A Parallel Variable Neighborhood Search for α Neighbor Facility Location Problems

Guilherme O. Chagas
Luiz A. N. Lorena
Rafael D. C. dos Santos
Jacques Renaud
Leandro C. Coelho

September 2023

Document de travail également publié par la Faculté des sciences de l'administration de l'Université Laval, sous le numéro FSA-2023-006.

A Parallel Variable Neighborhood Search for α-Neighbor Facility Location Problems

Guilherme O. Chagas ${ }^{1}$, Luiz A. N. Lorena ${ }^{2,3}$, Rafael D. C. dos Santos², Jacques Renaud ${ }^{1}$, Leandro C. Coelho ${ }^{1, *}$
1. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) and FSA, Université Laval
2. Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, 12245-970, São José dos Campos, São Paulo, Brazil
3. Universidade Federal de São Paulo (UNIFESP), Av. Cesare Mansueto Giulio Lattes, 1201, 12247-014, São José dos Campos, São Paulo, Brazil

Abstract

In this paper, we employ the less is more approach to develop a Parallel Variable Neighborhood Search (VNS) algorithm for the α-neighbor p-center problem ($\alpha N p C P$) and the α-neighbor p-median problem ($\alpha \mathrm{N} p \mathrm{MP}$). The $\alpha \mathrm{NpCP}$ and the $\alpha \mathrm{NpMP}$ are generalizations of the p-center ($p C P$) and p-median ($p \mathrm{MP}$) problems, respectively. In the α-neighbor problems, one seeks to open p facilities and assign each of the n customers to their closest α ones. The objective is to minimize the maximum distance of a customer to its ath facility, in the case of the $\alpha N p C P$, and the sum of the distances from each customer to their α nearest facilities, in the case of the $\alpha N p M P$. Our VNS adapts simple but efficient algorithms and data structures from the $p \mathrm{CP}$ and $p \mathrm{MP}$ literature to the $\alpha \mathrm{NpCP}$ and $\alpha \mathrm{NpMP}$ context. We also introduce an updated objective function for the $\alpha N p C P$, which adds more information to the solution cost and helps the VNS to escape from local optima. Several experimental tests show that our VNS outperforms more complex state-of-the-art algorithms. Regarding the aNpCP, on 120 instances derived from the OR-library set, our algorithm improved bestknown solutions for 22, with an average improvement of 33.96\%; the overall gap on the 120 instances is 6.10% in favor of our algorithm. Moreover, on 231 instances derived from the TSPLIB set, we improved the solutions for 109, with an average improvement of 4.79%, and an overall improvement gap of 2.02% for all 231 instances. Considering the aNpMP results, our heuristic obtained better results than a heuristic from literature in all 80 instances tested. Also, it could find optimal solutions for 79 out of these 80 instances.

Keywords: α-neighbor p-center, α-neighbor p-median, Basic VNS, parallel VNS, LIMA
Acknowledgements. This work was partly supported by the Natural Sciences and Engineering Council of Canada (NSERC) [grant number 2023-04167 and 2019-00094], y the CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Coordination for the Improvement of Higher Education Personnel) and by the CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development) [grant number 301752/2019-2] in Brazil. We thank the Digital Research Alliance of Canada for providing high-performance parallel computing facilities.

[^0][^1]
1 Introduction

Facility location problems are extensively studied and are an important topic in operations research [11, 26]. In such problems, one seeks to open facilities and assign each customer's demand to an opened one, optimizing an objective function typically composed of an assignment cost. These problems have several real-world applications, from logistics to data-mining [37, 18, 26, 15, 10]. Among many problems in this research topic, two of the most known facility location problems are the p-center ($p \mathrm{CP}$) and the p-median ($p \mathrm{MP}$) problems, both introduced by $[16,17]$. Given a graph, the objective in the $p \mathrm{CP}$ is to select p vertices, also known as centers, so the maximum distance between the graph's vertices and their respective closest center is minimized, i.e., a min-max problem. In the $p \mathrm{MP}$ case, one also selects p vertices, here known as medians, but the objective is to minimize the sum of distances of every vertex to its nearest median. These problems were proven to be NP-hard [14, 23], so one often relies on heuristics to solve large instances.

In the $p \mathrm{CP}$ and $p \mathrm{MP}$, vertices are assigned to a single facility. However, in some applications, facilities may be prone to failure and become unavailable due to unpredictable reasons such as weather and electricity problems [38]. In such cases, it is important to ensure the continuity of service to customers assigned to the failed facility. This is common in critical services, such as hospitals, fire stations, and computer networks, where backup coverage is needed [47, 1, 38]. For instance, during the COVID-19 pandemic, hospitals in highly dense urban areas that could handle the demand of a regular day were facing an overwhelming demand [30]. An alternative is assigning excess demand to a temporary healthcare structure or even to a backup hospital [1]. On the other hand, a hospital located in a less populated region might not be dealing with a burden on its system. Therefore, the best solution in this case is to reallocate the population to the hospital in a less populated area instead of opening an additional temporary facility.

Other examples arise in computer networks, where some critical systems must have higher redundancy than others, or more generally in any context where some entities being served are more critical than others [47]. From the provider's perspective, such as in the hospital example, facilities may be elected to require extra coverage for their users. Thus, assigning clients to multiple facilities at a time becomes useful.

To handle these types of problems, Krumke [25] generalized the $p \mathrm{CP}$ and introduced the α-neighbor $p \mathrm{CP}(\alpha \mathrm{N} p \mathrm{CP})$, where vertices are assigned not just to the nearest center but to their α nearest ones. This problem aims to minimize the maximum distance between a non-facility vertex to its α th closest center. Note that when $\alpha=1$, the $p \mathrm{CP}$ is defined. Krumke [25] also proposed an approximation algorithm for the $\alpha \mathrm{N} p \mathrm{CP}$ since it is a NP-hard problem as it generalizes the p CP. Since then, solution methods have been proposed, especially approximation and exact algorithms, for either the continuous and discrete versions of the $\alpha \mathrm{N} p \mathrm{CP}$, e.g., [8, 24, 9, 7]. In the continuous version of the $\alpha \mathrm{N} p \mathrm{CP}$, facilities can be placed anywhere in the defined space. On the other hand, in the discrete version, facilities must be vertices in the graph. The latter is the topic of interest in this work.

There are only two heuristics for the $\alpha \mathrm{N} p \mathrm{CP}$ that we are aware of are the works
of Sánchez-Oro et al. [45] and Mousavi [36]. Sánchez-Oro et al. [45] proposed a Greedy Randomized Adaptive Search Procedure with Tabu Search and Strategic Oscillation methodology (GRASP-SO). The authors tested their algorithm in 37 instances derived from the TSPLIB [41] and compared their results to the exact method of Chen and Chen [9]. The heuristic of Sánchez-Oro et al. [45] obtained the best results in all tested instances. Mousavi [36] developed efficient local search algorithms for the $p \mathrm{CP}$, the $\alpha \mathrm{N} p \mathrm{CP}$ and the p-next center problem $(p \mathrm{NCP})$. They tested their $\alpha \mathrm{N} p \mathrm{CP}$ heuristic, using $\alpha=2$, on the 40 pMP instances from the OR-library [4], but did not compare their algorithm with the results of GRASP-SO of Sánchez-Oro et al. [45]. The author then ran the algorithm for all 40 OR-library instances for 10,000 s, showing that the heuristic can consistently find the same solutions in a much shorter execution time.

Exploring the multiple assignment feature in the p MP context is also important. However, this $p \mathrm{MP}$ variation has not been as explored as the $p \mathrm{CP}$ one. Even though the literature related to $p \mathrm{MP}$ is vast $[2,40,32,12,28]$, to the best of our knowledge, there are few works concerning variations of these problems where vertices can be assigned to more than one median. One of these studies is the work of Wang et al. [47], who introduced the backup 2-center problem and the backup 2-median problem. In these problems, every vertex is served by two medians. Another study is that of Karatas et al. [22], where the authors introduced the requirement of each vertex to be assigned to more than one facility and compared it under five different criteria. Also, Brimberg et al. [5] introduced the distributed $p \mathrm{MP}$, where, given a distribution function over customers' demands, multiple medians are used to fulfill the customers' demands. However, none of these definitions impose multiple assignments precisely as in the $\alpha \mathrm{N} p \mathrm{CP}$.

To the best of our knowledge, the only work that generalizes the single assignment requirement to allow multiple assignments, as in the $\alpha \mathrm{NpCP}$, is the work of Panteli et al. [38]. These authors relaxed the single vertex-median assignment constraint of the $p \mathrm{MP}$ and imposed that each vertex is allocated to their nearest α medians. The objective is to minimize the total sum of vertices distances to their α facilities. Again, when $\alpha=1$, the $p \mathrm{MP}$ is defined, and this problem is NP-hard as it generalizes the $p \mathrm{MP}$. Panteli et al. [38] denominated this $p \mathrm{MP}$ variation as the multiple p-median problem. For the sake of uniformity, here we refer to this problem as the α-neighbor $p \mathrm{MP}(\alpha \mathrm{N} p \mathrm{MP})$. These authors also proposed the Biclustering Multiple Median algorithm (BIMM) to solve the $\alpha \mathrm{N} p \mathrm{MP}$ and compared it with a commercial solver.

Since both $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$ are NP-hard, in this work we propose a simple but effective Basic Parallel Variable Neighborhood Search (BP-VNS) algorithm; "basic" defines the VNS version originally proposed by Mladenović and Hansen [33]. This algorithm is used to produce high-quality solutions for these problems. This heuristic has been successfully applied to many facility location problems, e.g., $p \mathrm{MP}$ [20], $p \mathrm{CP}$ [34], capacitated $p \mathrm{MP}$ [13], probabilistic $p \mathrm{CP}$ [29], obnoxious $p \mathrm{MP}$ [21, 31], and $p \mathrm{NCP}$ problem [27, 43].

We have developed our heuristic using the Less is More Approach (LIMA) [35, 6]. The LIMA is a heuristic design methodology focused on simplicity and user-friendliness rather than developing complex algorithms just for the sake of proposing a new method, with no solid performance improvement [35]. The idea is to use the minimum number
of algorithm components to develop a heuristic as simple as possible and still be able to find solutions at a state-of-the-art level [31]. Besides the method's simplicity, another advantage of using this approach is that it is easier to identify how and why the algorithm performs the way it does [31]. As we will demonstrate, our method can be easily adapted to several classes of problems and performs very well thanks to the important components described next.

In our BP-VNS we adapted optimized and well-known algorithms and data structures from the literature to the $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$ context. Also, to take advantage of modern multi-core CPUs, we parallelized our BP-VNS due to its simplicity. In addition, we couple to our heuristic an updated $\alpha \mathrm{N} p \mathrm{CP}$ objective function based on the idea of Torres-Jimenez et al. [46], which adds more information about the solution quality and helps guide the VNS to escape from local optima. Then, the main contributions of our work are:

- We present a simple and effective BP-VNS for the $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$. Using the LIMA methodology, we adapt well-known algorithms and data structures from the literature;
- We use a new objective function for the $\alpha \mathrm{N} p \mathrm{CP}$, which allows the heuristic to differentiate solutions with the same cost, improving the heuristic's convergence;
- We show that our simple heuristic can find high-quality solutions and outperform state-of-the-art methods.

This paper is organized as follows. The mathematical formulations are presented in Section 2. Our BP-VNS is detailed in Section 3. Section 4 shows the test results. Our concluding remarks and discussion about future works are presented in Section 5.

2 Mathematical notation and problems definitions

Let $G=(V, E)$ be an undirected, weighted, and connected graph, where V is the set of vertices and E is the set of edges, where $|V|=n,|E|=m$ and to each edge $(i, j) \in E$ is associated a weight $d_{i j} \in \mathbb{R}^{+}$. In facility location problems, $d_{i j}$ is often the Euclidean distance or the shortest path length between vertices i and j, but dissimilarity values are also common. In all these cases, the triangular inequality is not violated. Even if an edge joining vertices i and j may not exist in the original graph, (i, j) can be added to E with $d_{i j}$ equal to the length of the shortest path between these vertices since G is connected and the triangular inequality holds. In this way, $D=\left(d_{i j}\right)$ is an $n \times n$ distance matrix of non-negative real values. Let S be the set of the p open medians, where $1 \leq p \leq n$. Since it is required that all vertices be assigned to α facilities in the $\alpha \mathrm{N} p \mathrm{CP}$ and the $\alpha \mathrm{N} p \mathrm{MP}$, it is implicitly assumed that each vertex is always assigned to its α closest medians among the p open ones, where $\alpha \leq p$.

The remainder of this section is organized as follows. In Section 2.1, the $\alpha \mathrm{N} p \mathrm{CP}$ formulation is presented. The integer linear program of the $\alpha \mathrm{N} p \mathrm{MP}$ is described in Section 2.2.

$2.1 \quad \alpha \mathbf{N} p \mathbf{C P}$ formulation

In the $\alpha \mathrm{N} p \mathrm{CP}$, a subset $S \subset V$ of vertices are selected as facilities and each vertex $i \in V \backslash S$ is assigned to the nearest α of them. The distance between a vertex i and its α th nearest facility $j \in S$ is know as the α-center-distance and is defined by $d_{\alpha}^{c}(i, S)=$ $\min _{S^{\prime} \subset S,\left|S^{\prime}\right|=\alpha}\left\{\max _{j \in S^{\prime}} d_{i j}\right\}$. Thus, in this problem, the objective is to minimize the maximum α-center-distance of vertices that are not facilities, that is, to find a set $S \subset V$, where $|S|=p$, such that $\max _{i \in V \backslash S} d_{\alpha}^{c}(i, S)$ is minimum. Observe that when a vertex is selected as a facility, it is not assigned to other facilities.

The mathematical formulation of the $p \mathrm{CP}$ [11] can be adapted to allow each vertex to have multiple assignments. In this formulation, decision variables $x_{i j}$ control whether client i is allocated at facility j or not, i.e.,

$$
x_{i j}= \begin{cases}1, & \text { if vertex } i \in V \text { is assigned to facility vertex } j \in V \\ 0, & \text { otherwise. }\end{cases}
$$

It is worth mentioning that when $x_{i j}=1$ and $i=j$, then vertex i is selected as a facility. The $\alpha \mathrm{N} p \mathrm{CP}$ can be formulated as the following mixed-integer linear program:

$$
\begin{equation*}
\min z \tag{1a}
\end{equation*}
$$

subject to

$$
\begin{array}{lr}
\sum_{j \in V, j \neq i} x_{i j}=\alpha\left(1-x_{i i}\right), & i \in V, \\
\sum_{j \in V} x_{j j}=p, & \\
x_{i j} \leq x_{j j}, & i \in V, j \in V, i \neq j, \\
d_{i j} x_{i j} \leq z, & i \in V, j \in V, i \neq j, \\
z \in \mathbb{R}^{+}, x_{i j} \in\{0,1\}, & i \in V, j \in V . \tag{1f}
\end{array}
$$

The value of the continuous variable z is minimized by the objective function (1a), whose lower bound is given by constraint (1e). In other words, the objective function (1a) minimizes the maximum distance between a vertex and its furthest (α th nearest) facility. Constraints (1b) assure that each vertex $i \in V \backslash S$ is assigned to α facilities. Note that if $x_{i i}=1$, i.e., vertex i is a facility, then i is not assigned to any other facility since the right-hand-side of constraints (1b) is zero. Exactly p facilities are opened, which is guaranteed by constraint (1c). A vertex i can only be assigned to a facility j if j is open. This is ensured by constraints (1d). Variables $x_{i j}$ are binary and z is a nonnegative continuous variable as in constraints (1f).

$2.2 \alpha \mathbf{N} p \mathrm{MP}$ formulation

The $\alpha \mathrm{N} p \mathrm{MP}$ requires p medians to be selected from V and that all vertices $v \in V$ are assigned to their closest α facilities. Let $d_{\alpha}^{m}(i, S)=\min _{S^{\prime} \subset S,\left|S^{\prime}\right|=\alpha} \sum_{j \in S^{\prime}} d_{i j}$ be the α-median-
distance of vertex i given a set of facilities S. In the $\alpha \mathrm{N} p \mathrm{MP}$, the objective is to minimize the sum of the α-median-distances of all vertices. In other words, the objective is to find a set $S \subseteq V$, where $|S|=p$, such that $\sum_{i \in V} d_{\alpha}^{m}(i, S)$ is minimum. Unlike the $\alpha \mathrm{N} p \mathrm{CP}$, in the $\alpha \mathrm{N} p \mathrm{MP}$ facilities are also assigned to α facilities.

The $\alpha \mathrm{N} p \mathrm{MP}$ can be formulated as an integer linear program (2a)-(2e). In this model, decision variables $x_{i j}$ are the same as the ones defined in Section 2.1 and control whether client i is assigned to facility j. Again, when $x_{i j}=1$ and $i=j$ then i is selected as a facility.

$$
\begin{equation*}
\min \sum_{i \in V} \sum_{j \in V} d_{i j} x_{i j} \tag{2a}
\end{equation*}
$$

subject to

$$
\begin{array}{lr}
\sum_{j \in V} x_{i j}=\alpha, & i \in V, \\
\sum_{j \in V} x_{j j}=p, & i \in V, j \in V, \\
x_{i j} \leq x_{j j}, & i \in V, j \in V . \\
x_{i j} \in\{0,1\}, & \tag{2e}
\end{array}
$$

In the model above, the objective function (2a) minimizes the sum of the distances between every vertex i assigned to each facility j. Constraints (2b) are the multiple assignment constraints and impose that every vertex must be assigned to α facilities. Constraint 2c guarantees that p vertices are open. A vertex i can only be assigned to a vertex j if j is an open facility, i.e, only if $x_{j j}=1$, and this is ensured by inequalities (2 d). Constraints (2e) define variables $x_{i j}$ as binary. Note that the difference between the $\alpha \mathrm{N} p \mathrm{MP}$ model and the PMP model [42] is in constraints (2b), which, in the $\alpha \mathrm{N} p \mathrm{MP}$ case, allow multiple assignments.

3 Basic Parallel Variable Neighborhood Search

The VNS is a well-known metaheuristic [19], which consistently explores increasing neighborhoods if no improvement is detected. Whenever a better solution is found, the neighborhood range is reset to the minimum size, and the exploring process starts over, using the neighboring of the new solution. This metaheuristic also uses a local search procedure to polish newfound solutions, combining exploring and exploiting.

Since we employed the LIMA methodology for developing heuristics for the $\alpha \mathrm{N} p \mathrm{CP}$ and the $\alpha \mathrm{N} p \mathrm{MP}$, we decided to implement the BP-VNS. This VNS is a parallel version of the original metaheuristic proposed in the seminal work of Mladenović and Hansen [33], which is composed of finding a new neighbor solution using one shaking procedure, followed by one local search, which improves the found solution, and then deciding whether or not
we move to the new neighborhood [31]. These steps are repeated until a stop criterion is met, e.g., maximum execution time.

Remember that in both the $\alpha \mathrm{N} p \mathrm{CP}$ and the $\alpha \mathrm{N} p \mathrm{MP}$, each client is assigned to its α nearest facilities. So, all the information we need to represent a solution to these problems is the p facilities. Let $S=\left\{v_{i_{1}}, \ldots, v_{i_{p}}\right\}$ denote a solution, i.e., $S \subset V$ is a set of p vertices (facilities). A metric to differentiate two solutions S and S^{\prime} is $\rho\left(S, S^{\prime}\right)=p-\left|S \cap S^{\prime}\right|$, the number of facilities they do not share. So we say a solution S^{\prime} is at a distance of k from S if $\rho\left(S, S^{\prime}\right)=k$. Then, all solutions lying at a distance of k, with $k=1, \ldots, k_{\max }$ and $k_{\text {max }} \leq p$, are contained in the neighborhood set $\mathcal{N}_{k}(S)$.

The BP-VNS used in this work is depicted by Algorithm 1. This same structure is used in problems $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$. First, an initial solution is generated and becomes the current solution S. Then, the shaker procedure is applied, and a new solution $S^{\prime} \in \mathcal{N}_{k}(S)$ is found within the neighborhood of size k of the solution S. The local search is then used to polish solution S^{\prime}. If the cost of solution S^{\prime} is less than that of the current bestknown solution S, then S^{\prime} becomes S, the neighborhood range k is reset, and the search continues from the new solution S. Otherwise, the neighborhood size increases, allowing it to explore $\mathcal{N}_{k}(S)$ even further. This step is repeated while the execution time limit is not reached.

```
Algorithm 1: Basic Parallel Variable Neighborhood Search.
    \(S \leftarrow\) initialSolution (); // generates a solution by Algorithm 2
    while time limit is not reached do
        \(k \leftarrow 1\);
        while \(k<k_{\max }\) do
            \(S^{\prime} \leftarrow \operatorname{shaker}(S, k) ; \quad / /\) finds solution \(S^{\prime}\) by using Algorithm 3
            \(S^{\prime} \leftarrow \operatorname{localSearch}\left(S^{\prime}\right) ; \quad / /\) improves \(S^{\prime}\) by applying Algorithm 4
            if \(\operatorname{cost}\left(S^{\prime}\right)<\operatorname{cost}(S)\) then
                \(S \leftarrow S^{\prime} ;\)
                \(k \leftarrow 1 ;\)
            else
                \(k \leftarrow k+1 ;\)
            end
        end
    end
    return \(S\);
```

To calculate the cost of a given solution s, for the $\alpha \mathrm{N} p \mathrm{CP}$, we customized the move evaluation and update procedures as well as the corresponding data structures from the work of Mladenović et al. [34], and from the work of Hansen and Mladenović [20], for the $\alpha \mathrm{N} p \mathrm{MP}$. Because these algorithms and data structures are well-known and easy to implement, another advantage is that one can compute a solution's cost in $O(n \log n)$.

We opted to use parallelization to enhance the performance of each component of our

BP-VNS: the initial solution algorithm, the shaker procedure, and the local search. This decision was driven by the straightforward parallelization possibility each one of these methods offers, and we focused on keeping them simple. These components are explained in the following sections. The algorithm to generate an initial solution is described in Section 3.1. The shaker procedure is detailed in Section 3.2. The local search method is shown in Section 3.3. Further implementation details are presented in Section 3.4.

3.1 Initial solution

Algorithm 2 shows the parallel procedure used in this work for generating initial solutions for both $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$. In this algorithm, the best of r solutions, where r is a parameter of the number of threads, is selected as the initial solution. Each thread i starts from a random solution S_{i}, where p medians are selected randomly. A local search procedure then improves this solution. We use the same local search detailed in Section 3.3 to keep the algorithm simple. Note that each thread calls the local search to improve its solution. So unlike the local search step of Section 3.3, here each local search procedure runs in serial, unique to its thread. After all threads finish their execution, the best solution S among all S_{i} solutions is returned as the initial one. The initial algorithm can be viewed as multiple parallel calls of the serial local search starting from random solutions.

```
Algorithm 2: initialSolution procedure.
    Output: Initial solution \(S\).
    \(S \leftarrow \emptyset ;\)
    for \(i \leftarrow 1\) to \(r\) do in parallel // \(r\) is the number of threads
        \(S_{i} \leftarrow\) random solution; // each thread starts with a solution
        \(S_{i} \leftarrow \operatorname{localSearch}\left(S_{i}\right) ; \quad / /\) calls single threaded Algorithm 4
        if \(\operatorname{cost}\left(S_{i}\right)<\operatorname{cost}(S)\) then
            \(S \leftarrow S_{i} ;\)
        end
    end
    return \(S\);
```


3.2 Shaker

Hansen and Mladenović [20] and Mladenović et al. [34] use a shaker procedure where the facility to be opened is selected randomly, and then they select the best open facility to be closed regarding the one to be opened. To find the best facility deletion, they use the move evaluation algorithm to identify the facility to be closed and to compute the new objective function value in $O(n)$. For the $p \mathrm{CP}$, Mladenović et al. [34] only considers opening the random facility if it is closer to the critical vertex than the critical vertex's current facility.

Since we design a parallel shaker algorithm, the approach of Mladenović et al. [34] may trap the BP-VNS in local optima, as we select the best out of a number of candidates, which, in turn, were selected greedily. Then, in our shaker, we first decided to remove the requirement of only opening a facility if it improves the critical vertex assignment, avoiding making such greedy decisions. To improve the solution space exploration even further and simplify the heuristic, we opted to make the shaker completely random, i.e., to open and close facilities randomly. This very same shaker algorithm was successfully used by Mladenović et al. [31] in the obnoxious $p \mathrm{MP}$.

Algorithm 3 depicts the shaker procedure, which, given a solution S and the neighborhood size k, is used to find a new solution $S^{\prime} \in \mathcal{N}_{k}(S)$. The role of this method, as the name implies, is to disturb the current solution and, thus, avoid being trapped in local optimum solutions. Like Algorithm 2, we explore r solutions in parallel and keep the best one. So from the input solution S, each thread i finds a solution $S_{i}^{\prime} \in \mathcal{N}_{k}(S)$ by randomly swapping k facility vertices with k client vertices. In other words, each thread randomly selects a set of facilities $J=\left\{j_{1}, \ldots, j_{k}\right\}$, such that $J \subseteq S$, and a set of non-facility vertices $L=\left\{l_{1}, \ldots, l_{k}\right\}$, such that $L \subseteq V \backslash S$, and swap them.

```
Algorithm 3: shaker procedure.
    Input: Current solution \(S\); neighborhood size \(k\).
    Output: New solution \(S^{\prime} \in \mathcal{N}_{k}(S)\).
    \(S^{\prime} \leftarrow S\);
    for \(i \leftarrow 1\) to \(r\) do in parallel //r is the number of threads
        select \(S_{i}^{\prime} \in \mathcal{N}_{k}(S)\) and do // randomly opens and closes \(k\) facilities
            if \(\operatorname{cost}\left(S_{i}^{\prime}\right)<\operatorname{cost}\left(S^{\prime}\right)\) then
                \(S^{\prime} \leftarrow S_{i}^{\prime} ;\)
            end
        end
    end
    return \(S^{\prime}\);
```

We decided to close and open k facilities at random in our shaker instead of, for example, opening a facility at random and closing the best one as in [20, 34] for two reasons. First, using swaps is well-aligned with the LIMA aspect of our algorithm; we have not observed any significant gains from using a more expensive approach during our preliminary tests. Second, this random approach helps the BP-VNS to escape local optima more effectively than a greedy alternative.

3.3 Local search

We implemented a best improvement local search presented by Algorithm 4. Given an input solution S^{\prime}, this algorithm evaluates the swap of every non-facility vertex with the best facility deletion concerning the opened one. Then, the best swap is selected and
performed. This process systematically explores all solutions in $\mathcal{N}_{1}\left(S^{\prime}\right)$ since it opens every client vertex as a facility, one by one. If the best swap improves S^{\prime}, then this procedure continues refining solution S^{\prime} as long as an improvement is found. If no improvement is detected, it stops and returns S^{\prime}. This procedure runs in parallel but, unlike Algorithms 2 and 3 where threads run independently, here, each thread handles a subset of non-facility vertices. In other words, each thread explores a subset of $\mathcal{N}_{1}\left(S^{\prime}\right)$. Then, the best swap is the one selected to be performed.

To evaluate the swap between a facility vertex $j \in S^{\prime}$ and a client vertex $l \in V \backslash S^{\prime}$, we adapted the move evaluation algorithm from Mladenović et al. [34], for the $\alpha \mathrm{N} p \mathrm{CP}$, and from Hansen and Mladenović [20], for the $\alpha \mathrm{N} p \mathrm{MP}$. With these algorithms, one can compute, in $O(n)$ time complexity, the new objective function value if the swap between j and l would occur.

```
Algorithm 4: localSearch procedure.
    Input: Candidate solution \(S^{\prime}\).
    Output: Improved solution \(S^{\prime}\), if any.
    do
        improved \(\leftarrow\) false;
        foreach \(S^{\prime \prime} \in \mathcal{N}_{1}\left(S^{\prime}\right)\) do in parallel // opens and closes one facility
                if \(\operatorname{cost}\left(S^{\prime \prime}\right)<\operatorname{cost}\left(S^{\prime}\right)\) then
                \(S^{\prime} \leftarrow S^{\prime \prime}\);
                improved \(\leftarrow\) true;
            end
        end
    while improved;
    return \(S^{\prime}\);
```


3.4 Implementation details

We now present additional implementation details. First, we explain, in Section 3.4.1, how we adapted some data structures from the works of Hansen and Mladenović [20] and Mladenović et al. [34]. Then, in Section 3.4.2, we present the $\alpha \mathrm{N} p \mathrm{CP}$ updated objective function used in this work to improve the BP-VNS convergence further.

3.4.1 Data structures

As mentioned earlier, we have adapted the move evaluation and the update algorithms of Mladenović et al. [34] for the $\alpha \mathrm{N} p \mathrm{CP}$, and of Hansen and Mladenović [20] for the $\alpha \mathrm{N} p \mathrm{MP}$, to evaluate facilities candidates efficiently and to compute the solution cost quickly. Besides other minor algorithmic details, the main difference between the original versions of these two algorithms and our adaptations lies in an auxiliary data structure denoted as $c 1$ array. In the original move evaluation and update algorithms, each position
i of array $c 1$ holds the index of the nearest facility to each vertex i. However, in our case, where vertices are assigned to α facilities, the $c 1$ array transforms into a $n \times \alpha$ matrix. Each row i of this matrix corresponds to the α facilities indices to which vertex i is assigned.

To efficiently update a facility in a row i of matrix $c 1$, we keep each row's α facilities sorted into increasing order of distance from vertex i. This way, we can use binary search to remove or insert a facility. However, since α is a parameter and its values used in this work are small $(\alpha \leq 3)$, as large values are not common in practice [45], we can consider it a constant. Then, there is no difference in the asymptotical time complexity between the original algorithms and our customizations. Thus, the time complexity of the move evaluation remains at $O(n)$, and the time complexity of the update algorithm of $O(n \log n)$ remains the same.

3.4.2 $\alpha \mathbf{N} p \mathbf{C P}$ evaluation function

The $\alpha \mathrm{N} p \mathrm{CP}$ inherited an issue from the $p \mathrm{CP}$, which is the fact that several solutions have the same cost. This problem is even worse in the $\alpha \mathrm{N} p \mathrm{CP}$ since we minimize the maximum distance between a vertex and its α th facility. However, this does not mean that solutions of the same cost are equal. Between two solutions of the same cost, we can consider one of them to be better than the other. For example, let S and S^{\prime} be two solutions where $\rho\left(S, S^{\prime}\right) \geq 1$ and $\operatorname{cost}(S)=\operatorname{cost}\left(S^{\prime}\right)=42$. Also, consider that S^{\prime} has only one critical vertex, a vertex i in which the distance to its α th facility equals 42, whereas S has several critical vertices. It may be easier to reduce the cost of S^{\prime} than to open new facilities and try to reduce the cost of S. So, adding more information to the cost of an $\alpha \mathrm{N} p \mathrm{CP}$ solution regarding the overall assignments is necessary, instead of just considering the critical element.

Based on this observation, we adapted the method of Torres-Jimenez et al. [46]. These authors proposed a heuristic for the matrix bandwidth minimization problem (MBMP). The MBMP is also a min-max problem, where the objective is to minimize the maximum distance between a nonzero coefficient and the main diagonal of a square sparse symmetric matrix. Clearly, in this problem, there are also several solutions of the same cost. Then, the authors adapted the idea proposed by Rodriguez-Tello et al. [44], which consists of counting the number of occurrences of distances between all the other nonzero coefficients and the main diagonal and then translating it to a value $\delta \in[0,1)$. To compute the value of δ, they counted the number of distances of each value and the maximum number of each distance and used these values to represent a number in a positional numbering system of variable base, also known as mixed radix. The value represented by this numerical system is then normalized to a value in the range $[0,1)$ and added to the objective function value. This adds more meaning to the objective function value and helps to differentiate solutions with the same bandwidth. Please refer to Rodriguez-Tello et al. [44], Torres-Jimenez et al. [46] for further details.

We can also use this method in the $\alpha \mathrm{N} p \mathrm{CP}$ since they are both problems where the objective is to minimize the maximum distance. To compute δ, the value to be added to
the $\alpha \mathrm{N} p \mathrm{CP}$ objective function value, we use Algorithm 5 [46]. In this algorithm, array d_{i} is the number of length assignments i present in solution S, i.e., the number of edges of length i connecting a client vertex to its α th facility. The array v_{i} is the maximum number of edges of length i that can be used in a solution plus one because no edge is a possible value. Then, with both arrays d_{i} and v_{i} one can represent the $\alpha \mathrm{N} p \mathrm{CP}$ solution as a number in a positional numbering system of variable base, where d_{i} values can be interpreted as digits and v_{i} as the base in this numerical system. To compute this value and then normalize it in the $[0,1)$ range, Torres-Jimenez et al. [46] proposed the Algorithm 5, where the normalized value is represented by δ.

```
Algorithm 5: \(\alpha \mathrm{N} p \mathrm{CP}\) alternative objective function.
    Input: Solution \(S\); arrays \(d_{i}\) and \(v_{i}\).
    Output: \(\alpha \mathrm{N} p \mathrm{CP}\) cost of solution \(S\).
    \(\delta \leftarrow 0\);
    for \(i \leftarrow 0\) to \(\operatorname{cost}(S)\) do
        if \(d_{i}>0\) then
            \(\delta \leftarrow \frac{\delta+d_{i}}{v_{i}}\)
        end
    end
    return \(\operatorname{cost}(S)+\delta\);
```

For example, consider two solutions S and S^{\prime} depicted in Figure 1. In this example, $n=7, p=2, \alpha=2, \operatorname{cost}(S)=\operatorname{cost}\left(S^{\prime}\right)=42$, and $\rho\left(S, S^{\prime}\right)=1$. Note that solution S has two critical vertices (two vertices with a distance of 42 to their facilities), whereas solution S^{\prime} has only one. So one could use Algorithm 5 to compute the value of δ of both solutions and compare them.

To compute the δ values for solutions S and S^{\prime}, every edge of the graph of the $\alpha \mathrm{N} p \mathrm{CP}$ is counted to define the v_{i}. Also, recall that the absence of the edge in the solution is counted, too, so we add one to every v_{i} value. As the array v_{i} is related to the graph and not to a particular solution, then, for solutions S and S^{\prime}, we have the same following v_{i} values: there is one edge of distance 21 in the graph, i.e., $v_{21}=2$ (the edge plus one to represent the absence of such edge in a solution); there is one edge of distance 22 in the graph, i.e., $v_{22}=2 ; v_{24}=2, v_{30}=2, v_{35}=2$, and $v_{42}=3$ (since there are two edges of length 42 in solution S, plus one to represent the absence of such edge in a solution). On the other hand, array d_{i} is specific to each solution, and for solution S we have: one edge of distance 21 used in the solution, i.e., $d_{21}=1$; one edge of distance 22 used in the solution, i.e., $d_{22}=1 ; d_{30}=1, d_{42}=2$. For solution S^{\prime} we have the following: $d_{21}=1$, $d_{22}=1, d_{24}=1, d_{35}=1, d_{42}=1$. Then, using Algorithm 5, we get $\delta=0.958$ for solution S and $\delta=0.646$ for solution S^{\prime}. Therefore, solution S^{\prime} is better than S as $42.646<42.958$. Indeed, it is easier to improve solution S^{\prime} cost because it has only one critical vertex.

Computing the value of δ for each solution can be done efficiently in $O\left(D_{\max }\right)$, where $D_{\max }=\max _{i, j \in V} d_{i j}$, within the move evaluation and update algorithms, significantly improv-
ing the amount of information the algorithm considers. As demonstrated in the next section, this new updated objective function improves convergence and helps the algorithm achieve better solutions.

Figure 1: Example of two $\alpha \mathrm{N} p \mathrm{CP}$ solutions of same cost (42).

4 Computational experiments and analysis

We now describe the computational experiments performed to assess the performance of our methods. All algorithms described were implemented in $C++$ language and compiled with $g++$ compiler, version 11.3.0. We used Gurobi's $C++$ API, version 10.0.2 for solving the integer programs. The preliminary tests of Section 4.1 were executed on a computer equipped with an Intel ${ }^{\circledR}$ Core ${ }^{\mathrm{TM}}$ i9-13900K processor with 32 threads at 3.0 GHz and 128 GB of RAM. All the remaining experiments were conducted on a computing cluster based on AMD EPYC ${ }^{\text {TM }}$ Rome 7532 processors running at 2.4 GHz using 24 threads and up to 96 GB of RAM. All instances described below and their detailed solutions are available at www.leandro-coelho.com/VNS-location-problems.

For the tests with both $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$, we used the well-known OR-library instances [3, 4]. This set contains 40 instances with sizes ranging between 100 and 900 vertices. These instances are composed of connected weighted non-complete graphs. To transform these graphs into complete ones, we used the Floyd-Warshall algorithm to compute the shortest paths between every pair of vertices, as is done in the literature. Following Sánchez-Oro et al. [45], we also used 77 instances derived from the TSPLIB [41] for the tests with the $\alpha \mathrm{N} p \mathrm{CP}$ and, for each of them, we tested using $\alpha \in\{1,2,3\}$. For the $\alpha \mathrm{N} p \mathrm{MP}$ tests, we used $\alpha \in\{10,20\}$ and compared our VNS with the BIMM heuristic [38].

Since we use the LIMA methodology, the only parameters our heuristic uses are the $k_{\max }$, for which we used $k_{\max }=p$ [31], the number of threads r, which we set to $r=$ 24 for the experimental tests, and the execution time limit, which we used 1 hour for the experimental tests. In addition, we set 2 hours as the execution time limit for the commercial solvers to solve the models.

The remaining of the section is organized as follows. In Section 4.1 we show the preliminary tests carried out to evaluate the components of our BP-VNS. The $\alpha \mathrm{N} p \mathrm{CP}$
experimental results are presented in Section 4.2, and the $\alpha \mathrm{N} p \mathrm{MP}$ ones are presented in Section 4.3.

4.1 Preliminary tests

Preliminary tests to evaluate some key features of our BP-VNS are presented in this section. We tested our heuristic on the first 10 instances of the OR-library, which have $n \in\{100,200\}$ and $p \in\{5,10,20,33,40,67\}$. In all tests of this section, we used $\alpha=2$ and 60 seconds as the time limit of the BP-VNS. In addition, as the $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$ versions of our heuristic share the same main structure, we performed the preliminary tests only for the $\alpha \mathrm{N} p \mathrm{CP}$. This section is structured as follows. The impact of parallelism is analyzed in Section 4.1.1, tests to evaluate the shaker functions are shown in Section 4.1.2, and the ones to evaluate the usage of the updated $\alpha \mathrm{N} p \mathrm{CP}$ objective function are presented in Section 4.1.3.

4.1.1 Evaluation of parallelism

In this section, we assess two versions of our BP-VNS, depicted by Algorithm 1. These versions differ only by the number of threads used: the first is the BP-VNS running on a single thread, while the second is the parallel BP-VNS where we have used 24 threads. The results of these tests are shown in Table 1. In this table, the first three columns show the instances' names, the number of vertices, and the number of medians. The optimum (opt) of each instance is shown in the fourth column. Then, we present for both BP-VNS versions the best solution found, the iteration in which the best solution was found (iter ${ }_{\text {best }}$), the total number of iterations (\#iter), and the time, in seconds, in which the best solution was found $\left(\mathrm{t}_{\text {best }}(\mathrm{s})\right)$.

Table 1: Comparison between the single-thread and the parallel versions of BP-VNS.

Instance	n	p	opt	single-thread BP-VNS				BP-VNS			
				best	iter $_{\text {best }}$	\#iter	$\mathrm{t}_{\text {best }}(\mathrm{s})$	best	iter $_{\text {best }}$	\#iter	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	5	150	150	72	49539	0.09	150	0	475687	0.01
pmed2	100	10	121	121	2965	56666	3.24	121	674	469980	0.11
pmed3	100	10	121	123	814	56075	0.90	121	4210	447565	0.65
pmed4	100	20	97	98	1181	69843	1.04	97	1067	483936	0.18
pmed5	100	33	63	63	17705	96636	11.14	63	160	427687	0.04
pmed6	200	5	99	99	6954	12429	33.57	99	0	159187	0.04
pmed7	200	10	80	80	8672	13262	39.23	80	7	162246	0.07
pmed8	200	20	70	70	839	14520	3.60	70	79	157030	0.12
pmed9	200	40	49	50	1108	18074	3.88	49	751	182220	0.44
pmed10	200	67	28	29	11503	25421	27.29	28	2025	199115	0.68

As one can note, the parallel version obtained the optimum values in all instances. On the other hand, the single-thread BP-VNS did not find the optimum of instances pmed3, pmed4, pmed9, and pmed10. The parallel initial solution algorithm helps the heuristic convergence as it is a multistart procedure, so the BP-VNS starts from the best solution out of r candidates. The (parallel) BP-VNS found the best solution much earlier than the single-thread version, as one can see in columns iter best and $\mathrm{t}_{\text {best }}(\mathrm{s})$. Indeed, in some
instances, as for pmed1 and pmed6, BP-VNS found the optimum at iteration 0 , that is, in the initial algorithm step. Also, parallelism helps the heuristic explore the solution space faster as multiple solutions are visited in each call of the shaker procedure. Exploring different neighborhoods more efficiently helps BP-VNS escape from local optima, which can explain why the parallel version of BP-VNS found the optimum for all instances. In addition, the parallel local search algorithm is much faster than the single thread version, as each thread explores a subspace of $\mathcal{N}_{1}(S)$. Since the local search procedure is the most expensive step in our BP-VNS, parallelizing it helps decrease the computational burden. This can be noticed in the total number of iterations, where BP-VNS ran approximately eight to ten times more iterations than the single-thread version. Then, for these reasons, we decided to use the BP-VNS version for the remainder of the paper.

4.1.2 Evaluation of shaker fuctions

Recall that we designed a random shaker unlike the greedy shaker function initially proposed by Hansen and Mladenović [20] and Mladenović et al. [34]. Table 2 shows the tests performed to compare BP-VNS using the greedy approach and with the random shaker. The table follows the same structure of Table 1. Note that the results of the random version are exactly the same as presented in Table 1, as the results presented earlier are related to our complete BP-VNS, which uses the random shaker.

Table 2: Comparison between BP-VNS with the greedy and the random shakers.

Instance	n	p	opt	greedy shaker				random shaker			
				best	iter $_{\text {best }}$	\#iter	$\mathrm{t}_{\text {best }}(\mathrm{s})$	best	iter $_{\text {best }}$	\#iter	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	5	150	150	0	457386	0.01	150	0	475687	0.01
pmed2	100	10	121	121	810	430671	0.17	121	674	469980	0.11
pmed3	100	10	121	121	19581	415200	2.85	121	4210	447565	0.65
pmed4	100	20	97	98	885	478483	0.16	97	1067	483936	0.18
pmed5	100	33	63	63	100	426113	0.03	63	160	427687	0.04
pmed6	200	5	99	99	0	150220	0.05	99	0	159187	0.04
pmed7	200	10	80	80	19	161231	0.09	80	7	162246	0.07
pmed8	200	20	70	70	161	142285	0.21	70	79	157030	0.12
pmed9	200	40	49	49	1879	169106	0.72	49	751	182220	0.44
pmed10	200	67	28	28	5757	176213	1.86	28	2025	199115	0.68

Since our shaker procedure is parallelized, the BP-VNS with the greedy one might be trapped in local optima more often than the random shaker. Once again, our proposed random shaker performs best as the greedy shaker procedure cannot find all optimum. Moreover, the version with the greedy shaker took longer to find the optimum values in almost all instances, sometimes significantly (2.85 s vs. 0.65 s), as one can see from the iteration and time in which the best solutions were found in Table 2. Also, since in the random shaker there is no extra $O(n)$ computation of the move evaluation algorithm, BPVNS could run faster and, therefore, the total number of iterations of the heuristic with random shaker is slightly larger than ones achieved by the BP-VNS with greedy shaker. We decided to employ the random shaker based on these results and its simplicity.

4.1.3 Evaluation of the updated $\alpha \mathbf{N} p \mathbf{C P}$ objective function

In this section, we evaluate our BP-VNS (Algorithm 1) with and without the updated $\alpha \mathrm{N} p \mathrm{CP}$ objective function, described in Section 3.4.2. Note that this new objective function is used only in the $\alpha \mathrm{NpCP}$, whereas the features tested in Sections 4.1.1 and 4.1.2 are used in the BP-VNS applied to both $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$.

In Table 3, the results from columns updated $O F$ are the same as the ones from Table 1 and 2, as our BP-VNS uses the updated $\alpha \mathrm{Np} \mathrm{CP}$ objective function. However, the results from columns regular OF refer to the BP-VNS version with the regular $\alpha \mathrm{N} p \mathrm{CP}$ objective function.

Table 3: Comparison between BP-VNS with the regular $\alpha \mathrm{N} p \mathrm{CP}$ objective function and the updated one.

Instance	n	p	opt	regular OF				updated OF			
				best	iter $_{\text {best }}$	\#iter	$\mathrm{t}_{\text {best }}(\mathrm{s})$	best	iter $_{\text {best }}$	\#iter	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	5	150	150	0	372730	0.01	150	0	475687	0.01
pmed2	100	10	121	121	524	354236	0.11	121	674	469980	0.11
pmed3	100	10	121	121	5148	419403	0.84	121	4210	447565	0.65
pmed4	100	20	97	98	2787	370127	0.50	97	1067	483936	0.18
pmed5	100	33	63	63	966	411485	0.15	63	160	427687	0.04
pmed6	200	5	99	99	0	123946	0.03	99	0	159187	0.04
pmed7	200	10	80	80	183	139211	0.12	80	7	162246	0.07
pmed8	200	20	70	70	44606	131411	23.36	70	79	157030	0.12
pmed9	200	40	49	51	31908	134805	14.12	49	751	182220	0.44
pmed10	200	67	28	34	4561	191058	1.44	28	2025	199115	0.68

As one can note from the results of Table 3, the new objective function significantly helps BP-VNS achieve better results as the version with the regular objective function could not obtain optimum values in instances pmed 4 , pmed 9 , and pmed10, and some of these by a large gap. Also, note that the BP-VNS with the regular objective function took much longer to find the best solutions since the update objective function helps BP-VNS move to more promising neighborhoods as it adds more information to solutions costs. Even if the calculation of the new objective function adds a step of time complexity $\mathrm{O}\left(D_{\max }\right)$, this time is clearly offset by the gains in terms of information embedded in the solution algorithm, allowing it to explore more promising neighborhoods and ultimately find better solutions faster. This development shows a huge potential for this problem and can help improve convergence and solution quality in other types of problems as well.

4.2 Performance evaluation on the $\alpha \mathbf{N} p \mathbf{C P}$

In this section, we compare our method with the best-known $\alpha \mathrm{N} p \mathrm{CP}$ solution values from the literature. Specifically, for the 40 OR-library instances with $\alpha=\{1,2\}$, we compare the results of our BP-VNS against the ones from the work of Mousavi [36]. For these instances, we also tested with $\alpha=3$, and compared our results with the ones obtained by the commercial solver solving model (1a)-(1f). For the 77 TSPLIB instances, we used $\alpha=\{1,2,3\}$ and compared our results against the ones of the GRASP-SO heuristic [45]. Since we extracted the results of the heuristic of Mousavi [36] and of the GRASP-SO from
their papers, and to provide a fair computational comparison, we have approximated their running times by dividing the reported values by 1.5 and 0.85 [39], respectively.

Table 4 summarizes the results of the tests on the OR-library and TSPLIB instances. This table shows the instance set names and the α values in the first two columns. Each row of the OR-library instances set corresponds to the average results of 40 instances, and each row of the TSPLIB to the average of 77 instances. We present for the commercial solver and the heuristics the average of the best solutions values (best), the number of best-known solutions (\#bks) found, and the average of the running times ($\mathrm{t}(\mathrm{s})$). Note that since the stopping criterion of our BP-VNS is the execution time limit of 1 hour, we show for this heuristic the time when the best solution was found ($\mathrm{t}_{\text {best }}(\mathrm{s})$). In addition, we present the average percentage gap (gap (\%)) related to the best-known solutions. The detailed results of these tests are presented in A.

Table 4: $\alpha \mathrm{N} p \mathrm{CP}$ summary results on OR-library and TSPLIB instances.

Instance set	Gurobi			GRASP-SO [45]				Mousavi [36]						$\begin{gathered} \text { Our } \\ \text { BP-VNS } \end{gathered}$			
	α	best	\#bks t (s)	best	\#bks	(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$	best	\#bk		(\%)		(s)	best	\#b	p (\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
OR-lib	1	37.33	$40 \quad 366.47$	-	-	-		37.33	40		0.00		0.09	37.33	40	0.00	148.57
	2	54.95	224309.75	-	-	-		45.55	38		0.24		3.39	45.55	38	0.30	35.11
	3	60.98	184977.89	-	-	-		-	-		-			- 51.18	39	0.07	151.05
TSPLIB		2153.49	562920.51	505.43	11	5.63	653.16	-						- 484.12	59	0.65	769.93
	2	4515.61	364486.92	773.35	5	8.36	990.00	-	-					- 735.71	73	0.05	1054.30
	3	4881.12	284687.35	997.18	0	7.46	1147.78	-	-		-			- 947.73	72	0.11	1099.00

Regarding the OR-library instances, Gurobi found optimal solutions in all instances with $\alpha=1$, and so did our method and the heuristic of Mousavi [36]. Considering $\alpha=2$, the commercial solver found 22 best solutions, all proven optimal. From these 22 solutions, our BP-VNS and the heuristic of Mousavi [36] obtained 20 optimal ones. From the two solutions where both heuristics did not achieve the optima, one is the same instance (pmed24), and the other one is different for each heuristic (pmed25 for BP-VNS and pmed19 for the heuristic of Mousavi [36]). In these cases, the difference to the optimal solutions was just one unit in all cases, but since the optimal solution value of pmed25 (15) is less than the pmed19 one (24), the relative gap of this one unit is greater in the pmed25 case. This is why the average gap of BP-VNS was slightly larger than the one of the algorithm of Mousavi [36]. Regarding $\alpha=3$, BP-VNS found the best solutions in 39 out of 40 instances, and the commercial solver obtained 18 best solutions, all of which are optimal. Note that Mousavi [36] did not test their algorithm with this configuration. From the 18 optimal solutions, our heuristic could not find the optimum of only one instance. In this case, the difference between BP-VNS's solution and the optimum was again just one unit.

Considering all results in the OR-library instances with $\alpha=1,2,3$, the BP-VNS presented an average improvement gap of 6.10% compared with results from the literature and the commercial solver. Also, our heuristic could find 22 new best-known solutions, where the average improvement in these cases was 33.96%.

Table 4 shows that our BP-VNS outperformed the commercial solver and the GRASP-

SO on the TSPLIB instances with all α values, dominating that algorithm. With $\alpha=1$, the commercial solver obtained 56 best solutions, of which 52 are optimal, the GRASP-SO obtained 11 best ones, and our heuristic found 59 best solutions out of the 77 instances. With $\alpha=2$ and $\alpha=3$, the difference in terms of solution quality between the proposed BP-VNS and the other two solution methods was even more pronounced. For $\alpha=2$, BPVNS achieved 73 best solutions out of the 77 instances, whereas the commercial solver and GRASP-SO found 36 and 11 best solutions, respectively. Similarly, for $\alpha=3$, BPVNS excelled by obtaining 72 best solutions, while the commercial solver achieved 28 best solutions, and the GRASP-SO found none. On the 231 instances of the TSPLIB set, our heuristic obtained an overall improvement gap of 2.02% compared with the results of the literature and the commercial solver. Moreover, the BP-VNS found 109 new best-known solutions with an average improvement of 4.79%.

Considering computational times, even though our heuristic ran for 1 hour in all instances, finding the best solutions in both instances sets required much less time. In the OR-library, although the heuristic of Mousavi [36] is fast, BP-VNS could find the same solutions found by this heuristic, and our method obtained all optimal solutions with $\alpha=1$ in less runtime when compared to Gurobi. Moreover, our method outperformed Gurobi with $\alpha=2$ and $\alpha=3$, finding the best solutions with significantly less execution time. Regarding the tests in the TSPLIB instances, BP-VNS could find better solutions in a similar runtime as the GRASP-SO heuristic and in much less execution time than the commercial solver.

4.3 Performance evaluation on the $\alpha \mathbf{N} p \mathbf{M P}$

The results of the tests on the $\alpha \mathrm{N} p \mathrm{MP}$ are presented in this section. Here, we compare the results of our BP-VNS against the MIP solver and those of the BIMM heuristic [38]. Following Panteli et al. [38], instead of using the original p values from each instance, we used two values of p for every OR-library instance: $p=10$ and $p=20$. Moreover, to properly compare the results, we only used one value of α for each value of p. More specifically, when $p=10$ we use $\alpha=5$, and when $p=20$ we set $\alpha=10$. Then, we solved model (2a)-(2e) with a commercial solver and ran our BP-VNS on all 80 OR-library instances derived by using the values of p and α as just described.

Table 5 has a structure similar to the one presented in Section 4.2 and summarizes the tests' results on the OR-library instances. In Table 5, each row corresponds to an average of 40 instances, where the first two columns show the p and α values used. Then, for each pair of p and α, we present the results for the commercial solver, the BIMM heuristic, and our BP-VNS. The table shows the average of the best solutions costs, the number of optimal solutions obtained by each method (\#opt), and the running times in seconds. Again, we approximated the running times of the BIMM by dividing its reported runtime by 1.2 [39] as they were extracted from the work of [38]. We also show the gap related to the best-known solutions, which in this case are the solutions from the solver, since the commercial solver could prove optimality for all instances. The detailed results of these tests are presented in B.

Table 5: $\alpha \mathrm{N} p \mathrm{MP}$ summary results on OR-library instances.

p	α	MIP solver			BIMM [38]				BP-VNS			
		best	\#opt	t (s)	best	\#opt	gap (\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	\#opt	gap (\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
10	5	55807.95	40	138.93	57046.05	0	2.28	1.53	55807.95	40	0.00	0.77
20	10	112785.10	40	172.42	115884.23	0	2.82	3.32	112785.28	39	0.00	1.03
Average		84296.53	40	155.67	86465.14	0	2.55	2.43	84296.61	39.5	0.00	0.90

The results indicate that the proposed BP-VNS outperformed the BIMM heuristic regarding solution quality and computational performance in the two sets of 40 instances. Indeed, as the detailed results of B show, our heuristic found better solutions than the ones found by the BIMM in all instances, dominating that algorithm. Moreover, our method found an optimal solution for all but one of the 80 instances; in this case, the gap to the optimal solution was 0.01%. On the other hand, the BIMM could not find any optimum, with a gap of more than 2.5% and an adjusted runtime more than 2.5 times that of our BP-VNS heuristic.

Although our heuristic ran for 1 hour, the optimal solutions were obtained in much less time, as noted from the $\mathrm{t}_{\text {best }}(\mathrm{s})$ column. In fact, all BKS were found in less than 10 seconds. Our BP-VNS found all optimal solutions in less than half of the BIMM's execution time, on average. In addition, the average run time of BP-VNS for finding the best solutions was much faster than the ones from the commercial solver required to prove optimality.

5 Conclusions

This paper presented an effective Basic Parallel VNS for the $\alpha \mathrm{N} p \mathrm{CP}$ and the $\alpha \mathrm{N} p \mathrm{MP}$. Using the LIMA methodology, we have developed this heuristic using straightforward and user-friendly algorithmic components and adapting the robust and well-known algorithms of Hansen and Mladenović [20] for the $\alpha \mathrm{N} p \mathrm{MP}$, and Mladenović et al. [34] for the $\alpha \mathrm{N} p \mathrm{CP}$. Computational results indicate that the $\alpha \mathrm{N} p \mathrm{C}$ problem contains many symmetrical solutions, where only one edge determines the cost of the solution, and all remaining edges appearing in the solution are not considered. To overcome this problem and to give the algorithm more information about the whole solution, we have adapted an evaluation function used in the bandwidth minimization problem, another a min-max optimization problem, and applied it for the first time to the $\alpha \mathrm{N} p \mathrm{CP}$ context. This updated objective function adds more information to a $\alpha \mathrm{N} p \mathrm{CP}$ solution, helping it to differentiate solutions of the same cost better. This improved objective function is demonstrated to not interfere with optimality and significantly helped the algorithm's convergence.

Despite its simplicity, our heuristic consistently achieves state-of-the-art solutions in almost all instances, and it could improve most of the best-known solutions from the literature. Specifically, in the $\alpha \mathrm{N} p \mathrm{CP}$, the proposed VNS found the greater number of best solutions in both OR-library and TSPLIB instance sets, obtaining 321 best solutions
out of 351 possible ones, including 22 new best solutions on the OR-library instances and 109 new best solutions on the TSPLIB set. Considering all these instances, the average gap obtained by our heuristic to the best-known solutions was 0.2%. Moreover, our VNS required only a fraction of a second or, at most, a few seconds to find these solutions. A similar performance could be seen in the $\alpha \mathrm{N} p \mathrm{MP}$ tests. In this case, our heuristic could find the optimal solutions in all 80 instances but one. Comparisons against the literature demonstrate that our VNS outperformed the BIMM heuristic in all instances. Again, the computational performance of the VNS was remarkable.

Our VNS algorithm's performance across various α values in solving many instances and its simplicity and user-friendliness make it an efficient choice for tackling the $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$ optimization problems. The updated $\alpha \mathrm{N} p \mathrm{CP}$ objective function has shown to be a practical approach to help the heuristic escape from local optima, showing promising applications in other optimization problems where there are many solution symmetries, such as in other min-max problems.

For future works, one can apply this BP-VNS heuristic, for example, to the capacitated extensions of the $\alpha \mathrm{N} p \mathrm{CP}$ and $\alpha \mathrm{N} p \mathrm{MP}$. Moreover, we expect the improved objective function to show promising results in other problems, given that it increases the amount of information used by the algorithm without much computational burden.

References

[1] Araújo, E.J., Chaves, A.A., Lorena, L.A.N., 2020. A mathematical model for the coverage location problem with overlap control. Computers \& Industrial Engineering 146, 106548.
[2] Barbaros, C.T., Richard, L.F., Timothy, J.L., 1983. State of the art-location on networks: A survey. part I: The p-center and p-median problems. Management Science 29, 482-497.
[3] Beasley, J.E., 1985. A note on solving large p-median problems. European Journal of Operational Research 21, 270-273.
[4] Beasley, J.E., 1990. Or-library: distributing test problems by electronic mail. Journal of the Operational Research Society 41, 1069-1072.
[5] Brimberg, J., Maier, A., Schöbel, 2021. When closest is not always the best: The distributed p-median problem. Journal of the Operational Research Society 72, 200216.
[6] Brimberg, J., Salhi, S., Todosijević, R., Urošević, D., 2023. Variable neighborhood search: The power of change and simplicity. Computers \& Operations Research 155, 106221.
[7] Callaghan, B., Salhi, S., Brimberg, J., 2019. Optimal solutions for the continuous pcentre problem and related alpha-neighbour and conditional problems: A relaxationbased algorithm. Journal of the Operational Research Society 70, 192-211.
[8] Chaudhuri, S., Garg, N., Ravi, R., 1998. The p-neighbor k-center problem. Information Processing Letters 65, 131-134.
[9] Chen, D., Chen, R., 2013. Optimal algorithms for the alpha-neighbor p-center problem. European Journal of Operational Research 225, 36-43.
[10] Contardo, C., Iori, M., Kramer, R., 2019. A scalable exact algorithm for the vertex p-center problem. Computers and Operations Research 103, 211-220.
[11] Daskin, M., 1995. Network and Discrete Location: Models, Algorithms, and Applications. Wiley, New York.
[12] Daskin, M.S., Maass, K.L., 2015. The p-median problem, in: Laporte, G., Nickel, S., Saldanha da Gama, F. (Eds.), Location Science. Springer International Publishing, Cham, pp. 21-45.
[13] Fleszar, K., Hindi, K.S., 2008. An effective vns for the capacitated p-median problem. European Journal of Operational Research 191, 612-622.
[14] Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, USA.
[15] Grangier, P., Gendreau, M., Lehuédéa, F., Rousseau, L.M., 2016. An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. European Journal of Operations Research 254, 80-91.
[16] Hakimi, S.L., 1964. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research 12, 450-459.
[17] Hakimi, S.L., 1965. Optimal distribution of switching centers in a communications network and some related graph-theoretic problems. Operations Research 13, 462475.
[18] Hansen, P., Brimberg, J., Urošević, D., Mladenović, N., 2009. Solving large p-median clustering problems by primal-dual variable neighborhood search. Data Mining and Knowledge Discovery 19, 351-375.
[19] Hansen, P., Mladenović, N., 2018. Variable neighborhood search, in: Martí, R., Pardalos, P.M., Resende, M.G.C. (Eds.), Handbook of Heuristics. Springer International Publishing, Cham, pp. 759-787.
[20] Hansen, P., Mladenović, N., 1997. Variable neighborhood search for the p-median. Location Science 5, 207-226.
[21] Herré, A., Colmenar, J.M., Martí, R., Duarte, A., 2020. A parallel variable neighborhood search approach for the obnoxious p-median problem. International Transactions in Operational Research 27, 336-360.
[22] Karatas, M., Razi, N., Tozan, H., 2016. A comparison of p-median and maximal coverage location models with q-coverage requirement. Procedia Engineering 149, 169-176.
[23] Kariv, O., Hakimi, S.L., 1979. An algorithmic approach to network location problems. i: The p-centers. SIAM Journal On Applied Mathematics 37, 513-538.
[24] Khuller, S., Pless, R., Sussmann, Y.J., 2000. Fault tolerant k-center problems. Theoretical Computer Science 242, 237-245.
[25] Krumke, S., 1995. On a generalization of the p-center problem. Information Processing Letters 56, 67-71.
[26] Laporte, G., Nickel, S., Saldanha da Gama, F., 2015. Location Science. Springer, Switzerland.
[27] López-Sánchez, A.D., Sánchez-Oro, J., Hernández, A.G., 2019. Grasp and VNS for solving the p-next center problem. Computers \& Operations Research 104, 295-303.
[28] Marín, A., Pelegrín, M., 2019. p-median problems, in: Laporte, G., Nickel, S., Saldanha da Gama, F. (Eds.), Location Science. Springer International Publishing, Cham, pp. 25-50.
[29] Martínez-Merino, L.I., Albareda-Sambola, M., Rodríguez-Chía, A.M., 2017. The probabilistic p-center problem: Planning service for potential customers. European Journal Of Operational Research 262, 509-520.
[30] Miller, I.F., Becker, A.D., Grenfell, B.T., Metcalf, C.J.E., 2020. Disease and healthcare burden of COVID-19 in the United States. Nature Medicine 26, 1212-1217.
[31] Mladenović, N., Alkandari, A., Pei, J., Todosijević, R., Pardalos, P.M., 2020. Less is more approach: basic variable neighborhood search for the obnoxious p-median problem. International Transactions in Operational Research 27, 480-493.
[32] Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A., 2007. The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research 179, 927-939.
[33] Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers \& Operations Research 24, 1097-1100.
[34] Mladenović, N., Labbé, M., Hansen, P., 2003. Solving the p-center problem with tabu search and variable neighborhood search. Networks 42, 48-64.
[35] Mladenović, N., Todosijević, R., Urošević, D., 2016. Less is more: basic variable neighborhood search for minimum differential dispersion problem. Information Sciences 326, 160-171.
[36] Mousavi, S.R., 2023. Exploiting flat subspaces in local search for p-center problem and two fault-tolerant variants. Computers and Operations Research 149, 106023.
[37] Ng, R., Han, J., 1994. Efficient and effective clustering methods for spatial data mining, in: VLDB '94: proceedings of 20th conference very large databases, ACM, San Francisco, USA. pp. 144-155.
[38] Panteli, A., Basilis, B., Giannikos, I., 2021. On solving the multiple p-median problem based on biclustering. Operational Research 21, 775-799.
[39] PassMark Software Pty Ltd, 1998. Cpu benchmarks. https://www. cpubenchmark .net/. Last access: 3 September 2023.
[40] Reese, J., 2006. Solution methods for the p-median problem: An annotated bibliography. Networks 48, 125-142.
[41] Reinelt, G., 1991. TSPLIB - a traveling salesman problem library. ORSA Journal on Computing 3, 267-384.
[42] Revelle, C., Swain, R., 1970. Central facilities location. Geographical Analysis 2, 20-42.
[43] Ristić, D., Mladenović, N., Ratli, M., Todosijević, R., Urošević, D., 2023. Auxiliary data structures and techniques to speed up solving of the p-next center problem: A VNS heuristic. Applied Soft Computing 140, 110276.
[44] Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J., 2008. An improved simulated annealing algorithm for bandwidth minimization. European Journal of Operational Research 185, 1319-1335.
[45] Sánchez-Oro, J., López-Sánchez, A.D., Hernández, A.G., Duarte, A., 2022. Grasp with strategic oscillation for the α-neighbor p-center problem. European Journal of Operational Research 303, 143-158.
[46] Torres-Jimenez, J., Izquierdo-Marquez, I., Garcia-Robledo, A., Gonzalez-Gomez, A., Bernal, J., Kacker, R.N., 2015. A dual representation simulated annealing algorithm for the bandwidth minimization problem on graphs. Information Sciences 303, 33-49.
[47] Wang, H.L., Wu, B.Y., Chao, K.M., 2009. The backup 2-center and backup 2-median problems on trees. Networks 53, 39-49.

A Results for the $\alpha \mathbf{N} p \mathbf{C P}$

This appendix shows the detailed results for the $\alpha \mathrm{N} p \mathrm{CP}$. Tables 6, 7 and 8 and Tables 9,10 and 11 show the results of the tests in the OR-library instances and the TSPLIB instances, respectively. For the tests with the OR-library instances, we present the results of the commercial solver and our heuristic for $\alpha=\{1,2,3\}$ and the ones of the heuristic of Mousavi [36] for $\alpha=\{1,2\}$. For the tests with the TSPLIB instances, we show results of the commercial solver, the GRASP-SO heuristic [45] and our VNS for $\alpha=\{1,2,3\}$. Tables 6-11 have the same structure where the instance name, the number of vertices, and the number of facilities are presented in the first three columns. Then, for the Gurobi results, we show the best solution found, the optimality gap ($\operatorname{gap}_{\text {opt }}(\%)$), that is, the gap related to the branch-and-bound lower bound and the running time. For the heuristics, we also show the best solution found and the running times, but we show the gap related to the best known solution.

Table 6: $\alpha \mathrm{N} p \mathrm{CP}$ results for the OR-library instances with $\alpha=1$.

Instance	n	p	Gurobi			Mousavi [36]			VNS		
			best	$\operatorname{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	5	127	0.00	4.93	127	0.00	0.00	127	0.00	0.04
pmed2	100	10	98	0.00	2.86	98	0.00	0.00	98	0.00	0.06
pmed3	100	10	93	0.00	2.85	93	0.00	0.01	93	0.00	2.49
pmed4	100	20	74	0.00	1.48	74	0.00	0.01	74	0.00	0.08
pmed5	100	33	48	0.00	1.15	48	0.00	0.00	48	0.00	0.01
pmed6	200	5	84	0.00	21.16	84	0.00	0.00	84	0.00	0.04
pmed7	200	10	64	0.00	15.46	64	0.00	0.00	64	0.00	0.65
pmed8	200	20	55	0.00	15.32	55	0.00	0.00	55	0.00	0.26
pmed9	200	40	37	0.00	6.09	37	0.00	0.00	37	0.00	0.15
pmed10	200	67	20	0.00	4.61	20	0.00	0.01	20	0.00	0.49
pmed11	300	5	59	0.00	45.49	59	0.00	0.05	59	0.00	0.12
pmed12	300	10	51	0.00	40.68	51	0.00	0.01	51	0.00	1.84
pmed13	300	30	36	0.00	23.83	36	0.00	0.02	36	0.00	30.60
pmed14	300	60	26	0.00	14.35	26	0.00	0.01	26	0.00	3.96
pmed15	300	100	18	0.00	11.17	18	0.00	0.00	18	0.00	0.96
pmed16	400	5	47	0.00	43.29	47	0.00	0.00	47	0.00	0.08
pmed17	400	10	39	0.00	102.43	39	0.00	0.00	39	0.00	0.17
pmed18	400	40	28	0.00	39.54	28	0.00	0.05	28	0.00	3.15
pmed19	400	80	18	0.00	33.28	18	0.00	0.41	18	0.00	109.08
pmed20	400	133	13	0.00	24.82	13	0.00	0.61	13	0.00	5.21
pmed21	500	5	40	0.00	128.51	40	0.00	0.00	40	0.00	0.18
pmed22	500	10	38	0.00	652.15	38	0.00	0.02	38	0.00	8.56
pmed23	500	50	22	0.00	92.78	22	0.00	0.27	22	0.00	43.18
pmed24	500	100	15	0.00	55.61	15	0.00	0.04	15	0.00	13.30
pmed25	500	167	11	0.00	48.95	11	0.00	0.05	11	0.00	2.67
pmed26	600	5	38	0.00	1414.87	38	0.00	0.00	38	0.00	0.27
pmed27	600	10	32	0.00	254.74	32	0.00	0.00	32	0.00	0.39
pmed28	600	60	18	0.00	115.44	18	0.00	0.09	18	0.00	188.69
pmed29	600	120	13	0.00	108.06	13	0.00	0.03	13	0.00	20.94
pmed30	600	200	9	0.00	93.71	9	0.00	0.63	9	0.00	270.29
pmed31	700	5	30	0.00	412.46	30	0.00	0.00	30	0.00	0.89
pmed32	700	10	29	0.00	1468.32	29	0.00	0.01	29	0.00	0.56
pmed33	700	70	15	0.00	321.06	15	0.00	0.53	15	0.00	940.97
pmed34	700	140	11	0.00	104.73	11	0.00	0.01	11	0.00	63.36
pmed35	800	5	30	0.00	882.36	30	0.00	0.01	30	0.00	0.53
pmed36	800	10	27	0.00	1178.22	27	0.00	0.03	27	0.00	4.33
pmed37	800	80	15	0.00	539.59	15	0.00	0.12	15	0.00	54.00
pmed38	900	5	29	0.00	535.79	29	0.00	0.01	29	0.00	0.40
pmed39	900	10	23	0.00	4943.95	23	0.00	0.17	23	0.00	2174.25
pmed40	900	90	13	0.00	852.79	13	0.00	0.23	13	0.00	1995.73
Average			37.33	0.00	366.47	37.33	0.00	0.09	37.33	0.00	148.57

${ }^{1}$ Original running times divided by 1.5, an approximation obtained from [39].

Table 7: $\alpha \mathrm{N} p \mathrm{CP}$ results for the OR-library instances with $\alpha=2$.

Instance	n	p	Gurobi			Mousavi [36]			VNS		
			best	$\operatorname{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	t(s) ${ }^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	5	150	0.00	36.53	150	0.00	0.01	150	0.00	0.02
pmed2	100	10	121	0.00	38.89	121	0.00	0.13	121	0.00	0.15
pmed3	100	10	121	0.00	116.35	121	0.00	0.17	121	0.00	1.82
pmed4	100	20	97	0.00	58.94	97	0.00	5.46	97	0.00	0.04
pmed5	100	33	63	0.00	27.94	63	0.00	0.01	63	0.00	3.14
pmed6	200	5	99	0.00	2109.87	99	0.00	0.02	99	0.00	0.12
pmed7	200	10	80	0.00	881.87	80	0.00	0.06	80	0.00	0.54
pmed8	200	20	70	0.00	654.04	70	0.00	0.02	70	0.00	0.86
pmed9	200	40	49	0.00	377.52	49	0.00	0.49	49	0.00	37.48
pmed10	200	67	28	0.00	113.37	28	0.00	0.41	28	0.00	0.46
pmed11	300	5	68	0.00	2418.26	68	0.00	0.00	68	0.00	0.28
pmed12	300	10	60	0.00	5043.11	60	0.00	0.18	60	0.00	79.19
pmed13	300	30	43	0.00	2504.04	43	0.00	1.38	43	0.00	4.68
pmed14	300	60	34	0.00	1147.22	34	0.00	0.62	34	0.00	7.92
pmed15	300	100	23	0.00	831.86	23	0.00	4.57	23	0.00	0.44
pmed16	400	5	66	96.97	7312.80	52	0.00	0.16	52	0.00	0.39
pmed17	400	10	45	0.00	3114.33	45	0.00	0.03	45	0.00	0.53
pmed18	400	40	34	0.00	3663.91	34	0.00	11.84	34	0.00	1.58
pmed19	400	80	24	0.00	3743.45	25	4.17	0.11	24	0.00	1.26
pmed20	400	133	19	0.00	642.21	19	0.00	0.83	19	0.00	7.14
pmed21	500	5	61	98.36	7200.10	45	0.00	0.80	45	0.00	174.57
pmed22	500	10	59	98.31	7200.12	44	0.00	0.28	44	0.00	1.45
pmed23	500	50	36	88.89	7288.52	27	0.00	7.45	27	0.00	10.92
pmed24	500	100	19	0.00	7075.38	20	5.26	0.36	20	5.26	6.02
pmed25	500	167	15	0.00	2542.68	15	0.00	22.45	16	6.67	60.27
pmed26	600	5	53	98.11	7200.09	43	0.00	0.16	43	0.00	0.83
pmed27	600	10	41	97.56	7200.06	36	0.00	0.06	36	0.00	0.91
pmed28	600	60	50	98.00	7200.08	22	0.00	0.39	22	0.00	759.15
pmed29	600	120	59	98.31	7889.52	17	0.00	0.21	17	0.00	181.00
pmed30	600	200	13	0.00	4693.29	13	0.00	1.93	13	0.00	5.99
pmed31	700	5	44	97.73	7200.17	34	0.00	0.03	34	0.00	0.92
pmed32	700	10	46	97.83	7200.07	33	0.00	0.14	33	0.00	1.44
pmed33	700	70	34	97.06	7200.12	19	0.00	6.85	19	0.00	3.16
pmed34	700	140	75	98.67	7200.08	14	0.00	65.18	14	0.00	23.32
pmed35	800	5	43	97.67	7206.02	34	0.00	0.36	34	0.00	0.88
pmed36	800	10	46	97.83	7207.51	31	0.00	0.17	31	0.00	1.70
pmed37	800	80	68	98.53	7200.07	19	0.00	0.08	19	0.00	7.06
pmed38	900	5	52	98.08	7200.15	33	0.00	0.06	33	0.00	0.96
pmed39	900	10	40	97.50	7249.48	26	0.00	0.12	26	0.00	1.76
pmed40	900	90	50	100.00	7200.10	16	0.00	2.03	16	0.00	14.19
Average			54.95	43.88	4309.75	45.55	0.24	3.39	45.55	0.30	35.11

Table 8: $\alpha \mathrm{N} p \mathrm{CP}$ results for the OR-library instances with $\alpha=3$.

Instance	n	p	Gurobi			VNS		
			best	$\operatorname{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	5	171	0.00	18.52	171	0.00	0.17
pmed2	100	10	138	0.00	105.23	138	0.00	0.39
pmed3	100	10	142	0.00	200.92	142	0.00	8.01
pmed4	100	20	118	0.00	304.62	118	0.00	1.22
pmed5	100	33	76	0.00	91.17	76	0.00	0.04
pmed6	200	5	110	0.00	1191.89	110	0.00	0.13
pmed7	200	10	87	0.00	1608.21	87	0.00	0.24
pmed8	200	20	75	0.00	1283.11	75	0.00	37.16
pmed9	200	40	55	0.00	955.37	55	0.00	3.28
pmed10	200	67	34	0.00	230.77	34	0.00	0.41
pmed11	300	5	72	0.00	1856.76	72	0.00	0.33
pmed12	300	10	84	96.43	7200.01	66	0.00	2.42
pmed13	300	30	48	0.00	4913.13	48	0.00	0.62
pmed14	300	60	38	0.00	3006.85	38	0.00	48.02
pmed15	300	100	27	0.00	1398.19	27	0.00	33.48
pmed16	400	5	55	0.00	4152.29	55	0.00	0.38
pmed17	400	10	52	82.69	7200.01	48	0.00	0.60
pmed18	400	40	38	0.00	6290.50	39	2.63	2.72
pmed19	400	80	28	0.00	5782.77	28	0.00	41.07
pmed20	400	133	22	0.00	3431.93	22	0.00	163.31
pmed21	500	5	58	96.55	7200.11	50	0.00	0.60
pmed22	500	10	61	98.36	9180.37	47	0.00	0.60
pmed23	500	50	34	70.59	7200.03	31	0.00	2.23
pmed24	500	100	53	98.11	7200.19	23	0.00	364.79
pmed25	500	167	34	97.06	7200.14	18	0.00	116.80
pmed26	600	5	59	96.61	7200.17	48	0.00	0.87
pmed27	600	10	52	98.08	7200.23	38	0.00	1.56
pmed28	600	60	34	97.06	8236.53	24	0.00	2234.59
pmed29	600	120	28	96.43	8065.69	20	0.00	136.04
pmed30	600	200	72	98.61	7200.08	16	0.00	153.33
pmed31	700	5	47	100.00	7200.14	37	0.00	19.24
pmed32	700	10	49	97.96	7200.21	35	0.00	1557.37
pmed33	700	70	61	100.00	7200.27	22	0.00	932.45
pmed34	700	140	74	98.65	7200.00	17	0.00	122.48
pmed35	800	5	45	97.78	7200.14	36	0.00	0.93
pmed36	800	10	46	97.83	7200.00	33	0.00	1.84
pmed37	800	80	37	100.00	7200.00	21	0.00	43.30
pmed38	900	5	52	98.08	7201.05	35	0.00	1.69
pmed39	900	10	40	97.50	7208.02	28	0.00	1.80
pmed40	900	90	33	96.97	7200.17	19	0.00	5.52
Average			60.98	48.28	4977.89	51.18	0.07	151.05

Table 9: $\alpha \mathrm{N} p \mathrm{CP}$ results for the TSPLIB instances with $\alpha=1$.

Instance	n	p	Gurobi			GRASP-SO			VNS		
			best	$\operatorname{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
att48	48	10	1203.18	0.00	0.35	1203.18	0.00	2.18	1203.18	0.00	0.24
		20	710.72	0.00	0.22	710.77	0.01	0.76	710.72	0.00	0.19
		30	462.08	0.00	0.17	462.08	0.00	0.26	462.08	0.00	0.09
		40	319.85	0.00	0.31	319.85	0.00	0.07	319.85	0.00	0.09
eil101	101	10	14.14	0.00	9.46	14.32	1.27	30.64	14.14	0.00	0.05
		20	10.05	0.00	3.33	10.30	2.49	10.00	10.05	0.00	14.28
		30	8.06	0.00	1.59	8.25	2.36	5.59	8.06	0.00	1.02
		40	7.21	0.00	1.2	7.28	0.97	3.40	7.21	0.00	0.02
		50	6.70	0.00	0.88	7.07	5.52	2.12	6.70	0.00	0.01
		60	5.83	0.00	0.87	6.32	8.40	1.27	5.83	0.00	0.76
		70	5.00	0.00	0.73	5.00	0.00	0.65	5.00	0.00	0.04
		80	4.12	0.00	0.89	4.12	0.00	0.29	4.12	0.00	0.14
		90	3.16	0.00	0.8	3.16	0.00	0.09	3.16	0.00	0.02
		100	1.41	0.00	3.98	1.41	0.00	0.06	1.41	0.00	0.06
ch150	150	10	141.53	0.00	34.16	141.53	0.00	97.60	141.53	0.00	1.26
		20	94.93	0.00	12.84	97.13	2.32	47.02	94.93	0.00	1.70
		30	76.62	0.00	4.05	79.56	3.84	21.19	76.62	0.00	12.58
		40	64.45	0.00	3.72	68.23	5.87	14.38	64.45	0.00	2.98
		50	54.02	0.00	2.49	60.94	12.81	9.11	54.02	0.00	0.14
		60	46.27	0.00	2.65	49.64	7.28	7.40	46.27	0.00	405.71
		70	42.27	0.00	2.32	46.48	9.96	5.15	42.27	0.00	2.13
		80	39.10	0.00	2.51	41.46	6.04	3.86	39.10	0.00	0.64
		90	35.39	0.00	2.2	38.38	8.45	2.56	35.39	0.00	1.91
		100	32.30	0.00	2.19	33.47	3.62	1.76	32.30	0.00	0.03
		110	29.44	0.00	2.18	30.18	2.51	1.12	29.44	0.00	0.25
		120	26.61	0.00	2.16	27.36	2.82	0.65	26.61	0.00	0.22
		130	22.46	0.00	2.19	22.45	0.00	0.31	22.45	0.00	0.02
		140	17.58	0.00	2.21	17.58	0.00	0.13	17.58	0.00	0.02
pr439	439	10	1971.83	0.00	369.77	1971.83	0.00	2118.65	1971.83	0.00	4.72
		20	1185.59	0.00	130.6	1200.26	1.24	1842.95	1185.59	0.00	8.75
		30	883.53	0.00	162.47	886.71	0.36	895.65	883.53	0.00	536.09
		40	671.75	0.00	105.13	728.87	8.50	576.47	671.75	0.00	114.11
		50	564.03	0.00	71.1	600.00	6.38	346.49	564.03	0.00	100.32
		60	500.00	0.00	49.99	548.29	9.66	270.69	500.00	0.00	76.60
		70	474.34	0.00	80.87	500.00	5.41	206.22	477.62	0.69	172.23
		80	412.31	0.00	64.22	475.66	15.36	183.19	412.31	0.00	1606.29
		90	395.28	0.00	83.27	416.08	5.26	154.33	400.00	1.19	2.54
rat575	575	10	72.67	45.73	3853.01	73.00	0.45	952.84	72.67	0.00	3052.44
		20	49.65	51.58	7200.23	50.80	2.90	563.13	49.37	0.00	549.95
		30	41.04	24.74	7200.16	41.79	5.64	299.96	39.56	0.00	1804.47
		40	33.42	33.03	7200.06	36.36	8.79	206.32	34.13	2.12	491.89
		50	29.43	2.87	4165.68	32.56	10.64	135.53	30.27	2.86	229.14
		60	27.00	0.00	4713.32	29.53	9.37	113.64	27.73	2.70	992.80
		70	24.76	0.00	2953.35	27.66	11.72	98.71	25.63	3.52	3566.60
		80	23.35	0.00	1601	25.50	9.23	83.20	24.08	3.15	1007.91
		90	21.93	0.00	472.15	24.19	10.30	67.68	22.14	0.95	254.05
		100	20.62	0.00	218.54	22.80	10.60	61.94	21.02	1.96	1076.40
rat783	783	10	83.49	0.00	3811.9	85.23	2.08	2117.65	83.49	0.00	25.95
		20	329.20	22.21	7200.07	59.77	5.14	1486.40	56.85	0.00	616.75
		30	63.64	31.71	7200.08	49.04	4.70	896.69	46.84	0.00	939.48
		40	64.38	1.85	7805.94	43.05	6.80	730.84	40.31	0.00	263.67
		50	44.60	0.00	7805.9	37.95	7.08	546.27	35.44	0.00	822.03
		60	34.67	0.00	7806.8	34.79	7.88	485.51	32.25	0.00	3235.36
		70	30.02	0.00	8433.45	32.20	10.24	403.09	29.21	0.00	2046.69
		80	26.93	0.00	7200.52	30.08	11.71	354.31	28.07	4.25	1157.23
		90	25.94	0.00	7611.35	28.16	8.55	321.51	26.57	2.42	2502.26
		100	24.04	0.00	1906.5	27.02	12.39	258.48	24.84	3.32	2175.31
Continued on next page											

Table 9: continued from previous page.

Instance	n	p	Gurobi			GRASP-SO			VNS		
			best	$\mathrm{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	$\operatorname{gap}(\%)$	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pr1002	1002	10	3200.00	0.00	7200.11	2610.08	2.75	2117.69	2540.18	0.00	24.62
		20	2371.17	88.54	7200.08	1795.13	2.92	2117.66	1744.28	0.00	3253.26
		30	1403.57	53.10	7200.17	1439.62	4.10	1902.38	1382.93	0.00	393.98
		40	1303.84	60.67	7200.07	1253.99	3.60	1517.40	1210.37	0.00	721.80
		50	1029.56	47.48	7200.11	1096.59	6.51	1168.76	1029.56	0.00	379.80
		60	912.41	38.35	3048.71	999.64	9.56	1160.79	961.77	5.41	160.03
		70	850.00	29.06	4662.32	919.24	8.15	1053.49	874.64	2.90	2952.75
		80	761.58	16.19	747.44	851.47	11.80	819.44	764.85	0.43	943.18
		90	715.89	22.06	923.9	790.57	10.43	660.44	738.24	3.12	2672.51
		100	670.82	0.00	498.86	756.64	12.79	548.54	707.11	5.41	100.99
rl1323	1323	10	10288.80	80.45	7200.17	3130.67	1.73	2117.71	3077.30	0.00	1107.01
		20	19687.52	93.34	7200.24	2088.39	3.29	2117.68	2021.87	0.00	737.32
		30	19687.52	94.80	7200.15	1745.76	6.99	2117.67	1631.69	0.00	1794.85
		40	17617.35	95.14	7200.13	1451.77	5.38	2117.66	1377.68	0.00	797.65
		50	19687.52	96.22	7200.45	1290.32	6.11	2117.66	1216.00	0.00	3257.79
		60	19687.52	96.61	7200.16	1191.50	9.26	2117.66	1090.47	0.00	1516.03
		70	16670.03	96.37	7200.13	1075.86	8.45	2117.67	992.00	0.00	3052.73
		80	1047.37	45.45	7200.12	987.47	5.77	2103.61	933.59	0.00	1547.85
		90	16075.14	96.82	7200.16	926.77	7.09	1686.99	865.39	0.00	849.75
		100	787.10	0.00	6615.58	880.00	11.80	1564.48	816.09	3.68	3142.42
Average			2153.49	17.72	2920.51	505.43	5.63	653.16	484.12	0.65	769.93

Table 10: $\alpha \mathrm{N} p \mathrm{CP}$ results for the TSPLIB instances with $\alpha=2$.

Instance	n	p	Gurobi			GRASP-SO			VNS		
			best	$\operatorname{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
att48	48	10	1592.12	0.00	7.25	1592.12	0.00	2.18	1592.12	0.00	0.70
		20	1061.69	0.00	6.00	1130.85	6.51	0.76	1061.69	0.00	0.23
		30	729.90	0.00	1.21	936.38	28.29	0.26	729.90	0.00	0.19
		40	485.06	0.00	1.04	532.08	9.69	0.07	485.06	0.00	0.13
eil101	101	10	21.21	0.00	75.40	21.21	0.00	30.64	21.21	0.00	1.46
		20	13.60	0.00	48.22	14.14	3.97	10.00	13.60	0.00	0.05
		30	11.05	0.00	13.13	12.00	8.60	5.59	11.05	0.00	143.92
		40	9.06	0.00	12.76	9.43	4.08	3.40	9.06	0.00	64.68
		50	8.06	0.00	16.89	8.60	6.70	2.12	8.06	0.00	1.23
		60	7.07	0.00	15.45	8.25	16.69	1.27	7.07	0.00	0.42
		70	6.32	0.00	14.15	7.28	15.19	0.65	6.32	0.00	0.98
		80	5.10	0.00	13.20	6.32	23.92	0.29	5.10	0.00	1.64
		90	4.12	0.00	10.70	5.00	21.36	0.09	4.12	0.00	0.02
		100	2.24	0.00	5.04	2.83	26.34	0.06	2.24	0.00	0.09
ch150	150	10	205.66	0.00	250.77	205.66	0.00	97.60	205.66	0.00	0.47
		20	138.69	0.00	218.90	141.53	2.04	47.02	140.76	1.49	0.36
		30	108.03	0.00	126.20	112.51	4.15	21.19	108.03	0.00	104.56
		40	92.67	0.00	153.66	96.42	4.05	14.38	92.81	0.15	755.35
		50	82.11	0.00	145.98	87.69	6.80	9.11	82.11	0.00	1.88
		60	70.71	0.00	123.40	78.42	10.90	7.40	70.79	0.11	36.46
		70	64.45	0.00	83.45	68.23	5.87	5.15	64.45	0.00	27.96
		80	58.37	0.00	83.46	64.56	10.61	3.86	58.37	0.00	0.40
		90	51.50	0.00	87.67	62.04	20.46	2.56	51.50	0.00	3.66
		100	46.49	0.00	78.23	53.21	14.46	1.76	46.49	0.00	0.22
		110	43.77	0.00	71.87	51.65	18.01	1.12	43.77	0.00	0.05
		120	39.32	0.00	56.92	50.30	27.92	0.65	39.32	0.00	0.06
		130	36.02	0.00	56.51	46.63	29.46	0.31	36.02	0.00	0.04
		140	29.69	0.00	56.44	42.30	42.47	0.13	29.69	0.00	0.12
									Continued on next page		

Table 10: continued from previous page.

Instance	n	p	Gurobi			GRASP-SO			VNS		
			best	gapopt (\%)	t(s)	best	gap(\%)	t(s) ${ }^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pr439	439	10	4939.26	97.92	7200.04	3146.63	0.00	2118.65	3146.63	0.00	17.08
		20	2177.44	0.00	6953.47	2226.26	2.24	1842.95	2177.44	0.00	7.47
		30	1475.85	0.00	6198.28	1500.21	1.65	895.65	1475.85	0.00	10.51
		40	1185.59	3.83	7200.03	1253.99	5.77	576.47	1185.59	0.00	43.59
		50	984.89	0.00	3411.00	1068.00	8.44	346.49	984.89	0.00	1622.51
		60	886.71	14.25	7200.33	975.00	9.96	270.69	886.71	0.00	1386.58
		70	726.72	0.00	4305.21	905.54	24.61	206.22	726.72	0.00	1361.02
		80	637.38	0.00	5350.93	731.86	14.82	183.19	651.92	2.28	305.72
		90	583.10	0.00	6618.35	715.89	22.77	154.33	583.10	0.00	192.35
rat575	575	10	341.47	99.84	7200.04	116.87	0.66	952.84	116.10	0.00	989.44
		20	258.21	91.63	7213.12	74.25	1.71	563.13	73.00	0.00	9.32
		30	364.18	99.88	7200.11	60.67	4.15	299.96	58.25	0.00	73.14
		40	272.15	99.84	7200.12	51.40	4.81	206.32	49.04	0.00	2900.41
		50	390.75	99.90	7200.07	46.52	5.03	135.53	44.29	0.00	307.11
		60	62.63	99.37	7200.03	41.60	3.97	113.64	40.01	0.00	128.25
		70	59.68	99.36	7200.13	37.70	3.71	98.71	36.35	0.00	1312.73
		80	60.17	99.38	7201.95	35.90	6.85	83.20	33.60	0.00	2979.80
		90	53.34	97.38	7213.89	33.60	5.30	67.68	31.91	0.00	2909.35
		100	31.83	51.08	7200.03	31.39	7.46	61.94	29.21	0.00	3221.61
rat783	783	10	544.47	99.91	7200.00	138.60	2.48	2117.65	135.25	0.00	130.69
		20	608.55	99.93	7200.00	86.38	2.74	1486.40	84.08	0.00	2925.25
		30	608.55	99.94	7200.00	70.84	4.98	896.69	67.48	0.00	2978.06
		40	608.55	99.94	7200.00	60.14	5.84	730.84	56.82	0.00	1044.09
		50	628.41	99.94	8230.08	52.80	2.29	546.27	51.62	0.00	2104.32
		60	628.41	99.94	7200.00	48.75	5.25	485.51	46.32	0.00	2680.42
		70	628.41	99.95	7200.00	44.41	3.96	403.09	42.72	0.00	398.34
		80	628.41	99.95	7200.00	42.43	4.77	354.31	40.50	0.00	3384.32
		90	74.09	100.00	7200.00	39.21	4.45	321.51	37.54	0.00	1787.14
		100	628.41	99.95	7200.00	37.48	5.76	258.48	35.44	0.00	21.99
pr1002	1002	10	15502.02	99.93	7359.66	3853.89	0.00	2117.69	3853.89	0.00	24.30
		20	14586.38	99.94	7200.00	2710.17	4.30	2117.66	2598.56	0.00	2416.32
		30	14297.73	99.91	7200.00	2150.58	4.32	1902.38	2061.55	0.00	1362.05
		40	14297.73	99.91	7200.00	1811.77	3.87	1517.40	1744.28	0.00	3158.71
		50	14297.73	99.92	7200.00	1619.41	5.81	1168.76	1530.52	0.00	2457.12
		60	17479.42	99.95	7200.00	1431.78	4.28	1160.79	1372.95	0.00	3435.73
		70	17479.42	99.95	7200.00	1346.29	5.05	1053.49	1281.60	0.00	430.92
		80	17479.42	99.95	7200.00	1253.00	4.24	819.44	1202.08	0.00	3226.96
		90	17479.42	99.95	7200.00	1170.48	6.74	660.44	1096.59	0.00	1002.65
		100	17479.42	99.95	7200.00	1079.35	4.84	548.54	1029.56	0.00	1937.53
rl1323	1323	10	14958.28	100.00	7200.23	4694.15	3.08	2117.71	4554.09	0.00	136.54
		20	13332.43	99.93	7200.15	3227.00	5.65	2117.68	3054.32	0.00	2218.76
		30	14417.03	99.94	7200.16	2563.30	4.62	2117.67	2450.00	0.00	2146.83
		40	13071.26	100.00	7200.25	2166.96	7.16	2117.66	2022.15	0.00	2548.62
		50	14417.53	100.00	7200.80	1907.69	5.48	2117.66	1808.50	0.00	3240.20
		60	12274.84	99.94	7200.14	1735.40	3.95	2117.66	1669.53	0.00	3533.67
		70	19687.52	99.96	7200.20	1595.20	6.85	2117.67	1493.00	0.00	2450.81
		80	19687.52	99.97	7200.15	1440.89	4.82	2103.61	1374.60	0.00	2982.08
		90	19687.52	99.97	7200.18	1374.72	6.23	1686.99	1294.08	0.00	1551.76
		100	19687.52	99.97	7200.15	1293.63	7.50	1564.48	1203.33	0.00	2539.25
Average			4515.61	52.63	4486.92	773.35	8.36	990.00	735.71	0.05	1054.30

Table 11: $\alpha \mathrm{N} p \mathrm{CP}$ results for the TSPLIB instances with $\alpha=3$.

Instance	n	p	Gurobi			GRASP-SO			VNS		
			best	$\operatorname{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
att48	48	10	2081.57	0.00	8.86	2186.31	5.03	7.91	2081.57	0.00	1.48
		20	1283.35	0.00	5.70	1374.48	7.10	1.89	1283.35	0.00	0.12
		30	949.29	0.00	1.35	1011.66	6.57	0.64	949.29	0.00	1.13
		40	645.88	0.00	1.18	675.00	4.51	0.09	645.88	0.00	0.11
eil101	101	10	29.43	0.00	88.35	29.43	0.01	108.75	29.43	0.00	0.18
		20	17.80	0.00	134.25	18.03	1.29	51.45	17.80	0.00	0.97
		30	13.15	0.00	145.80	14.14	7.50	22.79	13.60	3.40	0.10
		40	11.18	0.00	39.37	12.04	7.69	11.42	11.18	0.00	1.28
		50	9.43	0.00	14.69	10.63	12.73	5.58	9.43	0.00	15.13
		60	8.06	0.00	16.10	9.06	12.41	2.61	8.06	0.00	1.69
		70	7.28	0.00	18.92	8.54	17.31	1.25	7.28	0.00	4.69
		80	6.40	0.00	17.31	7.28	13.75	0.52	6.40	0.00	0.06
		90	5.00	0.00	16.98	6.08	21.60	0.13	5.00	0.00	0.02
		100	2.83	0.00	4.11	2.83	0.06	0.06	2.83	0.00	0.02
ch150	150	10	297.96	0.00	386.40	298.56	0.20	468.27	297.96	0.00	2.28
		20	176.47	0.00	913.48	179.71	1.84	177.58	177.01	0.31	2.55
		30	137.46	0.00	1332.72	146.41	6.51	91.86	137.46	0.00	314.76
		40	114.47	0.00	904.84	119.22	4.15	61.29	114.92	0.40	709.79
		50	100.34	0.00	1556.91	108.03	7.67	31.41	100.34	0.00	3436.95
		60	90.58	0.00	604.79	97.46	7.60	20.92	92.79	2.44	479.66
		70	83.19	0.00	192.81	92.82	11.58	15.41	83.19	0.00	223.16
		80	74.93	0.01	159.37	83.38	11.28	9.81	76.36	1.91	247.78
		90	67.73	0.00	97.76	79.81	17.84	5.59	67.73	0.00	2277.29
		100	63.42	0.00	91.36	69.35	9.35	3.80	63.42	0.00	1047.54
		110	59.04	0.00	87.13	67.22	13.86	2.18	59.04	0.00	0.04
		120	52.97	0.00	77.66	61.29	15.71	1.12	52.97	0.00	41.12
		130	44.46	0.00	59.64	57.50	29.34	0.48	44.46	0.00	0.05
		140	38.56	0.00	54.57	52.20	35.37	0.19	38.56	0.00	0.15
pr439	439	10	7385.88	99.55	7200.09	4076.23	0.64	2118.20	4050.31	0.00	10.11
		20	2725.46	77.44	7200.09	2726.03	1.59	2117.75	2683.28	0.00	813.82
		30	4907.27	99.47	7200.02	2231.73	8.05	2118.21	2065.49	0.00	38.89
		40	1637.83	73.66	7200.08	1644.88	2.75	2118.14	1600.78	0.00	24.91
		50	3692.98	99.01	7635.19	1467.35	8.69	2117.71	1350.00	0.00	347.90
		60	1844.76	92.24	7200.02	1340.01	14.98	2117.68	1165.39	0.00	2923.54
		70	1886.80	77.51	7200.02	1231.11	22.16	1548.82	1007.78	0.00	821.06
		80	1631.91	91.19	7200.02	1217.58	33.00	1124.40	915.49	0.00	230.96
		90	1566.25	91.81	7236.37	986.47	23.31	851.04	800.00	0.00	2227.39
rat575	575	10	462.77	99.82	7233.33	140.52	1.20	2117.66	138.85	0.00	125.61
		20	212.36	99.65	7296.31	94.64	0.29	2117.65	94.37	0.00	809.05
		30	139.90	99.52	7200.03	74.52	2.86	1295.68	72.45	0.00	2856.37
		40	530.55	99.88	7527.81	64.88	2.97	1118.25	63.01	0.00	3525.88
		50	411.02	99.85	7200.11	56.94	5.06	843.99	54.20	0.00	1141.80
		60	396.13	99.85	7206.62	51.35	4.97	700.12	48.92	0.00	3100.33
		70	400.70	99.86	7200.03	47.85	4.29	581.38	45.88	0.00	2206.22
		80	417.90	99.87	7200.03	44.29	5.75	527.33	41.88	0.00	876.34
		90	62.30	99.12	7200.03	41.11	4.87	375.45	39.20	0.00	1809.53
		100	61.91	99.14	7200.03	38.63	5.06	291.72	36.77	0.00	3563.38
rat783	783	10	550.718	99.87	7210.81	166.23	1.56	2117.71	163.68	0.00	133.76
		20	548.352	99.88	7200.00	112.70	2.79	2117.68	109.64	0.00	3498.31
		30	608.547	99.90	7200.00	88.57	4.69	2117.66	84.60	0.00	1981.40
		40	608.547	99.91	7200.00	76.03	3.99	2117.66	73.11	0.00	1591.30
		50	608.547	99.91	7200.00	66.10	4.00	2117.65	63.56	0.00	461.70
		60	628.405	100.00	7200.00	60.02	3.54	1903.00	57.97	0.00	2520.09
		70	628.405	99.92	7200.00	55.44	3.88	1931.82	53.37	0.00	265.23
		80	628.405	99.92	7200.00	51.66	4.05	1670.87	49.65	0.00	223.17
		90	628.405	99.92	7200.00	48.47	5.14	1425.35	46.10	0.00	2082.12
		100	628.405	99.92	7200.00	45.88	4.15	1199.53	44.05	0.00	2786.63
									Con	ued on	ext page

Table 11: continued from previous page.

Instance	n	p	Gurobi			GRASP-SO			VNS		
			best	$\mathrm{gap}_{\text {opt }}(\%)$	t(s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pr1002	1002	10	15250.25	99.89	7296.08	5331.28	2.48	2117.76	5202.16	0.00	1546.43
		20	14205.02	99.90	7418.43	3290.14	3.77	2117.69	3170.57	0.00	308.18
		30	13217.13	99.96	7200.00	2644.33	0.94	2117.68	2619.64	0.00	272.51
		40	14297.73	99.91	7200.00	2304.89	4.52	2117.68	2205.11	0.00	1377.97
		50	14297.73	99.91	7200.08	2013.08	4.80	2117.67	1920.94	0.00	1672.30
		60	17479.42	99.95	7200.00	1838.48	5.10	2117.68	1749.29	0.00	2212.73
		70	17479.42	99.95	7200.00	1710.26	5.86	2117.67	1615.55	0.00	1722.17
		80	17479.42	99.93	7200.08	1518.22	3.72	2117.66	1463.73	0.00	2146.30
		90	17479.42	99.95	7200.00	1442.22	5.68	2117.66	1364.73	0.00	3434.98
		100	17479.42	99.95	7200.00	1353.70	3.82	2117.65	1303.84	0.00	1265.44
rl1323	1323	10	17207.72	0.00	7026.47	6313.82	1.35	2117.92	6229.60	0.00	80.06
		20	13688.24	100.00	7200.31	4032.83	4.87	2117.75	3845.66	0.00	348.67
		30	15039.71	99.92	7200.22	3204.16	4.04	2117.73	3079.87	0.00	1853.93
		40	16174.19	100.00	7200.21	2774.72	6.25	2117.72	2611.48	0.00	2526.51
		50	17106.54	99.93	7200.14	2430.27	8.43	2117.69	2241.23	0.00	1103.83
		60	12963.25	100.00	7200.21	2149.14	5.43	2117.69	2038.42	0.00	1285.23
		70	20521.99	99.95	7200.16	1997.22	5.71	2117.69	1889.26	0.00	661.36
		80	20521.99	99.95	7200.16	1842.10	5.53	2117.68	1745.58	0.00	2983.99
		90	20521.99	99.95	7200.17	1745.58	6.55	2117.67	1638.26	0.00	2606.73
		100	20521.99	99.95	7203.75	1620.92	5.02	2117.66	1543.50	0.00	3406.95
Average			4881.12	60.99	4687.35	997.18	7.46	1147.78	947.73	0.11	1099.00

${ }^{1}$ Original running times divided by 0.85 , approximation obtained from [39].

B Results for the $\alpha \mathbf{N} p \mathbf{M P}$

This appendix shows the detailed results for the $\alpha \mathrm{N} p \mathrm{MP}$. Tables 12 and 13 show the results of the commercial solver, the BIMM and the VNS heuristic for the OR-library instances with $p=10$ and $\alpha=5$ and $p=20$ and $\alpha=10$, respectively. The results of the BIMM shown here were obtained from Panteli et al. [38]. These tables follow the same structure as the ones presented in A.

Table 12: $\alpha \mathrm{N} p \mathrm{MP}$ results with $p=10$ and $\alpha=5$.

Instance	n	CPLEX			BIMM			VNS		
		best	gapopt(\%)	t(s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	40592	0.00	0.41	41462	2.14	0.09	40592	0.00	0.01
pmed2	100	39421	0.00	0.40	40134	1.81	0.04	39421	0.00	0.02
pmed3	100	43345	0.00	0.56	44000	1.51	0.10	43345	0.00	0.05
pmed4	100	46854	0.00	0.58	51351	9.60	0.14	46854	0.00	0.16
pmed5	100	34167	0.00	0.42	35054	2.60	0.11	34167	0.00	0.02
pmed6	200	50759	0.00	3.59	52734	3.89	0.25	50759	0.00	0.42
pmed7	200	44978	0.00	2.86	46621	3.65	0.40	44978	0.00	0.27
pmed8	200	49837	0.00	2.88	51064	2.46	0.44	49837	0.00	0.05
pmed9	200	47636	0.00	3.14	48638	2.10	0.05	47636	0.00	0.13
pmed10	200	36864	0.00	3.38	37968	2.99	0.61	36864	0.00	0.48
pmed11	300	46297	0.00	19.16	47657	2.94	0.08	46297	0.00	2.06
pmed12	300	53082	0.00	18.10	54997	3.61	0.66	53082	0.00	3.66
pmed13	300	48257	0.00	18.78	49012	1.56	0.56	48257	0.00	0.97
pmed14	300	55342	0.00	20.43	56304	1.74	0.59	55342	0.00	2.72
pmed15	300	47426	0.00	17.12	47581	0.33	0.04	47426	0.00	0.30
pmed16	400	49941	0.00	47.65	51171	2.46	0.38	49941	0.00	0.35
pmed17	400	53403	0.00	49.11	55475	3.88	0.35	53403	0.00	0.44
pmed18	400	59089	0.00	50.53	59734	1.09	0.45	59089	0.00	4.52
pmed19	400	56234	0.00	49.40	57270	1.84	0.13	56234	0.00	4.57
pmed20	400	58389	0.00	49.58	59239	1.46	2.95	58389	0.00	3.79
pmed21	500	56961	0.00	93.45	57735	1.36	0.09	56961	0.00	0.04
pmed22	500	62650	0.00	135.57	64217	2.50	1.02	62650	0.00	0.01
pmed23	500	60660	0.00	107.13	62488	3.01	0.21	60660	0.00	0.01
pmed24	500	60210	0.00	105.11	61725	2.52	0.68	60210	0.00	0.16
pmed25	500	54793	0.00	90.52	56284	2.72	0.46	54793	0.00	0.03
pmed26	600	59347	0.00	154.40	59955	1.02	17.75	59347	0.00	0.35
pmed27	600	57705	0.00	143.48	58046	0.59	1.72	57705	0.00	0.03
pmed28	600	58252	0.00	195.00	59076	1.41	1.05	58252	0.00	0.04
pmed29	600	60745	0.00	160.02	61661	1.51	0.65	60745	0.00	0.13
pmed30	600	65738	0.00	177.32	66300	0.85	0.60	65738	0.00	0.06
pmed31	700	61463	0.00	244.27	62571	1.80	7.03	61463	0.00	0.49
pmed32	700	67073	0.00	290.61	68186	1.66	1.33	67073	0.00	0.73
pmed33	700	66024	0.00	239.31	67924	2.88	2.21	66024	0.00	0.05
pmed34	700	63475	0.00	218.37	64656	1.86	0.89	63475	0.00	0.11
pmed35	800	62408	0.00	432.30	62937	0.85	5.14	62408	0.00	0.19
pmed36	800	70805	0.00	409.19	72878	2.93	1.30	70805	0.00	0.62
pmed37	800	74125	0.00	381.64	74661	0.72	2.04	74125	0.00	0.19
pmed38	900	66456	0.00	704.86	68235	2.68	6.41	66456	0.00	1.81
pmed39	900	66129	0.00	456.37	66604	0.72	2.13	66129	0.00	0.69
pmed40	900	75386	0.00	460.13	78237	3.78	0.25	75386	0.00	0.22
Average		55807.95	0.00	138.93	57046.05	2.28	1.53	55807.95	0.00	0.77

${ }^{1}$ Original running times divided by 1.2 , approximation obtained from [39].

Table 13: $\alpha \mathrm{N} p \mathrm{MP}$ results with $p=20$ and $\alpha=10$.

		CPLEX			BIMM			VNS		
Instance	n	best	gapopt (\%)	t (s)	best	gap(\%)	$\mathrm{t}(\mathrm{s})^{1}$	best	gap(\%)	$\mathrm{t}_{\text {best }}(\mathrm{s})$
pmed1	100	84027	0.00	0.39	88745	5.61	0.23	84027	0.00	0.15
pmed2	100	80660	0.00	0.54	83021	2.93	0.38	80660	0.00	0.01
pmed3	100	88180	0.00	0.36	91166	3.39	0.23	88180	0.00	0.10
pmed4	100	95441	0.00	0.67	104680	9.68	0.42	95441	0.00	0.11
pmed5	100	70836	0.00	0.29	72192	1.91	0.30	70836	0.00	0.94
pmed6	200	102341	0.00	3.24	105089	2.69	1.93	102341	0.00	0.22
pmed7	200	91465	0.00	2.68	95486	4.40	0.99	91465	0.00	0.22
pmed8	200	101003	0.00	2.61	103998	2.97	0.60	101003	0.00	1.00
pmed9	200	96365	0.00	3.10	99371	3.12	0.20	96365	0.00	0.96
pmed10	200	74770	0.00	4.18	77136	3.16	0.40	74770	0.00	1.32
pmed11	300	93903	0.00	13.30	94851	1.01	1.40	93903	0.00	0.69
pmed12	300	106863	0.00	19.81	111812	4.63	2.13	106863	0.00	0.99
pmed13	300	97837	0.00	14.21	99802	2.01	0.29	97837	0.00	4.86
pmed14	300	111488	0.00	19.85	113774	2.05	1.48	111488	0.00	3.47
pmed15	300	96190	0.00	19.53	98231	2.12	0.93	96190	0.00	3.57
pmed16	400	101027	0.00	47.73	103530	2.48	3.29	101027	0.00	1.51
pmed17	400	107608	0.00	70.44	111679	3.78	0.92	107608	0.00	2.70
pmed18	400	119282	0.00	51.68	121202	1.61	0.79	119282	0.00	0.88
pmed19	400	113107	0.00	50.92	115688	2.28	2.53	113107	0.00	1.33
pmed20	400	118523	0.00	44.04	121468	2.48	0.36	118523	0.00	6.98
pmed21	500	114895	0.00	87.38	116754	1.62	0.89	114895	0.00	0.00
pmed22	500	125994	0.00	149.91	132925	5.50	0.71	125994	0.00	0.11
pmed23	500	122437	0.00	100.05	127093	3.80	0.34	122437	0.00	0.15
pmed24	500	121462	0.00	127.16	124517	2.52	0.15	121462	0.00	0.03
pmed25	500	111435	0.00	83.16	114231	2.51	5.67	111435	0.00	0.07
pmed26	600	119392	0.00	172.47	121537	1.80	6.65	119392	0.00	0.07
pmed27	600	116498	0.00	135.63	117508	0.87	4.51	116498	0.00	0.08
pmed28	600	117933	0.00	136.07	120718	2.36	2.20	117933	0.00	0.33
pmed29	600	122339	0.00	150.88	125649	2.71	0.99	122339	0.00	0.17
pmed30	600	133069	0.00	139.75	133935	0.65	3.13	133069	0.00	0.26
pmed31	700	123848	0.00	240.92	129303	4.40	21.73	123855	0.01	0.18
pmed32	700	134470	0.00	569.17	137108	1.96	1.81	134470	0.00	1.12
pmed33	700	132822	0.00	228.99	136182	2.53	13.63	132822	0.00	0.40
pmed34	700	127779	0.00	240.73	130290	1.97	0.74	127779	0.00	0.19
pmed35	800	125727	0.00	427.53	127188	1.16	10.57	125727	0.00	0.41
pmed36	800	142084	0.00	693.30	149330	5.10	2.24	142084	0.00	0.39
pmed37	800	149976	0.00	265.97	152607	1.75	1.95	149976	0.00	0.53
pmed38	900	133369	0.00	1091.66	135485	1.59	13.59	133369	0.00	0.76
pmed39	900	133246	0.00	831.62	136345	2.33	0.78	133246	0.00	1.30
pmed40	900	151713	0.00	654.96	153743	1.34	20.68	151713	0.00	2.57
Average		112785.10	0.00	172.42	115884.23	2.82	3.32	112785.28	0.00	1.03

${ }^{1}$ Original running times divided by 1.2, approximation obtained from [39].

[^0]: Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect those of CIRRELT.

 Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du CIRRELT et n'engagent pas sa responsabilité.

[^1]: * Corresponding author: leandro.coelho@fsa.ulaval.ca

 Dépôt légal - Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2023

