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1 Introduction

Multicommodity Capacitated Fixed-charge Network Design ((MCND, Crainic et al., 2021a)
models are used to address many important planning problems in a variety of applica-
tions, including transportation, logistics, and telecommunications (e.g., Magnanti and
Wong, 1984; Crainic, 2000; Crainic et al., 2021c). MCND models formulate the require-
ment to design a network, i.e., select among a set of potential arcs a subset of arcs, and
associated capacity, to satisfy, at minimum total cost, the demand for transportation of
a set of commodities between their respective origin-destination node pairs. Selecting
an arc incurs a so-called fixed cost, while a unit transportation cost is associated to each
commodity and arc. The goal is thus to find an optimal design that minimizes the sum
of the fixed and transportation costs.

Uncertainty often characterizes the problems addressed. Demand, the volume of each
commodity in particular, generally involves a certain level of uncertainty in network
design problems. Notably, strategic and tactical planning for complex systems such
as the ones mentioned above, yield plans defining the structure of the system or the
service, respectively, which are then used repeatedly over medium to long periods of
time. Some form of forecast then needs to be built to represent the future demand and
its variation when the plan is built and the network is designed. Yet, it is well known that
solving a deterministic model using single-point estimates of the uncertain parameters,
may yield arbitrarily bad solutions (Wallace, 2000; Higle and Wallace, 2003). Models
explicitly accounting for uncertainty are then recommended. Stochastic programming
and, in particular, two-stage formulations of the MCND with stochastic demand, SMCND
in the following, has become the methodology of choice to account for demand uncertainty
when building such plans. This a-priori optimization approach (Birge and Louveaux,
2011)) mimics the planning decision process, the first stage design decisions being made
prior to the realization of demand, while the second stage decides on the best utilization
of the first-stage design (possibly, adjusted marginally) to satisfy the revealed demand.
The goal is thus to design a network that remains feasible and cost effective when different
demand realizations are encountered.

Demand uncertainty is very often represented through a finite set of discrete scenarios,
suitably generated to collectively approximate the uncertainty present in the problem
setting, and their associated probabilities. For network design, the design arcs are selected
in the first stage, while flow-distribution decisions for each scenario belong to the second
stage, resulting in a mixed integer formulation with an objective function minimizing
the sum of the fixed costs of the selected design arcs and the expectation of the cost of
the flow distribution computed over the scenarios considered. This formulation is quite
difficult to address using exact methods as, on the one hand, the MCND is a difficult
combinatorial problem even when uncertainty is not considered and, on the other hand,
using scenarios to model uncertainty yields a large-scale model. Heuristic approaches are
thus attractive to produce good-quality solutions within reasonable computing efforts.
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The previously proposed methods for stochastic MCND problems have shown great
promise in terms of their ability to successfully address the models, but they also have
their own limits (e.g., their computational scalability, when they are used to address
instances that involve a larger number of scenarios). This is specifically the case for the
progressive hedging-based methods, initially proposed by Rockafellar and Wets (1991),
which traditionally apply scenario decomposition to separate the stochastic MCND mod-
els into a series of single scenario subproblems. The main advantage of these approaches
is that each of the obtained subproblems can then be more efficiently addressed (i.e., pos-
sibly leveraging algorithms that were proposed for the deterministic MCND variants).
However, considering that each subproblem may produce a solution that is tailored to the
specific scenario involved, there might be a large number of discrepancies between the so-
lutions of all the scenario subproblems. The stochastic model seeks to find a compromise
(i.e., a single consensus solution) that is efficient with respect to the expected cost func-
tion. Thus, a progressive and gradual search for such a consensus solution is applied by
these methods, i.e., a search process that does not force agreement too early and seeks to
identify the solution characteristics that properly hedge against the random changes that
may affect the values of the stochastic parameters. When a large number of scenarios
are involved and there are large discrepancies in the scenario solutions at the beginning
of the solution process, the search for consensus might require a significant amount of
effort (thus defining a computational bottleneck for the solution method). Therefore, in
the present paper, we propose a series of novel strategies to efficiently apply progressive
hedging for stochastic network design models that involve a large scenario set.

We thus propose the Integrated Learning and Progressive Hedging (ILPH ) solu-
tion method, a new PH-based matheuristic, which is able to handle large scale in-
stances of stochastic network design problems efficiently. ILPH integrates a general-
ized Learn&Optimize matheuristic (Sarayloo et al., 2021a), which addresses efficiently
multi-scenario network design problems, producing rapidly high-quality solutions. The
Learn&Optimize procedure provides ILPH with learning capabilities regarding promis-
ing design variables gathered during the search paths taken to find high-value solutions
to each multi-scenario subproblem. Moreover, we introduce a new reference point in
the aggregation step of the proposed ILPH by exploiting the information garnered from
subproblems, and using this information to update the PH parameters. This contrasts
with the traditional reference-point definition which is based exclusively on the subprob-
lem designs available at each iteration, ignoring all possible information on the evolution
of the subproblem designs. Consequently, the ILPH is governed and guided by the lo-
cal information provided by the learning procedure, resulting in an integrated approach
that accelerates the search for network characteristics that better hedge against the ran-
dom demand changes and is thus capable of handling both larger and more challenging
instances to address.

Extensive computational experiments show the efficiency of these methodological con-
tributions, the proposed ILPH matheuristic producing a more efficient overall consensus
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search, both in terms of overall solution quality and total computational effort, compared
to the literature. They thus indicate that ILPH should be the method of choice when
high-quality solutions to large instances of stochastic network problems need to be found
quickly.

The rest of the paper is organized as follows. We recall the two-stage formulation
for the stochastic network design problem in Section 2. We briefly review some relevant
literature in Section 3. We then introduce the main ideas and a detailed description of
our solution methodology in Section 4. Finally, we present and analyze the experimental
results in Section 5 and provide concluding remarks in Section 6.

2 SMCND Formulation

We briefly recall the two-stage stochastic formulation of the MCND with uncertain de-
mand, where the first-stage decisions concern the network configuration selecting the
design arcs, while the commodity flows are determined at the second stage, given the
first-stage design and the realized random demands. Uncertainty is modeled through a
set of scenarios. The formulation, detailed in Crainic et al. (2011), minimizes the sum
of the total cost of designing the network and the expected cost of servicing the possible
demand expressed through the considered scenarios. The following notation is used:

• N : Set of nodes i ∈ |N |.

• N+(i): Outward neighbors of node i (i.e., {j : (i, j) ∈ A)).

• N−(i): Inward neighbors of node i (i.e., {j : (j, i) ∈ A)).

• A: Set of potential arcs (i, j) ∈ A.

• fij: Fixed cost of arc (i, j) ∈ A if included in the final design.

• uij: Capacity on arc (i, j) ∈ A.

• K: Set of commodities k ∈ K with origin and destination nodes o(k), s(k).

• ckij: Unit routing cost for commodity k ∈ K on arc (i, j) ∈ A.

• S: Set of scenarios s ∈ S with probabilities p1, . . . , p|S|.

• dksi : Volume of commodity k ∈ K at node i ∈ A in scenario s ∈ S.

• yij: Binary design variable, equal to 1 if arc (i, j) ∈ A is included in the network
at the first stage.
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• xks
ij : Continuous flow variable representing the amount of commodity k on arc

(i, j) ∈ A in scenario s ∈ S.

The SMCND formulation becomes

Minimize
∑

(i,j)∈A

fijyij +
∑
s∈S

ps
∑
k∈K

∑
(i,j)∈A

cijx
ks
ij (1)

Subject to
∑

j∈N+(i)

xks
ij −

∑
j∈N−(i)

xks
ji = dksi , ∀i ∈ N , ∀k ∈ K, ∀s ∈ S, (2)

∑
k∈K

xks
ij ≤ uijyij, ∀(i, j) ∈ A, ∀s ∈ S, (3)

yij ∈ {0, 1}, ∀(i, j) ∈ A, (4)

xks
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, ∀s ∈ S. (5)

The objective function (1) minimizes the total system cost, i.e., the sum of the fixed
cost of the selected design arcs and the expectation of the routing costs taken over all
the demand scenarios. Constraints (2) represent the flow conservation equations in each
scenario, requiring that the volume dks of demand k in scenario s be moved from its
origin (dksi = dks, for i = o(k)) to its destination (dksi = −dks, for i = s(k)) and dksi = 0
for all other nodes, ∀i ∈ N such that i /∈ o(k) and i /∈ s(k). Constraints (3) enforce
the linking relation between design and utilization, restricting flows to the capacity of
selected arcs only. Notice that the definition of a single design decision variable y together
with constraints (3) guarantee the respect of the non-anticipativity conditions requiring
a single design network for all considered demand realization (design decisions must not
be tailored to the observed demands of particular scenarios). Constraints (4) - (5) impose
integrality and non-negativity restrictions on decision variables.

The SMCND model (1)-(5) is a large-scale mixed integer program with a block-
diagonal structure, each block being defined by constraints (2) - (3). We present the
solution method we propose following a brief literature review.

3 Literature review

When surveying the literature, one finds a limited number of methodologies to address
stochastic network design problems. As mentioned earlier, when a finite set of sce-
narios is used to estimate the stochastic parameters (see Dupačová et al. (2000) and
King and Wallace (2012) for an overview on scenario generation methods), a stochastic
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program can be formulated as an equivalent (multi-scenario) deterministic model. Con-
sidering the large scale of the resulting model, taking advantage of the structure through
decomposition-based approaches is especially beneficial and is the focus of much of the
algorithmic work in this area. The goal of decomposition-based approaches is to divide
the complex problem into subproblems to be able to address them more efficiently. In
the case of stochastic programs, such decomposition strategies can be categorized into
two types. The first type decomposes the problem via decisional stages while the second
type decomposes by scenarios. The former category (referred to as the L-shape method
introduced in Van Slyke and Wets (1969)) is a cutting-plane method that is based on
the application of Benders decomposition to the equivalent (multi-scenario) deterministic
model. Detailed reviews on this type of decomposition approach for stochastic MCND
may be found in Rahmaniani et al. (2017, 2018); Hewitt et al. (2021); Crainic et al.
(2021b).

In the second category of decomposition strategies, referred to as scenario decom-
position, the original problem is decomposed by scenarios by applying an augmented
Lagrange relaxation strategy to the non-anticipativity constraints (i.e., the constraints
ensuring that a single design is used under all considered scenarios). Once the problem is
decomposed, each scenario becomes a deterministic problem (i.e., a single-scenario sub-
problem (SSP) defined for each scenario). The resulting scenario subproblems can then be
used in various ways when solving stochastic network design problems. First, they enable
a general lower bound to be obtained for the stochastic model by solving the Lagrange
dual, as proposed in Schütz et al. (2009). In turn, such lower bounds can be applied to
design exact solution methods for stochastic network design models, e.g., Escudero et al.
(2012) and Alonso-Ayuso et al. (2003). Furthermore, considering that each subproblem
takes the form of scenario-specific deterministic model, this decomposition approach also
enables heuristics to be defined that leverage existing solution methods for determinis-
tic network design models, e.g., the progressive hedging-based metaheuristics developed
by Crainic et al. (2011). However, in the follow up study of Crainic et al. (2014), it
was shown that defining the subproblems using multiple scenarios (i.e., multi-scenario
subproblems (MSSP)) clearly improved the computational performance of this type of
progressive hedging-based solution method. When applying progressive hedging-based
methods, one thus may leverage efficient metaheuristics that are available for determin-
istic network design models (in the case of single scenario-specific subproblems), or, for
SMCND models to address the subproblems (in the case of MSSP).

Although the literature on efficient metaheuristic methods proposed for deterministic
MCND problems is very rich (e.g., (e.g., Crainic et al., 2000; Ghamlouche et al., 2003,
2004; Hewitt et al., 2010; Crainic and Gendreau, 2021), there are only limited contri-
butions on efficient heuristic methods for solving the SMCND problem. For example,
Sarayloo et al. (2021a) proposed a learning based matheuristic approach where the main
novelty is a learning heuristic able to effectively identify structures of good-quality solu-
tions when the scenarios and their influences on design decisions are gradually considered.
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The proposed matheuristic produces information on promising design variables related
to the considered scenarios. As previously stated, we believe that this can be efficiently
used in the PH algorithm to gather more refined and useful information regarding the
solutions to the subproblems that will improve the search for a good overall solution to
the SMCND.

Exploiting common solution structures that exist between deterministic and stochas-
tic solutions is another feature that may be employed in the solution methods based on
scenario decomposition. Due to the high complexity and difficulty of stochastic network
design problems, a number of attempts in the literature on stochastic network design
have been devoted to investigate how the solution to the deterministic model relates to
the stochastic counterpart. It has been shown that, despite the fact that often times so-
lutions to deterministic models behave badly in stochastic settings (Wallace, 2000; Higle
and Wallace, 2003), there are situations where the deterministic solutions share some
properties with the corresponding stochastic solutions (Lium et al., 2009; Thapalia et al.,
2011, 2012; Crainic et al., 2018). In these studies, the authors show that the deterministic
solutions carry useful information (i.e., some structural patterns) which can be extracted
to simplify the stochastic case. Following this insight, Sarayloo et al. (2021b) proposed
a number of strategies to extract reduced cost information from good quality solutions
to be used as a guide to fix the variables in the SMCND problems.

Revisiting the PH algorithm, as previously stated, the algorithm enables available
solution methods for the deterministic MCND to be directly applied to address the
stochastic version of the problem. There are a number of challenges to applying the PH
idea to the SMCND. First, the size of the problem and the number of iterations needed
to reach consensus grow with the number of scenarios, while addressing each subproblem
means tackling a difficult MCND problem. As shown by Crainic et al. (2014), the number
of iterations can be reduced by grouping scenarios to build multi-scenario subproblems.
This has the benefit of forcing a level of local consensus, but makes the subproblems
harder to address. Second, the traditional reference-point definition is based exclusively
on the subproblem designs available at each iteration, ignoring all possible information
on the evolution of the subproblem designs. Therefore, in the next section, we propose an
integrated progressive hedging solution method which is able to 1) quickly produce high
quality solutions for multi-scenario subproblems and 2) extract more refined information
from the subproblems and produce a novel reference point leading to a more efficient
overall consensus search.

4 Solution methodology

We propose a matheuristic that combines and enhances the Lagrangian-based multi-
scenario decomposition strategy of progressive hedging and the information extraction
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and learning capabilities of Learn&Optimize. We cast the SMCNDmodel (1)-(5) in a form
suitable for multi-scenario decomposition and provide the outline of the proposed ILPH
method in Section 4.1. Sections 4.2 and 4.3 describe the methodological developments
and strategies proposed for each step of ILPH. The former describes the Learn&Optimize
matheuristic generalized to address multi-scenario subproblems and gather relevant infor-
mation while doing so. We then explain, in Section 4.3, how we exploit that information
to compute a new reference point and update the Lagrange multipliers and penalties
modifying the fixed costs used in the subproblems and, thus, guiding the search toward
consensus. We provide the detailed pseudocode of ILPH in Section 4.4.

4.1 Outline of the proposed ILPH

Let {C1, . . . , C|G|} be a partition of the scenario set S, where G is the set of group indices
and each group Cg ⊂ S, ∀g ∈ G. Let pg =

∑
s∈Cg

ps. Then, in order to apply the PH
idea, we make explicit the non-anticipativity restrictions. Define the first-stage variables
ygij for each scenario group Cg, ∀g ∈ G. Let ȳij be the reference point standing for the
design decision that is feasible in all scenarios and is the goal of the formulation:

Minimize
∑
g∈G

pg
( ∑
(i,j)∈A

fijy
g
ij +

∑
s∈Cg

ps

pg

∑
k∈K

∑
(i,j)∈A

ckijx
ks
ij

)
(6)

Subject to
∑

j∈N+(i)

xks
ij −

∑
j∈N−(i)

xks
ji = dksi , ∀i ∈ N , ∀k ∈ K,∀s ∈ Cg,∀g ∈ G, (7)

∑
k∈K

xks
ij ≤ uijy

g
ij, ∀(i, j) ∈ A,∀s ∈ Cg,∀g ∈ G, (8)

ygij = ȳij, ∀(i, j) ∈ A, ∀g ∈ G, (9)

ygij ∈ {0, 1}, ∀(i, j) ∈ A, ∀g ∈ G, (10)

xks
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K,∀s ∈ Cg,∀g ∈ G, (11)

where the non-anticipativity constraints (9) guarantee that design decisions are not tai-
lored for each particular scenario and aim to yield a single implementable design. The
augmented Lagrangian-relaxation of these constraints then yields the objective function

Minimize
∑
g∈G

pg

 ∑
(i,j)∈A

fijy
g
ij+

∑
s∈Cg

ps

pg

∑
k∈K

∑
(i,j)∈A

ckijx
ks
ij

+
∑

(i,j)∈A

λg
ij(y

g
ij − ȳij) +

ρ

2
(ygij − ȳij)

2

 , (12)

where the Lagrange multipliers λg
ij, ∀(i, j) ∈ A, ∀g ∈ G, are associated with the relaxed

constraints (9) and ρ is a penalty ratio. Given the binary requirements for the design
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variables, after rearranging the terms, the function may be reformulated as

Minimize
∑
g∈G

pg

 ∑
(i,j)∈A

(fij + λg
ij − ρȳij +

ρ

2
)ygij +

∑
s∈Cg

ps

pg

∑
k∈K

∑
(i,j)∈A

ckijx
ks
ij


−

∑
(i,j)∈A

λg
ij ȳij +

∑
(i,j)∈A

ρ

2
ȳij (13)

Model (13), ((7)-(11)) decomposes along the scenario groups when the overall design
is fixed to the reference point. One thus obtains a series of subproblems, each taking the
form of a SMCND problem formulated using the scenarios of the corresponding group
g ∈ G with fixed costs defined as fij + λg

ij − ρȳij +
ρ
2
, ∀(i, j) ∈ A. The subproblem SP g

associated to group g ∈ G can then be expressed as:

SP g : Minimize
∑

(i,j)∈A

(
fij + λg

ij − ρȳij +
ρ

2

)
ygij +

∑
s∈Cg

ps

pg

∑
k∈K

∑
(i,j)∈A

ckijx
ks
ij (14)

Subject to
∑

j∈N+(i)

xks
ij −

∑
j∈N−(i)

xks
ji = dksi , ∀i ∈ N , ∀k ∈ K, ∀s ∈ Cg, (15)

∑
k∈K

xks
ij ≤ uijyij, ∀(i, j) ∈ A, ∀s ∈ Cg, (16)

ygij ∈ {0, 1}, ∀(i, j) ∈ A, (17)

xks
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, ∀s ∈ Cg. (18)

In the following we first describe the general steps of the PH algorithm applied on the
SMCND with single scenario subproblems and then discuss the outline of our proposed
method (with multi-scenario subproblems). As originally introduced in Rockafellar and
Wets (1991), the PH solution method first decomposes the stochastic problem by scenar-
ios by applying an augmented Lagrange relaxation strategy. When applied to stochastic
network design, this enables the problem to be separated into a series of subproblems,
each defined as a deterministic network design model using a specific scenario (Crainic
et al. (2011)). A solution to the original stochastic model can then be obtained through
an iterative process that applies the following three algorithmic steps: 1) Each scenario
subproblem is solved separately, thus producing a specific (and possibly different) net-
work. 2) A reference point, indicating the level of consensus among the subproblem
solutions is obtained by calculating the weighted average overall scenario networks. 3)
The subproblem formulations are then adjusted to promote solution consensus with re-
spect to the current reference point. This is specifically done by adjusting, for each
scenario subproblem, the values of the fixed cost associated with the arcs to penalize
the differences that are present between the current scenario networks and the reference
point.
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There are a number of challenges to apply the PH approach to solve the SMCND.
Among these challenges there is the process to reach consensus that may require a large
number of iterations, where a series of hard deterministic combinatorial optimization
problems need to be solved each time. As shown by Crainic et al. (2014), the number of
iterations can be reduced by grouping the scenarios in the subproblems, thus forcing a
level of local consensus (i.e., obtained within each subproblem). However, this is done at
the expense of producing multi-scenario subproblems, which are even more challenging to
address. To meet this general challenge, our proposed ILPH method applies an efficient
solution method that is able to quickly produce high-quality solutions for multi-scenario
network design models at the subproblem level.

Furthermore, in the original PH method, the reference point is obtained by calculat-
ing the weighted average overall subproblem networks. By proceeding in this way, one
effectively ignores all information that is gathered in the process of solving the subprob-
lems. We are of the opinion that this is an important shortcoming of the PH method
when it is applied to stochastic combinatorial optimization problems. Specifically, when
multi-scenario subproblems are considered, there may be important information obtained
during the search paths that are taken to find high-value solutions for the subproblems
that may be helpful in searching for a good consensus. We therefore propose a novel
reference point definition which leverages subproblem information regarding promising
design variables by exploiting efficient learning mechanisms.

Algorithm 1 displays the outline of our proposed ILPH method. We generalize the
Learn&Optimize matheuristic (Sarayloo et al., 2021a) and use it as an efficient method to
address the multi-scenario subproblems at each iteration of the PH search (Line 4). We
exploit the knowledge learned through the Learn&Optimize procedure in computing the
new value of the reference point (Line 5) and in updating the penalties used to modify
the fixed costs in the subproblems (Line 6). We thus integrate the new information
learned while working on the subproblem formulations to the progressive-hedging search
strategy, for increased efficiency. This integrated methodology is our main contribution
in this paper. Given the fact that the PH algorithm applied to integer problems does
generally not converge to a single solution, the proposed matheuristic proceeds to the
second phase when a consensus solution is not obtained once the stopping criterion is
met. Phase II (Line 9) follows the general canvas of the literature (Crainic et al., 2011):
1) identify a set of design variables for which the level of consensus is sufficiently high; 2)
Fix the values of these variables in the original stochastic model; 3) address the resulting
restricted formulation using a commercial MIP solver.
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Algorithm 1 The outline of the proposed ILPH

1: Initialization
2: Phase I - Multi-scenario PH Search
3: while Stopping criteria not met do
4: Solve heuristically the multi-scenario subproblems ▷ Section 4.2
5: Aggregation - Compute new reference point ▷ Section 4.3
6: Penalty update ▷ Section 4.3
7: end while
8: Phase II - Fix and Solve
9: Fix the design variables for which consensus is obtained and solve the restricted

problem

4.2 Addressing subproblems with the Learn&Optimize matheuris-
tic

One of the most challenging parts of the PH algorithm is addressing the multi-scenario
stochastic network design problem SP ν

g : (14)-(18) defining the subproblems at iteration
ν. As defined, the subproblems appear as large-scaled integer programs, which are hard
to solve to optimality. This being said, as evidenced by Kall and Wallace (1994), we may
not need to obtain optimal solutions to the subproblems. Heuristics may find satisfac-
tory subproblem solutions that produce an efficient search process for the PH algorithm
(Løkketangen and Woodruff, 1996).

We generalize the Learn&Optimize procedure (Sarayloo et al., 2021a) to address the
subproblems of the PH algorithm. The Learn&Optimize provides a novel systematic
learning mechanism capable of identifying what are the efficient solution structures for
the overall stochastic problem by analyzing the solutions obtained for subproblems. In
the context of network design, this information takes the form of design decisions that are
common to high-quality (i.e., optimal or near-optimal) solutions obtained by gradually
considering scenarios and their interactions. Two important motivations made us apply
the Learn&Optimize in this PH-base matheuristic. First, it provides an efficient heuristic
to address the subproblems. Second, we aim to exploit the knowledge learned through
the Learn&Optimize procedure in the aggregation step of the PH algorithm to further
improve its performance. Towards this end, we inject the local information regarding
what network characteristics (i.e., arcs to either include or exclude) work “best” for each
multi-scenario subproblem that is gathered by Learn&Optimize method into the overall
PH search procedure.

The Learn&Optimize procedure iteratively executes a learning step, to learn and build
statistics on solution characteristics. The learning mechanism embedded in this method
gradually builds an image of design variables that potentially belong to good solutions
for the original stochastic formulation. The results of this learning mechanism are then
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used to guide the overall search toward higher-quality solutions. Sections 4.2.1 and 4.2.2
provide the full description of the generalized Learn&Optimize procedure.

4.2.1 Learning step

The authors introduce two main concepts in the Learn&Optimize procedure, the Artificial
Demand Scenario (ADS ), which is defined as a particular combination of two scenarios,
and the Artificial Recourse Problem (ARP), which is a network flow problem (Sarayloo
et al., 2021a). The main idea behind the ARP is to send the commodity flows associated
with the demand vector of ADS, on a given design, and identify the required corrective
actions, taking the form of extra arcs, that are needed to satisfy ADS demands. One
then learns by iteratively defining ADSs, solving the associated ARPs (which constitutes
the core of our learning mechanism), and gradually building an image of design variables
that potentially belong to good solutions for the stochastic formulation. The results of
this learning mechanism are then used to guide the overall search towards higher quality
solutions.

Considering the fact that our goal is to apply the heuristic procedure repeatedly to
the subproblems of the PH algorithm which contain multiple scenarios, we generalize
the idea of ADS and propose a generalized Learn&Optimize. To do so, we introduce
Group-based Artificial Demand Scenario, Gb-ADS, with the associated ARP.

A Group-based Artificial Demand Scenario Gb-ADS δg, g ∈ G, given the scenarios in
group g, {sg1, . . . , s

g
|g|}, is defined as

δg =


δg1(s

g
1, . . . , s

g
|g|)

δg2(s
g
1, . . . , s

g
|g|)

δg3(s
g
1, . . . , s

g
|g|)

...
δg|K|(s

g
1, . . . , s

g
|g|)

 , such that

δgk(s
g
1, . . . , s

g
|g|) =dk(s

g
1) ∨ dk(s

g
2) ∨ . . . , dk(s

g
i ), . . . ,∨dk(s

g
|g|), ∀k ∈ K.

Let ∆g be a set of Gb-ADSs, δg, generated for group g containing the scenarios
Cg = {sg1, . . . , s

g
|g|}. We use algorithm 2 to construct the set ∆g of cardinality N∆g ,

through the random selection of the demand values of the scenarios in Cg. In other
words, we randomly select si ∈ Cg, copy its demand value associated to commodity k,
dk(si), and let δgk ← dk(si) (Lines 2-4). The procedure stops when it builds N∆g Gb-ADSs
(Line 6).

Following Sarayloo et al. (2021a), we aim to explore the solution characteristics as-
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Algorithm 2 Construct ∆g

1: repeat
2: for all k ∈ K do
3: Randomly choose si ∈ Cg and let δgk ← dk(si)
4: end for
5: Let ∆g ← δg

⋃
∆g

6: until |∆g| = N∆g

7: Return ∆g

sociated to each Gb-ADS, δg ∈ ∆g, to extract information regarding promising de-
sign variables. The exploration is performed by solving an Artificial Recourse Problem,
ARP (δg, ŷ), for each artificial demand scenario δg ∈ ∆g considering a given design ŷ.

To define ARP g(δ
g, ŷ), we separate the set of arcs A according to ŷ. Then, A =

A0 ∪ A1, where A0 = {(i, j)|(i, j) ∈ A, ŷij = 0} and A1 = {(i, j)|(i, j) ∈ A, ŷij = 1} are
the sets of closed and open arcs in ŷ, respectively. By considering that the fixed cost f ν

ij

is updated at each iteration of the PH algorithm, we then define a modified arc variable
cost c̄ij by linearizing the fixed cost of the closed arcs

c̄ij =

{
cij +

fν
ij

uij
, ∀(i, j) ∈ A0,

cij, ∀(i, j) ∈ A1,
(19)

and solve the ARP g(δ
g, ŷ), which is defined as a multi-commodity network flow problem

ARP g(δ
g, ŷ) : Minimize

∑
k∈K

∑
(i,j)∈A

c̄ijx
k
ij (20)

Subject to
∑

j∈N+(i)

xk
ij −

∑
j∈N−(i)

xk
ji = δigk , ∀i ∈ N , ∀k ∈ K, (21)

∑
k∈K

xk
ij ≤ uij, ∀(i, j) ∈ A, (22)

xk
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K. (23)

SolvingARP g(δ
g, ŷ) yields xij(δ

g) =
∑

k∈K xk
ij,∀(i, j) ∈ A, withAδg = {(i, j)|xij(δ

g) >
0}. We then define a corresponding design solution as yδ

g

ij = 1, when xij(δ
g) > 0, and 0,

otherwise. It is noteworthy that some of the arcs in A0, closed in ŷ, may be open in yδ
g

ij

to satisfy the demand vector δg. These modifications capture the interactions occurring
in the integration of multiple scenarios within δg, yielding partial information regarding
the design arcs required to address the uncertainty captured by the scenarios involved in
group g. Repeating this procedure for different Gb-ADSs builds the knowledge we seek.
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4.2.2 Learn&Optimize procedure

The generalized Learn&Optimize procedure iteratively executes the learning step to iden-
tify a promising set of design variables. Then, it performs the partial-optimization step
where the identified promising variables are fixed and the reduced-size formulation is
solved exactly.

The generalized Learn&Optimize procedure is described in Algorithm 3. The sets of
Gb-ADSs, ∆gν , are reconstructed at each iteration ν of PH algorithm as described in Algo-
rithm 2. Such an approach, i.e., reconstructing a new set of ∆gν at each iteration of ILPH,
may allow us to obtain more diverse information that would not be available from using a
single set of ∆gν in all iterations. We define the frequency memory, F gν

ij , representing how
often arc (i, j) has been used in the solutions of the different ARP g(δ

g, ŷ) and the normal-
ized frequencies values, f gνij , which is computed as f gνij := F gν

ij /max{F gν
ij |(i, j) ∈ A} (Line

10). We keep the frequency memories built in the previous iterations, i.e., F gν
ij ← F gν−1

ij

in order to keep track of promising arcs from the beginning. More specifically, we are
implementing a long-term memory strategy on the solution information that is learned
at the subproblem level (i.e., the arc frequencies) as a means to both warm start the
solution method and to further drive solution consensus at the subproblem level. We
also define Aν

∆gν , the set of design arcs used in at least one ARP g(δ
g, ŷ) at iteration ν,

and Agν , the set of promising design variables to be identified by the procedure.

Algorithm 3 The generalized Learn&Optimize procedure to address SP ν
g

1: Initialization: F gν
ij ← F gν−1

ij ,∀(i, j) ∈ A, Agν ← ∅, construct ∆gν , let ŷν be the
current design;

2: Learning and memorizing:
3: repeat
4: Randomly choose a Gb-ADS δg ∈ ∆gν ;
5: Solve ARP g(δ

g, ŷν) yielding xν
ij(δ

g),∀(i, j) ∈ A;
6: Identify Aν

δg and compute yδ
g

ij , ∀(i, j) ∈ Aν
δg ;

7: Update Aν
∆gν := Aν

∆gν

⋃
Aν

δg and F gν
ij := F gν

ij + 1, for all (i, j) ∈ Aν
δg ;

8: Remove δg from ∆gν ;
9: until ∆gν = ∅;
10: Normalize frequencies f gνij := F gν

ij /max{F gν
ij |(i, j) ∈ A}, ∀(i, j) ∈ A;

11: for all (i, j) ∈ A do
12: if f gνij ≥ τ then Agν ← Agν ∪ {(i, j)};
13: end if
14: end for
15: Partial optimization:
16: Solve SP ν

g , by fixing variables belonging to Agν to open, yielding solution ygνij , ∀(ij) ∈
A

17: Return the normalized frequencies f gνij , ∀(ij) ∈ A and solution ygνij ,∀(ij) ∈ A.
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The main loop (Lines 3 to 9) iterates over the Gb-ADSs in ∆gν , each being discarded
once examined. The loop stops when the set of artificial demand scenarios becomes
empty. The ARP g(δ

g, ŷ) is solved for each δg ∈ ∆gν , to distribute the demand of δg (Line
5). The corresponding design vector is created (Line 7), while the set of used design arcs
and the frequency memories are updated at Line 6. Once the artificial demand scenarios
δg ∈ ∆gν are treated, a reduced problem, obtained by fixing Agν as the most frequently
used arcs (given a threshold τ), is solved using a MIP solver. This yields the design
solution ygνij ,∀(ij) ∈ A. Finally, the procedure returns the normalized frequency values
f gνij , ∀(i, j) ∈ A, as well as the design solution ygνij , ∀(ij) ∈ A.

4.3 Aggregation and penalty updates

We exploit and inject the local information obtained by the Learn&Optimize procedure
into the PH algorithm through the definition of a new reference point, Section 4.3.1, and
a new heuristic design. The latter, presented in Section 4.3.2, is created by exploiting
the dual information associated with the solutions obtained for the subproblems and
serves as the initial solution provided for the search processes of the subproblems at the
following iteration.

4.3.1 A new reference point

The reference point is a major component of PH matheuristics as it measures the de-
gree of consensus among subproblems and indicates the current trend for opening and
closing arcs amongst the subproblem designs. As mentioned earlier, the reference point
in previous PH algorithms for SMCND (e.g., Crainic et al., 2011, 2014) is constructed
as ȳνij ←

∑
g∈G pgygνij ,∀(i, j) ∈ A. The dual prices λgν

ij are updated, using the reference

solution ȳνij and the parameter ρ, as λgν
ij ← λgν−1

ij + ρ(ygνij − ȳνij). This strategy consid-
ers a single design vector only, obtained by each subproblem, to produce the reference
point. Considering single solutions only may result in missing alternative cost-efficient
subproblem solutions for which consensus could be more easily reached. Our proposed ref-
erence point directly targets this issue by explicitly considering the information learned
through the use of the Learn&Optimize method regarding what generally constitutes
good subproblem solutions, i.e., arcs that often appear in high-quality solutions to the
subproblems.

Recall that the Learn&Optimize procedure creates a history of promising design vari-
ables in each subproblem through frequency memories F gν

ij , and f gνij ∈ [0, 1],∀(i, j) ∈ A.
The information provided by f gνij allows the opportunity to better explore the trend
amongst the design variables observed during the iterations of the Learn&Optimize
matheuristic. We propose ỹνij ←

∑
g∈G pgf gνij , ∀(i, j) ∈ A, where pg =

∑
s∈Cg

ps, as a ref-
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erence point in the aggregation step of the ILPH. The Lagrangian multipliers λgν
ij ∀(i, j) ∈

A are updated using the new reference point ỹνij ∀(i, j) ∈ A as λgν
ij ← λgν−1

ij +ρ(f gνij − ỹνij).

4.3.2 A new design solution to iteratively promote consensus

The second idea is to exploit the dual information provided by the subproblem solutions
to create an integer design solution at each iteration of the ILPH. This integer design
solution ŷνij,∀(i, j) ∈ A, is constructed in the aggregation step of the ILPH algorithm
and serves as an initial design solution for the generalized Learn&Optimize procedure
in the subproblems at the following iteration. Exploiting the reduced cost information
associated with multiple solutions is motivated by the observation made in Sarayloo et al.
(2021b) suggesting that this strategy allows the identification of good-quality solutions
in the context of stochastic network design problems.

Note that the proposed design solution does not necessarily define a feasible solution
to the original stochastic problem. However, using the same integer initial solution for
all subproblems in the Learn&Optimize procedure, defines a soft strategy to promote
consensus at the subproblem level.

To create ŷνij, we first compute ỹνij ←
∑

g∈G pgf gν
ij , ∀(i, j) ∈ A, and partition the set

of design variables into two disjoint subsets:

• Â1 = {(i, j)|ỹνij ≤ l0 or ỹνij ≥ u1}: the set of design variables for which a consensus
has been almost obtained (given thresholds l0 and u1) among the groups, or in
other words, (almost) all groups agree that these arcs have to be opened or closed.

The design variables in Â1 are then set to the value 0 or 1 as follows

ŷνij =

{
0, if ỹνij ≤ l0,

1, if ỹνij ≥ u1.
(24)

• Â2 = {(i, j)|l0 < ȳνij < u1}: the set of the remaining design variables or those for
which a consensus has not been obtained.

For the variables in Â2, the decision is based on reduced cost information. Let
rgij,∀(i, j) ∈ Â2, be the reduced cost associated with ygij ,∀(i, j) ∈ Â2; G

1
ij = {g|ygij =

1} the set of groups where the associated design variables ygij are equal to one, and

r̄gνij =
∑

g∈G1
ij
pgrgνij , (i, j) ∈ Â the average reduced cost over groups g ∈ G1

ij. It should

be noted that, given the fact that we are solving the restricted problem SP ν
g with the

integrality requirements, we need to perform one additional step to obtain the reduced
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cost values. Once the restricted problem SP ν
g is solved and its optimal (integer) so-

lution, ygνij , ∀(ij) ∈ A, is obtained, we need to solve the LP relaxation of the problem
SP ν

g while the design variables are fixed to the values of the obtained optimal solution
ygνij ,∀(ij) ∈ A. In this way, one can obtain the set of reduced cost values associated with
design variables.

We represent the set of reduced costs by R = {r̄gνij |(i, j) ∈ Â2}. In order to identify
good candidate design variables to be fixed to 1 (open), we choose the variables with
the smallest reduced cost values. To do so, we sort the reduced cost values r̄gνij ∈ R
in non-decreasing order. Let rmax

1 and rmin
1 be the maximum and minimum values in

R. We then divide the difference rmax
1 − rmin

1 in N1 equally-sized classes and store
the indexes of variables belonging to the classes 1 to p1 ( 1 ≤ p1 ≤ N1) in R1. We
then set ŷνi,j ← 1, ∀(i, j) ∈ R1 and ŷνij ← 0, ∀(i, j) /∈ R1. Consequently, the solution
ŷνij ∀(i, j) ∈ A, at each iteration ν, is created by exploiting the reduced cost information
associated with multiple solutions obtained by all considered groups.

4.4 The algorithm

Algorithm 4 sums up the entire procedure. The algorithm is initialized by construct-
ing the list of scenario groups C̄ = {C1, . . . , C|G|}. The scenarios within each group
may be chosen using different strategies proposed in Crainic et al. (2014). For each
group g ∈ G, we address heuristically subproblem SP 0

g : Minimize
∑

(i,j)∈A
(
fijy

g
ij+

∑
s∈Cg

ps

pg

∑
k∈K

∑
(i,j)∈A ckijx

ks
ij ) st. (15)−(18), using the generalized Learn&Optimize procedure

described in Section 4.2. Once we address the subproblems g ∈ G, we perform the ag-
gregation step to produce the reference point as well as the integer design solution as
explained in Section 4.3.

During Phase I, the multi-scenario subproblems are addressd approximately as ex-
plained in Section 4.2. At each aggregation step, ỹ and ŷ are constructed and the La-
grangian multipliers are updated as described in Section 4.3. We follow the strategy
used in Crainic et al. (2011, 2014) to construct a heuristic feasible network yMν at each
iteration ν, by setting the design variables yMν

ij , ∀(i, j) ∈ A to

yMν
ij =

{
1, if ygνij = 1, for any g ∈ G,

0, otherwise .
(25)

The best network found, i.e., yBest, is updated based on the quality (total cost) of the
feasible solution yMν obtained at each iteration ν. We use similar stopping criteria (Line
9) as those in Crainic et al. (2014), namely, a total of NItr iterations, NImp consecutive
iterations without improving, the best known solution, tmax CPU time, or when there are
fewer than γ (0 ≤ γ ≤ 1) percent of the arcs for which a consensus has not been reached.
When such a situation occurs, Phase II is initiated. We fix the design variables for which
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a consensus is obtained and solve the original problem to obtain the final design solution
yFinal. At Line 27, we update ybest, when needed.

Algorithm 4 The proposed integrated learning and progressive hedging matheuristic
1: Initialization
2: Let ν ← 0 λgν

ij ← 0,∀(i, j) ∈ A, ρν ← ρ0

3: Construct the list of scenario groups C̄ = {C1, . . . , C|G|}
4: for each group g do
5: Solve SP 0

g heuristically by performing Algorithm 3 (Section 4.2.2)
6: end for
7: Construct solutions yMν

ij , ỹνij , and ŷνij
8: Phase I: Seek consensus on the arcs (i,j) that should exist in the design
9: while stopping criteria not met do
10: Iteration update:
11: ν ← ν + 1
12: Solving subproblems heuristically:
13: for each group g do
14: Solve SP ν

g heuristically by performing Algorithm 3, considering Lagrangian multi-

pliers λgν−1
ij , ∀(i, j) ∈ A and solution ŷν−1

ij ,∀(i, j) ∈ A, to obtain fgνij and ygνij ∀(i, j) ∈ A
15: end for
16: Aggregation:
17: Construct solution yMν

ij ,∀(i, j) ∈ A according to (25)

18: Update the best feasible solution yBest ← yMν , if appropriate;
19: Let ỹνij ←

∑
g∈G pgfgνij , ∀(i, j) ∈ A where pg =

∑
s∈Cg

ps

20: Update solution ŷνij ,∀(i, j) ∈ A (Section 4.3.2)
21: Penalty updates:
22: Adjust penalty values λgν

ij ← λgν−1
ij + ρ(fgνij − ỹνij) and ρν ← αρν−1

23: end while
24: Phase II: Solve a restricted MIP problem
25: Fix the design variables for which consensus is obtained
26: Solve the restricted SMCND model (1)-(5) to obtain a final design yfinal

27: Update best solution, yBest ← yfinal if appropriate.

5 Experimental results

This section presents the results obtained from extensive computational experiments
performed to assess the performance of the proposed algorithm. We used two collections
of instances which are described in Section 5.1. To evaluate the performance of the
proposed ILPH algorithm, we compared its results to those of alternative approaches
that were tested on the same instances:

• IBM-ILOG CPLEX 12.6.1 with its default settings (CPLEX in the following) on
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the associated MIP,

• The basic progressive hedging with single scenario subproblems, where subproblems
are solved using CPLEX (PHS in the following),

• The progressive hedging with multiple scenario subproblems (PHG in the following)
proposed in Crainic et al. (2014),

• The reduced cost-based restriction and refinement matheuristic (RCHeur in the
following) proposed in Sarayloo et al. (2021b) that currently defines the state-of-
the-art heuristic algorithm for the considered problem.

After presenting the two collections of instances and the experimental setting, we
start by analyzing the internal performances of the proposed ILPH on the first collection
of instances, with small number of scenarios, in Section 5.2. To assess the advantage of
the proposed algorithm to efficiently deal with a large number of scenarios, we provide
performance comparisons of the proposed ILPH versus PHS, PHG, RCHeur and CPLEX
on the second collection of instances in Section 5.3.

5.1 Data and experimental setting

We consider six problem classes (R5-R10) from the set of SMCND R instances introduced
in Crainic et al. (2011, 2014). Each class is characterized by a number of nodes |N |, a
number of arcs |A|, and a number of commodities |K|, specified in Table 1. For each
instance class, we consider five networks, namely, networks 1, 3, 5, 7, and 9 indicating
continuously increasing ratios of fixed to variable costs and total demand to total network
capacity. In the first collection of instances, for each of these networks, there are instances
with 16, 32, and 64 scenarios. Demands were assumed to be linearly correlated, and two
different levels of correlations (0.2 and 0.8) were used to create the different instances.
A total of 180 instances were thus obtained. In the second collection of instances, for
each of the networks, there are 10 instances with 1000 scenarios which were generated
according to the procedure in Boland et al. (2016). The data of all instances are available
on the website: https://github.com/FSarayloo/JOH-Data.git.

Algorithms were coded in C++ using IBM-ILOG CPLEX 12.6.1 as the MILP solver.
All parameters of the PHS and PHGmethods (including the stopping criteria parameters)
were set to the values originally used in Crainic et al. (2011, 2014). A brief summary
of the parameter values is provided in the Appendix. The same parameter values are
used in ILPH and PHS with the exception of NImp. According to the results provided in
Sarayloo et al. (2021b), we set the values of N1 and p1 to 3 and 2, respectively. The value
of N∆g is also set to |K|∗|Cg|. Hence, almost all parameters of the proposed ILPH (except
NImp and τ) were set to the values established in previous studies including (Sarayloo
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et al. (2021b,a); Crainic et al. (2011, 2014)) without applying additional parameter tuning
procedures.

As for the τ , NImp parameters, a preliminary analysis was conducted to fine tune
them. For this preliminary analysis, the following values were considered:

• NImp = 2, 4, 8, 10

• τ = 0.9, 0.95, 0.98

for a total of 12 possible combinations of these parameter settings. An exhaustive eval-
uation of all the combinations was then performed on a subset of 24 instances. This
subset of instances was obtained by randomly selecting four instances among each group
of instances R5– R10. This analysis enabled us to conclude that the best results were
obtained with the combination: τ = 0.95, NImp = 4. Nevertheless, the analysis showed
that the difference between the best and the worst optimality gap among the 12 different
combinations is less 0.5%, indicating that these combinations could provide about the
same average solution quality. We let ŷ0 ← yexp be the initial integer solution at iteration
0 in the Learn&Optimize procedure, where yexp is the optimal solution to the expected
value (EV) problem. The EV problem is obtained by replacing the random demand vari-
ables by their expected values and solving the resulting deterministic problem. To reduce
the time required to complete Phase I, the optimality tolerance parameter of CPLEX
was set to 1% when solving the subproblems. This parameter is set to its default value
when solving the restricted problem of the second phase. Unless otherwise specified, all
other CPLEX parameters were set to their default values since preliminary experiments
indicated that these settings yielded better results. All experiments were performed on a
Sun Fire X4100 cluster of 16 computers. Each has two 2.6 GHz Dual-Core AMD Opteron
processors and 8192 Megabytes of RAM, operating under Solaris 2.10.

Table 1: Characteristics of instances
Problem |N | |A| |K|
R05 10 60 25
R06 10 60 50
R07 10 82 10
R08 10 83 25
R09 10 83 50
R10 20 120 40

5.2 Internal performance analysis

We first focus on the first collection of instances (with 16, 32, and 64 scenarios) for
which CPLEX is able to provide either the optimal solution or at least a feasible solution
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within the time limit of 8 hours. In the following, we evaluate different components of
the proposed ILPH and analyse their behaviour on these instances.

5.2.1 Effect of using Learn&Optimize

We first evaluated the effect of using the Learn&Optimize on the performance of the
proposed ILPH. To do so, we considered a variant of ILPH where the subproblems are
solved exactly using CPLEX, which we refer to as ILPH(E). We also investigated the
impact of different network characteristics and correlations. The results of these tests are
summarized in Table 2. Each row presents the results obtained on 18 instances, which are
characterised by different network index values and correlations. We compare the three
methods, CPLEX, ILPH and ILPH(E), in terms of optimality gaps (considering the lower
bound provided by CPLEX) and computation time (in seconds) denoted by “Gap” and
“Time”, respectively. The ”Time” indicates the time at which the best solution was
found (within the time limit of 8 hours).

The results in Table 2 show that using Learn&Optimize instead of an exact method
improves the performance of the algorithm. We observe that ILPH dominates ILPH(E)
in terms of both solution quality (on average, % gap of 1.41 versus 1.77) and computa-
tion time (880 versus 3660 seconds). Furthermore, the results show that the proposed
ILPH displays a consistent behaviour in dealing with different network characteristics. In
particular, for the instances of index 3 and 5, which are considered as the most difficult
instances, ILPH is able to reduce the optimality gap of CPLEX by up to 50% , while
also reducing the solution time by a factor of around 30 (on average, 441 vs 14108 sec-
onds). We also observe that the demand correlation has little impact on how difficult the
associated problems are to solve. Overall, these results clearly highlight the significant
benefit of the proposed algorithm combining PH and Learn&Optimize.

Table 2: Effect of using Learn&Optimize
Index Corr # of CPLEX ILPH ILPH(E)

Ins Gap Time Gap(%) Time Gap(%) Time

1
0.2 18 0.00 340 0.02 65 0.02 161
0.8 18 0.00 349 0.02 65 0.02 187

3
0.2 18 5.37 14059 2.45 427 2.79 1169
0.8 18 5.39 14208 2.45 474 2.79 1279

5
0.2 18 2.67 15686 1.70 914 1.79 5797
0.8 18 2.69 15890 1.72 963 1.79 6004

7
0.2 18 0.31 7588 0.30 811 0.61 4207
0.8 18 0.31 7759 0.30 861 0.61 4494

9
0.2 18 2.54 14550 2.05 2045 2.97 6180
0.8 18 2.57 14990 2.09 2165 2.97 6842

22

An Integrated Learning and Progressive Hedging Matheuristic for Stochastic Network Design Problem 

CIRRELT-2023-25



To analyze more thoroughly the behaviour of the proposed algorithm, we aggregate
the results according to the number of scenarios (indicated by |S|) in Table 3. The
descriptions of the columns 2 to 6 are the same as in Table 2. As expected, increasing
the number of scenarios makes the problem more difficult to solve for both ILPH and
CPLEX. However, the ILPH outperforms CPLEX on all instances. In particular, for
instances with 16 and 32 scenarios, ILPH is able to find the solutions with the same
quality as those found by CPLEX in significantly less time (i.e., on average, 463 and 647
seconds with ILPH compared to 6964 and 10134 seconds with CPLEX, for the instances
with |S| = 16 and |S| = 32, respectively). Furthermore, over all instances with 64
scenarios, ILPH is able to obtain solutions with on average optimality gap of 1.89%
versus 4.31% obtained by CPLEX by again notably reducing the computational time
(i.e., on average, 2362 seconds and 13347 seconds for ILPH and CPLEX, respectively).
In order to show the capability of the proposed method to address instances with large
number of scenarios, we will analyze the performance of our proposed ILPH by solving
difficult benchmark instances with 1000 scenarios in Section 5.3.

Table 3: Aggregated results according to the number of scanarios
|S| # of CPLEX ILPH

Ins Gap(%) Time Gap(%) Time

16 60 0.39 6964 0.39 463
32 60 1.52 10134 1.10 647
64 60 4.31 13347 1.89 2362

5.2.2 Effect of using ỹ and ŷ

We next study the effect of using the two new important components of the proposed
algorithm, i.e., the proposed reference point ỹ and solution ŷ, on the performance of
ILPH. To evaluate the effect of ỹ, we consider an alternative, which we refer to as ILPH-
(ỹ) where the traditional reference solution ȳ ←

∑
g∈G pgyg is used instead of ỹ. Also,

in columns “ILPH-(ŷ)”, we evaluate the effect of using ŷ by replacing it with the EV
solution (yexp) as the initial solution for the Learn&Optimize in all iterations of ILPH.
The results in Table 4 show that using the proposed ỹ provides better quality solutions
with an average gap of 1.41% within almost half the computation time, compared to
ILPH-(ỹ), where the traditional ȳ is used. We also observed that using the proposed
initial solution ŷ in ILPH has a good effect on providing slightly better quality solutions
in almost 70% less computation time compared to ILPH-(ŷ).
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Table 4: Effect of introducing the reference point ỹ and the design ŷ
Pro # of CPLEX ILPH ILPH-(ỹ) ILPH-(ŷ)

Ins Gap Time Gap(%) Time Gap(%) Time Gap(%) Time

R05 30 0.00 1411 0.12 63 0.14 110 0.12 97
R06 30 1.52 11076 0.94 451 1.02 1420 0.98 980
R07 30 0.12 2130 0.31 105 0.35 152 0.32 137
R08 30 0.96 7516 1.08 841 1.08 1764 1.08 1341
R09 30 3.48 16415 1.91 910 1.95 1971 1.91 1710
R10 30 7.01 23557 4.14 4081 4.34 8891 4.18 6170
Avg 2.18 10350 1.41 1075 1.48 2384 1.43 1739

5.2.3 Effect of different grouping strategies

Table 5 reports the results obtained by the proposed ILPH when different grouping
strategies, i.e., “Random”, “Similar” and “Dissimilar”, are considered, which we refer to
as ILPH(R), ILPH(S), and ILPH(D) , respectively. The description of these grouping
strategies is detailed in Crainic et al. (2014). We provide the comparison results in
Table 5. We observed that ILPH(R), ILPH(S), and ILPH(D) provide almost similar
optimality gaps of 1.41%, 1.50%, and 1.44%, respectively. However, the computation
time by ILPH(R) is 45% and 30% faster than ILPH(S) and ILPH(D), respectively. It is
also interesting to note that ILPH(R) is almost 10 times (on average) faster than CPLEX
in providing better quality solutions (on average, the gap is 1.41% versus 2.18%).

Table 5: Performance comparison versus CPLEX on first collection of instances
Pro # of CPLEX ILPH(R) ILPH(S) ILPH(D)

Ins Gap(%) Time Gap(%) Time Gap(%) Time Gap(%) Time

R05 30 0.00 1411 0.12 118 0.14 146 0.12 136
R06 30 1.52 11076 0.94 951 0.97 1467 0.95 1274
R07 30 0.12 2130 0.31 105 0.31 149 0.31 128
R08 30 0.96 7516 1.08 841 1.12 1638 1.10 1168
R09 30 3.48 16415 1.91 840 2.02 1852 1.92 942
R10 30 7.01 23557 4.14 4081 4.48 6480 4.24 5218
Avg 2.18 10350 1.41 1075 1.50 1955 1.44 1470

The results above are encouraging and demonstrate the potential of ILPH, but the
instances are inadequate to fully assess the computational advantage of ILPH. Most
instances in this set can be solved to optimality by CPLEX in less than 2 hours. This is
not the setting for which a decomposition approach is designed. The ILPH is designed
to be used in settings where the instances are large, difficult, and cannot be solved in a
reasonable amount of time when providing the MILP formulation to a solver. Indeed,
solving the root relaxation may already be computationally prohibitive. In the following
subsection, we present results on instances that are more appropriate to show the benefits

24

An Integrated Learning and Progressive Hedging Matheuristic for Stochastic Network Design Problem 

CIRRELT-2023-25



of ILPH.

5.3 Comparative analysis

In this part of experiment, we focus on the difficult instances with 1000 scenarios. We
provide the comparative results of the proposed ILPH versus CPLEX in Tables 6 and
7, versus the progressive hedging-based methods (PHS and PHG) and RCHeur in Table
9. Each row of these tables refers to 10 instances with 1000 scenarios with the different
characteristics mentioned in Section 5.1. The results displayed in these tables show the
advantage of the proposed method in dealing with such difficult instances.

We apply the ILPH considering three different group sizes, of 20, 50, and 100 scenarios,
the results being identified as ILPH(20), ILPH(50), and ILPH(100), respectively. We then
compare the best obtained solution versus that of CPLEX in Table 6. We report the
average optimality gap, OptGap, that CPLEX provides after a time limit of 8 hours.
Note that, we consider an optimality gap of 100% for the instances for which CPLEX
is unable to provide any feasible solution. In the ”Diff” columns, we report the relative
difference (%) between the best solutions found by the two algorithms (i.e., the upper
bounds), noted zILPH and zCPX , after 8 hour CPU time limit, computed as 100∗(zILPH−
zCPX)/zILPH . Negative values refer to the cases for which ILPH provides better solutions
than CPLEX. The “Time” columns display the respective total computation times.

The results show that ILPH outperforms CPLEX in all the cases, for all group sizes,
providing an improvement of at least 24.72% over the best CPLEX solution, within
about one third of computation time. Comparing the group sizes, a group size of 100
seems to yield a better performance (especially in the case of difficult instances, e.g.,
R6 and R9) in terms of both solution quality and computation time. In particular, for
R9 instances with an average optimality gap of 66.37%, ILPH(100) provides solutions
with an improvement of 63.58% compared to 52.42% when the group size is 20. This
is due to the capability of Learn&Optimize to handle subproblems with many scenarios,
which ultimately leads to good solutions obtained by ILPH. As for the results reported
in Tables 5 and 6, they involve the use of ”Random” grouping strategy, which is applied
to define suproblems with 100 scenarios. This grouping strategy is then used to perform
the rest of the analyses.

To highlight the capability of the proposed ILPH to identify good solutions quickly, we
report the comparative results of ILPH versus CPLEX in a shorter amount of time. Table
7 displays the results obtained by the two methods within 3 hours.We report in column
ILPH/CPLEX(3h) the relative difference (%) between the best solutions found by the
two algorithms (i.e., zILPH and zCPX) by imposing a 3 hour computation time limit. The
relative difference is computed as 100* (zILPH − zCPX)/zILPH . Negative values indicate
ILPH provides better solutions than CPLEX. In the last columns, we compare the two
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Table 6: Performance comparison of ILPH versus CPLEX
Pro CPLEX Diff(%) Time

OptGap(%) Time ILPH(20) ILPH(50) ILPH(100) ILPH(20) ILPH(50) ILPH(100)

R05 17.94 25805 -12.80 -12.89 -12.95 11292 12829 10842
R06 47.87 24884 -35.32 -37.12 -37.62 12682 11886 11280
R07 9.70 24063 -5.94 -5.09 -5.05 7952 7292 7494
R08 27.72 29013 -17.12 -18.36 -18.40 8682 8604 9258
R09 66.37 29901 -52.42 -62.42 -63.58 24253 23453 22630
Avg 33.92 26743 -24.72 -27.40 -27.52 12971 12892 12410

solution methods based on the percentage of instances for which the considered solution
method is able to provide a feasible solution. The average optimality gap provided by
CPLEX is 45.59%, indicating the difficulty of these problems. We observe that ILPH
is able to find feasible solutions for all considered instances, while CPLEX is unable to
do so for 32% of instances. Furthermore, in terms of solution quality, ILPH provides an
average improvement of -39.23% versus CPLEX, which is very interesting.

Table 7: Efficiency of the ILPH versus CPLEX
Pro # of CPLEX ILPH/CPLEX(3h)(%) Sol(%)

Ins OptGap(%) ILPH CPLEX

R05 10 22.56 -12.62 100 100
R06 10 63.90 -62.31 100 40
R07 10 15.97 -4.34 100 100
R08 10 41.36 -35.03 100 80
R09 10 84.18 -81.84 100 20
Avg 45.59 -39.23 100 68

Table 8 displays the performance results after Phase I of the proposed ILPH com-
pared to PHS and PHG, in terms of solution quality and computation time. In order
to investigate how the proposed ILPH performs compared to the other two methods,
we consider the objective function value of the best solution provided after the first
phase (yBest), by ILPH, PHS, and PHG. Columns “ILPH/PHS” and “ILPH/PHG”
report the relative improvement (in %), computed as 100 ∗ (zILPH − zPHS)/zILPH and
100 ∗ (zILPH − zPHG)/zILPH , respectively. Negative values indicate that ILPH outper-
forms PHS and PHG. We also report the average computation times in seconds (Time)
and the percentage of instances with a feasible solution (Sol.%) for the three methods.

We observe that the proposed ILPH provides solutions with an average improvement
of 15.28% within one third of computation time compared to PHS. Also, ILPH dom-
inates PHG providing 12.52% improvement on solution quality within almost half the
computation time. Furthermore, ILPH is able to provide a feasible solution for all con-
sidered instances, while, PHS and PHG fail to provide any solution for 8% and 6% of the
instances, respectively.
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Table 8: Performance comparison of ILPH versus PHS and PHG (after Phase 1)
Pro # of ILPH/PHS ILPH/PHG Time Sol(%)

Ins (%) ILPH PHS PHG ILPH PHS PHG

R05 10 -8.45 -6.84 582 5325 4140 100 100 100
R06 10 -10.14 -9.27 4121 19277 15842 100 100 100
R07 10 -10.16 -9.20 1210 3576 2386 100 100 100
R08 10 -5.14 -5.14 13755 14822 14196 100 100 100
R09 10 -42.47 -32.17 7611 30613 21640 100 60 70
Avg -15.28 -12.52 5456 14728 11640 100 92 94

Finally, Table 9 reports the comparative final results (after Phase II) of ILPH versus
that of PHS, PHG, and RCHeur over all 50 instances. The percentages of relative im-
provements are calculated in the same way as for Table 8. Overall, ILPH outperforms
PHS, PHG, and RCHeur with average relative improvements of 18.81%, 14.12%, and
11.37%, respectively. Moreover, ILPH provides these solution much faster than the other
methods, with an average computational time of 12470 versus 29645, 2378,1 and 19360,
respectively.

Table 9: Performance comparison of ILPH versus PHS,PHG and RCHeur (final solution)
Pro # of ILPH/PHS ILPH/PHG ILPH/RCHeur Time

Ins (%) ILPH PHS PHG RCHeur

Avg 50 -18.81 -14.12 -11.37 12470 29645 23781 19360

6 Conclusions

This paper explores the development of an efficient optimization approach to address SM-
CND problems. We propose a two phase Integrated Learning and Progressive Hedginig
matheuristic to handle a large number of scenarios in the considered context. We gener-
alize the Learn&Optimize procedure to efficiently address multi-scenario subproblems at
each iteration of the PH algorithm. We further exploit the knowledge learned through
the Learn&Optimize to improve the performance of the matheuristic. Specifically, we
introduce a new reference point in each aggregation step of ILPH by making full use of
the knowledge that is gathered regarding the promising design variables when solving the
subproblems. By proceeding in this way, we inject the knowledge learned through the
heuristic procedure into the PH algorithm leading to the proposed ILPH method, which
is the main contribution of this paper.

We show, through computational experiments, that the proposed algorithm performs
very well in terms of both solution quality and computation time. We provide a compar-
ative analysis that show the superiority of the proposed approach versus CPLEX, as well
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as other PH-based algorithms and matheuristics proposed in the literature. The results
indicate that the proposed algorithm provides impressive improvements of 27.40% and
18.81% when dealing with large instances with 1000 scenarios, versus CPLEX and the
basic PH algorithm, respectively. The analysis also indicates that ILPH should be the
method of choice when high-quality solutions to instances of stochastic network problems
containing a large number of scenarios need to be found quickly.

We conclude by identifying a few possible directions for future research. These in-
clude investigating whether the algorithm would be as successful for different optimization
problems or other variants of MCND. Indeed, ILPH is a general-purpose algorithm and
can be applied to different stochastic programs. Tailored implementations of the pro-
posed PH algorithm can lead to quite effective matheuristics for very large stochastic
programming applications. Other research avenues include considering other strategies
for updating the penalties within the PH algorithm and other methods for solving the
subproblems. Finally, another important research direction is to develop parallel strate-
gies for the ILPH algorithm, which will further amplify its advantages and benefits.
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Appendix

For implementation of the PHS and PHG in Section 5, we used similar parameters and
stopping criteria as presented in Crainic et al. (2011, 2014) as follows: NItr = 1000,
NImp = 10, γ = .1, β = 1.1, chigh = 0.8, chigh = 0.2, cnear = 0.7, cfar = 0.2, and
tmax = 500 minutes. Wer efer readers to Crainic et al. (2011, 2014) for more detailed
algorithmic implementations and descriptions.
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