtained for each value
of K. We can state that the variation produced by the number of vehicles is not
significant.

By analyzing the results reported in Tables 3 and 4, we confirm previous obser-
vations that as the value of γ increases, i.e., more information is available to the
algorithm, the value of Z consistently decreases. From this perspective, these tables
also offer the reader a clear idea of the value of additional information in this context,
particularly for larger instances with T = 6 (Table 3). Finally, Tables 1–4 clearly
show that the class “High Cost” is associated with lower Z values than the class
“Low Cost”. This can be explained by considering that the IRP model tends not to
anticipate deliveries when the inventory costs of the customers are high. Hence, the
routes activated by the proposed class of online algorithms are quite similar to the
ones in the offline problem solution.

Table 3: Average computational results obtained by combining all instances with
the same number of vehicles (instances with up to 30 customers for T = 6)

Algorithm K
Low cost High cost

UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

ALG(0)

1 9260.58 9260.58 0.00 1.92 1.63 15392.75 15392.75 0.00 1.67 1.32
2 10207.48 10207.48 0.00 13.36 1.57 16339.65 16339.65 0.00 15.61 1.31
3 11164.55 11164.55 0.00 78.71 1.53 17296.72 17296.72 0.00 81.86 1.29
4 12354.68 12349.11 0.04 631.76 1.55 18486.85 18481.35 0.02 645.54 1.31
5 13900.83 13859.90 0.25 889.65 1.59 20029.12 19994.78 0.13 898.70 1.34

ALG(1)

1 7991.09 7991.07 0.00 6.91 1.41 14050.88 14050.88 0.00 5.40 1.21
2 8617.46 8617.46 0.00 74.54 1.33 14622.98 14622.98 0.00 84.18 1.17
3 9442.69 9433.83 0.07 1023.79 1.29 15439.79 15431.61 0.03 625.81 1.15
4 10952.03 10871.27 0.60 1465.49 1.38 16820.94 16754.73 0.30 1489.61 1.19
5 12110.53 11890.33 1.42 2214.31 1.39 18336.40 18157.70 0.72 2396.21 1.22

ALG(2)

1 6585.30 6585.28 0.00 26.59 1.16 12638.34 12638.28 0.00 27.99 1.07
2 7443.67 7438.27 0.06 740.07 1.14 13451.95 13451.87 0.00 594.59 1.07
3 8553.77 8479.71 0.70 1685.20 1.18 14661.72 14570.51 0.42 1685.00 1.09
4 9886.80 9564.08 2.47 2735.20 1.25 15999.56 15702.83 1.39 2683.36 1.13
5 11312.19 10713.27 4.02 3315.24 1.30 17513.85 16902.55 2.58 3113.37 1.17

ALG(3)

1 5798.52 5798.52 0.00 19.22 1.02 11881.63 11881.58 0.00 14.48 1.01
2 6731.58 6721.32 0.11 1132.72 1.04 12816.94 12803.17 0.07 1036.92 1.02
3 8033.06 7708.80 3.16 2597.53 1.10 14068.87 13763.71 1.59 2483.04 1.04
4 9271.25 8562.69 5.93 3446.69 1.17 15511.76 14787.91 3.43 3284.31 1.09
5 10964.72 9632.83 9.64 5045.14 1.26 17098.77 15825.09 5.70 4758.66 1.14

ALG(4)

1 5684.36 5684.36 0.00 40.26 1.00 11777.99 11777.99 0.00 27.33 1.00
2 6641.85 6498.18 1.70 1672.58 1.02 12749.29 12568.11 0.96 1807.04 1.01
3 7954.18 7270.55 6.67 3517.74 1.09 14017.21 13375.33 3.38 3180.95 1.04
4 9370.06 7885.07 12.66 5501.63 1.18 15456.83 14142.07 6.52 5301.03 1.09
5 10988.39 8718.09 16.67 5959.12 1.26 17030.46 15015.26 9.51 5728.08 1.13
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Table 4: Average computational results obtained by combining all instances with
the same number of vehicles (instances with up to 50 customers for T = 3)

Algorithm K
Low cost High cost

UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

ALG(0)

1 4295.07 4295.07 0.00 42.95 1.53 8996.30 8996.28 0.00 30.79 1.21
2 4522.51 4522.51 0.00 63.25 1.43 9223.74 9223.74 0.00 78.10 1.18
3 4790.43 4784.41 0.09 341.76 1.36 9492.81 9485.66 0.05 312.54 1.16
4 5246.91 5177.71 0.97 1593.39 1.36 9949.24 9887.62 0.41 1566.69 1.16
5 5793.44 5639.92 2.01 2076.90 1.43 10538.33 10381.65 1.01 2190.17 1.22

ALG(1)

1 3624.08 3624.08 0.00 14.82 1.29 8304.17 8304.14 0.00 10.51 1.11
2 3924.46 3924.45 0.00 277.80 1.24 8535.44 8535.37 0.00 143.72 1.09
3 4233.63 4160.88 1.29 1255.14 1.20 8917.80 8818.35 0.69 1195.89 1.08
4 4759.18 4560.20 2.94 2500.22 1.24 9432.90 9279.48 1.09 2488.66 1.10
5 5498.55 4886.92 6.13 3153.84 1.33 10023.44 9659.74 2.50 3185.04 1.13

7.2 Alternative uncertainty scenarios

The scenarios studied so far solve the problem on a rolling horizon for each period,
where all the demands of the considered period t are known, besides all the demands
of the periods t+ γ. Our solution approach is general and can be applied to demand
scenarios where the realization of the demand occurs differently, for example, where
only some demands of some periods become gradually known. To this end, we
consider the following further cases in which the perfect information on future periods
relates only to some customers:

• Scenario 1 : 100% of the customers have their demands known at t, 50% of the
customers have their demands known at t+1, 25% of the customers have their
demands known at t+2, and 10% of the customers have their demands known
for all t′ ≥ t+ 3;

• Scenario 2 : 100% of the customers have their demands known at t; in addition,
the demand of 100% of the customers having demands greater than the average
demand is known for each period t′ > t.

These scenarios correspond to two versions in the class ALG(T−t) which are de-
noted as ALG(T−t),s where s ∈ {1, 2} represents the scenario. We used a two-phase
procedure to select the customers for which we have demand information in Scenario
1. In the first phase, a customer is randomly chosen and put in a set L of selected cus-
tomers. The remaining customers are chosen in the second phase in an iterative way,
where at each iteration, a pair of customers {i, j} with i = argminh∈V ′\L

∑
ℓ∈L∪{0} chℓ

and j = argmaxh∈V ′\L
∑

ℓ∈L∪{0} chℓ is chosen and put in L until the percentage of
elements to be selected is reached.
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Tables 5 and 6 report the average numerical results obtained by our online al-
gorithms in the class ALG(T−t),s with s ∈ {1, 2} for the instances with T = 6. For
completeness, the equivalent tables with T = 3 are presented in Appendix C. These
tables show the ratio Z between the average upper bounds obtained by ALG(T−t),s

and the average lower bounds associated with the offline problem reported earlier in
algorithm O-IRP1(T−1), i.e., ALG(γ) with γ ∈ {0, 1, 2, 3, 4} is replaced by ALG(T−t),s

with s ∈ {1, 2} in equation (9). Note that each instance was executed five times due
to the randomness involved in scenario 1. Since there are up to five instances at each
group of instances (recall that we have removed the infeasible ones), then the values
shown in Table 5 are averaged over up to 25 runs. Note that for Table 6 there is no
randomness associated with the realization of the demands.

Table 5: Average computational results for ALG(T−t),1 in instances with T = 6

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 3283.88 3283.88 0.00 0.22 1.06 5173.45 5173.45 0.00 1.17 1.03
10 5044.17 5044.17 0.00 0.63 1.11 8395.40 8395.40 0.00 0.83 1.06
15 5773.72 5773.72 0.00 4.97 1.09 10976.46 10976.46 0.00 4.19 1.04
20 7348.07 7348.07 0.00 108.21 1.13 14183.90 14183.90 0.00 63.50 1.06
25 8130.49 8130.49 0.00 797.15 1.14 16460.37 16460.37 0.00 863.29 1.07
30 8424.71 8424.71 0.00 1746.82 1.12 19403.00 19403.00 0.00 1275.34 1.05

2

5 4201.52 4201.52 0.00 1.73 1.08 6026.65 6026.65 0.00 1.44 1.04
10 6362.49 6362.49 0.00 5.05 1.12 9588.14 9588.14 0.00 6.43 1.05
15 6563.63 6563.63 0.00 18.85 1.05 11970.61 11970.61 0.00 20.27 1.04
20 8168.52 8168.52 0.00 391.08 1.10 15185.56 15185.51 0.00 348.90 1.07
25 9023.11 9023.11 0.00 1696.92 1.17 17325.36 17325.36 0.00 1481.84 1.08
30 9413.58 9413.58 0.00 2504.94 1.19 20275.13 20275.13 0.00 2441.84 1.08

3

5 5320.94 5320.94 0.00 2.81 1.07 7172.01 7172.01 0.00 3.19 1.05
10 7578.11 7578.11 0.00 14.95 1.10 10981.17 10981.17 0.00 12.09 1.07
15 7642.98 7642.98 0.00 73.80 1.05 13172.42 13172.42 0.00 76.92 1.05
20 9577.91 9577.91 0.00 1631.35 1.22 16401.10 16401.10 0.00 1805.28 1.11
25 10352.00 10352.00 0.00 3036.73 1.26 18652.66 18652.66 0.00 2924.43 1.12
30 10452.27 10452.27 0.00 3126.70 1.29 21302.21 21302.21 0.00 3251.37 1.12

4

5 6391.71 6391.71 0.00 3.84 1.07 8125.48 8125.48 0.00 5.66 1.04
10 8883.64 8883.64 0.00 36.22 1.14 12408.10 12408.00 0.00 34.71 1.11
15 8847.47 8847.47 0.00 242.24 1.10 14005.34 14005.34 0.00 234.81 1.05
20 11237.13 11237.13 0.00 3901.35 1.35 17950.34 17950.34 0.00 3418.16 1.17
25 11910.47 11910.47 0.00 4022.07 1.35 20295.79 20295.59 0.00 4075.44 1.18
30 11789.34 11789.34 0.00 5069.89 1.43 22506.31 22506.31 0.00 4863.27 1.17

5

5 7846.284 7846.284 0.004 4.354 1.05 9773.884 9773.884 0.004 6.154 1.04
10 10312.45 10312.45 0.00 90.59 1.16 13762.06 13762.06 0.00 95.99 1.12
15 10218.29 10218.29 0.00 1023.34 1.17 15353.93 15353.93 0.00 918.53 1.10
20 12553.48 12553.48 0.00 4281.53 1.40 19437.66 19437.66 0.00 4270.36 1.22
25 13718.70 13718.65 0.00 4329.20 1.45 21757.96 21757.96 0.00 5437.54 1.22
30 13334.92 13334.92 0.00 6506.69 1.55 23902.49 23902.49 0.00 5547.09 1.22

Avg 8656.87 8656.86 0.00 1489.14 1.19 14730.83 14730.82 0.00 1543.00 1.09

The values of ratio Z are very low, especially for Scenario 1. For this scenario,
the increase in ratio Z as the number of vehicles increases does not seem too signifi-
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Table 6: Average computational results for ALG(T−t),2 in instances with T = 6

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 4966.20 4966.20 0.00 0.03 1.60 6873.44 6873.44 0.00 0.03 1.37
10 7433.10 7433.10 0.00 0.16 1.63 10828.13 10828.13 0.00 0.15 1.36
15 8644.95 8644.95 0.00 0.42 1.62 13924.85 13924.85 0.00 0.40 1.32
20 10421.15 10421.15 0.00 1.43 1.60 17318.53 17318.53 0.00 1.42 1.30
25 11552.66 11552.66 0.00 7.76 1.62 19893.44 19893.44 0.00 8.07 1.29
30 12266.50 12266.30 0.00 10.29 1.63 23236.03 23235.83 0.00 11.74 1.26

2

5 5687.40 5687.40 0.00 0.14 1.46 7594.64 7594.64 0.00 0.55 1.31
10 8615.70 8615.70 0.00 1.67 1.51 12010.73 12010.73 0.00 1.88 1.32
15 9340.75 9340.75 0.00 3.42 1.50 14620.65 14620.65 0.00 3.24 1.27
20 11467.75 11467.55 0.00 12.39 1.54 18365.13 18364.93 0.00 12.62 1.29
25 12625.46 12625.46 0.00 32.71 1.64 20966.24 20966.24 0.00 34.59 1.30
30 12978.30 12978.30 0.00 49.97 1.64 23947.83 23947.83 0.00 63.38 1.27

3

5 7004.17 7004.17 0.00 0.15 1.41 8909.66 8909.66 0.00 0.45 1.30
10 9696.50 9696.50 0.00 2.45 1.40 13091.53 13091.53 0.00 2.20 1.27
15 10371.95 10371.95 0.00 6.45 1.42 15651.85 15651.85 0.00 7.53 1.25
20 12494.95 12494.75 0.00 83.68 1.59 19392.33 19392.13 0.00 96.52 1.31
25 13371.66 13371.66 0.00 176.33 1.62 21712.44 21712.44 0.00 130.60 1.31
30 13748.30 13748.30 0.00 1101.02 1.70 24717.83 24717.83 0.00 963.33 1.30

4

5 7709.06 7709.06 0.00 0.11 1.29 9615.09 9615.09 0.00 0.12 1.23
10 11198.90 11198.90 0.00 3.90 1.43 14595.29 14595.29 0.00 4.26 1.31
15 11527.75 11527.75 0.00 11.26 1.43 16807.65 16807.65 0.00 10.71 1.26
20 13907.35 13907.35 0.00 136.98 1.66 20804.73 20804.73 0.00 139.99 1.36
25 14893.06 14893.06 0.00 1633.91 1.69 23238.04 23238.04 0.00 1858.82 1.35
30 14785.10 14764.30 0.13 2851.30 1.80 25707.23 25663.03 0.15 2749.52 1.34

5

5 10147.303 10147.303 0.003 0.103 1.36 12057.523 12057.523 0.003 0.103 1.29
10 12499.39 12499.39 0.00 4.01 1.41 15894.68 15894.68 0.00 4.27 1.30
15 12909.15 12909.15 0.00 17.42 1.48 18189.05 18189.05 0.00 17.39 1.30
20 15591.75 15591.75 0.00 553.65 1.74 22489.13 22489.13 0.00 592.73 1.41
25 16323.26 16202.86 0.69 3141.48 1.73 24707.44 24549.44 0.60 3152.26 1.39
30 15915.10 15880.50 0.23 2700.72 1.85 26932.83 26908.23 0.10 2097.66 1.38

Avg 11336.49 11330.61 0.03 418.18 1.57 17469.80 17462.22 0.03 398.88 1.31

cant. Moreover, the results seem relatively stable with an increase in the number of
customers. As before, instances with high inventory costs find better solutions, as
routing and inventory holding become more balanced in the objective function.

Table 7 is similar to Tables 3 and 4 and summarizes the results obtained by
grouping instances with the same number of vehicles K and different values for the
number of customers |V ′|. Some results seem to improve with a higher number of
vehicles. This might be explained by the smaller capacity of each vehicle, which again
limits the flexibility offered to the algorithm to satisfy the demands. In all cases, we
observe that the empirical competitive ratios are very tight and significantly better
than the theoretical guarantees.
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Table 7: Average computational results obtained for the additional scenarios by
combining all instances with the same number of vehicles (instances with up to 50
customers for T = 3 and 30 customers for T = 6)

Cost Algorithm K
T = 3 T = 6

UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

Low

ALG(T−t),1

1 3506.77 3506.63 0.00 292.79 1.24 6334.17 6334.17 0.00 443.00 1.11
2 3830.69 3828.94 0.03 507.98 1.21 7288.81 7288.81 0.00 769.76 1.12
3 4241.19 4239.52 0.03 1307.37 1.21 8487.37 8487.37 0.00 1314.39 1.16
4 4669.97 4663.95 0.09 1998.98 1.21 9843.29 9843.29 0.00 2212.60 1.24
5 5184.12 5178.27 0.08 2476.88 1.26 11330.69 11330.68 0.00 2705.95 1.30

ALG(T−t),2

1 4285.91 4285.91 0.00 14.01 1.52 9214.09 9214.06 0.00 3.35 1.62
2 4483.13 4483.13 0.00 124.13 1.41 10119.23 10119.19 0.00 16.72 1.55
3 4796.32 4791.17 0.07 459.47 1.36 11114.59 11114.55 0.00 228.35 1.53
4 5217.27 5143.06 1.01 1486.48 1.35 12336.87 12333.40 0.02 772.91 1.55
5 5709.18 5549.40 2.04 2275.26 1.39 13897.66 13871.83 0.15 1069.56 1.59

High

ALG(T−t),1

1 8204.47 8204.35 0.00 243.53 1.09 12432.10 12432.10 0.00 368.05 1.05
2 8497.64 8496.42 0.01 474.35 1.08 13395.24 13395.23 0.00 716.79 1.06
3 8930.07 8925.90 0.03 1437.76 1.08 14613.60 14613.60 0.00 1345.54 1.09
4 9465.65 9460.10 0.04 2017.16 1.10 15881.89 15881.84 0.00 2105.34 1.12
5 9883.23 9875.39 0.05 2477.43 1.12 17331.33 17331.33 0.00 3179.28 1.15

ALG(T−t),2

1 8986.96 8986.94 0.00 12.93 1.21 15345.74 15345.70 0.00 3.64 1.32
2 9184.34 9184.34 0.00 104.49 1.17 16250.87 16250.84 0.00 19.37 1.30
3 9495.10 9489.50 0.04 545.14 1.16 17245.94 17245.91 0.00 200.11 1.29
4 9939.11 9865.36 0.49 1474.77 1.16 18461.34 18453.97 0.03 793.90 1.31
5 10377.66 10234.24 0.90 2154.71 1.17 20045.11 20014.67 0.12 977.40 1.34

8 Conclusions

Combinatorial optimization methods are largely applied to complex problems from a
broad spectrum of real-world applications. Generally, most techniques assume that
all input data are known beforehand. However, there are many practical cases where
the problem instance is revealed incrementally, and decisions must be made before
complete knowledge is available. In this setting, the problems are referred to as
dynamic or online. Online algorithms represent practical approaches to real-time
problems. In particular, these algorithms produce a partial solution as soon as a
new piece of information becomes known.

In this paper, we have presented a class of online algorithms for a fundamental
and well-studied problem in the distribution logistics area, called the inventory-
routing problem (IRP), in which a supplier manages the inventory replenishment of
its customers under uncertain conditions. In the version of the problem studied in
this paper, the customers’ demands are gradually revealed over time. In particular, at
each period of a planning horizon, a decision has to be made without full knowledge
of the problem instance but based on the demands revealed until that moment. Our
class of online algorithms works by iteratively solving an integer programming model
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through a tailored branch-and-cut method.
Our class of online algorithms represents the first online optimization approach

associated with a theoretical competitive analysis of an IRP. In particular, we have
defined a bound on the ratio between the optimal cost obtained by any online al-
gorithm of the class and the optimal cost associated with the deterministic instance
in which the demands of all customers are known a priori. We have proved that the

bound is max
{

hmax

hmin
, T

}
, which in the classical instances used in our paper would lead

to competitive ratios of 5 or 6. We have theoretically proved that this bound is tight
for the simplest algorithm in the class. In extensive computational experiments, we
have empirically demonstrated the effective ratio is (much) lower than in these cases.
Our results have shown that the average ratio is much smaller, even for the simplest
algorithm in the class. In particular, for the first group of algorithms (Section 7.1),
it is just 1.26 and 1.10 for the best online algorithm when T = 3 and the inventory
cost is low and high, respectively, while it is just 1.11 and 1.05 for the best online
algorithm when T = 6 and the inventory cost is low and high, respectively. Consid-
ering the online setting and that these ratios are computed using a lower bound on
the optimal cost of the offline problem, these results are very satisfactory. Overall,
we have observed ratios very close to 1.0, and rarely larger than 1.5.
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[39] F. Höhne, S. Schmitt, and R. van Stee. Online algorithms column 38: 2021 in
review. ACM SIGACT News, 52:80–96, 2021.

[40] P. Jaillet and M. R. Wagner. Online vehicle routing problems: A survey. In
B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem:
Latest Advances and New Challenges, pages 221–237. Springer, New York, NY,
2008.

[41] S. Jarugumilli and S. E. Grasman. RFID-enabled inventory routing problems.
International Journal of Manufacturing Technology and Management, 10:92–
105, 2007.

[42] A. R. Karlin. On the performance of competitive algorithms in practice. In
A. Fiat and G. J. Woeginger, editors, Online Algorithms: The State of the Art,
pages 373–384. Springer, Berlin, Heidelberg, Germany, 1998.

[43] A. R. Karlin, M. S. Manasse, L. Rudolph, and Sleator D. D. Competitive snoopy
caching. Algorithmica, 3:79–119, 1988.
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[61] E. Çankaya, A. Ekici, and O. Ö. Özener. Humanitarian relief supplies distri-
bution: An application of inventory routing problem. Annals of Operations
Research, 283:119–141, 2019.

A Results for the offline and online problem for

T = 6

Table 8 presents the results of our algorithm for the offline problem (O-IRP1(T −1)).
Tables 9–13 show the results of our online algorithms ALG(γ) with γ = {0, 1, 2, 3, 4}.
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Table 8: Average computational results for O-IRP1(T − 1) in instances with T = 6

K |V ′| Low cost High cost
UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

1

5 3101.51 3101.51 0.00 0.36 5001.04 5000.98 0.00 1.00
10 4547.22 4547.22 0.00 0.88 7953.63 7953.63 0.00 0.99
15 5320.82 5320.82 0.00 2.48 10567.84 10567.84 0.00 2.46
20 6499.09 6499.09 0.00 28.83 13350.25 13350.25 0.00 15.94
25 7109.54 7109.54 0.00 24.49 15399.79 15399.79 0.00 17.00
30 7506.84 7506.84 0.00 475.26 18395.37 18395.37 0.00 310.49

2

5 3888.74 3888.74 0.00 1.87 5783.64 5783.64 0.00 1.90
10 5689.86 5689.86 0.00 26.02 9103.53 9103.53 0.00 23.96
15 6231.31 6231.31 0.00 74.45 11480.70 11480.70 0.00 64.19
20 7481.32 7450.90 0.36 2439.95 14331.54 14254.58 0.49 2280.09
25 8113.39 7714.76 4.66 4350.78 16354.56 16080.64 1.64 4349.96
30 8317.45 7903.34 4.82 4672.05 19230.09 18802.08 2.17 4546.99

3

5 4955.60 4955.60 0.00 13.72 6849.62 6849.62 0.00 15.48
10 6912.25 6912.25 0.00 1672.76 10326.66 10286.80 0.36 2086.83
15 7280.59 7280.59 0.00 1870.34 12527.79 12527.79 0.00 1046.40
20 9053.23 7841.64 12.03 6008.79 15793.01 14788.01 6.01 5642.47
25 9673.84 8239.99 13.73 4997.85 17948.43 16594.19 7.07 5007.85
30 9721.83 8103.88 16.16 7209.66 20529.82 19070.03 6.99 7215.12

4

5 5954.86 5954.86 0.00 23.94 7839.69 7839.69 0.00 21.41
10 8095.26 7804.59 3.22 4073.60 11513.92 11160.78 2.89 5164.50
15 8415.93 8044.60 4.40 7203.72 13647.24 13333.34 2.24 7203.00
20 10544.91 8353.34 19.22 7211.15 17357.76 15280.75 11.36 7209.90
25 11321.39 8830.46 20.02 7208.20 19489.42 17173.25 11.07 7208.75
30 11490.03 8229.61 27.71 7215.04 22666.34 19193.87 15.15 7217.61

5

5 7470.294 7470.294 0.004 65.214 9373.944 9373.944 0.004 34.804

10 9356.59 8875.02 4.73 5995.53 12752.49 12254.91 3.63 5964.85
15 9551.06 8742.36 8.44 7204.40 14820.42 13986.49 5.56 7206.23
20 12157.73 8960.58 24.64 7210.59 19021.57 15948.43 15.48 7220.99
25 13520.37 9461.40 27.27 7223.04 21512.01 17780.18 16.19 7116.70
30 13150.97 8582.21 34.48 7211.69 23658.15 19556.47 17.32 7216.50

Avg 8081.13 7186.91 7.53 3390.56 14152.68 13305.72 4.19 3473.81
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Table 9: Average computational results for ALG(0) in instances with T = 6

K |V ′| Low Cost High cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 5101.79 5101.79 0.00 0.03 1.64 7008.59 7008.59 0.00 0.08 1.40
10 7441.35 7441.35 0.00 0.07 1.64 10836.90 10836.90 0.00 0.07 1.36
15 8697.05 8697.05 0.00 0.15 1.63 13969.38 13969.38 0.00 0.16 1.32
20 10423.55 10423.55 0.00 0.66 1.60 17321.72 17321.72 0.00 0.64 1.30
25 11595.24 11595.24 0.00 3.60 1.63 19939.50 19939.50 0.00 3.04 1.29
30 12304.50 12304.50 0.00 6.98 1.64 23280.41 23280.41 0.00 6.03 1.27

2

5 5885.59 5885.59 0.00 0.07 1.51 7792.39 7792.39 0.00 0.07 1.35
10 8763.75 8763.75 0.00 1.00 1.54 12159.30 12159.30 0.00 1.00 1.34
15 9434.65 9434.65 0.00 1.85 1.51 14706.98 14706.98 0.00 1.62 1.28
20 11464.35 11464.35 0.00 7.77 1.54 18362.52 18362.52 0.00 8.61 1.29
25 12695.24 12695.24 0.00 20.59 1.65 21039.50 21039.50 0.00 22.56 1.31
30 13001.30 13001.30 0.00 48.87 1.65 23977.21 23977.21 0.00 59.81 1.28

3

5 7068.39 7068.39 0.00 0.08 1.43 8975.19 8975.19 0.00 0.07 1.31
10 9723.35 9723.35 0.00 1.49 1.41 13118.90 13118.90 0.00 1.42 1.28
15 10428.05 10428.05 0.00 4.24 1.43 15700.38 15700.38 0.00 3.62 1.25
20 12547.35 12547.35 0.00 69.36 1.60 19445.52 19445.52 0.00 57.35 1.31
25 13444.04 13444.04 0.00 126.48 1.63 21788.30 21788.30 0.00 129.46 1.31
30 13776.10 13776.10 0.00 270.60 1.70 24752.01 24752.01 0.00 299.25 1.30

4

5 7771.594 7771.594 0.004 0.064 1.31 9678.39 9678.39 0.00 3.24 1.23
10 11272.35 11272.35 0.00 3.18 1.44 14667.90 14667.90 0.00 2.77 1.31
15 11571.25 11571.25 0.00 7.08 1.44 16843.58 16843.58 0.00 6.72 1.26
20 13899.15 13899.15 0.00 131.09 1.66 20797.32 20797.32 0.00 129.34 1.36
25 14887.24 14853.84 0.22 1772.81 1.69 23231.50 23198.90 0.14 1740.26 1.35
30 14726.50 14726.50 0.00 1876.34 1.79 25702.41 25702.01 0.00 1990.90 1.34

5

5 10147.313 10147.313 0.003 0.053 1.36 12057.583 12057.583 0.003 0.053 1.29
10 12499.35 12499.35 0.00 2.75 1.41 15894.90 15894.90 0.00 2.51 1.30
15 12899.85 12899.85 0.00 13.07 1.48 18172.18 18172.18 0.00 13.80 1.30
20 15621.35 15621.35 0.00 331.49 1.74 22519.52 22519.52 0.00 344.68 1.41
25 16343.64 16178.24 0.96 3000.45 1.73 24680.90 24530.51 0.59 3026.32 1.39
30 15893.50 15813.30 0.52 1990.10 1.85 26849.61 26794.01 0.22 2004.82 1.37

Avg 11377.62 11368.32 0.06 323.08 1.58 17509.02 17501.05 0.03 328.68 1.32
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Table 10: Average computational results for ALG(1) in instances with T = 6

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 4568.27 4568.27 0.00 0.12 1.47 6461.28 6461.28 0.00 0.04 1.29
10 6230.16 6230.07 0.00 0.14 1.37 9697.47 9697.47 0.00 0.13 1.22
15 7718.72 7718.72 0.00 0.53 1.45 12739.99 12739.99 0.00 0.55 1.21
20 8867.31 8867.31 0.00 2.98 1.36 15823.61 15823.61 0.00 2.60 1.19
25 9200.10 9200.10 0.00 15.43 1.29 17674.87 17674.87 0.00 12.59 1.15
30 11361.98 11361.98 0.00 22.29 1.51 21908.07 21908.07 0.00 16.46 1.19

2

5 4961.63 4961.63 0.00 0.71 1.28 7054.93 7054.93 0.00 0.59 1.22
10 7630.32 7630.32 0.00 3.35 1.34 10554.36 10554.36 0.00 2.66 1.16
15 8428.39 8428.39 0.00 5.69 1.35 13472.03 13472.03 0.00 5.10 1.17
20 9385.46 9385.46 0.00 44.82 1.26 16304.62 16304.62 0.00 58.22 1.14
25 10182.53 10182.53 0.00 224.33 1.32 18603.50 18603.50 0.00 200.70 1.16
30 11116.46 11116.46 0.00 168.35 1.41 21748.42 21748.42 0.00 237.82 1.16

3

5 5503.58 5503.58 0.00 0.81 1.11 7395.54 7395.54 0.00 0.90 1.08
10 8660.98 8660.98 0.00 6.98 1.25 11651.65 11651.65 0.00 6.12 1.13
15 8817.45 8817.45 0.00 14.74 1.21 14210.01 14210.01 0.00 15.88 1.13
20 11017.00 11016.87 0.00 193.77 1.40 17592.99 17592.99 0.00 329.21 1.19
25 10981.00 10970.38 0.10 3298.91 1.33 19627.44 19627.44 0.00 609.12 1.18
30 11676.16 11633.74 0.34 2627.55 1.44 22161.09 22112.03 0.20 2793.64 1.16

4

5 7244.57 7244.57 0.00 1.26 1.22 8883.97 8883.97 0.00 1.27 1.13
10 10021.98 10021.98 0.00 18.03 1.28 12779.01 12779.01 0.00 18.68 1.14
15 10243.23 10243.23 0.00 35.77 1.27 15644.23 15644.23 0.00 37.27 1.17
20 11810.03 11810.03 0.00 1329.84 1.41 18652.95 18652.82 0.00 1848.10 1.22
25 13357.44 13055.91 2.16 4346.14 1.51 20955.52 20759.82 0.93 3894.03 1.22
30 13034.93 12851.91 1.44 3061.91 1.58 24009.94 23808.53 0.84 3138.28 1.25

5

5 8320.564 8320.454 0.004 0.904 1.114 10172.854 10172.824 0.004 0.984 1.09
10 10390.18 10390.18 0.00 37.86 1.17 14117.80 14117.80 0.00 37.96 1.15
15 10929.82 10929.82 0.00 83.55 1.25 16284.84 16284.84 0.00 79.27 1.16
20 13415.20 13355.10 0.40 3798.96 1.50 20996.19 20857.68 0.59 5090.46 1.32
25 15003.74 14381.18 3.99 4418.98 1.59 23283.40 22749.67 2.19 4877.82 1.31
30 14603.71 13965.25 4.14 4945.62 1.70 25163.33 24763.37 1.52 4290.78 1.29

Avg 9822.76 9760.79 0.42 957.01 1.36 15854.20 15803.58 0.21 920.24 1.19
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Table 11: Average computational results for ALG(2)

K |V ′|
Low Cost High Cost

UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 3492.024 3492.024 0.004 0.094 1.13 5359.51 5359.45 0.00 0.11 1.07
10 5332.29 5332.29 0.00 0.45 1.17 8672.29 8672.05 0.00 0.33 1.09
15 6174.37 6174.33 0.00 1.70 1.16 11238.60 11238.60 0.00 1.43 1.06
20 7627.39 7627.31 0.00 5.53 1.17 14479.70 14479.67 0.00 5.23 1.08
25 8308.51 8308.51 0.00 16.41 1.17 16505.28 16505.28 0.00 10.31 1.07
30 8577.24 8577.24 0.00 135.34 1.14 19574.65 19574.65 0.00 150.55 1.06

2

5 4303.63 4303.63 0.00 1.29 1.11 6259.14 6259.14 0.00 1.18 1.08
10 6491.32 6491.32 0.00 5.85 1.14 9581.03 9581.03 0.00 4.32 1.05
15 7077.86 7077.86 0.00 12.87 1.14 12256.87 12256.87 0.00 10.45 1.07
20 8366.31 8366.31 0.00 333.90 1.12 15161.71 15161.71 0.00 288.69 1.06
25 9196.03 9196.03 0.00 1115.48 1.19 17464.63 17464.45 0.00 1341.07 1.09
30 9226.85 9194.47 0.36 2971.00 1.17 19988.34 19988.03 0.00 1921.86 1.06

3

5 5493.45 5493.45 0.00 1.69 1.11 7411.68 7411.68 0.00 1.58 1.08
10 7703.79 7703.79 0.00 20.48 1.11 10785.85 10785.85 0.00 18.11 1.05
15 7960.78 7960.78 0.00 45.88 1.09 13355.06 13355.06 0.00 38.99 1.07
20 9550.30 9550.30 0.00 2103.02 1.22 16316.15 16316.15 0.00 2250.67 1.10
25 10256.85 10048.27 2.05 3826.62 1.24 18736.73 18675.39 0.33 3870.97 1.13
30 10357.46 10121.69 2.17 4113.53 1.28 21364.86 20878.95 2.21 3929.66 1.12

4

5 6589.16 6589.16 0.00 578.76 1.11 8179.54 8179.54 0.00 2.27 1.04
10 9318.81 9318.81 0.00 82.85 1.19 12410.30 12410.30 0.00 80.92 1.11
15 9200.71 9200.71 0.00 255.45 1.14 14547.81 14547.81 0.00 219.18 1.09
20 10139.64 9957.11 1.38 3645.52 1.21 17971.52 17600.94 1.92 4488.94 1.18
25 12154.66 11327.28 6.34 5209.60 1.38 20009.08 19254.80 3.59 4439.08 1.17
30 11917.84 10991.42 7.11 6639.00 1.45 22879.10 22223.60 2.83 6869.80 1.19

5

5 8205.474 8205.474 0.004 3.004 1.10 10073.154 10073.154 0.004 2.474 1.07
10 10051.44 10051.44 0.00 714.78 1.13 13427.81 13427.81 0.00 121.30 1.10
15 10342.48 10342.48 0.00 718.72 1.18 15536.89 15536.89 0.00 693.40 1.11
20 11904.23 11292.22 4.60 5118.67 1.33 19438.98 18527.68 4.31 5846.64 1.22
25 13444.85 12109.65 8.97 6135.84 1.42 21717.52 20551.67 4.93 4815.51 1.22
30 13924.68 12278.39 10.54 7200.43 1.62 24888.76 23298.11 6.25 7200.90 1.27

Avg 8756.35 8556.12 1.45 1700.46 1.20 14853.08 14653.21 0.88 1620.86 1.11
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Table 12: Average computational results for ALG(3)

K |V ′|
Low Cost High Cost

UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 3149.924 3149.924 0.004 0.244 1.02 5063.20 5063.20 0.00 0.23 1.01
10 4633.08 4633.08 0.00 1.20 1.02 8050.52 8050.40 0.00 0.79 1.01
15 5455.75 5455.75 0.00 2.37 1.03 10588.50 10588.50 0.00 2.70 1.00
20 6607.38 6607.38 0.00 7.62 1.02 13450.17 13450.17 0.00 7.71 1.01
25 7277.91 7277.91 0.00 12.77 1.02 15589.79 15589.58 0.00 18.59 1.01
30 7667.09 7667.09 0.00 91.12 1.02 18547.62 18547.62 0.00 56.87 1.01

2

5 3982.33 3982.33 0.00 1.60 1.02 5884.79 5884.79 0.00 1.47 1.02
10 5900.46 5900.46 0.00 13.48 1.04 9178.93 9178.93 0.00 10.32 1.01
15 6337.70 6337.70 0.00 32.46 1.02 11622.56 11622.56 0.00 22.50 1.01
20 7608.54 7608.54 0.00 1164.84 1.02 14474.13 14474.13 0.00 893.29 1.02
25 8161.14 8161.14 0.00 2655.03 1.06 16451.83 16451.83 0.00 2288.61 1.02
30 8399.32 8337.76 0.67 2928.93 1.06 19289.41 19206.78 0.42 3005.32 1.03

3

5 5034.58 5034.58 0.00 99.79 1.02 6911.80 6911.80 0.00 3.22 1.01
10 7295.44 7295.44 0.00 99.65 1.06 10420.42 10420.42 0.00 76.31 1.01
15 7389.49 7389.49 0.00 211.09 1.01 12655.61 12655.37 0.00 168.48 1.01
20 9009.36 8589.01 4.17 4437.12 1.15 15899.35 15407.80 2.91 4432.80 1.08
25 9779.79 8977.66 7.58 4435.72 1.19 17924.26 17285.68 3.35 4452.92 1.08
30 9689.69 8966.61 7.22 6301.81 1.20 20601.80 19901.21 3.27 5764.51 1.08

4

5 6097.46 6097.46 0.00 5.02 1.02 7923.37 7923.37 0.00 3.88 1.01
10 8205.07 8205.07 0.00 677.08 1.05 11623.02 11623.02 0.00 688.29 1.04
15 8500.91 8500.91 0.00 828.11 1.06 13749.86 13749.86 0.00 748.75 1.03
20 10052.58 9366.99 5.79 5917.82 1.20 17444.08 16509.15 4.99 5949.39 1.14
25 11418.80 9884.13 12.15 6049.49 1.29 19935.25 18311.51 7.66 5111.20 1.16
30 11352.71 9321.58 17.65 7202.59 1.38 22394.99 20610.54 7.92 7204.32 1.17

5

5 7720.504 7720.504 0.004 14.314 1.03 9620.634 9620.634 0.004 9.414 1.03
10 9532.27 9502.10 0.30 3911.69 1.07 13077.60 13035.88 0.30 2444.12 1.07
15 9672.05 9394.80 2.86 5210.17 1.11 14887.14 14601.14 1.89 5396.83 1.06
20 11726.39 10129.76 11.89 6739.11 1.31 19116.17 17252.08 9.23 6632.13 1.20
25 13399.41 10753.73 18.51 7194.71 1.42 21867.35 19401.12 10.40 6867.94 1.23
30 13737.70 10296.08 24.27 7200.82 1.60 24023.75 21039.67 12.35 7201.51 1.23

Avg 8159.83 7684.83 3.77 2448.26 1.12 14275.60 13812.29 2.16 2315.48 1.06
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Table 13: Average computational results for ALG(4)

K |V ′|
Low Cost High Cost

UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 3101.514 3101.514 0.004 0.374 1.00 5001.04 5001.04 0.00 0.33 1.00
10 4568.33 4568.33 0.00 0.99 1.00 7953.63 7953.63 0.00 0.95 1.00
15 5320.82 5320.82 0.00 2.59 1.00 10567.84 10567.84 0.00 2.99 1.00
20 6499.09 6499.09 0.00 16.09 1.00 13350.25 13350.25 0.00 10.46 1.00
25 7109.54 7109.54 0.00 25.26 1.00 15399.79 15399.79 0.00 16.86 1.00
30 7506.84 7506.84 0.00 196.29 1.00 18395.37 18395.37 0.00 132.39 1.00

2

5 3888.74 3888.74 0.00 1.85 1.00 5784.02 5784.02 0.00 1.69 1.00
10 5848.54 5848.54 0.00 33.21 1.03 9103.53 9103.53 0.00 22.29 1.00
15 6231.31 6231.31 0.00 74.35 1.00 11480.70 11480.70 0.00 63.14 1.00
20 7482.69 7391.19 1.09 2147.81 1.00 14337.97 14250.56 0.56 2647.98 1.01
25 8100.69 7702.93 4.69 4343.93 1.05 16360.09 16057.21 1.81 4339.30 1.02
30 8299.13 7926.37 4.39 3434.35 1.05 19429.42 18732.63 3.40 3767.82 1.03

3

5 4955.76 4955.76 0.00 8.48 1.00 6850.67 6850.67 0.00 9.22 1.00
10 7204.88 7204.88 0.00 951.34 1.04 10326.66 10326.66 0.00 834.59 1.00
15 7280.59 7280.59 0.00 1364.98 1.00 12527.79 12527.72 0.00 775.16 1.00
20 8620.42 7771.89 8.80 5521.04 1.10 15906.02 14794.01 6.58 5431.94 1.08
25 9799.03 8209.36 14.89 6047.84 1.19 18050.60 16538.63 7.79 4826.69 1.09
30 9864.41 8200.78 16.32 7212.73 1.22 20441.53 19214.28 5.94 7208.08 1.07

4

5 6085.26 6085.26 0.00 1114.99 1.02 8005.66 8005.66 0.00 7.83 1.02
10 8142.45 7970.35 1.90 3531.79 1.04 11521.52 11316.49 1.65 3435.09 1.03
15 8381.90 8165.53 2.54 6737.50 1.04 13647.02 13412.46 1.63 6745.43 1.02
20 10175.03 8160.63 18.24 7210.44 1.22 17205.96 15292.63 10.47 7205.22 1.13
25 11721.68 8645.52 24.56 7207.15 1.33 19916.35 17246.60 12.58 7207.86 1.16
30 11714.04 8283.13 28.72 7207.93 1.42 22444.47 19578.61 12.81 7204.72 1.17

5

5 7588.724 7588.674 0.004 25.884 1.02 9510.184 9510.184 0.004 16.134 1.01
10 9341.43 8912.32 4.12 6894.59 1.05 12918.66 12492.17 3.11 5529.82 1.05
15 9580.38 8742.12 8.72 7204.98 1.10 14826.54 13897.75 6.20 7204.36 1.06
20 11507.08 8956.72 20.84 7205.80 1.28 18819.14 16174.56 13.62 7206.46 1.18
25 13938.09 9448.11 30.15 7222.64 1.47 21743.61 18233.90 15.31 7210.32 1.22
30 13974.67 8660.60 36.19 7200.81 1.63 24364.63 19782.99 18.83 7201.37 1.25

Avg 8127.77 7211.25 7.54 3338.27 1.11 14206.36 13375.75 4.08 3208.88 1.05
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B Results for the offline and online problem for

T = 3

The results presented in this section in Tables 14–16 are similar to those of the
previous section and refer to the instances with T = 3.
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Table 14: Average computational results for O-IRP1(T − 1) in instances with T = 3

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

1

5 1250.02 1250.02 0.00 0.08 1940.95 1940.95 0.00 0.05
10 1842.37 1842.37 0.00 0.13 3655.35 3655.35 0.00 0.22
15 2118.49 2118.49 0.00 0.60 4541.56 4541.56 0.00 0.45
20 2538.33 2538.33 0.00 1.37 5959.57 5959.57 0.00 0.94
25 2822.90 2822.90 0.00 1.05 7331.46 7331.46 0.00 3.15
30 3082.55 3082.55 0.00 7.63 8821.11 8821.04 0.00 3.16
35 3232.74 3232.74 0.00 1.74 9239.59 9239.59 0.00 2.66
40 3459.68 3459.68 0.00 41.22 10099.29 10099.29 0.00 8.01
45 3592.98 3592.98 0.00 30.79 11120.06 11120.06 0.00 6.67
50 4018.07 4018.07 0.00 96.85 12333.50 12333.50 0.00 45.90

2

5 1563.61 1563.61 0.00 0.27 2250.09 2250.09 0.00 0.79
10 2318.40 2318.40 0.00 1.39 4128.03 4128.03 0.00 1.18
15 2465.87 2465.87 0.00 2.91 4889.46 4889.46 0.00 2.59
20 2948.48 2948.48 0.00 28.20 6369.14 6369.14 0.00 18.34
25 3206.80 3206.80 0.00 362.77 7716.86 7716.86 0.00 169.14
30 3365.41 3365.41 0.00 50.02 9103.91 9103.91 0.00 41.64
35 3518.20 3518.20 0.00 88.19 9526.88 9526.88 0.00 73.41
40 3737.88 3737.88 0.00 1239.80 10377.49 10377.49 0.00 1234.76
45 3874.45 3852.29 0.53 1969.74 11413.81 11357.20 0.49 1946.97
50 4462.20 4312.20 3.28 2805.56 12656.94 12591.89 0.53 2800.07

3

5 1936.72 1936.72 0.00 0.39 2616.05 2616.05 0.00 0.37
10 2830.37 2830.37 0.00 3.53 4636.72 4636.72 0.00 3.06
15 2862.67 2862.67 0.00 5.85 5285.02 5285.02 0.00 6.75
20 3431.56 3431.56 0.00 198.49 6851.48 6851.48 0.00 195.66
25 3714.76 3655.46 1.52 1562.28 8206.77 8191.08 0.19 1510.73
30 3734.55 3734.55 0.00 1192.78 9472.24 9472.24 0.00 2173.14
35 4007.53 3929.38 1.95 5048.07 10023.60 9927.16 0.96 4571.59
40 4173.76 3934.07 5.51 4397.12 10795.40 10573.40 2.00 4369.54
45 4326.61 4025.99 6.50 5783.38 11907.90 11537.40 3.07 5780.78
50 5640.15 4378.16 20.62 7223.04 13780.05 12718.45 7.64 7214.17

4

5 2238.76 2238.76 0.00 0.71 2919.53 2919.51 0.00 0.54
10 3342.54 3342.54 0.00 15.44 5148.41 5148.41 0.00 11.86
15 3348.51 3348.51 0.00 26.35 5766.28 5766.28 0.00 35.84
20 3971.17 3915.46 1.37 2651.09 7381.91 7381.91 0.00 1321.11
25 4239.68 4120.53 2.64 2919.06 8751.11 8629.74 1.38 2655.29
30 4166.19 4039.87 3.08 4632.89 9945.40 9754.00 1.86 4390.93
35 4509.20 4187.98 7.01 5658.21 10494.45 10179.73 3.03 6573.66
40 4687.69 4139.87 10.94 4986.60 11349.54 10715.24 5.46 5121.41
45 5254.76 4095.92 19.02 5804.27 13381.43 11621.63 11.24 5843.65
50 6390.16 4582.42 27.38 7211.39 14641.23 12882.25 11.97 7228.53

5

5 2578.35 2578.35 0.00 0.80 3259.60 3259.60 0.00 0.74
10 3723.26 3723.26 0.00 24.02 5530.40 5530.40 0.00 30.35
15 3796.73 3796.73 0.00 177.66 6215.89 6215.89 0.00 163.44
20 4369.98 4220.94 3.08 4370.20 7781.54 7727.08 0.60 2806.22
25 4680.89 4391.62 5.71 4086.55 9259.95 8833.77 4.33 4346.88
30 4662.19 4180.93 10.10 5855.60 10401.67 9928.52 4.57 6088.28
35 5103.00 4347.16 14.64 7223.50 11260.88 10278.00 8.65 7268.71
40 5449.98 4249.43 19.95 6676.41 12129.95 10869.98 9.94 7211.40
45 6185.36 4247.89 28.25 6010.02 13836.84 11731.94 14.18 5957.77
50 8237.47 4738.06 40.31 7235.35 16177.70 13005.19 19.35 7227.30

Avg 3740.28 3449.05 4.67 2154.23 8453.68 8150.83 2.23 2129.40
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Table 15: Average computational results for ALG(0) in instances with T = 3

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 1797.55 1797.55 0.00 0.01 1.44 2483.01 2483.01 0.00 0.01 1.28
10 2766.79 2766.79 0.00 0.04 1.50 4574.84 4574.84 0.00 0.04 1.25
15 3236.44 3236.44 0.00 0.09 1.53 5657.45 5657.45 0.00 0.11 1.25
20 4003.39 4003.39 0.00 0.53 1.58 7421.50 7421.50 0.00 0.48 1.25
25 4424.17 4424.17 0.00 2.42 1.57 8935.44 8935.44 0.00 3.04 1.22
30 4655.32 4655.32 0.00 6.98 1.51 10405.79 10405.79 0.00 6.13 1.18
35 5041.80 5041.80 0.00 6.24 1.56 11053.01 11053.01 0.00 7.27 1.20
40 5371.97 5371.97 0.00 394.98 1.55 12003.85 12003.65 0.00 273.58 1.19
45 5538.61 5538.61 0.00 10.52 1.54 13066.90 13066.90 0.00 8.62 1.18
50 6114.61 6114.61 0.00 7.72 1.52 14361.22 14361.22 0.00 8.62 1.16

2

5 2040.75 2040.75 0.00 0.03 1.31 2726.21 2726.21 0.00 0.04 1.21
10 3058.39 3058.39 0.00 0.27 1.32 4866.44 4866.44 0.00 0.23 1.18
15 3433.64 3433.64 0.00 0.53 1.39 5854.65 5854.65 0.00 0.58 1.20
20 4261.19 4261.19 0.00 2.94 1.45 7679.30 7679.30 0.00 2.94 1.21
25 4678.37 4678.37 0.00 9.26 1.46 9189.64 9189.64 0.00 7.26 1.19
30 4830.52 4830.52 0.00 48.97 1.44 10580.99 10580.99 0.00 24.37 1.16
35 5249.20 5249.20 0.00 30.17 1.49 11260.41 11260.41 0.00 26.01 1.18
40 5545.37 5545.37 0.00 45.58 1.48 12177.25 12177.25 0.00 42.45 1.17
45 5739.81 5739.81 0.00 57.60 1.49 13268.10 13268.10 0.00 55.28 1.17
50 6387.86 6387.86 0.00 437.16 1.48 14634.47 14634.47 0.00 621.81 1.16

3

5 2321.15 2321.15 0.00 0.03 1.20 3006.61 3006.61 0.00 0.03 1.15
10 3480.39 3480.39 0.00 0.55 1.23 5288.44 5288.44 0.00 0.68 1.14
15 3809.84 3809.84 0.00 1.16 1.33 6230.85 6230.85 0.00 1.34 1.18
20 4562.79 4562.79 0.00 13.72 1.33 7980.90 7980.90 0.00 12.40 1.16
25 4953.17 4953.17 0.00 54.16 1.36 9464.44 9464.44 0.00 51.50 1.16
30 5045.92 5045.92 0.00 55.20 1.35 10796.39 10796.39 0.00 64.08 1.14
35 5426.60 5426.60 0.00 232.34 1.38 11437.81 11437.81 0.00 170.96 1.15
40 5732.77 5732.77 0.00 608.83 1.46 12364.65 12364.65 0.00 427.34 1.17
45 5921.81 5921.81 0.00 386.70 1.47 13450.10 13450.10 0.00 332.07 1.17
50 6649.86 6589.61 0.91 2064.93 1.52 14907.97 14836.47 0.49 2065.03 1.17

4

5 2628.87 2628.87 0.00 0.02 1.17 3332.404 3332.404 0.004 0.024 1.14
10 3986.59 3986.59 0.00 1.29 1.19 5794.64 5794.64 0.00 0.99 1.13
15 4215.44 4215.44 0.00 2.18 1.26 6636.45 6636.45 0.00 2.35 1.15
20 5070.79 5070.79 0.00 25.44 1.30 8488.90 8488.90 0.00 22.69 1.15
25 5482.97 5482.97 0.00 317.66 1.33 9994.24 9994.24 0.00 294.92 1.16
30 5336.12 5336.12 0.00 557.74 1.32 11086.59 11086.39 0.00 654.77 1.14
35 5925.20 5900.00 0.39 2231.87 1.41 11944.01 11906.81 0.27 2168.60 1.17
40 6122.37 6032.57 1.43 2204.34 1.48 12761.85 12664.45 0.72 2091.82 1.19
45 6340.41 6211.41 1.92 3384.74 1.55 13853.10 13749.70 0.74 3216.08 1.19
50 7360.30 6912.30 6.01 7208.66 1.61 15600.22 15222.22 2.41 7214.61 1.21

5

5 3945.022 3945.022 0.002 14.042 1.53 4800.061 4800.061 0.001 7.341 1.47
10 4499.59 4499.59 0.00 1.05 1.21 6307.64 6307.64 0.00 0.98 1.14
15 4621.44 4621.44 0.00 2.70 1.22 7042.45 7042.45 0.00 23.09 1.13
20 5595.59 5595.59 0.00 118.20 1.33 9013.70 9013.70 0.00 119.31 1.17
25 5931.37 5931.37 0.00 459.80 1.35 10442.64 10442.64 0.00 685.01 1.18
30 5761.32 5761.32 0.00 1331.81 1.38 11511.79 11511.79 0.00 1217.31 1.16
35 6378.60 6254.80 1.84 4594.13 1.47 12380.41 12272.61 0.81 4532.16 1.20
40 6479.57 6315.17 2.44 3212.39 1.52 13113.05 12943.85 1.21 3156.40 1.21
45 6733.13 6424.38 4.15 3827.34 1.59 14393.90 13992.10 2.73 4940.11 1.23
50 7988.79 7050.54 11.63 7207.57 1.69 16377.66 15489.66 5.36 7219.99 1.26

Avg 4929.67 4883.92 0.61 823.65 1.42 9640.09 9594.99 0.30 835.66 1.19
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Table 16: Average computational results for ALG(1) in instances with T = 3

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 1588.05 1588.05 0.00 0.02 1.27 2154.90 2154.90 0.00 0.02 1.11
10 2282.77 2282.77 0.00 0.04 1.24 4235.69 4235.69 0.00 0.08 1.16
15 2616.61 2616.61 0.00 0.29 1.24 5025.75 5025.75 0.00 0.34 1.11
20 3519.37 3519.37 0.00 2.28 1.39 6617.22 6617.22 0.00 2.49 1.11
25 3165.20 3165.20 0.00 13.73 1.12 7979.80 7979.80 0.00 6.42 1.09
30 4649.62 4649.62 0.00 24.05 1.51 10021.44 10021.44 0.00 12.22 1.14
35 3607.41 3607.41 0.00 31.43 1.12 9616.24 9616.04 0.00 21.87 1.04
40 4473.15 4473.15 0.00 21.30 1.29 10940.79 10940.79 0.00 29.24 1.08
45 4735.61 4735.61 0.00 15.14 1.32 12618.14 12618.14 0.00 15.68 1.13
50 5602.96 5602.96 0.00 39.94 1.39 13831.73 13831.61 0.00 16.75 1.12

2

5 1885.76 1885.76 0.00 0.16 1.21 2477.05 2477.05 0.00 0.28 1.10
10 2660.32 2660.32 0.00 1.06 1.15 4587.21 4587.21 0.00 0.74 1.11
15 2910.38 2910.38 0.00 1.51 1.18 5283.36 5283.34 0.00 1.25 1.08
20 3806.33 3806.33 0.00 13.51 1.29 6985.71 6985.71 0.00 13.38 1.10
25 3540.00 3540.00 0.00 146.96 1.10 8317.84 8317.84 0.00 28.43 1.08
30 4824.49 4824.49 0.00 53.56 1.43 10215.93 10215.71 0.00 55.95 1.12
35 3885.67 3885.67 0.00 116.67 1.10 9891.47 9891.47 0.00 127.62 1.04
40 4875.84 4875.84 0.00 989.98 1.30 11168.30 11168.30 0.00 92.70 1.08
45 4967.18 4967.18 0.00 248.65 1.29 12834.50 12834.50 0.00 170.65 1.13
50 5888.58 5888.52 0.00 1205.95 1.37 13592.97 13592.57 0.00 946.24 1.08

3

5 2076.43 2076.43 0.00 0.37 1.07 2707.44 2707.44 0.00 0.32 1.03
10 3092.34 3092.34 0.00 1.97 1.09 4956.22 4956.22 0.00 2.00 1.07
15 3110.29 3110.29 0.00 3.79 1.09 5694.09 5694.09 0.00 3.69 1.08
20 4120.06 4120.06 0.00 59.76 1.20 7365.80 7365.80 0.00 164.71 1.08
25 4175.21 4175.21 0.00 256.19 1.14 8679.61 8679.61 0.00 178.34 1.06
30 5025.18 5025.15 0.00 561.84 1.35 10255.76 10255.76 0.00 719.80 1.08
35 4311.99 4266.43 1.10 3113.45 1.10 10322.23 10275.34 0.44 3198.54 1.04
40 4940.32 4940.32 0.00 1565.69 1.26 11683.49 11683.49 0.00 314.22 1.10
45 5433.51 5433.51 0.00 1817.52 1.35 12906.78 12906.48 0.00 1682.95 1.12
50 6050.94 5369.03 11.76 5170.86 1.38 14606.55 13659.23 6.45 5694.30 1.15

4

5 2496.26 2496.26 0.00 0.45 1.12 3095.31 3095.31 0.00 0.40 1.06
10 3548.75 3548.75 0.00 4.58 1.06 5550.88 5550.88 0.00 4.54 1.08
15 3707.70 3707.70 0.00 11.53 1.11 6102.14 6102.14 0.00 9.89 1.06
20 4556.67 4556.67 0.00 197.45 1.16 7963.90 7963.74 0.00 138.64 1.08
25 4794.32 4794.32 0.00 1115.60 1.16 9256.64 9256.60 0.00 1278.21 1.07
30 5011.93 4927.87 1.78 2940.68 1.24 10516.04 10437.15 0.75 2921.00 1.08
35 5161.18 4988.47 3.07 5025.32 1.23 11051.42 10896.94 1.29 4916.36 1.09
40 5380.39 5253.55 2.29 3865.56 1.30 11978.09 11866.16 0.95 3885.67 1.12
45 5870.84 5558.53 4.64 4620.09 1.43 13236.59 12808.02 3.13 4504.44 1.14
50 7063.78 5769.92 17.62 7220.95 1.54 15577.98 14817.87 4.77 7227.50 1.21

5

5 2875.234 2875.234 0.004 0.344 1.12 3683.914 3683.914 0.004 0.634 1.13
10 4019.55 4019.55 0.00 7.95 1.08 5917.63 5917.63 0.00 6.65 1.07
15 4091.10 4091.10 0.00 22.73 1.08 6513.55 6513.48 0.00 31.27 1.05
20 5005.70 5005.70 0.00 441.20 1.19 8414.29 8414.29 0.00 542.83 1.09
25 5241.82 5176.67 1.20 3623.90 1.19 9754.73 9651.41 1.02 4112.64 1.10
30 5418.13 5299.94 2.11 3230.82 1.30 11149.71 11012.86 1.20 3148.35 1.12
35 6009.19 5607.52 6.46 5884.24 1.38 11682.70 11215.01 4.02 5873.17 1.14
40 6246.82 5815.58 6.48 5807.86 1.47 12622.07 12302.17 2.57 5419.94 1.16
45 5964.11 5121.02 12.44 5312.55 1.40 14073.25 13210.04 5.77 5503.47 1.20
50 10113.83 5856.94 32.64 7206.76 2.13 16422.59 14676.59 10.47 7211.43 1.26

Avg 4407.98 4231.31 2.07 1440.36 1.26 9042.75 8919.42 0.82 1404.76 1.10
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C Results for the alternative scenarios, T = 3

Tables 17 and 18 below present the results for the two alternative scenarios for
instances with three periods.
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Table 17: Average computational results for ALG(T−t),1 in instances with T = 3

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 1427.70 1427.70 0.00 0.03 1.14 2185.06 2185.06 0.00 8.01 1.13
10 1879.66 1879.66 0.00 0.09 1.02 3776.58 3776.58 0.00 0.26 1.03
15 2467.43 2467.43 0.00 0.31 1.16 4865.20 4865.20 0.00 0.39 1.07
20 3357.01 3357.01 0.00 6.14 1.32 6783.42 6783.42 0.00 5.69 1.14
25 3735.67 3735.67 0.00 16.57 1.32 8352.27 8352.27 0.00 58.11 1.14
30 3888.52 3888.52 0.00 521.18 1.26 9580.87 9580.67 0.00 374.87 1.09
35 4203.53 4203.53 0.00 513.06 1.30 10170.32 10170.27 0.00 424.50 1.10
40 4430.67 4429.20 0.04 1133.11 1.28 11069.09 11068.87 0.00 499.46 1.10
45 4613.54 4613.54 0.00 425.73 1.28 12136.62 12136.22 0.00 63.62 1.09
50 5064.00 5064.00 0.00 311.68 1.26 13125.23 13124.93 0.00 1000.42 1.06

2

5 1724.12 1724.12 0.00 0.15 1.10 2402.68 2402.68 0.00 0.24 1.07
10 2332.75 2332.75 0.00 1.16 1.01 4178.86 4178.86 0.00 0.80 1.01
15 2814.49 2814.49 0.00 2.20 1.14 5220.41 5220.41 0.00 2.00 1.07
20 3719.05 3719.05 0.00 16.39 1.26 7177.09 7177.09 0.00 16.41 1.13
25 4105.15 4105.15 0.00 46.37 1.28 8576.39 8576.39 0.00 48.15 1.11
30 4168.01 4168.01 0.00 346.16 1.24 9845.95 9845.90 0.00 572.69 1.08
35 4540.66 4540.66 0.00 797.96 1.29 10393.42 10393.31 0.00 777.41 1.09
40 4716.96 4716.96 0.00 846.93 1.26 11224.55 11224.44 0.00 495.53 1.08
45 4816.83 4816.83 0.00 571.09 1.25 12389.11 12388.95 0.00 907.80 1.09
50 5368.83 5351.37 0.33 2451.36 1.25 13567.91 13556.18 0.08 1922.47 1.08

3

5 2107.45 2107.45 0.00 0.36 1.09 2737.07 2737.07 0.00 0.37 1.05
10 2901.69 2901.69 0.00 2.30 1.03 4709.75 4709.75 0.00 2.65 1.02
15 3251.48 3251.48 0.00 4.93 1.14 5678.61 5678.61 0.00 5.30 1.07
20 4131.53 4131.53 0.00 45.99 1.20 7529.72 7529.72 0.00 54.54 1.10
25 4503.74 4503.74 0.00 262.34 1.23 9060.06 9060.01 0.00 276.75 1.11
30 4561.92 4561.92 0.00 1186.35 1.22 10192.28 10192.23 0.00 1617.88 1.08
35 4886.35 4886.35 0.00 1755.70 1.24 10948.81 10948.56 0.00 2070.61 1.10
40 4908.79 4908.79 0.00 1603.05 1.25 11520.65 11520.48 0.00 1597.46 1.09
45 5171.95 5171.95 0.00 2376.36 1.28 12784.03 12782.33 0.01 3131.40 1.11
50 5987.01 5970.26 0.27 5836.34 1.37 14139.69 14100.19 0.27 5620.61 1.11

4

5 2319.48 2319.48 0.00 0.97 1.04 3009.05 3009.05 0.00 0.55 1.03
10 3469.62 3469.62 0.00 4.44 1.04 5340.74 5340.74 0.00 3.79 1.04
15 3671.21 3671.21 0.00 10.84 1.10 6080.85 6080.85 0.00 9.92 1.05
20 4597.57 4597.57 0.00 170.38 1.17 8101.19 8101.19 0.00 227.90 1.10
25 4827.60 4827.60 0.00 836.88 1.17 9397.98 9397.98 0.00 1195.73 1.09
30 4820.48 4820.48 0.00 1674.33 1.19 10661.76 10661.71 0.00 1619.28 1.09
35 5250.78 5250.78 0.00 3865.03 1.25 11493.19 11493.04 0.00 3534.44 1.13
40 5380.68 5380.68 0.00 3495.02 1.30 11970.01 11969.85 0.00 3536.62 1.12
45 5703.16 5703.16 0.00 3528.14 1.39 13285.80 13280.45 0.04 3538.40 1.14
50 6659.10 6598.94 0.88 6403.78 1.45 15315.92 15266.09 0.31 6504.98 1.19

5

5 2766.064 2766.064 0.004 0.474 1.07 3472.474 3472.474 0.004 0.574 1.07
10 3919.90 3919.90 0.00 6.90 1.05 5803.46 5803.46 0.00 6.34 1.05
15 4104.04 4104.04 0.00 24.67 1.08 6552.89 6552.89 0.00 20.63 1.05
20 5071.41 5071.41 0.00 446.34 1.20 8443.55 8443.55 0.00 300.91 1.09
25 5406.25 5406.25 0.00 1915.85 1.23 9869.36 9869.36 0.00 2455.05 1.12
30 5196.76 5196.76 0.00 2912.08 1.24 10922.34 10922.29 0.00 2771.31 1.10
35 5864.49 5864.49 0.00 4465.69 1.35 11815.68 11815.58 0.00 4379.71 1.15
40 5822.84 5820.16 0.04 4316.86 1.37 12392.71 12386.26 0.05 4350.27 1.14
45 6132.07 6124.12 0.11 4355.40 1.44 13604.48 13604.27 0.00 3822.40 1.16
50 7557.44 7509.56 0.63 6324.52 1.60 15955.38 15883.79 0.44 6667.13 1.23

Avg 4286.55 4283.46 0.05 1316.80 1.22 8996.21 8992.43 0.02 1330.05 1.09
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Table 18: Average computational results for ALG(T−t),2 in instance with T = 3

K |V ′| Low Cost High Cost
UB LB Gap (%) Time (s) Z UB LB Gap (%) Time (s) Z

1

5 1723.13 1723.13 0.00 0.19 1.38 2408.96 2408.96 0.00 0.15 1.24
10 2784.19 2784.19 0.00 0.05 1.51 4590.66 4590.66 0.00 0.14 1.26
15 3218.58 3218.58 0.00 0.09 1.52 5643.90 5643.90 0.00 0.11 1.24
20 4033.99 4033.99 0.00 0.78 1.59 7453.06 7453.06 0.00 0.61 1.25
25 4414.18 4414.18 0.00 3.07 1.56 8923.29 8923.29 0.00 3.07 1.22
30 4645.53 4645.53 0.00 4.32 1.51 10396.41 10396.41 0.00 3.80 1.18
35 4997.75 4997.75 0.00 3.57 1.55 11015.82 11015.82 0.00 2.86 1.19
40 5391.38 5391.38 0.00 105.02 1.56 12022.16 12021.96 0.00 92.76 1.19
45 5549.03 5549.03 0.00 6.64 1.54 13067.08 13067.08 0.00 6.47 1.18
50 6101.36 6101.36 0.00 16.41 1.52 14348.22 14348.22 0.00 19.32 1.16

2

5 1832.04 1832.04 0.00 0.04 1.17 2515.72 2515.72 0.00 0.03 1.12
10 3030.79 3030.79 0.00 0.27 1.31 4841.06 4841.06 0.00 0.27 1.17
15 3419.38 3419.38 0.00 0.68 1.39 5844.70 5844.70 0.00 0.66 1.20
20 4249.79 4249.79 0.00 3.07 1.44 7668.86 7668.86 0.00 3.52 1.20
25 4668.38 4668.38 0.00 11.64 1.46 9177.49 9177.49 0.00 9.16 1.19
30 4783.93 4783.93 0.00 23.57 1.42 10534.81 10534.81 0.00 18.21 1.16
35 5226.35 5226.35 0.00 31.91 1.49 11244.42 11244.42 0.00 24.23 1.18
40 5531.18 5531.18 0.00 533.31 1.48 12161.96 12161.96 0.00 573.67 1.17
45 5718.83 5718.83 0.00 38.56 1.48 13236.88 13236.88 0.00 46.46 1.17
50 6370.61 6370.61 0.00 598.29 1.48 14617.47 14617.47 0.00 368.68 1.16

3

5 2277.34 2277.34 0.00 0.06 1.18 2961.04 2961.04 0.00 0.04 1.13
10 3515.79 3515.79 0.00 0.63 1.24 5322.26 5322.26 0.00 0.58 1.15
15 3754.38 3754.38 0.00 1.71 1.31 6179.70 6179.70 0.00 1.51 1.17
20 4584.79 4584.79 0.00 17.16 1.34 8003.86 8003.86 0.00 14.02 1.17
25 4929.78 4929.78 0.00 90.26 1.35 9438.89 9438.89 0.00 102.10 1.15
30 5067.13 5067.13 0.00 146.44 1.36 10818.01 10818.01 0.00 168.37 1.14
35 5450.95 5450.95 0.00 863.93 1.39 11469.02 11469.02 0.00 589.99 1.16
40 5770.78 5770.78 0.00 787.95 1.47 12401.56 12401.56 0.00 751.05 1.17
45 5936.63 5936.63 0.00 461.77 1.47 13454.68 13454.68 0.00 1396.80 1.17
50 6675.61 6624.11 0.75 2224.82 1.52 14901.97 14845.97 0.38 2426.90 1.17

4

5 2547.71 2547.71 0.00 9.11 1.14 3228.81 3228.81 0.00 7.76 1.11
10 3975.39 3975.39 0.00 1.04 1.19 5784.55 5784.55 0.00 1.04 1.12
15 4144.58 4144.58 0.00 3.18 1.24 6569.90 6569.90 0.00 3.19 1.14
20 5102.19 5102.19 0.00 37.73 1.30 8521.26 8521.26 0.00 35.68 1.15
25 5487.98 5487.98 0.00 491.87 1.33 9997.09 9996.89 0.00 535.75 1.16
30 5321.73 5321.73 0.00 501.40 1.32 11072.61 11072.61 0.00 430.99 1.14
35 5884.55 5856.95 0.42 1818.03 1.41 11902.62 11875.62 0.19 1824.29 1.17
40 6126.98 6038.38 1.40 2301.38 1.48 12756.56 12674.16 0.61 2499.23 1.19
45 6203.75 6159.42 0.67 2485.99 1.51 13845.54 13741.88 0.74 2193.24 1.19
50 7377.79 6796.29 7.64 7215.02 1.61 15712.19 15187.94 3.33 7216.54 1.22

5

5 2818.744 2818.744 0.004 0.694 1.09 3523.953 3523.953 0.003 0.053 1.08
10 4470.19 4470.19 0.00 1.03 1.20 6266.52 6266.52 0.00 0.97 1.13
15 4578.98 4578.98 0.00 3.80 1.21 7004.30 7004.30 0.00 3.63 1.13
20 5530.39 5530.39 0.00 55.62 1.31 8949.46 8949.46 0.00 53.27 1.16
25 5936.58 5936.58 0.00 1033.03 1.35 10445.69 10445.69 0.00 925.03 1.18
30 5766.33 5766.33 0.00 1056.66 1.38 11517.21 11517.01 0.00 975.06 1.16
35 6285.75 6205.75 1.16 4551.14 1.45 12307.02 12223.02 0.60 4353.86 1.20
40 6519.78 6302.18 3.18 4405.37 1.53 12871.99 12833.24 0.29 3669.98 1.18
45 6820.23 6483.23 4.64 4444.54 1.61 14364.08 14008.28 2.43 4370.46 1.22
50 8364.86 7401.61 11.41 7200.71 1.77 16526.34 15570.94 5.71 7194.78 1.27

Avg 4898.36 4850.53 0.63 871.87 1.41 9596.63 9552.07 0.29 858.41 1.17
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