

 CIRRELT-2023-28

A Metaheuristic for a Time-Dependent
Vehicle Routing Problem with Time
Windows,Two Vehicle Fleets and
Synchronization on a Road Network

 Fernando Obed Guillen Reyes
 Michel Gendreau
 Jean-Yves Potvin

September 2023

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with
Time Windows, Two Vehicle Fleets and Synchronization

on a Road Network

Fernando Obed Guillen Reyes1,2, Michel Gendreau1,3, Jean-Yves Potvin1,2,*
1. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT)
2. Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada
3. Département de mathématiques et de génie industriel, Polytechnique Montréal, Canada

Abstract. In this work, we extend the time-dependent vehicle routing problem with time

windows on a road network by considering two types of vehicles, large and small, to serve

customers. Motivated from city logistics applications, large vehicles are forbidden from the

downtown area. Accordingly, goods must be transferred from large to small vehicles to

serve downtown customers. This leads to synchronization issues at transfer points, which

are special locations without storage capacity. The problem is not a pure two-echelon

vehicle routing problem, since customers located outside of the downtown area can be

served directly by large vehicles. The problem is further compounded by the presence of

time-dependent travel times that are defined on the arcs of the road network and are used

to model congestion periods. To solve this complex problem, we propose an adaptation of

the Slack Induction by String Removals metaheuristic, which is state-of-the-art for the

classical capacitated vehicle routing problem. Computational results on a set of test

instances with different characteristics empirically demonstrate the optimization capabilities

of this new metaheuristic on a problem which is much more complex than the capacitated

vehicle routing problem.

Keywords: Time-dependent vehicle routing, time windows, road network, transfer points,
synchronization, metaheuristic.

Acknowledgements. The work reported in this paper was financially supported by the

Natural Sciences and Engineering Research Council of Canada (NSERC). This support is

gratefully acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: potvin@iro.umontreal.ca
Dépôt légal – Bibliothèque et Archives nationales du Québec

Bibliothèque et Archives Canada, 2023

© Guillen Reyes, Gendreau, Potvin and CIRRELT, 2023

1 Introduction

Although the vehicle routing problem (VRP) has been widely studied for a long time, time-
dependent variants have spurred the interest of researchers only recently. Time-dependency
is an important issue, since the time to travel from one point to another in a network often
depends on the departure time (c.f., rush hours). Furthermore, not only does the time to
travel along a path between two customers may change depending on the departure time,
but even the best path to use may also change. Thus, recent studies have exploited the
additional information available in a road network to account for multiple possible paths
between two customers, which is often referred to as the time-dependent vehicle routing
problem with time windows on a road network (TDVRPTW RN). In this paper, we con-
sider an extension of this problem where both large (black) and small (green) vehicles are
involved and where some parts of the road network are forbidden to one type of vehicles
or the other. For example, the downtown area is not accessible to large vehicles, whereas
areas far from downtown are not accessible to small vehicles (e.g., bicycles). Since the
goods to be delivered are initially loaded in large vehicles, a customer located in an area
not accessible to them can only be served through a transfer of its demand from a large
to a small vehicle. This transfer takes place at special locations with no storage capacity,
known as transfer points (TPs). This also leads to synchronization issues between the two
types of vehicles at transfer points. In the following, this complex delivery problem will be
referred to as the TDVRPTW RN with transfer points or TDVRPTWTPRN .

Our problem needs to be distinguished from problems with intermediate facilities, with
or without storage capacity, since there is no facility as such to transfer goods. It must also
be distinguished from two- or multi-echelon VRPs where vehicles are organized into a strict
hierarchical structure to deliver goods to customers. In our problem, black vehicles can
very well serve customers directly, as long as they do not belong to forbidden areas. Our
contribution lies in the adaptation of a state-of-the-art metaheuristic for the capacitated
VRP (CVRP) for a much more complex problem that involves two types of vehicles, three
types of customers, time-dependent travel times and synchronization issues between the
two types of vehicles to transfer loads at transfer points. As far as we know, this problem
has never been addressed in the literature.

In the following, Section 2 first reviews problems related to ours, namely time-dependent
VRPs and VRPs with intermediate facilities. Section 3 then precisely describes our prob-
lem. The original implementation of the metaheuristic Slack Induction by String Removals
(SISR) for solving the CVRP is described in Section 4. Then, Section 5 introduces time
issues that arise in the TDVRPTWTPRN , in particular calculation of time bounds to check
insertion feasibility in constant time and synchronization between black and green vehicles
at transfer points. Specific modifications to the original SISR implementation that are
required to address the much more complex TDVRPTWTPRN are reported in Section 6.
Then, computational results obtained on test instances derived from a benchmark for the
TDVRPTW RN are reported. Finally, a conclusion follows.

1

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

2 Literature review

Two main features of our problem are time-dependent travel times and the presence of
intermediate points to transfer loads from one type of vehicles to another. Problems with
these characteristics are briefly reviewed in the following.

2.1 Time-dependent VRPs

In the first studies about time-dependent VRPs, a customer-based graph was used, where
nodes correspond to customers plus the depot and arcs stand for a particular path between
two customers in the underlying road network (e.g., shortest path in distance). Since a
fixed path is used to travel between two customers, it is only possible to account for differ-
ent travel times at different departure times along that path. However, it is not possible to
consider different paths between two customers at different departure times. To the best
of our knowledge, the first work that addressed time-dependency (although without time
windows at customers) on a customer-based graph is found in [1]. In this work, the time
horizon is divided into periods with a different travel time matrix for each period. This is
equivalent to defining a step function to model the travel time at different periods between
any given pair of nodes. A similar approach is proposed in [2], although for a problem with
time windows. Since the travel time is constant within a period, but may abruptly change
from one period to the next, the two previous models do not satisfy the First-In-First-Out
(FIFO) property, where it is required that a vehicle traveling earlier on an arc must arrive
at the destination node earlier than any other vehicle traveling later on the same arc. A
different model is proposed in [3], where each node is assigned a speed at a given period
of time, which can be interpreted as the average speed around the node. Then, the travel
time on a given arc between two nodes is based on the average speed around these two
nodes. Once again, since the travel time on a given arc is constant within a period, the
FIFO property is not satisfied neither. A model that satisfies the FIFO property was fi-
nally proposed in [4]. Here, the authors use a step function to model speed (rather than
travel time) at different time periods. That is, the speed is constant within a given time
period, but may change from one period to the next. The travel time along an arc is
then computed by taking into account the new speed when the time boundary between
two periods is crossed. Thus, every vehicle that travels along the same arc within the
same period has the same speed and the speed of every vehicle changes similarly when the
boundary between two given periods is crossed. This way to model time-dependency has
been largely adopted in the following years to solve TDVRPTWs using exact methods and
metaheuristics [5, 6, 7, 8]. In a few cases, continuous functions with special characteristics
to satisfy the FIFO property have also been used to model time-dependent travel times
[9, 10]. For a detailed literature review on time-dependent VRPs using customer-based
graphs (up to 2015), the reader is referred to [11].

Realistic objective functions are often based on travel times and the fastest path be-
tween two customers may well change depending on the departure time. To account for
this, multi-graph representations have been proposed [12, 13, 14]. In these graphs, parallel
arcs between any given pair of customer nodes stand for different least-cost paths in the

2

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

underlying road network associated with different departure times from the origin customer
node (or, more generally, for different non-dominated paths in multi-objective optimiza-
tion). In [13, 14], the authors empirically demonstrate, using a branch-and-price algorithm
and an adaptive large neighborhood search (ALNS), that a multigraph representation for
a bi-objective VRP with time windows (VRPTW) that accounts for both travel time and
travel cost leads to considerably better solutions when compared to a standard customer-
based graph with a single arc (path) between two customers. However, the authors note the
considerable computation times needed to compute the multigraph. Accordingly, the au-
thors in [15], propose to work directly on the road network. In [16], a comparison between
a branch-and-price algorithm applied to a road network and to a multigraph representa-
tion for a bi-objective VRPTW (travel time, travel cost) shows that both approaches are
competitive, but with a slight advantage for multigraphs on the more realistic instances.
On the other hand, working directly on a road network is more natural and straightfor-
ward. Thus, recent works that addressed TDVRPTWs typically use road networks [17, 18].

2.2 VRPs with intermediate facilities

Due to the presence of transfer points in our problem, we provide an overview of the
literature on VRPs with intermediate facilities, which are referred to as satellites, hubs,
transshipment points or cross-docks. They all represent intermediate points where goods
can be transferred while they move from their origin to their destination. In [19], the
authors provide a survey about intermediate facilities in freight transportation, while a
survey dedicated to cross-docking is found in [20]. In [19], the problems are divided into
two classes, that is, two-echelon VRPs (2E-VRPs) and pickup and delivery problems with
cross-docks (PDPCDs). With regard to 2E-VRPs, the intermediate facilities are called
satellites and have some storage capacity. At the first-level or echelon, vehicles carry goods
from a depot to satellites, while at the second-level goods are transported by other vehi-
cles from satellites to customers. Typically, a strict hierarchy is observed, that is, direct
deliveries from the depot to customers is forbidden. In this survey, no work requires syn-
chronization between vehicles at satellites. In the case of the surveyed PDPCDs, however,
cross-docks have no or little capacity and synchronization is required. Two works are
worth mentioning, since there is no real intermediate facility, only transfer points (like in
our work). In [21], transfers can take place at arbitrary locations and the vehicle that
arrives first at the transfer point waits as long as necessary to transfer goods to the other
vehicle, although a waiting penalty is incurred. In [22], transshipment points are prede-
termined and synchronization is achieved by setting a time window at these transfer points.

In [23], a 2E-VRP is proposed in the context of city logistics, where it is called a two-
tier city logistics system. City Distribution Centers (CDCs), located at the outskirts of the
city, form the first tier of the system where freight is sorted and consolidated. The second
tier of the system is made of satellites located close to or within the city-center area. Dif-
ferent vehicle fleets are used to transport freight from CDCs to satellites and from satellites
to customers. In particular, vehicles of the second tier must be adapted for utilization in
dense city zones. Since it is assumed that satellites operate according to a cross-dock trans-

3

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

shipment operational model, vehicle synchronization is required. That is, vehicles of the
first and second tier must meet at satellites at a given time, with very short waiting time
permitted. This work proposes only a modeling framework and no algorithmic solution is
developed. Different exact and heuristic algorithms were later proposed in [24, 25, 26] to
solve variants of the initial model (e.g., no synchronization, storage capacity at satellites).
A recent work in [27] addresses a two-commodity 2E-VRP with synchronization at satel-
lites. Two types of vehicles are considered at the first level, one for each commodity, as
opposed to the second level where only one type of vehicles is considered. Synchronization
is only established between the two types of first-level vehicles, which have to meet at
satellites to favor efficiency at the second level. The problem is solved with ALNS where,
at each iteration, destroy and a repair operators are applied to the second-level tours, and
a reconstruction procedure is then applied to the first-level tours in case of infeasibility,
followed by an improvement procedure. The 2E-VRP reported in [28] is particularly inter-
esting because is shares similarities with our problem. In this work, the first-level vehicles
are called vans and the second-level vehicles are called bicycles. Similarly, there are two
classes of customers depending on their location: customers located at the city center
are called bike-customers, while customers outside of the center are called van-customers.
Transfers take place at satellites, with no storage capacity. These satellites are located at
the boundary of the city center (a van can cross the city center, but a penalty is incurred).
In the proposed heuristic methodology based on GRASP and path-relinking, the second-
level tours are constructed before the first level tours. In this way, information about the
arrival times of bikes at satellites can be used to construct the first-level tours and account
for synchronization. The authors in [29] address a similar problem called the two-echelon
multi-trip VRP with satellite synchronization. The proposed methodology also constructs
second-level tours before first-level tours to produce the initial solution. Then, an ALNS
is applied with features aimed at improving synchronization, like a destroy operator that
removes trips with the worst synchronization. In [30], the authors describe a crowdsourced
system for urban parcel deliveries, where truck-carriers visit intermediate facilities called
relay points and where parcels are transferred to pedestrians or cyclists that are close to
the end customers. However, if no pedestrian or cyclist is available, the truck can perform
the deliveries itself. In the proposed system, the delivery tasks, as well as candidate relay
points, are broadcast on-line. Then, pedestrians and cyclists bid for these delivery tasks.
Thus, a bid selection problem must be solved in addition to the routing problem. This is
done in both cases with a tabu search. Another similar crowdsourced system is described
In [31], where goods can be dropped at transfer points to be picked up later by other
vehicles (i.e., transfer points have storage capacity).

3 Problem Definition

This paper addresses the time-dependent vehicle routing problem with time windows and
transfer points on a road network or TDVRPTWTPRN . As previously mentioned, two
types of vehicles with different capacities are considered: black (large) and green (small)
vehicles. The two sets of vehicles are denoted KB and KG, respectively. There are also
three types of customers: black customers that can be served by black vehicles only; green

4

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

customers that can be served by green vehicles only; and neutral customers that can be
served by both types of vehicles.

A road network in this context is a directed graph G = (V,A), where V is the set of
nodes of cardinality n and A the set of arcs or road segments. The set of nodes is then
partitioned as follow:

- D = {db, dg} is the set of depots with db the depot for black vehicles and dg the depot
for green vehicles;

- CB is the set of black customers of cardinality nB ;

- CG is the set of green customers of cardinality nG ;

- CE is the set of neutral customers of cardinality nE ;

- TP is the set of transfer points of cardinality nTP ;

- RJ is the set of road junctions (i.e., any node that is not a depot, a customer or a
transfer point).

The TDVRPTWTPRN can be characterized as follow:

� Each customer i has a demand di and a service (or dwell) time sti;

� Each customer i has a time window [αi, βi] to constrain the service start time. If a
vehicle arrives at customer i before αi, then it must wait until αi to start the service.
On the other hand, a vehicle cannot arrive after βi;

� A green vehicle can serve only one customer at a time, while a black vehicle has a
capacity Qb that allows it to serve many customers;

� The demand of all customers is assumed to be loaded into black vehicles at the start;

� Each black vehicle performs a single route that starts and ends at the black depot;
each green vehicle performs a single route that starts and ends at the green depot;

� The black and green depots have a time window [0, T], where T is the end of the
time horizon; all vehicles must be back at their depot before or at time T ;

� Black and green vehicles have different speeds. Thus, each arc (i, j) ∈ A is associated
with two time-dependent travel speed functions vbi,j(t) and vgi,j(t) for black and green
vehicles, respectively.

� Transfer points are fixed locations without storage capacity, where a black vehicle can
transfer loads to one or more green vehicles. We assume, without loss of generality,
that the time to transfer a load is null. A black vehicle can visit the same transfer
point multiple times along its route; the same is true of green vehicles. Each visit to
transfer point tp ∈ TP in a route is represented by a copy which is unambiguously
denoted tpkj , where k is a vehicle and j is the copy (or visit) index. That is, copy tpkj
corresponds to the jth visit of transfer point tp in the route of vehicle k;

5

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

� Each black customer is served directly and exactly once by a black vehicle; each
green customer is served exactly once by a green vehicle after its demand has been
transferred from a black vehicle at a transfer point; each neutral customer is served
exactly once, either directly by a black vehicle or by a green vehicle after its demand
has been transferred from a black vehicle at a transfer point;

� The objective is to determine routes of minimal total duration such that all customers
are served and all constraints are satisfied.

Figure 1 shows a typical solution, with one black route starting from the black depot
(square). This route is identified by arcs (1) to (10). At the first transfer point tp1
(triangle), there is a connection with the green route with arcs identified with broken lines.
This route starts at the green depot (square), gets a load from the black vehicle at tp1,
delivers the load to neutral customer nc1 (gray node), gets another load from the same
black vehicle at the second transfer point tp2, delivers the load to green customer gc1 and
returns to the green depot. The arcs of the second green route are identified with dotted
lines. This small route starts at the green depot, gets a load from the black vehicle at tp2,
delivers the load to green customer gc2 and returns to the green depot. It should be noted
that the black vehicle transfers two loads, one for each green vehicle, at transfer point tp2.

Figure 1: An example of a solution to the TDVRPTWTPRN

4 SISR for the CVRP

The proposed methodology for solving our problem is the Slack Induction by String Re-
movals (SISR) metaheuristic [32], which is state-of-the-art for the CVRP. This metaheuris-
tic is based on the ruin-and-recreate principle where, at each iteration, a number of nodes
are first removed from the routes of the current solution (ruin) and reinserted (recreate)
to produce a new solution. A simulated annealing-based criterion is then applied to decide
if the new solution should be accepted or not as the current solution. In the following, we
precisely describe the SISR metaheuristic, as initially proposed for the CVRP.

6

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

The basic idea of SISR is to remove strings of consecutive customers from a solution,
with at most one string removed from any given route. Algorithm 1 shows the pseudo-code
of SISR for the CVRP. First, two parameter values are set : Lmax , which is used to de-
termine the maximum length of a string, and c, which corresponds to the average number
of customers to be removed from a solution. By appropriately setting these values, many
strings of small length or only a few strings of large length can be removed. Given that
simulated annealing principles guide the search through an exponential cooling schedule,
the starting temperature τ0, final temperature τf , τ0 > τf > 0, and number of iterations
f are defined, with the current temperature τ initially set to τ0, see statements 2 and 3.
Then, the cooling factor ρ is defined in statement 4 in such a way that f ruin-and-recreate
iterations are performed.

An adjacency list adj(i) is then created for each customer i in statement 5. This list
contains all customers ordered from closest to farthest in distance from i, with i as its
first element. This adjacency list is used to favor the removal of strings that are relatively
close to each other, even if they come from different routes. Before proceeding with the
main loop, an initial solution is created in step 6 in a straightforward way, by creating an
individual route for each customer. This initial solution becomes the current solution s as
well as the best solution known to date sbest.

The main loop corresponds to statements 8 to 18. At each iteration, a ruin operator
and a recreate operator are applied to a copy s of current solution s, see statements 9 and
10. Note that the set A− is used to store the removed customers. The resulting solution
of the ruin-and-recreate process s is accepted as the new current solution s if it satisfies
the simulated annealing-based criterion in statement 11 (see [32]). It also replaces sbest if
it is the best solution found thus far. The current temperature τ is then updated before
the next iteration starts. After f iterations of the main loop, the whole procedure stops
and returns the best solution found.

4.1 Ruin

In the ruin procedure described in Algorithm 2, the maximum length of a string to be
removed lmax

s is first set to the minimum of Lmax and the average number of nodes in a
route of the current solution AvgRouteNodes(s), see statement 1. Then, in statement 2,
the maximum number of removed strings nmax

s is calculated using lmax
s and c, see the exact

formula in [32]. The actual number of removed strings ns is chosen from a continuous
uniform distribution defined between 1 and nmax

s + 1, as indicated in statement 3. The
set of ruined routes R− and the set of removed customers A− are then initialized with the
empty set. After creating a copy s of the current solution s, a random seed customer iseed

is chosen and its adjacency list is processed (from closest to farthest customers) until all
customers have been considered or the number of ruined routes is reached, see the main
loop in statements 8-20. Note that the number of ruined routes is the same as the number
of removed strings ns, since each string is removed from a different route. If the current
customer i in the adjacency list of iseed has not been previously removed and if the route
r that serves i has not been previously ruined (statement 10) then the ruin operator is

7

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Algorithm 1 SISR for CVRP
1: Set Lmax and c
2: Set τ0, τf and f
3: τ ← τ0

4: ρ←
(

τf
τ0

)1/f
5: Generate adjacency list adj(i) for each customer i
6: Generate initial solution s (with set of routes Rs)
7: sbest ← s
8: for f iterations do
9: s,A− ← Ruin(s)

10: s← Recreate(s,A−)
11: if Cost(s) < (Cost(s)− τ ln(U(0, 1))) then
12: s← s;
13: end if
14: if Cost(s) < Cost(sbest) then
15: sbest ← s
16: end if
17: τ ← ρτ
18: end for
19: Return sbest

Algorithm 2 Ruin(s)

1: lmax
s ← min{Lmax ,AvgNodesInRoutes(s)}

2: Calculate nmax
s with lmax

s and c
3: ns ← ⌊U(1, nmax

s + 1)⌋
4: R− ← ∅
5: A− ← ∅
6: s← s Rs ← Rs

7: Select randomly a seed customer iseed in s
8: for i ∈ adj (iseed) and |R−| < ns do
9: r ← route of customer i

10: if i /∈ A− and r /∈ R− then
11: lmax

r ← min{lmax
s , |r|}

12: lr ← ⌊U(1, lmax
r + 1)⌋

13: RuinOp ← Random(String, Split-String)
14: A− ← A− ∪ RuinOp(s, r, lr, i)
15: R− ← R− ∪ {r}
16: if r is empty then
17: Rs ← Rs\{r}
18: end if
19: end if
20: end for
21: Return s, A−

8

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

applied to route r. In statements 11 and 12, the actual length of the removed string lr is
chosen from a continuous uniform distribution defined between 1 and lmax

r +1, where lmax
r

is the minimum of lmax
s and cardinality of r (since the length of the removed string cannot

exceed the number of nodes in r).

Then, a random choice between two ruin operators takes place in statement 13. These
operators are:

� String : A random string of length lr that contains the current customer i in the
adjacency list of iseed is removed from route r. This is illustrated in Figure 2(a) for
a string of length four with the gray node i3 as current customer i;

� Split-String : A random string of length lr + m that contains the current customer
i in the adjacency list of iseed is chosen in route r (where the procedure to select a
value for m is precisely described in [32]). Then, a random substring of m consecutive
customers within the chosen string is kept in the route, so that only lr customers are
removed. The substring of length m cuts the string of length lr + m in two parts,
unless the substring is at the very beginning or very end of the string of length lr+m.
An example is provided in Figure 2(b) for a string of length five with the gray node
i3 as current customer i. In this example, m = 2, so that only three customers are
removed from the route.

The removed customers are then added to A− and the ruined route to R− in state-
ments 14 and 15. If route r becomes empty, then it is deleted from the set of routes in the
solution, as indicated in statements 16 and 17. At the end, the ruined solution s and the
set of removed customers are returned.

Figure 2: Examples of the two SISR ruin operators : (a) String (b) Split-String.

9

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

4.2 Recreate

A new complete solution is then produced with the recreate operator by reinserting the
removed customers. This operator is described in Algorithm 3. In statement 1, the re-
moved customers in A− are first sorted using a sorting criterion chosen with a particular
distribution probability among: random, decreasing demand, increasing distance from the
depot, decreasing distance from the depot. Based on the chosen order, the customers in
A− are considered one by one and reinserted in the set of routes Rs of solution s, see the
main loop in statements 2-19. Each insertion place in each route that can accommodate
the demand of customer i is considered and the best encountered insertion place pbest is
identified. It should be noted, however, that the chosen insertion place is not necessarily
the best one among all feasible insertion places, due to blinks that correspond to a small
probability γ of skipping a position, see statement 6. In particular, if the best position
is skipped then only the second best position can be chosen (as long as this position is
not skipped too). Statements 14-17 cover the situation when no feasible insertion place is
found for customer i. In this case, a new route is created for that customer. At the end,
the recreated solution s is returned.

Algorithm 3 Recreate(s, A−)

1: Sort(A−) ▷ Recreate
2: for i ∈ A− do
3: pbest ← NULL; CostInsertbest ←∞
4: for r ∈ Rs and r feasible with insertion of i do
5: for pr in r do
6: if U(0, 1) < 1− γ then
7: if pbest = NULL or CostInsert(i, pr) < CostInsertbest then
8: pbest ← pr
9: CostInsertbest ← CostInsert(i, pr)

10: end if
11: end if
12: end for
13: end for
14: if pbest = NULL then
15: Rs ← Rs ∪ {new empty route r}
16: pbest ← first position in r
17: end if
18: Insert i in position pbest
19: end for
20: Return s

5 Time dependency

The SISR metaheuristic for the CVRP, as described in the previous section, needs to be
considerably modified to address the much more complex TDVRPTWTPRN . In particular,
the time dimension must now be taken into account; furthermore, routes are not indepen-

10

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

dent anymore since they interact through transfer points. In this section, we introduce
the basics of our time-dependent travel time model and explain how time bounds can be
derived at each node along the routes of black and green vehicles.

5.1 Time-dependent travel times

The IGP model proposed in [4] is used to model time dependency. In this model, the time
horizon [0, T] is partitioned into a number l of time periods [0, t1),[t1, t2),...., [tl−2, tl−1),
[tl−1, T], where t1, t2,..., tl−1 are time boundaries between two periods. For any given arc,
a travel speed is associated with each period and a speed change occurs when a vehicle
crosses a time boundary. The algorithmic procedure to compute the travel time along an
arc for a given departure time based on this model is provided in [4]. Although speed is
modeled as a step function of time, the corresponding travel time function is a piecewise
linear function. Figure 3 shows an example of a travel speed function on a given arc (i, j)
and the corresponding travel time function, assuming that the arc is of length 4.

0 10 20 30 40 50 60 70 80 90 100
departure time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tra
ve

l s
pe

ed

(a)

0 10 20 30 40 50 60 70 80 90 100
departure time

0

2

4

6

8

10

12

14

tra
ve

l t
im

e

(b)

Figure 3: (a) Travel speed function of arc (i, j) (b) Corresponding travel time function
assuming that arc (i, j) is of length 4.

5.2 Dominant shortest-path structure

The dominant shortest-path structure (DSPS), as described in [18], is useful to quickly
identify the fastest path between any given pair of nodes (either customers, depots or
transfer points) in the road network for any given departure time. First, a number of good
paths between two given nodes i and j are identified by applying a time-dependent Dijk-
stra’s algorithm [18] using different departure times from i, like time boundaries between
two periods. The travel time function of each one of those paths is obtained by combin-
ing the travel time functions of all arcs along that path (which also produces a piecewise
linear function). Figure 4 shows an example of a DSPS based on three different fastest
paths between two nodes. In this figure, the arrival time is represented as a function of
the departure time, so that the corresponding travel time is simply the difference between
arrival and departure times. Since the IGP model satisfies the FIFO property, this piece-
wise linear function is non decreasing. By overlapping the three paths, it is possible to

11

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

identify the fastest among the three paths for any given departure time. It is worth noting
that the DSPS is exact only if the time-dependent Dijkstra’s algorithm is applied with a
sufficiently large number of departure times to cover all fastest paths between two nodes,
which is rarely the case in practice. But better accuracy is obtained with more departure
times.

Figure 4: (a) Three different fastest paths between two nodes obtained at different time
points using a time-dependent Dijkstra’s algorithm (b) Corresponding dominant shortest
path structure

Two different travel time functions are associated with each arc, depending if a black
or a green vehicle follows that arc, because they do not have the same speed. This leads
to two different DSPSs between each pair of nodes made of either customers, depots or
transfer points. Accordingly, the following notation will be used:

� AT b(i, j, dt) is the arrival time at j when a black vehicle departs from i at time dt
and follows the fastest path to reach j, as determined by the DSPS of nodes i and j
for a black vehicle;

� DT b(i, j, at) is the inverse of ATb(i, j, dt) and is the departure time at i that allows
a black vehicle to arrive at j at time at ;

� AT g(i, j, dt) is the arrival time at j when a green vehicle departs from i at time dt
and follows the fastest path to reach j, as determined by the DSPS of the pair of
nodes i and j for a green vehicle;

� DT g(i, j, at) is the inverse of AT g(i, j, dt) and is the departure time at i that allows
a green vehicle to arrive at j at time at.

5.3 Synchronization at a transfer point

Let us consider tpk
b

· a copy of transfer point tp ∈ TP in the route of black vehicle kb ∈ KB,
where the subscript · corresponds to a particular copy (visit) index of transfer point tp in

12

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

the route of vehicle kb. Let us also consider tp
kg1
· , tp

kg2
· , ..., tp

kgh
· , h copies of transfer point

tp in the routes of green vehicles kg1 , k
g
2 , ..., k

g
h ∈ KG. We assume that black vehicle kb

needs to be synchronized with green vehicles kg1 , k
g
2 , ..., k

g
h at these copies of transfer point

tp.

We first account for the arrival time of the last green vehicle:

atmax = max
l=1,...,h

{at
tp

k
g
l

·
} (1)

Then, the departure time of black vehicle kb from tpk
b

· is :

dt
tpk

b
·

= max{at
tpk

b
·
, atmax} (2)

That is, if all green vehicles arrive at the transfer point before black vehicle kb, then
the latter can depart immediately (given that the time to transfer loads from the black
vehicle to green vehicles is null) with dt

tpk
b

·
= at

tpk
b

·
. Otherwise, vehicle kb will depart at

the arrival time atmax of the last green vehicle.

The departure of each green vehicle kgl from tp
kgl
· , l = 1, ..., h, is:

dt
tp

k
g
l

·
= max{at

tpk
b

·
, at

tp
k
g
l

·
} l = 1, ..., h (3)

That is, if green vehicle kgl arrives at the transfer point before black vehicle kb, it must

wait for the arrival of vehicle kb before it can depart from tp
kgl
· . Otherwise, it can depart

immediately with dt
tp

k
g
l

·
= at

tp
k
g
l

·
.

5.4 Time bounds

In the following, we define earliest and latest time bounds for the arrival at and departure
from each node in the route of a black or green vehicle, where a node can be a customer,
a transfer point or a depot. That is, a vehicle must arrive at (depart from) a node before
its latest arrival (departure) time to guarantee that the rest of the route satisfies the
time constraints. For simplifications purposes, the forward and backward propagation
procedures described below focus on a single black or green route and do not account for
possible complex interactions among routes (see subsection 5.5) .

5.4.1 Green route

Here, we explain how to propagate the earliest and latest arrival and departure times in a
green route. For this purpose, let us consider the route of green vehicle kg ∈ KG which is
made of (1) a copy dg0 of the green depot to start the route, (2) a sequence of copies of one
or more transfer points tpk

g

l· , l = 1, ..., p, each followed by a green (or neutral) customer
il ∈ CG ∪ CE , l = 1, ..., p and (3) a copy dgp+1 of the green depot to end the route. That

is, the route of green vehicle kg is dg0, tp
kg
1· , i1, tp

kg
2· , i2, ..., tp

kg
p· , ip, d

g
p+1.

13

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Earliest arrival and departure times
First, the earliest departure time from dg0 is set equal to 0. Then, we go forward by

first computing the earliest arrival time eat at transfer point tpk
g

1· , using function AT g:

eattpkg1·
= AT g(dg0, tp

kg

1· , 0) (4)

Now, to determine the earliest departure time edt, we need to account for the corre-
sponding black vehicle kb from which green vehicle kg should receive a load. Accordingly, if
eattpkg1·

< eat
tpk

b
1·
, then edttpkg1·

= eat
tpk

b
1·
, since green vehicle kg cannot depart from the trans-

fer point before the earliest arrival time of black vehicle kb. Otherwise, edttpkg1·
= eattpkg1·

,

given that the time to transfer a load is null.

Still going forward, we now consider customer ii and compute its earliest departure
time as :

eati1 = AT g(tpk
g

1· , i1, edttpkg1·
) (5)

Now, if eati1 < αi1 , then the earliest departure time edti1 = αi1 + sti1 , otherwise
edti1 = eati1 + sti1 .

This forward procedure is repeated until the end depot dgp+1 is reached and its earliest
arrival time is determined.

Latest arrival and departure times
We start by setting the latest arrival time lat at the end depot dgp+1 to be the end of

time horizon T , that is latdgp+1
= T . Then, we go backward by first computing the latest

departure time ldt at customer ip that allows vehicle kg to arrive at dgp+1 at time latdgp+1
,

using function DT g :

ldtip = DT g(ip, d
g
p+1, latdgp+1

) (6)

Now, if ldtip > βip + stip , then ldtip is reset to βip + stip , because vehicle kg cannot
depart from ip later than βip + stip without violating the time window constraint (i.e., the
arrival time cannot exceed βip). Then, the latest arrival time at customer ip is simply
computed as latip = ldtip − stip .

Still going backward, we now consider the transfer point tpk
g

p· and compute its latest
departure time as :

ldttpkgp· = DT g(tpk
g

p· , ip, latip) (7)

To determine the latest arrival time of the green vehicle kg, we must account for the
corresponding black vehicle kb that transfers a load to vehicle kg. That is, the green vehicle
cannot arrive after the latest departure time of black vehicle kb through the following
formula :

14

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

lattpkgp· = min{ldttpkgp· , ldttpkbp· } (8)

This backward procedure is applied until the the starting depot dg0 is reached and
its latest departure time is determined. It should be noted that a forward propagation
starting from the latest departure time at dg0, until d

g
p+1 is reached, would produce the

latest feasible schedule (i.e., latest possible arrival and departure times at each node along
the green route).

5.4.2 Black route

Here, we explain how to propagate the earliest and latest arrival and departure times in a
black route. For this purpose, let us consider the route of black vehicle kb ∈ KB which is
made of (1) a copy db0 of the black depot to start the route, (2) an arbitrary sequence of
length p of black (or neutral) customers and copies of one or more transfer points and (3)
a copy dbp+1 of the black depot to end the route.

Earliest arrival and departure times
The procedure to compute the earliest arrival and departure times in a black route is

similar to the one described for the green route, but two differences are noteworthy: (1)
the function AT b is used to compute the arrival time at a given node from the earliest
departure time of the previous node and (2) the earliest departure time at a copy of a
transfer point is computed differently, because green vehicles that visit the same transfer
point to get a load from the black vehicle must be accounted for.

Considering case (2), let us suppose that black vehicle kb visits copy tpk
b

· of tranfer

point tp ∈ TP and that h green vehicles kg1 , k
g
2 , ..., k

g
h visit copies tp

kg1
· , tp

kg2
· , ..., tp

kgh
· of the

same transfer point and that synchronization is required (i.e., black vehicle kb must transfer
a load to each green vehicle). To compute the earliest departure time of vehicle kb at the
transfer point, we first consider the maximum earliest arrival time over all green vehicles,
that is:

eatmax = max
l=1,...,h

{eat
tp

k
g
l

·
} (9)

Then, the earliest departure time of vehicle kb at tpk
b

· can be computed from its earliest
arrival time as follow:

edt
tpk

b
·

= max{eatmax, eat
tpk

b
·
} (10)

That is, black vehicle kb cannot depart earlier than the earliest arrival time of the last
green vehicle, otherwise one or more green vehicles will not get their load.

Latest arrival and departure times
The procedure to compute the latest arrival and departure times of a black vehicle is

similar to the one described for a green vehicle, although two differences are noteworthy:

15

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

(1) the function DT b is used to compute the departure time from a given node to reach the
next node at its latest arrival time and (2) the latest arrival time at a copy of a transfer
point is computed differently, because green vehicles that visit the same transfer point to
get a load from the black vehicle must be accounted for.

Considering case (2), let us suppose that black vehicle kb visits copy tpk
b

· of tranfer point

tp ∈ TP and that h green vehicles kg1 , k
g
2 , ..., k

g
h visit copies tp

kg1
· , tp

kg2
· , ..., tp

kgh
· of the same

transfer point and that synchronization is required (i.e., black vehicle kb must transfer a
load to each green vehicle). To compute the latest arrival time of vehicle kb at the transfer
point, we first consider the minimum latest departure time over all green vehicles, that is:

ldtmin = min
l=1,...,h

{ldt
tp

k
g
l

·
} (11)

Then, the latest arrival time of vehicle kb at tpk
b

· can be computed from its latest
departure time as follow:

lat
tpk

b
·

= min{ldtmin, ldt
tpk

b
·
} (12)

That is, black vehicle kb cannot arrive at the transfer point later than the minimum
latest departure time over all green vehicles that require synchronization, otherwise one or
more green vehicles will not get their load.

5.5 Interaction among routes

In the previous section, our description of forward and backward propagation procedures
to derive time bounds has focused on a single black or green route. However, complex
interactions may occur when multiple black and green routes are involved.

Figure 5 shows an example where customer i is inserted between nodes prev and next in
black route kb2 (as it occurs during the recreate procedure of SISR). Forward propagation
is illustrated in Figure 5(a). First, the ealiest arrival and departure times of the newly
inserted customer i are calculated from the earliest departure time at transfer point prev.
Then, forward propagation is triggered along the black route. However, a green route that
connects the three black routes is encountered at the transfer point just after customer
next. Thus, another forward propagation is triggered at this transfer point along the green
route which, in turn, leads to a transfer point that connects the green route to black route
kb3, thus triggering another forward propagation along that black route. It should be noted
that this illustration is a worst case, because forward propagation along a route terminates
as soon as the earliest departure time from a node does not change.

Backward propagation is illustrated in Figure 5(b). First, latest arrival and departure
times at the newly inserted customer i are calculated from the latest arrival time at cus-
tomer next. Then, backward propagation is triggered along black route kb2. Since node
prev is a transfer point, it triggers another backward propagation along the corresponding
green route. Still going backward along the black route, another transfer point is met that

16

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

triggers backward propagation along another green route. Finally, both green routes con-
nect to black route kb1at the same transfer point, thus triggering a backward propagation
along that black route also. Once again, this illustration is a worst case, because backward
propagation along a route stops as soon as the latest arrival time at a node does not change.

To summarize, we had to implement forward and backward propagation procedures
that account for the whole solution.

Figure 5: Example of forward and backward propagations when customer i is inserted in
a route: (a) forward propagation (b) backward propagation.

6 SISR for the TDVRPTWTPRN

The previous section has focused on time issues that arise when the TDVRPTWTPRN is
considered. In the following, we revisit the SISR metaheuristic described in Section 4 given
that our problem is much more complex than the CVRP.

Although the general algorithmic framework of SISR remains quite the same, there are
important differences that can be observed in Algorithm 4. In the initialization phase,
the dominant shortest path structures obtained from the underlying road network must
first be created to account for the time-dependent travel times, see statements 5 and 6.
More precisely, the DSPS of every pair of nodes that involves a black customer, a neutral
customer, a transfer point or the black depot is generated, assuming that a black vehicle is
used to travel between the two nodes. Then, the DSPS of every pair of nodes that involves
a green customer, a neutral customer, a transfer point or the green depot is generated,
assuming that a green vehicle is used to travel between the two nodes.

In statements 7-10, the adjacency list of each black, green and neutral customer i
is generated. In the adjacency list adjb(i) of a black customer, only black and neutral
customers are considered. In the adjacency list adjg of a green customer, only green and
neutral customers are considered. In the case of a neutral customer, since they can be

17

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Algorithm 4 SISR for TDVRPTWTPRN

1: Set Lmax and c
2: Set τ0, τf and f
3: τ ← τ0

4: ρ←
(

τf
τ0

)1/f
5: Generate DSPSb for every admissible pair of nodes, assuming that a black vehicle is used
6: Generate DSPSg for every admissible pair of nodes, assuming that a green vehicle is used
7: Generate adjb(i) of each black customer i ∈ CB

8: Generate adjg(i) of each green customer i ∈ CG

9: Generate adjb(i) and adjg(i) of each neutral customer i ∈ CE

10: Generate adjtp(i) of each green and neutral customer i ∈ CG ∪ CE

11: s← Initial Solution(k)
12: for f iterations do
13: Calculate cbs and cgs
14: s,Ab ← RuinBlack(s)
15: s,Ag ← RuinGreen(s)
16: A− ← Ab ∪Ag

17: s← Recreate(s,A−)
18: if Cost(s) < (Cost(s)− τ ln(U(0, 1))) then
19: s← s;
20: end if
21: if Cost(s) < Cost(sbest) then
22: sbest ← s
23: end if
24: τ ← ρτ
25: end for
26: Return sbest

visited by both types of vehicles, two adjacency lists adjb(i) and adjg(i) are generated: one
that contains only black and neutral customers (in case the neutral customer is in a black
route) and the other that contains only green and neutral customers (in case the neutral
customer is in a green route). Also, for each green and neutral customer, an adjacency
list adjtp(i) made of all feasible transfer points, from closest to farthest from i, is created.
A transfer point is feasible for a green or neutral customer, if it is possible for a green
vehicle to receive the corresponding load from a black vehicle and serve the customer,
while satisfying all constraints.

6.1 Initial solution

Another difference with the original SISR implementation is how the initial solution is gen-
erated in statement 11. A solution is constructed with a greedy insertion heuristic where,
at each iteration, a customer is randomly selected and then inserted at its best place in
the current partial solution. This is repeated until all customers are served. This insertion
procedure is the same as the one used in the recreate operator, except that all feasible
insertion places are considered (i.e., there is no blink so that no insertion place is skipped).
Since this is a randomized heuristic, different runs typically produce different solutions.
Accordingly, in the computational results, the greedy insertion heuristic was run 100 times

18

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

on each instance and the best solution obtained was chosen as the intial solution (prelimi-
nary experiments have shown that no significant improvement is observed beyond 100 runs).

At each iteration of the main loop in statements 12-25, RuinBlack and RuinGreen are
applied in sequence to ruin black and green routes, respectively. In the original algorithm,
parameter c determines the average number of customers that are removed from the current
solution by the ruin operator. Since we have two types of routes, we define cbs and cgs in
statement 13 to control the average number of customers that are removed from the black
and green routes, respectively, of solution s with cbs + cgs = c. The values of cbs and cgs are
dynamically set at each iteration depending on the number of customers in black routes
nBR
s and number of customers in green routes nGR

s in the current solution, using the formula
:

cbs =

⌈ (
nBR
s

nBR
s + nGR

s

)
· c
⌉

(13)

with cgs = c − cbs. This dynamic setting is required because the number of customers in
the routes of black and green vehicles cannot be known a priori, due to the presence of
neutral customers that can be served by both types of vehicles. After collecting in set A−

the two sets of removed customers Ab and Ag from the black and green routes, respectively
(see statements 14 and 15), the Recreate operator is called in statement 17 with the ruined
solution and the removed customers. When the new recreated solution s is returned, this
new solution is compared with the current solution s in the same way as in the original
algorithm, see statements 18-23.

In the following, we will now focus on the Ruin and Recreate procedures.

6.2 Ruin

Given that black and green routes do not have the same structure, a different Ruin operator
has been designed for each type of route. It should first be noted that removing customers
has no impact on solution feasibility (i.e., a feasible solution will remain feasible). Thus,
the earliest and latest arrival and departure times at each node can be recalculated only
once after the two ruin operators for black and green routes have been applied. The same
applies to the solution value, which is of no interest while customers are removed from the
solution.

6.2.1 Ruining black routes

The pseudo-code of RuinBlack is shown in Algorithm 5. The RuinBlack procedure is very
similar to the Ruin procedure, except that the focus is only on black routes. Thus, the
maximum length of a string lmax

s is taken as the minimum between Lmax and the average
number of customers in black routes AvgCustInBlackRoutes(s), see statement 1, while the
maximum number of strings ns is calculated using lmax

s and cbs in statement 2. The seed
customer must also be chosen in a black route, see statement 7. As in the original im-
plementation, the ruin operator is randomly chosen between Stringb and Split − Stringb,

19

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

which are adaptations of String and Split-String, see statement 14. In these two new op-
erators, the transfer points in a black route are always preserved and only customers are
removed. This is because a transfer point in a black route connects to one or more green
routes, so that the green or neutral customer that follows the removed transfer point in
each green route would have to be removed too.

Algorithm 5 RuinBlack(s)

1: lmax
s ← min{Lmax ,AvgCustInBlackRoutes(s)}

2: Calculate nmax
s with lmax

s and cbs
3: ns ← ⌊U(1, nmax

s + 1)⌋
4: Rb ← ∅
5: Ab ← ∅
6: s← s Rs ← Rs

7: Select randomly a seed customer ibseed over all black and neutral customers in black routes

8: for i ∈ adj b(ibseed) and |Rb| < ns do
9: if (i ∈ CB) or (i ∈ CE and i is in a black route) then

10: r ← route of customer i
11: if i /∈ Ab and r /∈ Rb then
12: lmax

r ← min{lmax
s , |r|}

13: lr ← ⌊U(1, lmax
r + 1)⌋

14: RuinOp ← Random(Stringb, Split − Stringb)
15: Ab ← Ab ∪ RuinOp(s, r, lr, i)
16: Rb ← Rb ∪ {r}
17: if r is empty then
18: Rs ← Rs\{r}
19: end if
20: end if
21: end if
22: end for
23: Return s, Ab

Figure 6 illustrates operator Stringb, assuming that four customers must be removed.
When two or more consecutive copies of the same transfer point are visited by the black
vehicle after the string removal, then these copies are merged into a single copy. This is
illustrated in the figure where two consecutive copies of the same transfer point tp3 are
merged together. Furthermore, the green routes that were connected to the original copies
are collected and are all connected to the new single copy. The operator Split − Stringb,
works similarly, except that m customers in the string are preserved.

6.2.2 Ruining green routes

Ruining a green route also shares similarity with the original Ruin operator, except that
the focus is on green routes. One particularity of RuinGreen is that the seed customer is the
closest from the seed customer chosen in RuinBlack, over all green and neutral customers in
green routes. The idea is to ruin green routes that are close to the previously ruined black
routes. Another particularity is that each time a green or neutral customer is removed
from a green route, the copy of the transfer point where the load is transferred from a

20

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Figure 6: Example of Stringb where four customers are removed. First, the transfer points
are set apart, then a string of cardinality four is chosen and the corresponding customers
are removed.

black route to the green route must also be removed. That is, a pair (tpk
g

· , i) is removed,
where tpk

g

· is the copy of transfer point tp ∈ TP in the green route and i is the immediate
successor customer, that is, the one who receives the load. The pseudo-code of RuinGreen
is shown in Algorithm 6.

Algorithm 6 RuinGreen(s)

1: lmax
s ← min{Lmax ,AvgCustInGreenRoutes(s)}

2: Calculate nmax
s with lmax

s and cgs
3: ns ← ⌊U(1, nmax

s + 1)⌋
4: Rg ← ∅
5: Ag ← ∅
6: Select igseed the closest customer from ibseed over all green and neutral customers in green routes
7: for i ∈ adj g(igseed) and |Rg| < ns do
8: if (i ∈ CG) or (i ∈ CE and i is in a green route) then
9: r ← route of customer i

10: if i /∈ Ag and r /∈ Rg then
11: lmax

r ← min{lmax
s , |r|}

12: lr ← ⌊U(1, lmax
r + 1)⌋

13: RuinOp ← Random(Stringg, Split − Stringg)
14: Ag ← Ag ∪ RuinOp(s, r, lr, i)
15: Rg ← Rg ∪ {r}
16: if r is empty then
17: Rs ← Rs\{r}
18: end if
19: end if
20: end if
21: end for
22: Return s, Ag

21

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Figure 7: Example of Stringg where two customers are removed.

Figure 7 shows an example of Stringg where two customers are removed. It should be
noted that removing a copy of a transfer point in a green route may have an impact on
the corresponding black route if the green route is the only one that connects to the black
route there. In this case, the corresponding copy of the transfer point in the black route
must also be removed. Also, if this removal leads to the visit of two or more consecutive
copies of another transfer point in the black route, then these copies are merged into a
simple copy, as previously explained in subsection 6.2.1.

6.3 Recreate

Given that we have two different types of routes and three different types of customers,
reinserting the removed customers is more complex than in the original implementation of
SISR for the CVRP. As shown in Algorithm 7, the removed customers in set A− are first
sorted randomly or by decreasing demand, with equal probability (the two other sorting
criteria proposed in [32], increasing and decreasing distance from the depot are not con-
sidered due to the ambiguity for neutral customers who can appear in black and green
routes). Then, the customers are considered one by one in the sorted list. If the current
customer is black then the method InsertionBlack for insertion in a black route is called.
If the current customer is green then the method InsertionGreen for insertion in a green
route is called. Finally, if the current customer is neutral then both methods are called and
the best of the two proposed insertions is chosen. The procedure for inserting a customer
in black routes is similar to the one presented in Algorithm 3 for the CVRP, except that
the focus is on black routes only. However, the procedure for inserting a customer in a
green route is more complex, as it is explained below.

It should also be noted that the Recreate method assumes that the vehicles visit nodes
as soon as possible, that is, they follow a schedule based on the earliest arrival and departure
times at each node. This earliest schedule induces slack time (waiting time) in the routes
that can be exploited to feasibly insert new customers. But since we aim at minimizing
the total duration of routes, the latest schedule is then used to get exact solution costs.

22

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Algorithm 7 Recreate(s, A−)

1: Sort(A−)
2: for i ∈ A− do
3: if i is a black customer then
4: s← InsertionBlack(i, s)
5: end if
6: if i is a green customer then
7: s← InsertionGreen(i, s)
8: end if
9: if i is a neutral customer then

10: s← Best of InsertionBlack(i, s) and InsertionGreen(i, s)
11: end if
12: end for
13: Return s

6.3.1 Insertion in black routes

As in the original implementation for the CVRP, InsertionBlack considers all possible inser-
tions of the current customer i between two consecutive nodes in black routes with enough
residual capacity to accommodate the demand of i, except for blinks (i.e., a position may
be skipped with a small probability γ).

It is worth noting that the feasibility and (approximate) evaluation of inserting customer
i between two consecutive nodes j and l in a black route are done in constant time. First,
the arrival and departure times at i are calculated from the departure time at j to check
if the time window at i is satisfied. If i is feasible, then the new arrival time at l is
calculated from the departure time at i. If the new arrival time at l does not exceed its
latest arrival time latl, then the insertion is feasible. Assuming feasibility, the additional
cost induced by this insertion is then evaluated. To maintain a constant time evaluation,
an approximation is used. That is, the approximate or local additional cost corresponds
to the arrival time delay at node l due to the insertion of customer i (even if l is the
end depot). This delay corresponds to the difference between the arrival time at l after
the insertion of i minus the arrival time at l before the insertion of i. To get an exact
evaluation of the additional cost, the delay at l would need to be propagated along the
route, until either it vanishes (due to waiting times) or the end depot is reached. It may also
lead to forward propagation along other connecting routes (see Section 5.5). To alleviate
the impact of using only approximate additional costs, the npos best insertion places of
customer i, based on the approximation, are kept. Each one of these npos alternative
insertion places are then evaluated exactly through propagation. The best insertion place,
based on the exact evaluation of the additional cost, is finally chosen. It is worth noting
that, after the insertion of customer i, the latest arrival and departure times need to be
recomputed through backward propagation from i to the starting depot. This may also
lead to backpropagation along other connecting routes (see Section 5.5). If no feasible
insertion place is found for customer i then a new route is created for this customer.

23

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

6.3.2 Insertion in green routes

When a customer is inserted in a green route, a copy of a transfer point needs to be coupled
with it. Accordingly, the search for possible insertion places is divided into four different
phases, as it is explained below. It should be noted that the insertion procedure of each
phase accounts for blinks. Furthermore, as for black routes, the feasibility and (approxi-
mate) evaluation of all possible insertion places of the current customer in green routes are
done in constant time.

Phase I. Existing copy of a transfer point in a black route; existing green route.

If i is a green or neutral customer, we consider every black vehicle kb with enough
residual capacity to accommodate the demand of i. Then, we consider the route of every
green vehicle kg and every copy tpk

b

· of a transfer point in the route of black vehicle kb

that satisfy the two following conditions: (1) the route of black vehicle kb does not already

connect with the route of green vehicle kg through tpk
b

· and (2) the transfer point is in set
adjtp(i). Then, we create a corresponding copy tpk

g

· for the green vehicle kg and we try to
insert the pair (tpk

g

· , i) after every customer in the green route. An example is provided
in Figure 8 where the two corresponding copies of a transfer point in the black and green
routes are represented as a single node tp. A further refinement allows a reduction in the
number of insertion places to be considered. Let us denote t̃pL the last transfer point
before tp that connects vehicles kb and kg (if any) and t̃pR the first transfer point after tp
that connects vehicles kb and kg (if any), see Figure 8. Then, there is no need to consider
insertion places in the green route after customers that are visited before t̃pL. In such a
case, t̃pL would be visited before tp in the black route while t̃pL would be visited after
tp in the green route, thus no synchronization of the black and green vehicles is possible.
Similarly, insertion places in the green route after customers that are visited after t̃pR are
discarded, since in such case t̃pR would be visited after tp in the black route, but tp would
be visited before t̃pR in the green route.

It is important to note that the insertion of customer i impacts both the black and
green routes. With regard to feasibility of the black route, the departure time of vehicle
kb at tp may be delayed since a load must now be transferred to green vehicle kg (vehicle
kb may have to wait for vehicle kg). However, it the new departure time does not exceed
the latest departure time of kb at tp, then the insertion is feasible in the black route. With
regard to feasibility of the green route, we start with customer jg after which the transfer
point and customer i are inserted. That is, time is forward propagated from the latest
arrival time at jg to the transfer point, customer i and the following transfer point (or end
depot), denoted lg in the figure. If the time constraints are satisfied at the transfer point
and at customer i, and if the new arrival time of the green vehicle at lg does not exceed
its latest arrival time then the insertion is feasible in the green route. The approximate or
local cost of this insertion corresponds to the arrival time delay of black vehicle kb at lb

plus the arrival time delay of green vehicle kb at lg.

24

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Phase II. Existing copy of a transfer point in a black route; new green route.

This is similar to Phase I, except that a new green route for the current green or neutral
customer i is created. This is illustrated in Figure 9. Feasibility can be checked similarly to
Phase I. The approximate or local cost corresponds here to the duration of the new green
route plus the arrival time delay of black vehicle kb at lb, given the new green route.

Phase III. New copy of a transfer point in a black route; existing green route.

Due to the additional computational complexity of this phase, we only consider the
most interesting insertion places through a subset of adjtp(i) that contains the nftp nearest
feasible transfer points of current customer i. For each such transfer point, we insert a copy
of the transfer point at each possible insertion place in the route of each black vehicle with
enough residual capacity to accommodate the demand of i. Then, for each such insertion
place of this copy in a black route, we insert a corresponding copy of the transfer point
followed by customer i after each green customer in each green route. This is illustrated
in Figure 10 where the copies of the transfer point in the black and green routes are rep-
resented as a single node denoted tp. The transfer points denoted as t̃pL and t̃pR have the
same meaning than in Phase I and are also used to reduce the number of insertion places
that must be considered. In addition, there is no need to consider the insertion of the
new copy before or after a copy of the same transfer point in the black route. These two
consecutive copies of the same transfer point could then be merged, which would lead to a
case already considered in Phase I (c.f., existing copy of a transfer point in a black route).
Feasibility is checked as in Phase I and the approximate cost is obtained by summing the
arrival time delay of the black vehicle at customer lb and arrival time delay of the green
vehicle at lg.

Phase IV. New copy of a transfer point in a black route; new green route.

This is similar to Phase III, except that a new green route for the current green or
neutral customer i is created, as illustrated in Figure 11. The approximate cost is obtained
here by summing the duration of the new green route, plus the arrival time delay of the
black vehicle at lb, given the new green route.

The npos best insertion places according to the approximate cost, as identified during
Phases I to IV, are then evaluated exactly through propagation. For evaluation purposes,
the latest schedule is used to reduce as much as possible the waiting time. The best inser-
tion place, based on the exact evaluation of the additional cost, is finally chosen. After the
insertion of customer i at the chosen place, the latest arrival and departure times must be
recomputed through backward propagation from customer i.

If no feasible insertion place is found for customer i, then two new routes are created
to serve this customer, one for a black vehicle and one for a green vehicle. This is shown
in Figure 12, where the nearest feasible transfer point from i is used to connect the two
routes.

25

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Figure 8: Phase I : a transfer point tp (already present in the black route) followed by
customer i are inserted after customer jg in the green route; (a) and (b) show the black
and green routes before and after the insertion, respectively.

Figure 9: Phase II: a transfer point tp (already present in the black route) followed by
customer i are inserted in a new green route; (a) and (b) show the black and green routes
before and after the insertion, respectively.

7 Computational experiments

In the following sections, we first describe how the test instances were designed. Then, we
explain the parameter tuning process of our SISR. This is followed by the results obtained
on our test instances. Finally, we analyze the synchronization efficiency at transfer points
and study the impact of customer distributions, scenarios, time windows and number of
transfer points on the solutions obtained. We note that the results reported in this section
were obtained with a processor Intel Gold 6148 Skylake 2.4 GHz, with 6GB of RAM.

7.1 Test instances

Our benchmark was produced by extending the well-known NEWLET instances for the
TDVRPTWRN [33]. These Euclidean instances are defined on road networks generated by
a procedure reported in [15]. Node coordinates in these networks are randomly generated

26

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Figure 10: Phase III: a new transfer point tp is inserted in the black route; this transfer
point followed by customer i are inserted after customer jg in the green route; (a) and (b)
show the black and green routes before and after the insertion, respectively.

Figure 11: Phase IV: a new transfer point tp is inserted in the black route; this transfer
point followed by customer i are inserted in a new green route; (a) and (b) show the black
and green routes before and after the insertion, respectively.

Figure 12: A new black and a new green route are created for a single green or neutral
customer

27

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

in the interval [−10
√
n, 10

√
n], where n is the number of nodes. The arc set E is obtained

by considering all possible arcs and by adding an arc to set E when two conditions are
satisfied: (1) the new arc does not cross any arc already included in E and (2) if the new
arc has in common one endpoint with an arc already included in E, then the angle between
these two arcs must be greater than or equal to 60 degrees.

In the NEWLET instances, there are different networks of different sizes. For each
road network of each size, three different ways to set the fixed or nominal travel time on
every arc, depending on the correlation level with its length, are proposed through the
formula tij = ν ·dij +µ ·γij · d̄, where tij and dij are the travel time and length of arc (i, j),
respectively. In the formula, d̄ denotes the maximum arc length in the road network, ν
and µ are correlation parameters selected in interval [0, 1] and γij is a randomly generated
number in interval [0, 1] for each arc (i, j). Thus, for each road network of each size, three
different instances are obtained, which are denoted NC (i.e., no correlation, with ν = 0 and
µ = 1), WC (i.e., weak correlation, with ν = 0.5 and µ = 0.5) and SC (i.e., strong correla-
tion, with ν = 0.9 and µ = 0.1). The nominal travel times are then used to derive nominal
travel speeds. Then, each one of these instances is duplicated by considering instances with
narrow time windows (NTW) and wide time windows (WTW), where the length of narrow
time windows is randomly selected from {3, 4}, and the length of wide time windows is
randomly selected from {10, ..., 15}. To account for time-dependency, the time horizon
[0, 100] is partitioned into five periods τ1 = [0, 20), τ2 = [20, 30), τ3 = [30, 70), τ4 = [70, 80)
and τ5 = [80, 100]. Based on this partition, one of three different time-dependent speed
profiles is randomly associated with each arc, where a profile corresponds to a set of five
speed multipliers, one for each time period. Finally, a service time is randomly selected
from {1, 2} for each customer.

For the computational tests, we used four SC road networks with 500 nodes, which is
the largest network size. They are called RN1, RN2, RN3 and RN4 in the following. Since
there is only one type of vehicles and one type of customers in the NEWLET instances,
we had to extend these instances to fit our purposes. The new characteristics of our test
instances with regard to the original NEWLET instances are the following:

� A number of nc = 50, 100 and 200 customers are randomly selected from the 500
nodes of a given network.

� For a given road network and nc value, four customer distributions are considered:

– D1: 60% black customers, 20% green customers and 20% neutral customers.

– D2: 20% black customers, 60% green customers and 20% neutral customers.

– D3: 20% black customers, 20% green customers and 60% neutral customers.

– D4: 40% black customers, 40% green customers and 20% neutral customers.

� Each road network is divided into three regions: downtown, boundary (or frontier)
and outside, as illustrated in Figure 13. In this figure, the light gray area represents
downtown, while the dark gray area represents the boundary region. Orange triangles

28

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

are transfer points, while the black and green squares are the black and green depot,
respectively. Also, the black, green and gray nodes stand for black, green and neutral
customers, respectively. The downtown area is defined by expanding a central and
rectangular area until it can contain 80% of the maximum possible number of green
customers (see distributionD2), the green depot and additional road junctions. Then,
the surrounding boundary or frontier region is expanded until it can contain the
maximum possible number of neutral customers (see distribution D3), 20% of the
maximum possible number of black and green customers (see distributions D1 and
D2), 10 transfer points and additional road junctions. The outside region contains
the rest of the nodes.

Figure 13: Example of an instance generated with road network RN3.

� For all instances derived from a given road network, the three regions are the same
as well as the location of the depots and transfer points.

� Black vehicles can perform deliveries to customers in the outside and boundary re-
gions only. That is, downtown is forbidden to them. Conversely, the smaller green
vehicles can perform deliveries to customers in the downtown and boundary regions
only. For this reason, black customers are located in the outside and boundary re-
gions, while green customers are located in the downtown and boundary regions.
Neutral customers and transfer points are only found in the boundary region, since
they can be visited by both black and green vehicles.

� The black depot is randomly located in the outside region, while the green depot is
randomly located in the downtown region. There are also 10 transfer points that are
randomly located in the boundary region.

� Arcs are characterized by the regions where they are found. Let (i, j) be an arc in
the network. If both i and j are in the boundary (or frontier) region, then the arc
is of type F (and is accessible to both black and green vehicles). If both i and j
are in the downtown region, or one is in the downtown region and the other in the

29

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

boundary region, then the arc is of type D (and is accessible only to green vehicles).
If both i and j are in the outside region, or if one is in the outside region and the
other is in the boundary region, then the arc is of type O (and is accessible only to
black vehicles). It should be noted that no arcs connect the downtown and outside
regions. Given that the regions are the same for a given network, then the arc type
also stays the same for all instances generated from a given road network.

� The test instances are duplicated by considering two different sets of travel speed
multipliers (scenarios), where a speed multiplier depends on the time period, vehicle
(black or green) and arc type (D, F, O), see Tables 1 and 2. In the two scenarios
SI and SII , the second and fourth periods correspond to rush hours. The speed
multipliers of green vehicles are fixed at 1 everywhere, which means that they are not
affected by congestion since they are small (e.g., bicycles). Black vehicles are faster
than green vehicles when there is no congestion. However, they are slower than green
vehicles in the boundary region during rush hours in scenario SI while they have
the same speed than green vehicles in scenario SII . The second scenario is aimed
at evaluating the impact of increasing the speed of black vehicles when compared to
green vehicles.

� The capacity of black vehicles is set to 40.

� The demand of each customer is randomly selected from {1, ..., 5}.

Overall, there are 4 road networks × 3 numbers of customers (nc) × 4 customer distri-
butions × 2 types of time windows × 2 scenarios for a total of 192 instances, that is, 96
instances for each scenario.

Time period

Arc type τ1 = [0, 20) τ2 = [20, 30) τ3 = [30, 70) τ4 = [70, 80) τ5 = [80, 100)

Type F 1.2 0.8 1.2 0.8 1.2
Type O 1.5 1.0 1.5 1.0 1.5

(a) Black vehicles

Time period

Arc type τ1 = [0, 20) τ2 = [20, 30) τ3 = [30, 70) τ4 = [70, 80) τ5 = [80, 100)

Type D 1.0 1.0 1.0 1.0 1.0
Type F 1.0 1.0 1.0 1.0 1.0

(b) Green vehicles

Table 1: Speed multipliers for (a) black vehicles and (b) green vehicles under scenario SI

30

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Time period

Arc type τ1 = [0, 20) τ2 = [20, 30) τ3 = [30, 70) τ4 = [70, 80) τ5 = [80, 100)

Type F 1.5 1.0 1.5 1.0 1.5
Type O 2.0 1.5 2.0 1.5 2.0

(a) Black vehicles

Time period

Arc type τ1 = [0, 20) τ2 = [20, 30) τ3 = [30, 70) τ4 = [70, 80) τ5 = [80, 100)

Type D 1.0 1.0 1.0 1.0 1.0
Type F 1.0 1.0 1.0 1.0 1.0

(b) Green vehicles

Table 2: Speed multipliers for (a) black vehicles and (b) green vehicles under scenario SII

7.2 Parameter tuning

Four parameters have a significant impact on the performance of our SISR, namely, c (av-
erage number of removed customers), npos (number of best insertion positions, based on
the approximation), nftp (number of nearest feasible transfer points) and Lmax (maximum
length of removed strings). To adjust their values, we selected a subset of 16 tuning in-
stances with 100 customers by randomly selecting only one of the four networks, for each
possible configuration of customer distribution (D1, D2, D3, D4), time window (NTW,
WTW) and scenario (S1, S2). Given that solution quality tends to improve with increas-
ing values of npos and nftp, at the expense of computation time, these two parameters were
first set to high values, that is, npos = 7 and nftp = 10 (the latter value cannot be larger,
since there are only 10 transfer points in each instance). In other words, we did not care
at this point about computation time.

Then, we focused on parameters c and Lmax and tuned them with the IRACE software
[34], using c = {5, ..., 17} and Lmax = {3, ..., 13}. The best values returned by IRACE
were c = 15 and Lmax = 8. Based on the default configuration c = 15, npos = 7, nftp

= 10 and Lmax = 8, we then modified the value of one parameter at a time, keeping the
other parameters at their default value. The values considered for each parameter were:
c = {9, 11, 13, 15, 17, 19}, npos = {1, ..., 10}, nftp = {1, ..., 10} and Lmax = {1, ..., 10}. Since
our algorithm is non deterministic, we show the average results (solution quality, compu-
tation time in hours) obtained over 10 runs on each tuning instance in Table 3.

As expected, increasing the values of parameters npos and nftp leads to an increase
in computation time, although the impact is more significant in the case of nftp, since it
increases the number of possible insertions of green and neutral customers in Phase III
and Phase IV of the Recreate method (these insertions are quite complex). The computa-
tion times increase even more with increasing values of parameter c because more removed

31

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Parameter values

c = 9 11 13 15 17 19

Avg. cost 2552.1 2532.7 2523.3 2520.3 2520.1 2520.0
Avg. time 1.29 1.54 1.81 2.10 2.36 2.56

npos = 1 2 3 4 5 6 7 8 9 10

Avg. cost 2537.9 2524.6 2521.4 2521.9 2520.3 2521.0 2520.3 2520.2 2519.6 2520.6
Avg. time 1.76 1.92 1.93 1.99 2.00 2.05 2.1 2.16 2.16 2.21

nftp = 1 2 3 4 5 6 7 8 9 10

Avg. cost 2531.2 2525.5 2522.0 2520.2 2520.6 2518.9 2520.1 2520.3 2520.4 2520.3
Avg. time 0.83 1.15 1.41 1.61 1.75 1.88 1.97 2.02 2.06 2.10

Lmax = 1 2 3 4 5 6 7 8 9 10

Avg. cost 2542.9 2522.1 2520.2 2519.7 2520.4 2520.0 2520.1 2520.3 2519.8 2520.5
Avg. time 2.02 2.14 2.09 2.09 2.08 2.10 2.11 2.10 2.08 2.08

Table 3: Impact of parameter values on solution quality and computation times

customers simply mean more customers to be reinserted. On the other hand, parameter
Lmax has no impact on computation time. With regard to solution quality, we observe an
improvement in solution quality for the first values of each parameter, but then some kind
of stagnation is observed. Accordingly, the parameter setting c =15, npos = 3, nftp = 4
and Lmax = 4 was chosen for the experiments reported in the following sections. We also
checked that this particular combination of parameter values led to good solutions on the
tuning instances, which turned to be true with an average solution cost of 2522.2 and av-
erage computation time of 1.47 hours.

Some experiments were also performed with regard to the number of iterations. We
observed that convergence is obtained, even on the largest instances with 200 customers,
after a maximum of 300,000 iterations. That is, a plateau is reached and no further
significant improvement in solution quality is observed. Figure 14 shows an example of
convergence curves for the best solutions found on instances with 200 customers generated
with road network RN4, using the four customer distributions, and both narrow and wide
time windows, under scenario SI . In this figure, black, green, gray and blue curves are
associated with customer distributions D1, D2, D3 and D4, respectively, while full lines and
broken lines are associated with instances with narrow and wide time windows, respectively.
Based on the results obtained, the number of iterations was set to 300,000 for all instances
(which is admittedly too much for instances with 50 and 100 customers).

32

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

0 50000 100000 150000 200000 250000 300000
Iteration

4000

5000

6000

7000

8000

Co
st

Convergence
D1, NTW
D2, NTW

D3, NTW
D4, NTW

D1, WTW
D2, WTW

D3, WTW
D4, WTW

Figure 14: Convergence curves observed for instances with 200 customers generated with
road network RN4 under scenario SI .

7.3 Results on test intances

We report in this section the results produced by our algorithm on the whole set of test
instances, based on 10 different runs on each instance. Table 8 in the Appendix reports
the best and average costs, as well as the average computation times in hours for each
instance. Each line of this table corresponds to a particular type of instance using the
notation RNx ny Dz, where x is the road network index, y is the number of customers
and z is the customer distribution index. For each type, we show the results obtained on
instances associated with narrow time windows (NTW) and wide time windows (WTW)
under scenarios SI and SII .

Table 4 in this section is a reduced version, where averages are taken over the four road
networks. That is, ny Dz in Table 4 encompasses RN1 ny Dz, RN2 ny Dz, RN3 ny Dz
and RN4 ny Dz, so that the numbers in Table 4 correspond to the bold Avg. lines in the
full table in the Appendix.

Since there are no similar instances in the literature that we could refer to for compar-
ison purposes, Table 5 reports both the average best improvements and average improve-
ments provided by our algorithm over the initial solutions, to measure its optimization
power. Denoting si and sf the initial and final solutions produced by our algorithm on a
given instance, with cost(si) and cost(sf) their respective cost, the percentage of improve-
ment of the final solution over the initial one is calculated as follow:

Impr = 100

(
cost(si)− cost(sf)

cost(si)

)
(14)

Tables 4 and 5 will be referred to in the following sections when we analyze in more
detail the behavior of our algorithm for different characteristics of the test instances. For
now, we can observe the obvious increase in solution cost and computation time with in-
stance size in Table 4.

33

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

NTW WTW

Instances Avg. Best Cost Avg. Cost Avg. Time Avg. Best Cost Avg. Cost Avg. Time

SI SII SI SII SI SII SI SII SI SII SI SII

n50 D1 1397.8 1125.3 1398.9 1126.6 0.27 0.28 1219.0 929.5 1220.5 930.0 0.26 0.26
n50 D2 2002.5 1841.0 2004.5 1844.5 0.77 0.87 1801.4 1608.4 1805.2 1615.5 0.76 0.81
n50 D3 1368.4 1112.9 1374.8 1118.0 0.66 0.69 1117.0 899.2 1117.0 901.8 0.59 0.54
n50 D4 1748.9 1517.1 1752.0 1520.4 0.53 0.56 1542.4 1279.1 1543.8 1280.3 0.51 0.51

n100 D1 2498.1 2030.9 2505.7 2034.1 0.64 0.70 2128.9 1702.6 2140.4 1710.0 0.64 0.65
n100 D2 3684.7 3298.5 3696.0 3308.6 2.18 2.37 3314.9 2909.0 3326.5 2922.0 2.06 2.13
n100 D3 2368.0 1976.9 2372.9 1979.9 1.86 1.92 1916.3 1564.2 1921.6 1572.9 1.42 1.39
n100 D4 3138.3 2734.4 3148.2 2756.3 1.34 1.55 2743.1 2303.3 2754.8 2316.5 1.35 1.34

n200 D1 4186.9 3461.1 4221.5 3489.7 1.71 1.88 3582.6 2822.7 3610.5 2855.8 1.42 1.57
n200 D2 6980.9 6356.7 7028.4 6408.2 5.76 6.47 6321.5 5691.5 6380.1 5758.7 5.47 5.69
n200 D3 4399.9 3638.8 4439.4 3672.7 4.54 5.03 3636.4 2918.6 3663.4 2941.5 3.44 3.52
n200 D4 5613.9 4894.5 5642.2 4930.7 3.70 4.21 4927.8 4255.0 4967.9 4294.4 3.41 3.57

Overall Avg. 3282.4 2832.3 3298.7 2849.1 2.00 2.21 2854.3 2407.0 2871.0 2425.0 1.78 1.83

Table 4: Solution cost and computation time in hours for each subset of instances

NTW WTW

Instances Avg. Best Impr. Avg. Impr. Avg. Best Impr. Avg. Impr.

SI SII SI SII SI SII SI SII

n50 D1 13.02 14.14 10.48 11.19 16.03 18.38 13.48 15.03
n50 D2 13.28 15.33 11.21 13.15 16.75 19.36 14.28 16.51
n50 D3 33.53 41.27 30.95 38.51 35.42 43.14 32.02 39.05
n50 D4 11.20 14.87 9.49 11.64 15.06 18.21 12.62 15.52

n100 D1 17.59 20.28 15.96 18.46 22.32 24.56 20.33 22.70
n100 D2 17.55 19.68 15.34 17.67 19.48 22.70 17.63 20.68
n100 D3 41.76 46.49 39.68 44.93 44.31 48.55 42.14 45.87
n100 D4 14.67 17.62 13.27 15.28 20.16 22.18 17.98 20.56

n200 D1 25.57 27.73 24.00 25.46 29.57 31.24 27.73 29.54
n200 D2 18.76 22.39 17.32 21.05 21.01 23.97 19.50 22.20
n200 D3 46.53 52.75 45.27 51.05 48.17 54.24 46.51 52.07
n200 D4 19.75 22.61 18.46 20.89 23.95 25.71 21.95 23.81

Overall Avg. 22.77 26.26 20.95 24.11 26.02 29.35 23.85 26.96

Table 5: Average best improvements and average improvements for each subset of instances.

We also note the overall average improvements over the initial solutions in Table 5 that
stand between 20% and 30%, which is substantial. Clearly, the greedy insertion heuris-
tic is limited with regard to solution quality on such a complex problem, but still, these
percentages of improvement show that our algorithm can take advantage of optimization
opportunities.

34

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

7.4 Synchronization

In this section, we examine if synchronization between black and green vehicles at transfer
points is efficient. For this purpose, we define the percentage of solution cost (duration)
that corresponds to the total time that black and green vehicles spend at transfer points.
For a given solution s, this percentage is denoted as ρs. In Equation (15), this percentage
is defined using ∆TP b

s and ∆TP g
s , which are the total time spent at transfer points by

black and green vehicles, respectively.

ρs = 100

(
∆TP b

s +∆TP g
s

cost(s)

)
(15)

Table 6 reports the minimum, maximum and average values of ρs on different subsets
of instances. The format of this table is reduced when compared to Tables 4 and 5 by also
averaging over the two types of time windows and the two scenarios. We observe that the ρs
values are smaller for customer distributions D1 and D3. In fact, if we compute the average
ρs values for D1, D2, D3 and D4, we obtain 0.97%, 1.97%, 0.94% and 1.57%, respectively.
The fact that D1 and D3 lead to better synchronization than D2 and D4 can be explained
ty their small percentage of green customers (20%), since they are the only ones for which
synchronization at a transfer point is mandatory. In any case, the differences observed are
small in absolute terms. The fact is that only 1.36% (overall average) of solution cost is
due to synchronization, which indicates that synchronization is well achieved.

Instances Min Max Avg.

n50 D1 0.12 2.18 0.77
n50 D2 1.05 3.71 2.08
n50 D3 0.03 2.55 1.02
n50 D4 0.18 3.23 1.60
Avg. 0.34 2.92 1.37

n100 D1 0.01 3.03 0.90
n100 D2 0.82 3.11 1.91
n100 D3 0.19 1.97 0.95
n100 D4 0.45 3.13 1.48
Avg. 0.37 2.81 1.31

n200 D1 0.45 2.45 1.25
n200 D2 0.84 3.37 1.91
n200 D3 0.25 2.20 0.86
n200 D4 0.53 2.85 1.63
Avg. 0.52 2.71 1.41

Overall Avg. 0.01 3.71 1.36

Table 6: Minimum, maximum and average values of ρs for each subset of instances

7.5 Customer distributions

Table 4 shows that customer distributions D1 and D3 are the best for solution cost, while
D1 outperforms the three other distributions for computation time. Both D1 and D3 have

35

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

only 20% of green customers, which is beneficial for solution cost because these customers
require a detour at a transfer point for both a black and a green vehicle. Furthermore, D1

has a large percentage of 60% of black customers (versus only 20% of neutral customers),
which is helpful for computation time because only simple insertions in black routes need to
be considered for black customers. Although D3 is competitive with D1 for solution cost,
this is not the case for computation time. Distribution D3 has 60% of neutral customers
(versus only 20% of black customers) and their potential insertion in both black and green
routes need to be considered. As opposed to black routes, insertion in green routes is quite
complex and computationally expensive. With the largest percentage of 60% of green cus-
tomers, distribution D2 is consequently the worst for solution cost and computation time.

When considering improvements over initial solutions in Table 5, the largest improve-
ments are associated with distribution D3. This distribution has the largest percentage of
neutral customers (60%) and these customers offer more flexibility for optimization because
they can be inserted either in black or green routes. In this case, the average percentage of
neutral customers belonging to black routes in the initial solutions ranges between 51.1%
and 54.4%. However, in the final solutions, these percentages drastically increase between
94.6% and 98.6%. That is, the optimization algorithm finds ways to move a large propor-
tion of neutral customers in black routes, which decreases solution cost. Accordingly, more
neutral customers means more opportunities for improvement.

7.6 Time windows

Tables 4 and 5 show that better solution costs and larger improvements over initial solutions
are associated with instances with wide time windows. Clearly, these time windows offer
more feasible insertion places for customers and, consequently, greater flexibility for the
optimization procedure to move them around. For example, the percentage of neutral
customers in black routes for the instances with wide time windows is 98.3%, as compared
with 92.8% for instances with narrow time windows. We also observed a reduced number
of routes in the solutions obtained on instances with wide time windows, when compared
with narrow time windows, namely 25.2% less black routes and 15.1% less green routes.
Finally, black vehicles visit 2% more transfer points on average in the presence of wide
time windows.

7.7 Scenarios

Better solution costs are observed in Table 4 under scenario SII , when compared with
scenario SI . Since black vehicles now travel faster, the time windows at black and neutral
customers become easier to satisfy. We also observed that, on average, a larger percentage
of neutral customers is served by black vehicles in the final solutions under scenario SII

(97.4%) when compared to scenario SI (93.7%). It is generally less costly to serve neutral
customers with black vehicles and the latter can get a larger share of neutral customers
when their speed increases. In other words, they win more often the “battle” for neutral
customers against green vehicles in the boundary region. We also observed a reduction of
14.7% and 6.2% in the number of black and green routes, respectively, under scenario SII ,
with corresponding increases of 20.5% and 3.5% in the average number of customers in

36

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

black and green routes, respectively. Finaly, black vehicles visit 4.4% more transfer points
on average, when compared to scenario SI .

7.8 Number of transfer points

We propose here an experiment where we gradually reduce the number of transfer points to
see the impact on the solutions obtained. To this end, some transfer points are randomly
selected and transformed into simple nodes (road junctions). In some cases, infeasible in-
stances may be created (e.g., it may not be possible for any green vehicle to visit a transfer
point and serve a green customer before the upper bound of its time window).

Here, we focus on the test instances with 100 customers. First, two transfer points are
randomly chosen and removed from the 10 original ones to obtain instances with 8 transfer
points. From these 8 transfer points, the procedure is repeated to get instances with 6
transfer points. Finally, two additional transfer points are removed to get instances with 4
transfer points. Ten runs were performed on each feasible instance with a reduced number
of transfer points. Table 7 shows the average gaps between the average cost of solutions
obtained with 10 transfer points and with k = 8, 6, 4 transfer points, based on Equation
(16). Each line in this table is the average over four instances, considering that there are
two types of time windows and two scenarios.

Gap = 100

(
ave

|TP |=k
cost − ave

|TP |=10
cost

ave
|TP |=10
cost

)
(16)

We observed no infeasible instance with k = 8 transfer points, one infeasible instance
with k = 6 transfer points and 19 infeasible instances (out of 64 instances) with k = 4.
Thus, some averages are computed with less than four gaps. When there is no value, the
four instances are infeasible. A few small negative values appear in the table, which means
that slightly better solutions are obtained with fewer transfer points. This situation can
occur, due to the randomized nature of our algorithm, when the removed transfer points
are not or seldom used in the original instances, thus producing no or little impact on
solution quality.

Obviously, removing transfer points generally lead to worse solutions and this trend
is more pronounced when more transfer points are removed. Customer distribution D2 is
more affected than the other distributions due to its large percentage of green customers
(which must use transfer points). We also see that instances associated with road network
RN1 are greatly affected when 4 or 6 transfer points are removed. In the solutions obtained
with 10 transfer points, we observed that some transfer points are much more exploited
than others. Clearly, such critical transfer points are more likely to disappear when more
transfer points are removed, which in turn greatly impact solution quality.

37

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Instances Avg. Gap

k = 8 k = 6 k = 4
RN1 n100 D1 -0.04 6.02 −−−
RN2 n100 D1 -0.10 -0.11 0.47
RN3 n100 D1 -0.02 -0.04 0.51
RN4 n100 D1 0.51 1.74 1.76

RN1 n100 D2 2.06 10.95 27.45
RN2 n100 D2 1.56 1.58 5.86
RN3 n100 D2 0.62 1.56 9.08
RN4 n100 D2 1.81 7.09 7.30

RN1 n100 D3 0.48 7.32 16.08
RN2 n100 D3 -0.05 -0.09 0.48
RN3 n100 D3 1.12 2.34 6.55
RN4 n100 D3 1.24 1.79 1.82

RN1 n100 D4 1.00 9.72 −−−
RN2 n100 D4 -0.86 -0.75 -0.02
RN3 n100 D4 0.19 1.21 4.45
RN4 n100 D4 0.86 1.47 1.68

Table 7: Average gaps between average solution costs with 10 transfer points and k = 8,
6, 4 transfer points

8 Conclusion

In this work, we have proposed a new SISR metaheuristic for the TDVRPTWTPRN . To
the best of our knowledge, this challenging problem where customers can be served either
directly by black vehicles or indirectly by green vehicles through transfer points has not
been previously addressed in the literature. Computational results on test instances with
different characteristics show that our algorithm performs well, in particular by finding
ways to transfer more neutral customers into black routes, which lead to solutions of bet-
ter quality. Furthermore, we observed that the time spent by vehicles at transfer points is
very low, thus indicating that good synchronization is achieved.

For the future, new ruin operators could be developed to enhance the performance of
our algorithm and solve other complex variants of vehicle routing problems. It would also
be interesting to consider the integration of learning into our algorithm, for example to
identify the most promising transfer points, based on the topology of the network and
distribution of customers.

Acknowledgements. The work reported in this paper was financially supported by the
Natural Sciences and Engineering Research Council (NSERC) of Canada. This support is
gratefully acknowledged.

38

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

Appendix

NTW WTW
Best Cost Avg. Cost Avg. Time Best Cost Avg. Cost Avg. Time

Instances (10 runs) (10 runs) (hours) (10 runs) (10 runs) (hours)

SI SII SI SII SI SII SI SII SI SII SI SII

RN1 n50 D1 1563.47 1217.90 1563.91 1217.90 0.30 0.29 1331.90 1030.23 1332.03 1030.23 0.26 0.29
RN2 n50 D1 1365.48 1096.91 1365.48 1096.91 0.25 0.23 1159.71 898.09 1165.04 898.09 0.26 0.24
RN3 n50 D1 1430.09 1159.05 1432.17 1159.65 0.25 0.27 1292.61 950.84 1292.81 950.85 0.25 0.24
RN4 n50 D1 1232.26 1027.51 1233.85 1031.95 0.28 0.34 1091.71 839.01 1092.13 840.98 0.27 0.28

Avg. 1397.83 1125.34 1398.85 1126.60 0.27 0.28 1218.98 929.54 1220.50 930.04 0.26 0.26
RN1 n50 D2 2295.75 2067.62 2295.83 2069.44 0.81 0.90 2018.20 1737.63 2018.72 1742.08 0.82 0.89
RN2 n50 D2 1929.28 1752.89 1932.68 1753.13 0.74 0.81 1664.44 1476.99 1664.84 1478.37 0.71 0.77
RN3 n50 D2 1996.08 1864.24 1996.14 1875.20 0.69 0.71 1843.62 1696.06 1855.69 1713.47 0.63 0.71
RN4 n50 D2 1788.88 1679.38 1793.19 1680.13 0.83 1.06 1679.18 1523.08 1681.66 1527.97 0.88 0.88

Avg. 2002.50 1841.03 2004.46 1844.48 0.77 0.87 1801.36 1608.44 1805.23 1615.47 0.76 0.81
RN1 n50 D3 1440.17 1183.37 1449.07 1184.69 0.65 0.68 1234.84 983.12 1234.86 985.14 0.61 0.53
RN2 n50 D3 1365.98 1087.79 1378.58 1105.24 0.72 0.66 1059.19 845.14 1059.19 853.41 0.57 0.53
RN3 n50 D3 1353.17 1120.44 1356.42 1121.83 0.57 0.61 1094.61 931.62 1094.61 931.62 0.59 0.53
RN4 n50 D3 1314.31 1059.94 1314.97 1060.22 0.70 0.78 1079.52 836.87 1079.52 837.14 0.60 0.58

Avg. 1368.41 1112.88 1374.76 1118.00 0.66 0.69 1117.04 899.19 1117.05 901.83 0.59 0.54
RN1 n50 D4 1786.66 1587.00 1786.66 1587.00 0.49 0.53 1679.56 1365.57 1679.56 1365.71 0.56 0.47
RN2 n50 D4 1944.47 1629.15 1947.70 1630.98 0.54 0.51 1622.76 1328.29 1622.76 1330.34 0.57 0.61
RN3 n50 D4 1535.58 1376.85 1537.07 1386.52 0.48 0.47 1355.06 1195.54 1355.06 1197.90 0.41 0.45
RN4 n50 D4 1728.69 1475.37 1736.48 1477.26 0.61 0.72 1512.20 1227.06 1517.89 1227.06 0.49 0.51

Avg. 1748.85 1517.09 1751.98 1520.44 0.53 0.56 1542.39 1279.12 1543.82 1280.25 0.51 0.51

RN1 n100 D1 2526.91 2085.89 2528.87 2088.53 0.64 0.70 2189.86 1662.22 2198.75 1675.03 0.65 0.56
RN2 n100 D1 2559.89 2067.83 2570.32 2071.26 0.53 0.65 2161.96 1726.10 2177.80 1727.87 0.56 0.59
RN3 n100 D1 2540.37 2113.93 2540.48 2115.17 0.64 0.65 2200.53 1889.07 2202.66 1891.56 0.70 0.78
RN4 n100 D1 2365.21 1856.08 2383.25 1861.46 0.73 0.81 1963.41 1533.17 1982.42 1545.58 0.63 0.69

Avg. 2498.09 2030.93 2505.73 2034.11 0.64 0.70 2128.94 1702.64 2140.41 1710.01 0.64 0.65
RN1 n100 D2 3804.11 3452.62 3812.33 3461.66 2.07 2.22 3426.28 2988.77 3434.23 3006.73 2.03 1.99
RN2 n100 D2 3537.95 3237.98 3543.50 3246.02 1.84 2.37 3256.69 2866.68 3265.31 2873.14 2.05 2.03
RN3 n100 D2 3919.34 3520.71 3936.62 3534.99 2.12 2.18 3538.40 3158.21 3551.07 3168.52 1.79 1.98
RN4 n100 D2 3477.32 2982.62 3491.33 2991.65 2.69 2.72 3038.18 2622.38 3055.51 2639.41 2.36 2.53

Avg. 3684.68 3298.48 3695.95 3308.58 2.18 2.37 3314.89 2909.01 3326.53 2921.95 2.06 2.13
RN1 n100 D3 2480.34 1996.41 2488.51 1997.98 1.83 1.70 2124.82 1635.38 2127.03 1645.98 1.58 1.29
RN2 n100 D3 2315.24 1990.81 2319.78 1996.14 1.70 1.71 1923.52 1612.65 1930.14 1618.16 1.37 1.44
RN3 n100 D3 2435.62 2051.60 2440.28 2054.78 2.09 2.03 1851.77 1569.09 1856.39 1573.41 1.32 1.36
RN4 n100 D3 2240.82 1868.86 2243.17 1870.65 1.82 2.23 1764.91 1439.53 1772.65 1454.09 1.40 1.47

Avg. 2368.00 1976.92 2372.94 1979.89 1.86 1.92 1916.26 1564.16 1921.55 1572.91 1.42 1.39
RN1 n100 D4 3534.04 2929.31 3538.32 2940.50 1.56 1.65 3044.64 2398.28 3048.74 2415.50 1.43 1.31
RN2 n100 D4 2807.13 2505.56 2827.05 2573.06 1.09 1.27 2444.41 2141.93 2456.91 2151.48 1.07 1.16
RN3 n100 D4 3161.54 2876.90 3168.41 2882.75 1.28 1.64 2742.29 2428.80 2765.12 2448.75 1.48 1.50
RN4 n100 D4 3050.61 2625.61 3058.81 2628.78 1.43 1.65 2741.18 2244.28 2748.61 2250.31 1.41 1.38

Avg. 3138.33 2734.35 3148.15 2756.27 1.34 1.55 2743.13 2303.32 2754.84 2316.51 1.35 1.34

RN1 n200 D1 4586.99 3673.59 4607.01 3698.37 1.97 1.84 3890.26 2964.06 3911.65 3002.76 1.59 1.63
RN2 n200 D1 4006.30 3338.27 4037.61 3380.21 1.41 1.76 3420.59 2774.14 3444.88 2805.14 1.32 1.62
RN3 n200 D1 4235.06 3605.87 4287.61 3632.18 1.83 1.97 3632.22 3011.05 3649.54 3032.49 1.27 1.43
RN4 n200 D1 3919.20 3226.55 3953.88 3247.98 1.62 1.95 3387.47 2541.72 3436.05 2582.96 1.52 1.59

Avg. 4186.89 3461.07 4221.53 3489.68 1.71 1.88 3582.63 2822.74 3610.53 2855.84 1.42 1.57
RN1 n200 D2 7428.48 6656.70 7468.67 6667.52 5.64 6.09 6650.45 5893.97 6692.08 5936.45 5.23 5.60
RN2 n200 D2 6883.99 6320.66 6938.59 6428.07 5.29 6.62 6220.31 5650.36 6267.01 5712.54 5.40 5.85
RN3 n200 D2 7143.03 6595.11 7201.80 6636.35 6.35 6.69 6615.83 6020.32 6681.27 6079.96 5.38 5.24
RN4 n200 D2 6468.03 5854.25 6504.63 5900.71 5.76 6.48 5799.34 5201.53 5879.89 5306.00 5.86 6.07

Avg. 6980.88 6356.68 7028.42 6408.16 5.76 6.47 6321.48 5691.54 6380.06 5758.74 5.47 5.69
RN1 n200 D3 4333.66 3631.80 4385.00 3671.93 4.12 4.57 3647.47 2941.04 3684.66 2960.16 2.97 2.99
RN2 n200 D3 4336.39 3638.83 4385.59 3681.60 4.46 5.27 3622.43 2916.56 3644.45 2943.40 3.56 4.12
RN3 n200 D3 4600.69 3735.66 4628.11 3767.51 4.49 4.84 3818.68 3096.20 3835.78 3112.43 3.53 3.35
RN4 n200 D3 4328.94 3548.88 4358.82 3569.77 5.06 5.45 3457.12 2720.75 3488.66 2749.87 3.69 3.63

Avg. 4399.92 3638.79 4439.38 3672.70 4.54 5.03 3636.43 2918.64 3663.39 2941.46 3.44 3.52
RN1 n200 D4 5863.31 5023.25 5872.71 5048.40 4.19 4.35 5056.61 4284.61 5081.22 4323.29 3.37 3.26
RN2 n200 D4 5302.13 4717.90 5314.75 4770.30 2.82 3.42 4661.26 4074.33 4685.65 4125.05 2.93 3.15
RN3 n200 D4 5842.90 5220.16 5902.48 5258.46 4.38 4.93 5141.24 4588.17 5213.82 4629.61 3.86 3.95
RN4 n200 D4 5447.38 4616.55 5478.77 4645.50 3.42 4.17 4851.89 4073.05 4890.97 4099.56 3.50 3.93

Avg. 5613.93 4894.47 5642.18 4930.67 3.70 4.21 4927.75 4255.04 4967.92 4294.38 3.41 3.57

Overall avg. 3282.36 2832.34 3298.69 2849.13 2.00 2.21 2854.27 2406.95 2870.99 2424.95 1.78 1.83

Table 8: Solution cost and computation time in hours for each instance.

39

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

References

[1] J. Beasley, Adapting the savings algorithm for varying inter-customer travel times,
Omega 9 (1981) 658–659.

[2] C. Malandraki, M. Daskin, Time dependent vehicle routing problems: Formulations,
properties and heuristic algorithms, Transportation Science 26 (1992) 185–200.

[3] A. V. Hill, W. C. Benton, Modelling intra-city time-dependent travel speeds for vehicle
scheduling problems, Journal of the Operational Research Society 43 (1992) 343–351.

[4] S. Ichoua, M. Gendreau, J.-Y. Potvin, Vehicle dispatching with time-dependent travel
times, European Journal of Operational Research 144 (2003) 379–396.

[5] A. V. Donati, R. Montemanni, N. Casagrande, A. E. Rizzoli, L. M. Gambardella,
Time dependent vehicle routing problem with a multi ant colony system, European
Journal of Operational Research 185 (2008) 1174–1191.

[6] S. Dabia, S. Röpke, T. Van Woensel, T. de Kok, Branch and price for the time-
dependent vehicle routing problem with time windows, Transportation Science 47
(2013) 380–391.

[7] B. Pan, Z. Zhang, A. Lim, A hybrid algorithm for time-dependent vehicle routing
problem with time windows, Computers & Operations Research 128 (2021) 105193.

[8] B. Pan, Z. Zhang, A. Lim, Multi-trip time-dependent vehicle routing problem with
time windows, European Journal of Operational Research 291 (2021) 218–231.

[9] A. Haghani, S. Jung, A dynamic vehicle routing problem with time-dependent travel
times, Computers & Operations Research 32 (2005) 2959–2986.

[10] S. Balseiro, I. Loiseau, J. Ramonet, An ant colony algorithm hybridized with inser-
tion heuristics for the time dependent vehicle routing problem with time windows,
Computers & Operations Research 38 (2011) 954–966.

[11] M. Gendreau, G. Ghiani, E. Guerriero, Time-dependent routing problems: A review,
Computers & Operations Research 64 (2015) 189–197.

[12] T. Garaix, C. Artigues, D. Feillet, D. Josselin, Vehicle routing problems with al-
ternative paths: An application to on-demand transportation, European Journal of
Operational Research 204 (2010) 62–75.

[13] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the VRPTW with
a multigraph representation for the road network, Computers & Operations Research
88 (2017) 103–116.

[14] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, Multigraph modeling and adaptive large
neighborhood search for the vehicle routing problem with time windows, Computers
& Operations Research 104 (2019) 113–126.

40

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

[15] A. N. Letchford, S. D. Nasiri, A. Oukil, Pricing routines for vehicle routing with time
windows on road networks, Computers & Operations Research 51 (2014) 331–337.

[16] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, T. Van Woensel, A branch-and-price
algorithm for the vehicle routing problem with time windows on a road network,
Networks 73 (2019) 401–417.

[17] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, T. Van Woensel, The time-dependent
vehicle routing problem with time windows and road-network information, SN Oper-
ations Research Forum 2 (2021) 4.

[18] M. Gmira, M. Gendreau, A. Lodi, J.-Y. Potvin, Tabu search for the time-dependent
vehicle routing problem with time windows on a road network, European Journal of
Operational Research 288 (2021) 129–140.

[19] M. Speranza, G. Guastaroba, D. Vigo, Intermediate facilities in freight transportation
planning: A survey, Transportation Science 50 (2016) 763–789.

[20] J. Van Belle, P. Valckenaers, D. Cattrysse, Cross-docking: State of the art, Omega 40
(2012) 827–846.

[21] P. Bouros, D. Sacharidis, T. Dalamagas, T. Sellis, Dynamic pickup and delivery with
transfers, in: M. Gertz, M. Renz, X. Zhou, E. Hoel, W.-S. Ku, A. Voisard, C. Zhang,
H. Chen, L. Tang, Y. Huang, C.-T. Lu, S. Ravada (Eds.), Advances in Spatial and
Temporal Databases, Lecture Notes in Computer Science 10411, 2011, pp. 112–129.

[22] S. Minic, G. Laporte, The pickup and delivery problem with time windows and trans-
shipment, INFOR 44 (2006) 217–227.

[23] T. G. Crainic, N. Ricciardi, G. Storchi, Models for evaluating and planning city logis-
tics systems, Transportation Science 43 (2009) 432–454.

[24] T. G. Crainic, S. Mancini, G. Perboli, R. Tadei, Multi-start heuristics for the two-
echelon vehicle routing problem, in: P. Merz, J.-K. Hao (Eds.), Evolutionary Compu-
tation in Combinatorial Optimization, Lecture Notes in Computer Science 6622, 2011,
pp. 179–190.

[25] G. Perboli, R. Tadei, R. Tadei, New families of valid inequalities for the two-echelon
vehicle routing problem, Electronic Notes in Discrete Mathematics 36 (2010) 639–646.

[26] G. Perboli, R. Tadei, D. Vigo, The two-echelon capacitated vehicle routing problem:
Models and math-based heuristics, Transportation Science 45 (2009) 364–380.

[27] S. Jia, L. Deng, Q. Zhao, Y. Chen, An adaptive large neighborhood search heuristic for
multi-commodity two-echelon vehicle routing problem with satellite synchronization,
Journal of Industrial & Management Optimization 19 (2022) 1187–1210.

[28] A. Anderluh, V. Hemmelmayr, P. Nolz, Synchronizing vans and cargo bikes in a city
distribution network, Central European Journal of Operations Research 25 (2017)
345–376.

41

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

[29] P. Grangier, M. Gendreau, F. Lehuédé, L.-M. Rousseau, An adaptive large neighbor-
hood search for the two-echelon multiple-trip vehicle routing problem with satellite
synchronization, European Journal of Operational Research 254 (2016) 80–91.

[30] N. Kafle, B. Zou, J. Lin, Design and modeling of a crowdsource-enabled system for
urban parcel relay and delivery, Transportation Research Part B: Methodological 99
(2017) 62–82.

[31] A. Sampaio, M. Savelsbergh, L. Veelenturf, T. Van Woensel, Delivery systems with
crowd-sourced drivers: A pickup and delivery problem with transfers, Networks 76
(2020) 232–255.

[32] J. Christiaens, G. Vanden Berghe, Slack induction by string removals for vehicle rout-
ing problems, Transportation Science 54 (2020) 417–433.

[33] H. Ben Ticha, Vehicle routing problems with road-network information, Ph.D. thesis,
Université Clermont Auvergne (2017).

[34] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, M. Birattari, The
IRACE package: Iterated racing for automatic algorithm configuration, Operations
Research Perspectives 3 (2016) 43–58.

42

A Metaheuristic for a Time-Dependent Vehicle Routing Problem with Time Windows, Two Vehicle Fleets and
Synchronization on a Road Network

CIRRELT-2023-28

	CIRRELT-2023-28-abstract.pdf
	Bibliothèque et Archives Canada, 2023

