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Abstract. In this paper, we employ the less is more approach to develop a Parallel Variable 
Neighborhood Search (VNS) algorithm for the α-neighbor p-center problem (αNpCP) and 
the α-neighbor p-median problem (αNpMP). The αNpCP and the αNpMP are generalizations 
of the p-center (pCP) and p-median (pMP) problems, respectively. In the α-neighbor 
problems, one seeks to open p facilities and assign each of the n customers to their closest 
α ones. The objective is to minimize the maximum distance of a customer to its αth facility, 
in the case of the αNpCP, and the sum of the distances from each customer to their α nearest 
facilities, in the case of the αNpMP. Our VNS adapts simple but efficient algorithms and data 
structures from the pCP and pMP literature to the αNpCP and αNpMP context. We also 
introduce an updated objective function for the αNpCP, which adds more information to the 
solution cost and helps the VNS to escape from local optima. Several experimental tests 
show that our VNS outperforms more complex state-of-the-art algorithms. Regarding the 
αNpCP, on 120 instances derived from the OR-library set, our algorithm improved best-
known solutions for 22, with an average improvement of 33.96%; the overall gap on the 120 
instances is 6.10% in favor of our algorithm. Moreover, on 231 instances derived from the 
TSPLIB set, we improved the solutions for 109, with an average improvement of 4.79%, and 
an overall improvement gap of 2.02% for all 231 instances. Considering the αNpMP results, 
our heuristic obtained better results than a heuristic from literature in all 80 instances tested. 
Also, it could find optimal solutions for 79 out of these 80 instances. 
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1 Introduction

Facility location problems are extensively studied and are an important topic in operations
research [11, 26]. In such problems, one seeks to open facilities and assign each customer’s
demand to an opened one, optimizing an objective function typically composed of an
assignment cost. These problems have several real-world applications, from logistics to
data-mining [37, 18, 26, 15, 10]. Among many problems in this research topic, two of the
most known facility location problems are the p-center (pCP) and the p-median (pMP)
problems, both introduced by [16, 17]. Given a graph, the objective in the pCP is to select
p vertices, also known as centers, so the maximum distance between the graph’s vertices
and their respective closest center is minimized, i.e., a min-max problem. In the pMP
case, one also selects p vertices, here known as medians, but the objective is to minimize
the sum of distances of every vertex to its nearest median. These problems were proven
to be NP-hard [14, 23], so one often relies on heuristics to solve large instances.

In the pCP and pMP, vertices are assigned to a single facility. However, in some ap-
plications, facilities may be prone to failure and become unavailable due to unpredictable
reasons such as weather and electricity problems [38]. In such cases, it is important to en-
sure the continuity of service to customers assigned to the failed facility. This is common
in critical services, such as hospitals, fire stations, and computer networks, where backup
coverage is needed [47, 1, 38]. For instance, during the COVID-19 pandemic, hospitals
in highly dense urban areas that could handle the demand of a regular day were facing
an overwhelming demand [30]. An alternative is assigning excess demand to a temporary
healthcare structure or even to a backup hospital [1]. On the other hand, a hospital
located in a less populated region might not be dealing with a burden on its system.
Therefore, the best solution in this case is to reallocate the population to the hospital in
a less populated area instead of opening an additional temporary facility.

Other examples arise in computer networks, where some critical systems must have
higher redundancy than others, or more generally in any context where some entities
being served are more critical than others [47]. From the provider’s perspective, such as
in the hospital example, facilities may be elected to require extra coverage for their users.
Thus, assigning clients to multiple facilities at a time becomes useful.

To handle these types of problems, Krumke [25] generalized the pCP and introduced
the α-neighbor pCP (αNpCP), where vertices are assigned not just to the nearest center
but to their α nearest ones. This problem aims to minimize the maximum distance
between a non-facility vertex to its αth closest center. Note that when α = 1, the pCP is
defined. Krumke [25] also proposed an approximation algorithm for the αNpCP since it
is a NP-hard problem as it generalizes the pCP. Since then, solution methods have been
proposed, especially approximation and exact algorithms, for either the continuous and
discrete versions of the αNpCP, e.g., [8, 24, 9, 7]. In the continuous version of the αNpCP,
facilities can be placed anywhere in the defined space. On the other hand, in the discrete
version, facilities must be vertices in the graph. The latter is the topic of interest in this
work.

There are only two heuristics for the αNpCP that we are aware of are the works
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of Sánchez-Oro et al. [45] and Mousavi [36]. Sánchez-Oro et al. [45] proposed a Greedy
Randomized Adaptive Search Procedure with Tabu Search and Strategic Oscillation
methodology (GRASP-SO). The authors tested their algorithm in 37 instances derived
from the TSPLIB [41] and compared their results to the exact method of Chen and Chen
[9]. The heuristic of Sánchez-Oro et al. [45] obtained the best results in all tested instances.
Mousavi [36] developed efficient local search algorithms for the pCP, the αNpCP and the
p-next center problem (pNCP). They tested their αNpCP heuristic, using α = 2, on the
40 pMP instances from the OR-library [4], but did not compare their algorithm with the
results of GRASP-SO of Sánchez-Oro et al. [45]. The author then ran the algorithm for
all 40 OR-library instances for 10,000s, showing that the heuristic can consistently find
the same solutions in a much shorter execution time.

Exploring the multiple assignment feature in the pMP context is also important. How-
ever, this pMP variation has not been as explored as the pCP one. Even though the
literature related to pMP is vast [2, 40, 32, 12, 28], to the best of our knowledge, there are
few works concerning variations of these problems where vertices can be assigned to more
than one median. One of these studies is the work of Wang et al. [47], who introduced
the backup 2-center problem and the backup 2-median problem. In these problems, every
vertex is served by two medians. Another study is that of Karatas et al. [22], where the
authors introduced the requirement of each vertex to be assigned to more than one facil-
ity and compared it under five different criteria. Also, Brimberg et al. [5] introduced the
distributed pMP, where, given a distribution function over customers’ demands, multiple
medians are used to fulfill the customers’ demands. However, none of these definitions
impose multiple assignments precisely as in the αNpCP.

To the best of our knowledge, the only work that generalizes the single assignment
requirement to allow multiple assignments, as in the αNpCP, is the work of Panteli et al.
[38]. These authors relaxed the single vertex-median assignment constraint of the pMP
and imposed that each vertex is allocated to their nearest α medians. The objective is
to minimize the total sum of vertices distances to their α facilities. Again, when α = 1,
the pMP is defined, and this problem is NP-hard as it generalizes the pMP. Panteli et al.
[38] denominated this pMP variation as the multiple p-median problem. For the sake of
uniformity, here we refer to this problem as the α-neighbor pMP (αNpMP). These authors
also proposed the Biclustering Multiple Median algorithm (BIMM) to solve the αNpMP
and compared it with a commercial solver.

Since both αNpCP and αNpMP are NP-hard, in this work we propose a simple but
effective Basic Parallel Variable Neighborhood Search (BP-VNS) algorithm; “basic” de-
fines the VNS version originally proposed by Mladenović and Hansen [33]. This algorithm
is used to produce high-quality solutions for these problems. This heuristic has been suc-
cessfully applied to many facility location problems, e.g., pMP [20], pCP [34], capacitated
pMP [13], probabilistic pCP [29], obnoxious pMP [21, 31], and pNCP problem [27, 43].

We have developed our heuristic using the Less is More Approach (LIMA) [35, 6].
The LIMA is a heuristic design methodology focused on simplicity and user-friendliness
rather than developing complex algorithms just for the sake of proposing a new method,
with no solid performance improvement [35]. The idea is to use the minimum number

A Parallel Variable Neighborhood Search for α-Neighbor Facility Location Problems

2 CIRRELT-2023-29



of algorithm components to develop a heuristic as simple as possible and still be able
to find solutions at a state-of-the-art level [31]. Besides the method’s simplicity, another
advantage of using this approach is that it is easier to identify how and why the algorithm
performs the way it does [31]. As we will demonstrate, our method can be easily adapted
to several classes of problems and performs very well thanks to the important components
described next.

In our BP-VNS we adapted optimized and well-known algorithms and data structures
from the literature to the αNpCP and αNpMP context. Also, to take advantage of modern
multi-core CPUs, we parallelized our BP-VNS due to its simplicity. In addition, we couple
to our heuristic an updated αNpCP objective function based on the idea of Torres-Jimenez
et al. [46], which adds more information about the solution quality and helps guide the
VNS to escape from local optima. Then, the main contributions of our work are:

• We present a simple and effective BP-VNS for the αNpCP and αNpMP. Using the
LIMA methodology, we adapt well-known algorithms and data structures from the
literature;

• We use a new objective function for the αNpCP, which allows the heuristic to
differentiate solutions with the same cost, improving the heuristic’s convergence;

• We show that our simple heuristic can find high-quality solutions and outperform
state-of-the-art methods.

This paper is organized as follows. The mathematical formulations are presented in
Section 2. Our BP-VNS is detailed in Section 3. Section 4 shows the test results. Our
concluding remarks and discussion about future works are presented in Section 5.

2 Mathematical notation and problems definitions

Let G = (V,E) be an undirected, weighted, and connected graph, where V is the set of
vertices and E is the set of edges, where |V | = n, |E| = m and to each edge (i, j) ∈ E
is associated a weight dij ∈ R+. In facility location problems, dij is often the Euclidean
distance or the shortest path length between vertices i and j, but dissimilarity values are
also common. In all these cases, the triangular inequality is not violated. Even if an edge
joining vertices i and j may not exist in the original graph, (i, j) can be added to E with
dij equal to the length of the shortest path between these vertices since G is connected
and the triangular inequality holds. In this way, D = (dij) is an n× n distance matrix of
non-negative real values. Let S be the set of the p open medians, where 1 ≤ p ≤ n. Since
it is required that all vertices be assigned to α facilities in the αNpCP and the αNpMP, it
is implicitly assumed that each vertex is always assigned to its α closest medians among
the p open ones, where α ≤ p.

The remainder of this section is organized as follows. In Section 2.1, the αNpCP
formulation is presented. The integer linear program of the αNpMP is described in Sec-
tion 2.2.
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2.1 αNpCP formulation

In the αNpCP, a subset S ⊂ V of vertices are selected as facilities and each vertex
i ∈ V \ S is assigned to the nearest α of them. The distance between a vertex i and its
αth nearest facility j ∈ S is know as the α-center-distance and is defined by dcα(i, S) =

min
S′⊂S,|S′|=α

{max
j∈S′

dij}. Thus, in this problem, the objective is to minimize the maximum

α-center-distance of vertices that are not facilities, that is, to find a set S ⊂ V , where
|S| = p, such that max

i∈V \S
dcα(i, S) is minimum. Observe that when a vertex is selected as a

facility, it is not assigned to other facilities.
The mathematical formulation of the pCP [11] can be adapted to allow each vertex

to have multiple assignments. In this formulation, decision variables xij control whether
client i is allocated at facility j or not, i.e.,

xij =

{
1, if vertex i ∈ V is assigned to facility vertex j ∈ V ,
0, otherwise.

It is worth mentioning that when xij = 1 and i = j, then vertex i is selected as a facility.
The αNpCP can be formulated as the following mixed-integer linear program:

min z (1a)

subject to ∑
j∈V,j 6=i

xij = α(1− xii), i ∈ V, (1b)∑
j∈V

xjj = p, (1c)

xij ≤ xjj, i ∈ V, j ∈ V, i 6= j, (1d)

dijxij ≤ z, i ∈ V, j ∈ V, i 6= j, (1e)

z ∈ R+, xij ∈ {0, 1}, i ∈ V, j ∈ V. (1f)

The value of the continuous variable z is minimized by the objective function (1a),
whose lower bound is given by constraint (1e). In other words, the objective function (1a)
minimizes the maximum distance between a vertex and its furthest (αth nearest) facility.
Constraints (1b) assure that each vertex i ∈ V \ S is assigned to α facilities. Note that if
xii = 1, i.e., vertex i is a facility, then i is not assigned to any other facility since the right-
hand-side of constraints (1b) is zero. Exactly p facilities are opened, which is guaranteed
by constraint (1c). A vertex i can only be assigned to a facility j if j is open. This is
ensured by constraints (1d). Variables xij are binary and z is a nonnegative continuous
variable as in constraints (1f).

2.2 αNpMP formulation

The αNpMP requires p medians to be selected from V and that all vertices v ∈ V are
assigned to their closest α facilities. Let dmα (i, S) = min

S′⊂S,|S′|=α

∑
j∈S′

dij be the α-median-
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distance of vertex i given a set of facilities S. In the αNpMP, the objective is to minimize
the sum of the α-median-distances of all vertices. In other words, the objective is to find
a set S ⊆ V , where |S| = p, such that

∑
i∈V

dmα (i, S) is minimum. Unlike the αNpCP, in the

αNpMP facilities are also assigned to α facilities.
The αNpMP can be formulated as an integer linear program (2a)–(2e). In this model,

decision variables xij are the same as the ones defined in Section 2.1 and control whether
client i is assigned to facility j. Again, when xij = 1 and i = j then i is selected as a
facility.

min
∑
i∈V

∑
j∈V

dijxij (2a)

subject to∑
j∈V

xij = α, i ∈ V, (2b)∑
j∈V

xjj = p, (2c)

xij ≤ xjj, i ∈ V, j ∈ V, (2d)

xij ∈ {0, 1}, i ∈ V, j ∈ V. (2e)

In the model above, the objective function (2a) minimizes the sum of the distances
between every vertex i assigned to each facility j. Constraints (2b) are the multiple
assignment constraints and impose that every vertex must be assigned to α facilities.
Constraint 2c guarantees that p vertices are open. A vertex i can only be assigned to a
vertex j if j is an open facility, i.e, only if xjj = 1, and this is ensured by inequalities (2d).
Constraints (2e) define variables xij as binary. Note that the difference between the
αNpMP model and the PMP model [42] is in constraints (2b), which, in the αNpMP
case, allow multiple assignments.

3 Basic Parallel Variable Neighborhood Search

The VNS is a well-known metaheuristic [19], which consistently explores increasing neigh-
borhoods if no improvement is detected. Whenever a better solution is found, the neigh-
borhood range is reset to the minimum size, and the exploring process starts over, using
the neighboring of the new solution. This metaheuristic also uses a local search procedure
to polish newfound solutions, combining exploring and exploiting.

Since we employed the LIMA methodology for developing heuristics for the αNpCP and
the αNpMP, we decided to implement the BP-VNS. This VNS is a parallel version of the
original metaheuristic proposed in the seminal work of Mladenović and Hansen [33], which
is composed of finding a new neighbor solution using one shaking procedure, followed by
one local search, which improves the found solution, and then deciding whether or not
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we move to the new neighborhood [31]. These steps are repeated until a stop criterion is
met, e.g., maximum execution time.

Remember that in both the αNpCP and the αNpMP, each client is assigned to its α
nearest facilities. So, all the information we need to represent a solution to these problems
is the p facilities. Let S = {vi1 , . . . , vip} denote a solution, i.e., S ⊂ V is a set of p vertices
(facilities). A metric to differentiate two solutions S and S ′ is ρ(S, S ′) = p− |S ∩ S ′|, the
number of facilities they do not share. So we say a solution S ′ is at a distance of k from
S if ρ(S, S ′) = k. Then, all solutions lying at a distance of k, with k = 1, . . . , kmax and
kmax ≤ p, are contained in the neighborhood set Nk(S).

The BP-VNS used in this work is depicted by Algorithm 1. This same structure is used
in problems αNpCP and αNpMP. First, an initial solution is generated and becomes the
current solution S. Then, the shaker procedure is applied, and a new solution S ′ ∈ Nk(S)
is found within the neighborhood of size k of the solution S. The local search is then
used to polish solution S ′. If the cost of solution S ′ is less than that of the current best-
known solution S, then S ′ becomes S, the neighborhood range k is reset, and the search
continues from the new solution S. Otherwise, the neighborhood size increases, allowing
it to explore Nk(S) even further. This step is repeated while the execution time limit is
not reached.

Algorithm 1: Basic Parallel Variable Neighborhood Search.

1 S ← initialSolution(); // generates a solution by Algorithm 2

2 while time limit is not reached do
3 k ← 1;
4 while k < kmax do
5 S ′ ← shaker(S, k); // finds solution S′ by using Algorithm 3

6 S ′ ← localSearch(S ′); // improves S′ by applying Algorithm 4

7 if cost(S ′) < cost(S) then
8 S ← S ′;
9 k ← 1;

10 else
11 k ← k + 1;
12 end

13 end

14 end
15 return S;

To calculate the cost of a given solution s, for the αNpCP, we customized the move
evaluation and update procedures as well as the corresponding data structures from the
work of Mladenović et al. [34], and from the work of Hansen and Mladenović [20], for
the αNpMP. Because these algorithms and data structures are well-known and easy to
implement, another advantage is that one can compute a solution’s cost in O(n log n).

We opted to use parallelization to enhance the performance of each component of our
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BP-VNS: the initial solution algorithm, the shaker procedure, and the local search. This
decision was driven by the straightforward parallelization possibility each one of these
methods offers, and we focused on keeping them simple. These components are explained
in the following sections. The algorithm to generate an initial solution is described in
Section 3.1. The shaker procedure is detailed in Section 3.2. The local search method is
shown in Section 3.3. Further implementation details are presented in Section 3.4.

3.1 Initial solution

Algorithm 2 shows the parallel procedure used in this work for generating initial solutions
for both αNpCP and αNpMP. In this algorithm, the best of r solutions, where r is a
parameter of the number of threads, is selected as the initial solution. Each thread i
starts from a random solution Si, where p medians are selected randomly. A local search
procedure then improves this solution. We use the same local search detailed in Section 3.3
to keep the algorithm simple. Note that each thread calls the local search to improve its
solution. So unlike the local search step of Section 3.3, here each local search procedure
runs in serial, unique to its thread. After all threads finish their execution, the best
solution S among all Si solutions is returned as the initial one. The initial algorithm
can be viewed as multiple parallel calls of the serial local search starting from random
solutions.

Algorithm 2: initialSolution procedure.

Output: Initial solution S.
1 S ← ∅;
2 for i← 1 to r do in parallel // r is the number of threads

3 Si ← random solution; // each thread starts with a solution

4 Si ← localSearch(Si); // calls single threaded Algorithm 4

5 if cost(Si) < cost(S) then
6 S ← Si;
7 end

8 end
9 return S;

3.2 Shaker

Hansen and Mladenović [20] and Mladenović et al. [34] use a shaker procedure where the
facility to be opened is selected randomly, and then they select the best open facility to
be closed regarding the one to be opened. To find the best facility deletion, they use
the move evaluation algorithm to identify the facility to be closed and to compute the
new objective function value in O(n). For the pCP, Mladenović et al. [34] only considers
opening the random facility if it is closer to the critical vertex than the critical vertex’s
current facility.
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Since we design a parallel shaker algorithm, the approach of Mladenović et al. [34] may
trap the BP-VNS in local optima, as we select the best out of a number of candidates,
which, in turn, were selected greedily. Then, in our shaker, we first decided to remove
the requirement of only opening a facility if it improves the critical vertex assignment,
avoiding making such greedy decisions. To improve the solution space exploration even
further and simplify the heuristic, we opted to make the shaker completely random, i.e.,
to open and close facilities randomly. This very same shaker algorithm was successfully
used by Mladenović et al. [31] in the obnoxious pMP.

Algorithm 3 depicts the shaker procedure, which, given a solution S and the neigh-
borhood size k, is used to find a new solution S ′ ∈ Nk(S). The role of this method, as the
name implies, is to disturb the current solution and, thus, avoid being trapped in local
optimum solutions. Like Algorithm 2, we explore r solutions in parallel and keep the best
one. So from the input solution S, each thread i finds a solution S ′i ∈ Nk(S) by randomly
swapping k facility vertices with k client vertices. In other words, each thread randomly
selects a set of facilities J = {j1, . . . , jk}, such that J ⊆ S, and a set of non-facility vertices
L = {l1, . . . , lk}, such that L ⊆ V \ S, and swap them.

Algorithm 3: shaker procedure.

Input: Current solution S; neighborhood size k.
Output: New solution S ′ ∈ Nk(S).

1 S ′ ← S;
2 for i← 1 to r do in parallel // r is the number of threads

3 select S ′i ∈ Nk(S) and do // randomly opens and closes k facilities

4 if cost(S ′i) < cost(S ′) then
5 S ′ ← S ′i;
6 end

7 end

8 end
9 return S ′;

We decided to close and open k facilities at random in our shaker instead of, for
example, opening a facility at random and closing the best one as in [20, 34] for two
reasons. First, using swaps is well-aligned with the LIMA aspect of our algorithm; we
have not observed any significant gains from using a more expensive approach during
our preliminary tests. Second, this random approach helps the BP-VNS to escape local
optima more effectively than a greedy alternative.

3.3 Local search

We implemented a best improvement local search presented by Algorithm 4. Given an
input solution S ′, this algorithm evaluates the swap of every non-facility vertex with
the best facility deletion concerning the opened one. Then, the best swap is selected and
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performed. This process systematically explores all solutions inN1(S
′) since it opens every

client vertex as a facility, one by one. If the best swap improves S ′, then this procedure
continues refining solution S ′ as long as an improvement is found. If no improvement is
detected, it stops and returns S ′. This procedure runs in parallel but, unlike Algorithms 2
and 3 where threads run independently, here, each thread handles a subset of non-facility
vertices. In other words, each thread explores a subset of N1(S

′). Then, the best swap is
the one selected to be performed.

To evaluate the swap between a facility vertex j ∈ S ′ and a client vertex l ∈ V \ S ′,
we adapted the move evaluation algorithm from Mladenović et al. [34], for the αNpCP,
and from Hansen and Mladenović [20], for the αNpMP. With these algorithms, one can
compute, in O(n) time complexity, the new objective function value if the swap between
j and l would occur.

Algorithm 4: localSearch procedure.

Input: Candidate solution S ′.
Output: Improved solution S ′, if any.

1 do
2 improved← false;
3 foreach S ′′ ∈ N1(S

′) do in parallel // opens and closes one facility

4 if cost(S ′′) < cost(S ′) then
5 S ′ ← S ′′;
6 improved← true;

7 end

8 end

9 while improved;
10 return S ′;

3.4 Implementation details

We now present additional implementation details. First, we explain, in Section 3.4.1,
how we adapted some data structures from the works of Hansen and Mladenović [20] and
Mladenović et al. [34]. Then, in Section 3.4.2, we present the αNpCP updated objective
function used in this work to improve the BP-VNS convergence further.

3.4.1 Data structures

As mentioned earlier, we have adapted the move evaluation and the update algorithms
of Mladenović et al. [34] for the αNpCP, and of Hansen and Mladenović [20] for the
αNpMP, to evaluate facilities candidates efficiently and to compute the solution cost
quickly. Besides other minor algorithmic details, the main difference between the original
versions of these two algorithms and our adaptations lies in an auxiliary data structure
denoted as c1 array. In the original move evaluation and update algorithms, each position

A Parallel Variable Neighborhood Search for α-Neighbor Facility Location Problems

CIRRELT-2023-29 9



i of array c1 holds the index of the nearest facility to each vertex i. However, in our
case, where vertices are assigned to α facilities, the c1 array transforms into a n × α
matrix. Each row i of this matrix corresponds to the α facilities indices to which vertex
i is assigned.

To efficiently update a facility in a row i of matrix c1, we keep each row’s α facilities
sorted into increasing order of distance from vertex i. This way, we can use binary search
to remove or insert a facility. However, since α is a parameter and its values used in
this work are small (α ≤ 3), as large values are not common in practice [45], we can
consider it a constant. Then, there is no difference in the asymptotical time complexity
between the original algorithms and our customizations. Thus, the time complexity of
the move evaluation remains at O(n), and the time complexity of the update algorithm
of O(n log n) remains the same.

3.4.2 αNpCP evaluation function

The αNpCP inherited an issue from the pCP, which is the fact that several solutions
have the same cost. This problem is even worse in the αNpCP since we minimize the
maximum distance between a vertex and its αth facility. However, this does not mean
that solutions of the same cost are equal. Between two solutions of the same cost, we
can consider one of them to be better than the other. For example, let S and S ′ be two
solutions where ρ(S, S ′) ≥ 1 and cost(S) = cost(S ′) = 42. Also, consider that S ′ has only
one critical vertex, a vertex i in which the distance to its αth facility equals 42, whereas
S has several critical vertices. It may be easier to reduce the cost of S ′ than to open new
facilities and try to reduce the cost of S. So, adding more information to the cost of an
αNpCP solution regarding the overall assignments is necessary, instead of just considering
the critical element.

Based on this observation, we adapted the method of Torres-Jimenez et al. [46]. These
authors proposed a heuristic for the matrix bandwidth minimization problem (MBMP).
The MBMP is also a min-max problem, where the objective is to minimize the maximum
distance between a nonzero coefficient and the main diagonal of a square sparse symmetric
matrix. Clearly, in this problem, there are also several solutions of the same cost. Then,
the authors adapted the idea proposed by Rodriguez-Tello et al. [44], which consists of
counting the number of occurrences of distances between all the other nonzero coefficients
and the main diagonal and then translating it to a value δ ∈ [0, 1). To compute the value
of δ, they counted the number of distances of each value and the maximum number of each
distance and used these values to represent a number in a positional numbering system of
variable base, also known as mixed radix. The value represented by this numerical system
is then normalized to a value in the range [0, 1) and added to the objective function value.
This adds more meaning to the objective function value and helps to differentiate solutions
with the same bandwidth. Please refer to Rodriguez-Tello et al. [44], Torres-Jimenez et al.
[46] for further details.

We can also use this method in the αNpCP since they are both problems where the
objective is to minimize the maximum distance. To compute δ, the value to be added to
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the αNpCP objective function value, we use Algorithm 5 [46]. In this algorithm, array
di is the number of length assignments i present in solution S, i.e., the number of edges
of length i connecting a client vertex to its αth facility. The array vi is the maximum
number of edges of length i that can be used in a solution plus one because no edge
is a possible value. Then, with both arrays di and vi one can represent the αNpCP
solution as a number in a positional numbering system of variable base, where di values
can be interpreted as digits and vi as the base in this numerical system. To compute this
value and then normalize it in the [0, 1) range, Torres-Jimenez et al. [46] proposed the
Algorithm 5, where the normalized value is represented by δ.

Algorithm 5: αNpCP alternative objective function.

Input: Solution S; arrays di and vi.
Output: αNpCP cost of solution S.

1 δ ← 0;
2 for i← 0 to cost(S) do
3 if di > 0 then
4 δ ← δ+di

vi

5 end

6 end
7 return cost(S) + δ;

For example, consider two solutions S and S ′ depicted in Figure 1. In this example,
n = 7, p = 2, α = 2, cost(S) = cost(S ′) = 42, and ρ(S, S ′) = 1. Note that solution S
has two critical vertices (two vertices with a distance of 42 to their facilities), whereas
solution S ′ has only one. So one could use Algorithm 5 to compute the value of δ of both
solutions and compare them.

To compute the δ values for solutions S and S ′, every edge of the graph of the αNpCP
is counted to define the vi. Also, recall that the absence of the edge in the solution is
counted, too, so we add one to every vi value. As the array vi is related to the graph and
not to a particular solution, then, for solutions S and S ′, we have the same following vi
values: there is one edge of distance 21 in the graph, i.e., v21 = 2 (the edge plus one to
represent the absence of such edge in a solution); there is one edge of distance 22 in the
graph, i.e., v22 = 2; v24 = 2, v30 = 2, v35 = 2, and v42 = 3 (since there are two edges
of length 42 in solution S, plus one to represent the absence of such edge in a solution).
On the other hand, array di is specific to each solution, and for solution S we have: one
edge of distance 21 used in the solution, i.e., d21 = 1; one edge of distance 22 used in the
solution, i.e., d22 = 1; d30 = 1, d42 = 2. For solution S ′ we have the following: d21 = 1,
d22 = 1, d24 = 1, d35 = 1, d42 = 1. Then, using Algorithm 5, we get δ = 0.958 for solution
S and δ = 0.646 for solution S ′. Therefore, solution S ′ is better than S as 42.646 < 42.958.
Indeed, it is easier to improve solution S ′ cost because it has only one critical vertex.

Computing the value of δ for each solution can be done efficiently in O(Dmax), where
Dmax = max

i,j∈V
dij, within the move evaluation and update algorithms, significantly improv-
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ing the amount of information the algorithm considers. As demonstrated in the next
section, this new updated objective function improves convergence and helps the algo-
rithm achieve better solutions.

42

21

22

42

30

(a) Solution S.

42

21

22

35

24

(b) Solution S′.

Figure 1: Example of two αNpCP solutions of same cost (42).

4 Computational experiments and analysis

We now describe the computational experiments performed to assess the performance of
our methods. All algorithms described were implemented in C++ language and compiled
with g++ compiler, version 11.3.0. We used Gurobi’s C++ API, version 10.0.2 for solving
the integer programs. The preliminary tests of Section 4.1 were executed on a computer
equipped with an IntelR© CoreTM i9-13900K processor with 32 threads at 3.0GHz and
128GB of RAM. All the remaining experiments were conducted on a computing cluster
based on AMD EPYCTM Rome 7532 processors running at 2.4GHz using 24 threads
and up to 96GB of RAM. All instances described below and their detailed solutions are
available at www.leandro-coelho.com/VNS-location-problems.

For the tests with both αNpCP and αNpMP, we used the well-known OR-library
instances [3, 4]. This set contains 40 instances with sizes ranging between 100 and 900
vertices. These instances are composed of connected weighted non-complete graphs. To
transform these graphs into complete ones, we used the Floyd-Warshall algorithm to
compute the shortest paths between every pair of vertices, as is done in the literature.
Following Sánchez-Oro et al. [45], we also used 77 instances derived from the TSPLIB [41]
for the tests with the αNpCP and, for each of them, we tested using α ∈ {1, 2, 3}. For
the αNpMP tests, we used α ∈ {10, 20} and compared our VNS with the BIMM heuristic
[38].

Since we use the LIMA methodology, the only parameters our heuristic uses are the
kmax, for which we used kmax = p [31], the number of threads r, which we set to r =
24 for the experimental tests, and the execution time limit, which we used 1 hour for
the experimental tests. In addition, we set 2 hours as the execution time limit for the
commercial solvers to solve the models.

The remaining of the section is organized as follows. In Section 4.1 we show the
preliminary tests carried out to evaluate the components of our BP-VNS. The αNpCP
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experimental results are presented in Section 4.2, and the αNpMP ones are presented in
Section 4.3.

4.1 Preliminary tests

Preliminary tests to evaluate some key features of our BP-VNS are presented in this
section. We tested our heuristic on the first 10 instances of the OR-library, which have
n ∈ {100, 200} and p ∈ {5, 10, 20, 33, 40, 67}. In all tests of this section, we used α = 2
and 60 seconds as the time limit of the BP-VNS. In addition, as the αNpCP and αNpMP
versions of our heuristic share the same main structure, we performed the preliminary tests
only for the αNpCP. This section is structured as follows. The impact of parallelism is
analyzed in Section 4.1.1, tests to evaluate the shaker functions are shown in Section 4.1.2,
and the ones to evaluate the usage of the updated αNpCP objective function are presented
in Section 4.1.3.

4.1.1 Evaluation of parallelism

In this section, we assess two versions of our BP-VNS, depicted by Algorithm 1. These
versions differ only by the number of threads used: the first is the BP-VNS running on
a single thread, while the second is the parallel BP-VNS where we have used 24 threads.
The results of these tests are shown in Table 1. In this table, the first three columns
show the instances’ names, the number of vertices, and the number of medians. The
optimum (opt) of each instance is shown in the fourth column. Then, we present for both
BP-VNS versions the best solution found, the iteration in which the best solution was
found (iterbest), the total number of iterations (#iter), and the time, in seconds, in which
the best solution was found (tbest(s)).

Table 1: Comparison between the single-thread and the parallel versions of BP-VNS.

single-thread BP-VNS BP-VNS
Instance n p opt best iterbest #iter tbest(s) best iterbest #iter tbest(s)
pmed1 100 5 150 150 72 49539 0.09 150 0 475687 0.01
pmed2 100 10 121 121 2965 56666 3.24 121 674 469980 0.11
pmed3 100 10 121 123 814 56075 0.90 121 4210 447565 0.65
pmed4 100 20 97 98 1181 69843 1.04 97 1067 483936 0.18
pmed5 100 33 63 63 17705 96636 11.14 63 160 427687 0.04
pmed6 200 5 99 99 6954 12429 33.57 99 0 159187 0.04
pmed7 200 10 80 80 8672 13262 39.23 80 7 162246 0.07
pmed8 200 20 70 70 839 14520 3.60 70 79 157030 0.12
pmed9 200 40 49 50 1108 18074 3.88 49 751 182220 0.44
pmed10 200 67 28 29 11503 25421 27.29 28 2025 199115 0.68

As one can note, the parallel version obtained the optimum values in all instances. On
the other hand, the single-thread BP-VNS did not find the optimum of instances pmed3,
pmed4, pmed9, and pmed10. The parallel initial solution algorithm helps the heuristic
convergence as it is a multistart procedure, so the BP-VNS starts from the best solution
out of r candidates. The (parallel) BP-VNS found the best solution much earlier than
the single-thread version, as one can see in columns iterbest and tbest (s). Indeed, in some
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instances, as for pmed1 and pmed6, BP-VNS found the optimum at iteration 0, that is, in
the initial algorithm step. Also, parallelism helps the heuristic explore the solution space
faster as multiple solutions are visited in each call of the shaker procedure. Exploring
different neighborhoods more efficiently helps BP-VNS escape from local optima, which
can explain why the parallel version of BP-VNS found the optimum for all instances. In
addition, the parallel local search algorithm is much faster than the single thread version,
as each thread explores a subspace of N1(S). Since the local search procedure is the most
expensive step in our BP-VNS, parallelizing it helps decrease the computational burden.
This can be noticed in the total number of iterations, where BP-VNS ran approximately
eight to ten times more iterations than the single-thread version. Then, for these reasons,
we decided to use the BP-VNS version for the remainder of the paper.

4.1.2 Evaluation of shaker fuctions

Recall that we designed a random shaker unlike the greedy shaker function initially pro-
posed by Hansen and Mladenović [20] and Mladenović et al. [34]. Table 2 shows the tests
performed to compare BP-VNS using the greedy approach and with the random shaker.
The table follows the same structure of Table 1. Note that the results of the random
version are exactly the same as presented in Table 1, as the results presented earlier are
related to our complete BP-VNS, which uses the random shaker.

Table 2: Comparison between BP-VNS with the greedy and the random shakers.

greedy shaker random shaker
Instance n p opt best iterbest #iter tbest(s) best iterbest #iter tbest(s)
pmed1 100 5 150 150 0 457386 0.01 150 0 475687 0.01
pmed2 100 10 121 121 810 430671 0.17 121 674 469980 0.11
pmed3 100 10 121 121 19581 415200 2.85 121 4210 447565 0.65
pmed4 100 20 97 98 885 478483 0.16 97 1067 483936 0.18
pmed5 100 33 63 63 100 426113 0.03 63 160 427687 0.04
pmed6 200 5 99 99 0 150220 0.05 99 0 159187 0.04
pmed7 200 10 80 80 19 161231 0.09 80 7 162246 0.07
pmed8 200 20 70 70 161 142285 0.21 70 79 157030 0.12
pmed9 200 40 49 49 1879 169106 0.72 49 751 182220 0.44
pmed10 200 67 28 28 5757 176213 1.86 28 2025 199115 0.68

Since our shaker procedure is parallelized, the BP-VNS with the greedy one might be
trapped in local optima more often than the random shaker. Once again, our proposed
random shaker performs best as the greedy shaker procedure cannot find all optimum.
Moreover, the version with the greedy shaker took longer to find the optimum values in
almost all instances, sometimes significantly (2.85 s vs. 0.65 s), as one can see from the
iteration and time in which the best solutions were found in Table 2. Also, since in the
random shaker there is no extra O(n) computation of the move evaluation algorithm, BP-
VNS could run faster and, therefore, the total number of iterations of the heuristic with
random shaker is slightly larger than ones achieved by the BP-VNS with greedy shaker.
We decided to employ the random shaker based on these results and its simplicity.
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4.1.3 Evaluation of the updated αNpCP objective function

In this section, we evaluate our BP-VNS (Algorithm 1) with and without the updated
αNpCP objective function, described in Section 3.4.2. Note that this new objective func-
tion is used only in the αNpCP, whereas the features tested in Sections 4.1.1 and 4.1.2
are used in the BP-VNS applied to both αNpCP and αNpMP.

In Table 3, the results from columns updated OF are the same as the ones from Table 1
and 2, as our BP-VNS uses the updated αNpCP objective function. However, the results
from columns regular OF refer to the BP-VNS version with the regular αNpCP objective
function.

Table 3: Comparison between BP-VNS with the regular αNpCP objective function and
the updated one.

regular OF updated OF
Instance n p opt best iterbest #iter tbest(s) best iterbest #iter tbest(s)
pmed1 100 5 150 150 0 372730 0.01 150 0 475687 0.01
pmed2 100 10 121 121 524 354236 0.11 121 674 469980 0.11
pmed3 100 10 121 121 5148 419403 0.84 121 4210 447565 0.65
pmed4 100 20 97 98 2787 370127 0.50 97 1067 483936 0.18
pmed5 100 33 63 63 966 411485 0.15 63 160 427687 0.04
pmed6 200 5 99 99 0 123946 0.03 99 0 159187 0.04
pmed7 200 10 80 80 183 139211 0.12 80 7 162246 0.07
pmed8 200 20 70 70 44606 131411 23.36 70 79 157030 0.12
pmed9 200 40 49 51 31908 134805 14.12 49 751 182220 0.44
pmed10 200 67 28 34 4561 191058 1.44 28 2025 199115 0.68

As one can note from the results of Table 3, the new objective function significantly
helps BP-VNS achieve better results as the version with the regular objective function
could not obtain optimum values in instances pmed4, pmed9, and pmed10, and some of
these by a large gap. Also, note that the BP-VNS with the regular objective function
took much longer to find the best solutions since the update objective function helps
BP-VNS move to more promising neighborhoods as it adds more information to solutions
costs. Even if the calculation of the new objective function adds a step of time complexity
O(Dmax), this time is clearly offset by the gains in terms of information embedded in the
solution algorithm, allowing it to explore more promising neighborhoods and ultimately
find better solutions faster. This development shows a huge potential for this problem
and can help improve convergence and solution quality in other types of problems as well.

4.2 Performance evaluation on the αNpCP

In this section, we compare our method with the best-known αNpCP solution values from
the literature. Specifically, for the 40 OR-library instances with α = {1, 2}, we compare
the results of our BP-VNS against the ones from the work of Mousavi [36]. For these
instances, we also tested with α = 3, and compared our results with the ones obtained
by the commercial solver solving model (1a)–(1f). For the 77 TSPLIB instances, we used
α = {1, 2, 3} and compared our results against the ones of the GRASP-SO heuristic [45].
Since we extracted the results of the heuristic of Mousavi [36] and of the GRASP-SO from
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their papers, and to provide a fair computational comparison, we have approximated their
running times by dividing the reported values by 1.5 and 0.85 [39], respectively.

Table 4 summarizes the results of the tests on the OR-library and TSPLIB instances.
This table shows the instance set names and the α values in the first two columns. Each
row of the OR-library instances set corresponds to the average results of 40 instances, and
each row of the TSPLIB to the average of 77 instances. We present for the commercial
solver and the heuristics the average of the best solutions values (best), the number of
best-known solutions (#bks) found, and the average of the running times (t (s)). Note
that since the stopping criterion of our BP-VNS is the execution time limit of 1 hour, we
show for this heuristic the time when the best solution was found (tbest (s)). In addition,
we present the average percentage gap (gap (%)) related to the best-known solutions.
The detailed results of these tests are presented in A.

Table 4: αNpCP summary results on OR-library and TSPLIB instances.

Gurobi
GRASP-SO

Mousavi [36]
Our

Instance [45] BP-VNS
set α best #bks t (s) best #bks gap (%) tbest (s) best #bks gap (%) tbest (s) best #bks gap (%) tbest (s)

OR-lib
1 37.33 40 366.47 - - - - 37.33 40 0.00 0.09 37.33 40 0.00 148.57
2 54.95 22 4309.75 - - - - 45.55 38 0.24 3.39 45.55 38 0.30 35.11
3 60.98 18 4977.89 - - - - - - - - 51.18 39 0.07 151.05

TSPLIB
1 2153.49 56 2920.51 505.43 11 5.63 653.16 - - - - 484.12 59 0.65 769.93
2 4515.61 36 4486.92 773.35 5 8.36 990.00 - - - - 735.71 73 0.05 1054.30
3 4881.12 28 4687.35 997.18 0 7.46 1147.78 - - - - 947.73 72 0.11 1099.00

Regarding the OR-library instances, Gurobi found optimal solutions in all instances
with α = 1, and so did our method and the heuristic of Mousavi [36]. Considering
α = 2, the commercial solver found 22 best solutions, all proven optimal. From these
22 solutions, our BP-VNS and the heuristic of Mousavi [36] obtained 20 optimal ones.
From the two solutions where both heuristics did not achieve the optima, one is the same
instance (pmed24), and the other one is different for each heuristic (pmed25 for BP-VNS
and pmed19 for the heuristic of Mousavi [36]). In these cases, the difference to the optimal
solutions was just one unit in all cases, but since the optimal solution value of pmed25
(15) is less than the pmed19 one (24), the relative gap of this one unit is greater in the
pmed25 case. This is why the average gap of BP-VNS was slightly larger than the one
of the algorithm of Mousavi [36]. Regarding α = 3, BP-VNS found the best solutions in
39 out of 40 instances, and the commercial solver obtained 18 best solutions, all of which
are optimal. Note that Mousavi [36] did not test their algorithm with this configuration.
From the 18 optimal solutions, our heuristic could not find the optimum of only one
instance. In this case, the difference between BP-VNS’s solution and the optimum was
again just one unit.

Considering all results in the OR-library instances with α = 1, 2, 3, the BP-VNS
presented an average improvement gap of 6.10% compared with results from the literature
and the commercial solver. Also, our heuristic could find 22 new best-known solutions,
where the average improvement in these cases was 33.96%.

Table 4 shows that our BP-VNS outperformed the commercial solver and the GRASP-
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SO on the TSPLIB instances with all α values, dominating that algorithm. With α = 1,
the commercial solver obtained 56 best solutions, of which 52 are optimal, the GRASP-SO
obtained 11 best ones, and our heuristic found 59 best solutions out of the 77 instances.
With α = 2 and α = 3, the difference in terms of solution quality between the proposed
BP-VNS and the other two solution methods was even more pronounced. For α = 2, BP-
VNS achieved 73 best solutions out of the 77 instances, whereas the commercial solver
and GRASP-SO found 36 and 11 best solutions, respectively. Similarly, for α = 3, BP-
VNS excelled by obtaining 72 best solutions, while the commercial solver achieved 28 best
solutions, and the GRASP-SO found none. On the 231 instances of the TSPLIB set, our
heuristic obtained an overall improvement gap of 2.02% compared with the results of the
literature and the commercial solver. Moreover, the BP-VNS found 109 new best-known
solutions with an average improvement of 4.79%.

Considering computational times, even though our heuristic ran for 1 hour in all
instances, finding the best solutions in both instances sets required much less time. In the
OR-library, although the heuristic of Mousavi [36] is fast, BP-VNS could find the same
solutions found by this heuristic, and our method obtained all optimal solutions with
α = 1 in less runtime when compared to Gurobi. Moreover, our method outperformed
Gurobi with α = 2 and α = 3, finding the best solutions with significantly less execution
time. Regarding the tests in the TSPLIB instances, BP-VNS could find better solutions
in a similar runtime as the GRASP-SO heuristic and in much less execution time than
the commercial solver.

4.3 Performance evaluation on the αNpMP

The results of the tests on the αNpMP are presented in this section. Here, we compare
the results of our BP-VNS against the MIP solver and those of the BIMM heuristic [38].
Following Panteli et al. [38], instead of using the original p values from each instance,
we used two values of p for every OR-library instance: p = 10 and p = 20. Moreover,
to properly compare the results, we only used one value of α for each value of p. More
specifically, when p = 10 we use α = 5, and when p = 20 we set α = 10. Then, we solved
model (2a)–(2e) with a commercial solver and ran our BP-VNS on all 80 OR-library
instances derived by using the values of p and α as just described.

Table 5 has a structure similar to the one presented in Section 4.2 and summarizes the
tests’ results on the OR-library instances. In Table 5, each row corresponds to an average
of 40 instances, where the first two columns show the p and α values used. Then, for each
pair of p and α, we present the results for the commercial solver, the BIMM heuristic,
and our BP-VNS. The table shows the average of the best solutions costs, the number
of optimal solutions obtained by each method (#opt), and the running times in seconds.
Again, we approximated the running times of the BIMM by dividing its reported runtime
by 1.2 [39] as they were extracted from the work of [38]. We also show the gap related to
the best-known solutions, which in this case are the solutions from the solver, since the
commercial solver could prove optimality for all instances. The detailed results of these
tests are presented in B.
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Table 5: αNpMP summary results on OR-library instances.

MIP solver BIMM [38] BP-VNS
p α best #opt t (s) best #opt gap (%) t (s)1 best #opt gap (%) tbest (s)
10 5 55807.95 40 138.93 57046.05 0 2.28 1.53 55807.95 40 0.00 0.77
20 10 112785.10 40 172.42 115884.23 0 2.82 3.32 112785.28 39 0.00 1.03

Average 84296.53 40 155.67 86465.14 0 2.55 2.43 84296.61 39.5 0.00 0.90

1 Original running times divided by 1.2, an approximation obtained from [39].

The results indicate that the proposed BP-VNS outperformed the BIMM heuristic
regarding solution quality and computational performance in the two sets of 40 instances.
Indeed, as the detailed results of B show, our heuristic found better solutions than the
ones found by the BIMM in all instances, dominating that algorithm. Moreover, our
method found an optimal solution for all but one of the 80 instances; in this case, the
gap to the optimal solution was 0.01%. On the other hand, the BIMM could not find any
optimum, with a gap of more than 2.5% and an adjusted runtime more than 2.5 times
that of our BP-VNS heuristic.

Although our heuristic ran for 1 hour, the optimal solutions were obtained in much
less time, as noted from the tbest (s) column. In fact, all BKS were found in less than
10 seconds. Our BP-VNS found all optimal solutions in less than half of the BIMM’s
execution time, on average. In addition, the average run time of BP-VNS for finding the
best solutions was much faster than the ones from the commercial solver required to prove
optimality.

5 Conclusions

This paper presented an effective Basic Parallel VNS for the αNpCP and the αNpMP.
Using the LIMA methodology, we have developed this heuristic using straightforward and
user-friendly algorithmic components and adapting the robust and well-known algorithms
of Hansen and Mladenović [20] for the αNpMP, and Mladenović et al. [34] for the αNpCP.
Computational results indicate that the αNpC problem contains many symmetrical solu-
tions, where only one edge determines the cost of the solution, and all remaining edges
appearing in the solution are not considered. To overcome this problem and to give the
algorithm more information about the whole solution, we have adapted an evaluation
function used in the bandwidth minimization problem, another a min-max optimization
problem, and applied it for the first time to the αNpCP context. This updated objective
function adds more information to a αNpCP solution, helping it to differentiate solutions
of the same cost better. This improved objective function is demonstrated to not interfere
with optimality and significantly helped the algorithm’s convergence.

Despite its simplicity, our heuristic consistently achieves state-of-the-art solutions in
almost all instances, and it could improve most of the best-known solutions from the
literature. Specifically, in the αNpCP, the proposed VNS found the greater number of
best solutions in both OR-library and TSPLIB instance sets, obtaining 321 best solutions
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out of 351 possible ones, including 22 new best solutions on the OR-library instances and
109 new best solutions on the TSPLIB set. Considering all these instances, the average
gap obtained by our heuristic to the best-known solutions was 0.2%. Moreover, our VNS
required only a fraction of a second or, at most, a few seconds to find these solutions. A
similar performance could be seen in the αNpMP tests. In this case, our heuristic could
find the optimal solutions in all 80 instances but one. Comparisons against the literature
demonstrate that our VNS outperformed the BIMM heuristic in all instances. Again, the
computational performance of the VNS was remarkable.

Our VNS algorithm’s performance across various α values in solving many instances
and its simplicity and user-friendliness make it an efficient choice for tackling the αNpCP
and αNpMP optimization problems. The updated αNpCP objective function has shown to
be a practical approach to help the heuristic escape from local optima, showing promising
applications in other optimization problems where there are many solution symmetries,
such as in other min-max problems.

For future works, one can apply this BP-VNS heuristic, for example, to the capaci-
tated extensions of the αNpCP and αNpMP. Moreover, we expect the improved objective
function to show promising results in other problems, given that it increases the amount
of information used by the algorithm without much computational burden.
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[27] López-Sánchez, A.D., Sánchez-Oro, J., Hernández, A.G., 2019. Grasp and VNS for
solving the p-next center problem. Computers & Operations Research 104, 295–303.
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A Results for the αNpCP

This appendix shows the detailed results for the αNpCP. Tables 6, 7 and 8 and Tables 9, 10
and 11 show the results of the tests in the OR-library instances and the TSPLIB instances,
respectively. For the tests with the OR-library instances, we present the results of the
commercial solver and our heuristic for α = {1, 2, 3} and the ones of the heuristic of
Mousavi [36] for α = {1, 2}. For the tests with the TSPLIB instances, we show results
of the commercial solver, the GRASP-SO heuristic [45] and our VNS for α = {1, 2, 3}.
Tables 6–11 have the same structure where the instance name, the number of vertices,
and the number of facilities are presented in the first three columns. Then, for the Gurobi
results, we show the best solution found, the optimality gap (gapopt(%)), that is, the gap
related to the branch-and-bound lower bound and the running time. For the heuristics,
we also show the best solution found and the running times, but we show the gap related
to the best known solution.
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Table 6: αNpCP results for the OR-library instances with α = 1.

Gurobi Mousavi [36] VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)
pmed1 100 5 127 0.00 4.93 127 0.00 0.00 127 0.00 0.04
pmed2 100 10 98 0.00 2.86 98 0.00 0.00 98 0.00 0.06
pmed3 100 10 93 0.00 2.85 93 0.00 0.01 93 0.00 2.49
pmed4 100 20 74 0.00 1.48 74 0.00 0.01 74 0.00 0.08
pmed5 100 33 48 0.00 1.15 48 0.00 0.00 48 0.00 0.01
pmed6 200 5 84 0.00 21.16 84 0.00 0.00 84 0.00 0.04
pmed7 200 10 64 0.00 15.46 64 0.00 0.00 64 0.00 0.65
pmed8 200 20 55 0.00 15.32 55 0.00 0.00 55 0.00 0.26
pmed9 200 40 37 0.00 6.09 37 0.00 0.00 37 0.00 0.15
pmed10 200 67 20 0.00 4.61 20 0.00 0.01 20 0.00 0.49
pmed11 300 5 59 0.00 45.49 59 0.00 0.05 59 0.00 0.12
pmed12 300 10 51 0.00 40.68 51 0.00 0.01 51 0.00 1.84
pmed13 300 30 36 0.00 23.83 36 0.00 0.02 36 0.00 30.60
pmed14 300 60 26 0.00 14.35 26 0.00 0.01 26 0.00 3.96
pmed15 300 100 18 0.00 11.17 18 0.00 0.00 18 0.00 0.96
pmed16 400 5 47 0.00 43.29 47 0.00 0.00 47 0.00 0.08
pmed17 400 10 39 0.00 102.43 39 0.00 0.00 39 0.00 0.17
pmed18 400 40 28 0.00 39.54 28 0.00 0.05 28 0.00 3.15
pmed19 400 80 18 0.00 33.28 18 0.00 0.41 18 0.00 109.08
pmed20 400 133 13 0.00 24.82 13 0.00 0.61 13 0.00 5.21
pmed21 500 5 40 0.00 128.51 40 0.00 0.00 40 0.00 0.18
pmed22 500 10 38 0.00 652.15 38 0.00 0.02 38 0.00 8.56
pmed23 500 50 22 0.00 92.78 22 0.00 0.27 22 0.00 43.18
pmed24 500 100 15 0.00 55.61 15 0.00 0.04 15 0.00 13.30
pmed25 500 167 11 0.00 48.95 11 0.00 0.05 11 0.00 2.67
pmed26 600 5 38 0.00 1414.87 38 0.00 0.00 38 0.00 0.27
pmed27 600 10 32 0.00 254.74 32 0.00 0.00 32 0.00 0.39
pmed28 600 60 18 0.00 115.44 18 0.00 0.09 18 0.00 188.69
pmed29 600 120 13 0.00 108.06 13 0.00 0.03 13 0.00 20.94
pmed30 600 200 9 0.00 93.71 9 0.00 0.63 9 0.00 270.29
pmed31 700 5 30 0.00 412.46 30 0.00 0.00 30 0.00 0.89
pmed32 700 10 29 0.00 1468.32 29 0.00 0.01 29 0.00 0.56
pmed33 700 70 15 0.00 321.06 15 0.00 0.53 15 0.00 940.97
pmed34 700 140 11 0.00 104.73 11 0.00 0.01 11 0.00 63.36
pmed35 800 5 30 0.00 882.36 30 0.00 0.01 30 0.00 0.53
pmed36 800 10 27 0.00 1178.22 27 0.00 0.03 27 0.00 4.33
pmed37 800 80 15 0.00 539.59 15 0.00 0.12 15 0.00 54.00
pmed38 900 5 29 0.00 535.79 29 0.00 0.01 29 0.00 0.40
pmed39 900 10 23 0.00 4943.95 23 0.00 0.17 23 0.00 2174.25
pmed40 900 90 13 0.00 852.79 13 0.00 0.23 13 0.00 1995.73

Average 37.33 0.00 366.47 37.33 0.00 0.09 37.33 0.00 148.57

1 Original running times divided by 1.5, an approximation obtained from [39].
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Table 7: αNpCP results for the OR-library instances with α = 2.

Gurobi Mousavi [36] VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)
pmed1 100 5 150 0.00 36.53 150 0.00 0.01 150 0.00 0.02
pmed2 100 10 121 0.00 38.89 121 0.00 0.13 121 0.00 0.15
pmed3 100 10 121 0.00 116.35 121 0.00 0.17 121 0.00 1.82
pmed4 100 20 97 0.00 58.94 97 0.00 5.46 97 0.00 0.04
pmed5 100 33 63 0.00 27.94 63 0.00 0.01 63 0.00 3.14
pmed6 200 5 99 0.00 2109.87 99 0.00 0.02 99 0.00 0.12
pmed7 200 10 80 0.00 881.87 80 0.00 0.06 80 0.00 0.54
pmed8 200 20 70 0.00 654.04 70 0.00 0.02 70 0.00 0.86
pmed9 200 40 49 0.00 377.52 49 0.00 0.49 49 0.00 37.48
pmed10 200 67 28 0.00 113.37 28 0.00 0.41 28 0.00 0.46
pmed11 300 5 68 0.00 2418.26 68 0.00 0.00 68 0.00 0.28
pmed12 300 10 60 0.00 5043.11 60 0.00 0.18 60 0.00 79.19
pmed13 300 30 43 0.00 2504.04 43 0.00 1.38 43 0.00 4.68
pmed14 300 60 34 0.00 1147.22 34 0.00 0.62 34 0.00 7.92
pmed15 300 100 23 0.00 831.86 23 0.00 4.57 23 0.00 0.44
pmed16 400 5 66 96.97 7312.80 52 0.00 0.16 52 0.00 0.39
pmed17 400 10 45 0.00 3114.33 45 0.00 0.03 45 0.00 0.53
pmed18 400 40 34 0.00 3663.91 34 0.00 11.84 34 0.00 1.58
pmed19 400 80 24 0.00 3743.45 25 4.17 0.11 24 0.00 1.26
pmed20 400 133 19 0.00 642.21 19 0.00 0.83 19 0.00 7.14
pmed21 500 5 61 98.36 7200.10 45 0.00 0.80 45 0.00 174.57
pmed22 500 10 59 98.31 7200.12 44 0.00 0.28 44 0.00 1.45
pmed23 500 50 36 88.89 7288.52 27 0.00 7.45 27 0.00 10.92
pmed24 500 100 19 0.00 7075.38 20 5.26 0.36 20 5.26 6.02
pmed25 500 167 15 0.00 2542.68 15 0.00 22.45 16 6.67 60.27
pmed26 600 5 53 98.11 7200.09 43 0.00 0.16 43 0.00 0.83
pmed27 600 10 41 97.56 7200.06 36 0.00 0.06 36 0.00 0.91
pmed28 600 60 50 98.00 7200.08 22 0.00 0.39 22 0.00 759.15
pmed29 600 120 59 98.31 7889.52 17 0.00 0.21 17 0.00 181.00
pmed30 600 200 13 0.00 4693.29 13 0.00 1.93 13 0.00 5.99
pmed31 700 5 44 97.73 7200.17 34 0.00 0.03 34 0.00 0.92
pmed32 700 10 46 97.83 7200.07 33 0.00 0.14 33 0.00 1.44
pmed33 700 70 34 97.06 7200.12 19 0.00 6.85 19 0.00 3.16
pmed34 700 140 75 98.67 7200.08 14 0.00 65.18 14 0.00 23.32
pmed35 800 5 43 97.67 7206.02 34 0.00 0.36 34 0.00 0.88
pmed36 800 10 46 97.83 7207.51 31 0.00 0.17 31 0.00 1.70
pmed37 800 80 68 98.53 7200.07 19 0.00 0.08 19 0.00 7.06
pmed38 900 5 52 98.08 7200.15 33 0.00 0.06 33 0.00 0.96
pmed39 900 10 40 97.50 7249.48 26 0.00 0.12 26 0.00 1.76
pmed40 900 90 50 100.00 7200.10 16 0.00 2.03 16 0.00 14.19

Average 54.95 43.88 4309.75 45.55 0.24 3.39 45.55 0.30 35.11

1 Original running times divided by 1.5, an approximation obtained from [39].
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Table 8: αNpCP results for the OR-library instances with α = 3.

Gurobi VNS
Instance n p best gapopt(%) t(s) best gap(%) tbest(s)
pmed1 100 5 171 0.00 18.52 171 0.00 0.17
pmed2 100 10 138 0.00 105.23 138 0.00 0.39
pmed3 100 10 142 0.00 200.92 142 0.00 8.01
pmed4 100 20 118 0.00 304.62 118 0.00 1.22
pmed5 100 33 76 0.00 91.17 76 0.00 0.04
pmed6 200 5 110 0.00 1191.89 110 0.00 0.13
pmed7 200 10 87 0.00 1608.21 87 0.00 0.24
pmed8 200 20 75 0.00 1283.11 75 0.00 37.16
pmed9 200 40 55 0.00 955.37 55 0.00 3.28
pmed10 200 67 34 0.00 230.77 34 0.00 0.41
pmed11 300 5 72 0.00 1856.76 72 0.00 0.33
pmed12 300 10 84 96.43 7200.01 66 0.00 2.42
pmed13 300 30 48 0.00 4913.13 48 0.00 0.62
pmed14 300 60 38 0.00 3006.85 38 0.00 48.02
pmed15 300 100 27 0.00 1398.19 27 0.00 33.48
pmed16 400 5 55 0.00 4152.29 55 0.00 0.38
pmed17 400 10 52 82.69 7200.01 48 0.00 0.60
pmed18 400 40 38 0.00 6290.50 39 2.63 2.72
pmed19 400 80 28 0.00 5782.77 28 0.00 41.07
pmed20 400 133 22 0.00 3431.93 22 0.00 163.31
pmed21 500 5 58 96.55 7200.11 50 0.00 0.60
pmed22 500 10 61 98.36 9180.37 47 0.00 0.60
pmed23 500 50 34 70.59 7200.03 31 0.00 2.23
pmed24 500 100 53 98.11 7200.19 23 0.00 364.79
pmed25 500 167 34 97.06 7200.14 18 0.00 116.80
pmed26 600 5 59 96.61 7200.17 48 0.00 0.87
pmed27 600 10 52 98.08 7200.23 38 0.00 1.56
pmed28 600 60 34 97.06 8236.53 24 0.00 2234.59
pmed29 600 120 28 96.43 8065.69 20 0.00 136.04
pmed30 600 200 72 98.61 7200.08 16 0.00 153.33
pmed31 700 5 47 100.00 7200.14 37 0.00 19.24
pmed32 700 10 49 97.96 7200.21 35 0.00 1557.37
pmed33 700 70 61 100.00 7200.27 22 0.00 932.45
pmed34 700 140 74 98.65 7200.00 17 0.00 122.48
pmed35 800 5 45 97.78 7200.14 36 0.00 0.93
pmed36 800 10 46 97.83 7200.00 33 0.00 1.84
pmed37 800 80 37 100.00 7200.00 21 0.00 43.30
pmed38 900 5 52 98.08 7201.05 35 0.00 1.69
pmed39 900 10 40 97.50 7208.02 28 0.00 1.80
pmed40 900 90 33 96.97 7200.17 19 0.00 5.52

Average 60.98 48.28 4977.89 51.18 0.07 151.05
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Table 9: αNpCP results for the TSPLIB instances with α = 1.

Gurobi GRASP-SO VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)

att48 48

10 1203.18 0.00 0.35 1203.18 0.00 2.18 1203.18 0.00 0.24
20 710.72 0.00 0.22 710.77 0.01 0.76 710.72 0.00 0.19
30 462.08 0.00 0.17 462.08 0.00 0.26 462.08 0.00 0.09
40 319.85 0.00 0.31 319.85 0.00 0.07 319.85 0.00 0.09

eil101 101

10 14.14 0.00 9.46 14.32 1.27 30.64 14.14 0.00 0.05
20 10.05 0.00 3.33 10.30 2.49 10.00 10.05 0.00 14.28
30 8.06 0.00 1.59 8.25 2.36 5.59 8.06 0.00 1.02
40 7.21 0.00 1.2 7.28 0.97 3.40 7.21 0.00 0.02
50 6.70 0.00 0.88 7.07 5.52 2.12 6.70 0.00 0.01
60 5.83 0.00 0.87 6.32 8.40 1.27 5.83 0.00 0.76
70 5.00 0.00 0.73 5.00 0.00 0.65 5.00 0.00 0.04
80 4.12 0.00 0.89 4.12 0.00 0.29 4.12 0.00 0.14
90 3.16 0.00 0.8 3.16 0.00 0.09 3.16 0.00 0.02

100 1.41 0.00 3.98 1.41 0.00 0.06 1.41 0.00 0.06

ch150 150

10 141.53 0.00 34.16 141.53 0.00 97.60 141.53 0.00 1.26
20 94.93 0.00 12.84 97.13 2.32 47.02 94.93 0.00 1.70
30 76.62 0.00 4.05 79.56 3.84 21.19 76.62 0.00 12.58
40 64.45 0.00 3.72 68.23 5.87 14.38 64.45 0.00 2.98
50 54.02 0.00 2.49 60.94 12.81 9.11 54.02 0.00 0.14
60 46.27 0.00 2.65 49.64 7.28 7.40 46.27 0.00 405.71
70 42.27 0.00 2.32 46.48 9.96 5.15 42.27 0.00 2.13
80 39.10 0.00 2.51 41.46 6.04 3.86 39.10 0.00 0.64
90 35.39 0.00 2.2 38.38 8.45 2.56 35.39 0.00 1.91

100 32.30 0.00 2.19 33.47 3.62 1.76 32.30 0.00 0.03
110 29.44 0.00 2.18 30.18 2.51 1.12 29.44 0.00 0.25
120 26.61 0.00 2.16 27.36 2.82 0.65 26.61 0.00 0.22
130 22.46 0.00 2.19 22.45 0.00 0.31 22.45 0.00 0.02
140 17.58 0.00 2.21 17.58 0.00 0.13 17.58 0.00 0.02

pr439 439

10 1971.83 0.00 369.77 1971.83 0.00 2118.65 1971.83 0.00 4.72
20 1185.59 0.00 130.6 1200.26 1.24 1842.95 1185.59 0.00 8.75
30 883.53 0.00 162.47 886.71 0.36 895.65 883.53 0.00 536.09
40 671.75 0.00 105.13 728.87 8.50 576.47 671.75 0.00 114.11
50 564.03 0.00 71.1 600.00 6.38 346.49 564.03 0.00 100.32
60 500.00 0.00 49.99 548.29 9.66 270.69 500.00 0.00 76.60
70 474.34 0.00 80.87 500.00 5.41 206.22 477.62 0.69 172.23
80 412.31 0.00 64.22 475.66 15.36 183.19 412.31 0.00 1606.29
90 395.28 0.00 83.27 416.08 5.26 154.33 400.00 1.19 2.54

rat575 575

10 72.67 45.73 3853.01 73.00 0.45 952.84 72.67 0.00 3052.44
20 49.65 51.58 7200.23 50.80 2.90 563.13 49.37 0.00 549.95
30 41.04 24.74 7200.16 41.79 5.64 299.96 39.56 0.00 1804.47
40 33.42 33.03 7200.06 36.36 8.79 206.32 34.13 2.12 491.89
50 29.43 2.87 4165.68 32.56 10.64 135.53 30.27 2.86 229.14
60 27.00 0.00 4713.32 29.53 9.37 113.64 27.73 2.70 992.80
70 24.76 0.00 2953.35 27.66 11.72 98.71 25.63 3.52 3566.60
80 23.35 0.00 1601 25.50 9.23 83.20 24.08 3.15 1007.91
90 21.93 0.00 472.15 24.19 10.30 67.68 22.14 0.95 254.05

100 20.62 0.00 218.54 22.80 10.60 61.94 21.02 1.96 1076.40

rat783 783

10 83.49 0.00 3811.9 85.23 2.08 2117.65 83.49 0.00 25.95
20 329.20 22.21 7200.07 59.77 5.14 1486.40 56.85 0.00 616.75
30 63.64 31.71 7200.08 49.04 4.70 896.69 46.84 0.00 939.48
40 64.38 1.85 7805.94 43.05 6.80 730.84 40.31 0.00 263.67
50 44.60 0.00 7805.9 37.95 7.08 546.27 35.44 0.00 822.03
60 34.67 0.00 7806.8 34.79 7.88 485.51 32.25 0.00 3235.36
70 30.02 0.00 8433.45 32.20 10.24 403.09 29.21 0.00 2046.69
80 26.93 0.00 7200.52 30.08 11.71 354.31 28.07 4.25 1157.23
90 25.94 0.00 7611.35 28.16 8.55 321.51 26.57 2.42 2502.26

100 24.04 0.00 1906.5 27.02 12.39 258.48 24.84 3.32 2175.31

Continued on next page
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Table 9: continued from previous page.

Gurobi GRASP-SO VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)

pr1002 1002

10 3200.00 0.00 7200.11 2610.08 2.75 2117.69 2540.18 0.00 24.62
20 2371.17 88.54 7200.08 1795.13 2.92 2117.66 1744.28 0.00 3253.26
30 1403.57 53.10 7200.17 1439.62 4.10 1902.38 1382.93 0.00 393.98
40 1303.84 60.67 7200.07 1253.99 3.60 1517.40 1210.37 0.00 721.80
50 1029.56 47.48 7200.11 1096.59 6.51 1168.76 1029.56 0.00 379.80
60 912.41 38.35 3048.71 999.64 9.56 1160.79 961.77 5.41 160.03
70 850.00 29.06 4662.32 919.24 8.15 1053.49 874.64 2.90 2952.75
80 761.58 16.19 747.44 851.47 11.80 819.44 764.85 0.43 943.18
90 715.89 22.06 923.9 790.57 10.43 660.44 738.24 3.12 2672.51

100 670.82 0.00 498.86 756.64 12.79 548.54 707.11 5.41 100.99

rl1323 1323

10 10288.80 80.45 7200.17 3130.67 1.73 2117.71 3077.30 0.00 1107.01
20 19687.52 93.34 7200.24 2088.39 3.29 2117.68 2021.87 0.00 737.32
30 19687.52 94.80 7200.15 1745.76 6.99 2117.67 1631.69 0.00 1794.85
40 17617.35 95.14 7200.13 1451.77 5.38 2117.66 1377.68 0.00 797.65
50 19687.52 96.22 7200.45 1290.32 6.11 2117.66 1216.00 0.00 3257.79
60 19687.52 96.61 7200.16 1191.50 9.26 2117.66 1090.47 0.00 1516.03
70 16670.03 96.37 7200.13 1075.86 8.45 2117.67 992.00 0.00 3052.73
80 1047.37 45.45 7200.12 987.47 5.77 2103.61 933.59 0.00 1547.85
90 16075.14 96.82 7200.16 926.77 7.09 1686.99 865.39 0.00 849.75

100 787.10 0.00 6615.58 880.00 11.80 1564.48 816.09 3.68 3142.42

Average 2153.49 17.72 2920.51 505.43 5.63 653.16 484.12 0.65 769.93

1 Original running times divided by 0.85, approximation obtained from [39].

Table 10: αNpCP results for the TSPLIB instances with α = 2.

Gurobi GRASP-SO VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)

att48 48

10 1592.12 0.00 7.25 1592.12 0.00 2.18 1592.12 0.00 0.70
20 1061.69 0.00 6.00 1130.85 6.51 0.76 1061.69 0.00 0.23
30 729.90 0.00 1.21 936.38 28.29 0.26 729.90 0.00 0.19
40 485.06 0.00 1.04 532.08 9.69 0.07 485.06 0.00 0.13

eil101 101

10 21.21 0.00 75.40 21.21 0.00 30.64 21.21 0.00 1.46
20 13.60 0.00 48.22 14.14 3.97 10.00 13.60 0.00 0.05
30 11.05 0.00 13.13 12.00 8.60 5.59 11.05 0.00 143.92
40 9.06 0.00 12.76 9.43 4.08 3.40 9.06 0.00 64.68
50 8.06 0.00 16.89 8.60 6.70 2.12 8.06 0.00 1.23
60 7.07 0.00 15.45 8.25 16.69 1.27 7.07 0.00 0.42
70 6.32 0.00 14.15 7.28 15.19 0.65 6.32 0.00 0.98
80 5.10 0.00 13.20 6.32 23.92 0.29 5.10 0.00 1.64
90 4.12 0.00 10.70 5.00 21.36 0.09 4.12 0.00 0.02

100 2.24 0.00 5.04 2.83 26.34 0.06 2.24 0.00 0.09

ch150 150

10 205.66 0.00 250.77 205.66 0.00 97.60 205.66 0.00 0.47
20 138.69 0.00 218.90 141.53 2.04 47.02 140.76 1.49 0.36
30 108.03 0.00 126.20 112.51 4.15 21.19 108.03 0.00 104.56
40 92.67 0.00 153.66 96.42 4.05 14.38 92.81 0.15 755.35
50 82.11 0.00 145.98 87.69 6.80 9.11 82.11 0.00 1.88
60 70.71 0.00 123.40 78.42 10.90 7.40 70.79 0.11 36.46
70 64.45 0.00 83.45 68.23 5.87 5.15 64.45 0.00 27.96
80 58.37 0.00 83.46 64.56 10.61 3.86 58.37 0.00 0.40
90 51.50 0.00 87.67 62.04 20.46 2.56 51.50 0.00 3.66

100 46.49 0.00 78.23 53.21 14.46 1.76 46.49 0.00 0.22
110 43.77 0.00 71.87 51.65 18.01 1.12 43.77 0.00 0.05
120 39.32 0.00 56.92 50.30 27.92 0.65 39.32 0.00 0.06
130 36.02 0.00 56.51 46.63 29.46 0.31 36.02 0.00 0.04
140 29.69 0.00 56.44 42.30 42.47 0.13 29.69 0.00 0.12
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Table 10: continued from previous page.

Gurobi GRASP-SO VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)

pr439 439

10 4939.26 97.92 7200.04 3146.63 0.00 2118.65 3146.63 0.00 17.08
20 2177.44 0.00 6953.47 2226.26 2.24 1842.95 2177.44 0.00 7.47
30 1475.85 0.00 6198.28 1500.21 1.65 895.65 1475.85 0.00 10.51
40 1185.59 3.83 7200.03 1253.99 5.77 576.47 1185.59 0.00 43.59
50 984.89 0.00 3411.00 1068.00 8.44 346.49 984.89 0.00 1622.51
60 886.71 14.25 7200.33 975.00 9.96 270.69 886.71 0.00 1386.58
70 726.72 0.00 4305.21 905.54 24.61 206.22 726.72 0.00 1361.02
80 637.38 0.00 5350.93 731.86 14.82 183.19 651.92 2.28 305.72
90 583.10 0.00 6618.35 715.89 22.77 154.33 583.10 0.00 192.35

rat575 575

10 341.47 99.84 7200.04 116.87 0.66 952.84 116.10 0.00 989.44
20 258.21 91.63 7213.12 74.25 1.71 563.13 73.00 0.00 9.32
30 364.18 99.88 7200.11 60.67 4.15 299.96 58.25 0.00 73.14
40 272.15 99.84 7200.12 51.40 4.81 206.32 49.04 0.00 2900.41
50 390.75 99.90 7200.07 46.52 5.03 135.53 44.29 0.00 307.11
60 62.63 99.37 7200.03 41.60 3.97 113.64 40.01 0.00 128.25
70 59.68 99.36 7200.13 37.70 3.71 98.71 36.35 0.00 1312.73
80 60.17 99.38 7201.95 35.90 6.85 83.20 33.60 0.00 2979.80
90 53.34 97.38 7213.89 33.60 5.30 67.68 31.91 0.00 2909.35

100 31.83 51.08 7200.03 31.39 7.46 61.94 29.21 0.00 3221.61

rat783 783

10 544.47 99.91 7200.00 138.60 2.48 2117.65 135.25 0.00 130.69
20 608.55 99.93 7200.00 86.38 2.74 1486.40 84.08 0.00 2925.25
30 608.55 99.94 7200.00 70.84 4.98 896.69 67.48 0.00 2978.06
40 608.55 99.94 7200.00 60.14 5.84 730.84 56.82 0.00 1044.09
50 628.41 99.94 8230.08 52.80 2.29 546.27 51.62 0.00 2104.32
60 628.41 99.94 7200.00 48.75 5.25 485.51 46.32 0.00 2680.42
70 628.41 99.95 7200.00 44.41 3.96 403.09 42.72 0.00 398.34
80 628.41 99.95 7200.00 42.43 4.77 354.31 40.50 0.00 3384.32
90 74.09 100.00 7200.00 39.21 4.45 321.51 37.54 0.00 1787.14

100 628.41 99.95 7200.00 37.48 5.76 258.48 35.44 0.00 21.99

pr1002 1002

10 15502.02 99.93 7359.66 3853.89 0.00 2117.69 3853.89 0.00 24.30
20 14586.38 99.94 7200.00 2710.17 4.30 2117.66 2598.56 0.00 2416.32
30 14297.73 99.91 7200.00 2150.58 4.32 1902.38 2061.55 0.00 1362.05
40 14297.73 99.91 7200.00 1811.77 3.87 1517.40 1744.28 0.00 3158.71
50 14297.73 99.92 7200.00 1619.41 5.81 1168.76 1530.52 0.00 2457.12
60 17479.42 99.95 7200.00 1431.78 4.28 1160.79 1372.95 0.00 3435.73
70 17479.42 99.95 7200.00 1346.29 5.05 1053.49 1281.60 0.00 430.92
80 17479.42 99.95 7200.00 1253.00 4.24 819.44 1202.08 0.00 3226.96
90 17479.42 99.95 7200.00 1170.48 6.74 660.44 1096.59 0.00 1002.65

100 17479.42 99.95 7200.00 1079.35 4.84 548.54 1029.56 0.00 1937.53

rl1323 1323

10 14958.28 100.00 7200.23 4694.15 3.08 2117.71 4554.09 0.00 136.54
20 13332.43 99.93 7200.15 3227.00 5.65 2117.68 3054.32 0.00 2218.76
30 14417.03 99.94 7200.16 2563.30 4.62 2117.67 2450.00 0.00 2146.83
40 13071.26 100.00 7200.25 2166.96 7.16 2117.66 2022.15 0.00 2548.62
50 14417.53 100.00 7200.80 1907.69 5.48 2117.66 1808.50 0.00 3240.20
60 12274.84 99.94 7200.14 1735.40 3.95 2117.66 1669.53 0.00 3533.67
70 19687.52 99.96 7200.20 1595.20 6.85 2117.67 1493.00 0.00 2450.81
80 19687.52 99.97 7200.15 1440.89 4.82 2103.61 1374.60 0.00 2982.08
90 19687.52 99.97 7200.18 1374.72 6.23 1686.99 1294.08 0.00 1551.76

100 19687.52 99.97 7200.15 1293.63 7.50 1564.48 1203.33 0.00 2539.25

Average 4515.61 52.63 4486.92 773.35 8.36 990.00 735.71 0.05 1054.30

1 Original running times divided by 0.85, approximation obtained from [39].
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Table 11: αNpCP results for the TSPLIB instances with α = 3.

Gurobi GRASP-SO VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)

att48 48

10 2081.57 0.00 8.86 2186.31 5.03 7.91 2081.57 0.00 1.48
20 1283.35 0.00 5.70 1374.48 7.10 1.89 1283.35 0.00 0.12
30 949.29 0.00 1.35 1011.66 6.57 0.64 949.29 0.00 1.13
40 645.88 0.00 1.18 675.00 4.51 0.09 645.88 0.00 0.11

eil101 101

10 29.43 0.00 88.35 29.43 0.01 108.75 29.43 0.00 0.18
20 17.80 0.00 134.25 18.03 1.29 51.45 17.80 0.00 0.97
30 13.15 0.00 145.80 14.14 7.50 22.79 13.60 3.40 0.10
40 11.18 0.00 39.37 12.04 7.69 11.42 11.18 0.00 1.28
50 9.43 0.00 14.69 10.63 12.73 5.58 9.43 0.00 15.13
60 8.06 0.00 16.10 9.06 12.41 2.61 8.06 0.00 1.69
70 7.28 0.00 18.92 8.54 17.31 1.25 7.28 0.00 4.69
80 6.40 0.00 17.31 7.28 13.75 0.52 6.40 0.00 0.06
90 5.00 0.00 16.98 6.08 21.60 0.13 5.00 0.00 0.02

100 2.83 0.00 4.11 2.83 0.06 0.06 2.83 0.00 0.02

ch150 150

10 297.96 0.00 386.40 298.56 0.20 468.27 297.96 0.00 2.28
20 176.47 0.00 913.48 179.71 1.84 177.58 177.01 0.31 2.55
30 137.46 0.00 1332.72 146.41 6.51 91.86 137.46 0.00 314.76
40 114.47 0.00 904.84 119.22 4.15 61.29 114.92 0.40 709.79
50 100.34 0.00 1556.91 108.03 7.67 31.41 100.34 0.00 3436.95
60 90.58 0.00 604.79 97.46 7.60 20.92 92.79 2.44 479.66
70 83.19 0.00 192.81 92.82 11.58 15.41 83.19 0.00 223.16
80 74.93 0.01 159.37 83.38 11.28 9.81 76.36 1.91 247.78
90 67.73 0.00 97.76 79.81 17.84 5.59 67.73 0.00 2277.29

100 63.42 0.00 91.36 69.35 9.35 3.80 63.42 0.00 1047.54
110 59.04 0.00 87.13 67.22 13.86 2.18 59.04 0.00 0.04
120 52.97 0.00 77.66 61.29 15.71 1.12 52.97 0.00 41.12
130 44.46 0.00 59.64 57.50 29.34 0.48 44.46 0.00 0.05
140 38.56 0.00 54.57 52.20 35.37 0.19 38.56 0.00 0.15

pr439 439

10 7385.88 99.55 7200.09 4076.23 0.64 2118.20 4050.31 0.00 10.11
20 2725.46 77.44 7200.09 2726.03 1.59 2117.75 2683.28 0.00 813.82
30 4907.27 99.47 7200.02 2231.73 8.05 2118.21 2065.49 0.00 38.89
40 1637.83 73.66 7200.08 1644.88 2.75 2118.14 1600.78 0.00 24.91
50 3692.98 99.01 7635.19 1467.35 8.69 2117.71 1350.00 0.00 347.90
60 1844.76 92.24 7200.02 1340.01 14.98 2117.68 1165.39 0.00 2923.54
70 1886.80 77.51 7200.02 1231.11 22.16 1548.82 1007.78 0.00 821.06
80 1631.91 91.19 7200.02 1217.58 33.00 1124.40 915.49 0.00 230.96
90 1566.25 91.81 7236.37 986.47 23.31 851.04 800.00 0.00 2227.39

rat575 575

10 462.77 99.82 7233.33 140.52 1.20 2117.66 138.85 0.00 125.61
20 212.36 99.65 7296.31 94.64 0.29 2117.65 94.37 0.00 809.05
30 139.90 99.52 7200.03 74.52 2.86 1295.68 72.45 0.00 2856.37
40 530.55 99.88 7527.81 64.88 2.97 1118.25 63.01 0.00 3525.88
50 411.02 99.85 7200.11 56.94 5.06 843.99 54.20 0.00 1141.80
60 396.13 99.85 7206.62 51.35 4.97 700.12 48.92 0.00 3100.33
70 400.70 99.86 7200.03 47.85 4.29 581.38 45.88 0.00 2206.22
80 417.90 99.87 7200.03 44.29 5.75 527.33 41.88 0.00 876.34
90 62.30 99.12 7200.03 41.11 4.87 375.45 39.20 0.00 1809.53

100 61.91 99.14 7200.03 38.63 5.06 291.72 36.77 0.00 3563.38

rat783 783

10 550.718 99.87 7210.81 166.23 1.56 2117.71 163.68 0.00 133.76
20 548.352 99.88 7200.00 112.70 2.79 2117.68 109.64 0.00 3498.31
30 608.547 99.90 7200.00 88.57 4.69 2117.66 84.60 0.00 1981.40
40 608.547 99.91 7200.00 76.03 3.99 2117.66 73.11 0.00 1591.30
50 608.547 99.91 7200.00 66.10 4.00 2117.65 63.56 0.00 461.70
60 628.405 100.00 7200.00 60.02 3.54 1903.00 57.97 0.00 2520.09
70 628.405 99.92 7200.00 55.44 3.88 1931.82 53.37 0.00 265.23
80 628.405 99.92 7200.00 51.66 4.05 1670.87 49.65 0.00 223.17
90 628.405 99.92 7200.00 48.47 5.14 1425.35 46.10 0.00 2082.12

100 628.405 99.92 7200.00 45.88 4.15 1199.53 44.05 0.00 2786.63
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Table 11: continued from previous page.

Gurobi GRASP-SO VNS
Instance n p best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)

pr1002 1002

10 15250.25 99.89 7296.08 5331.28 2.48 2117.76 5202.16 0.00 1546.43
20 14205.02 99.90 7418.43 3290.14 3.77 2117.69 3170.57 0.00 308.18
30 13217.13 99.96 7200.00 2644.33 0.94 2117.68 2619.64 0.00 272.51
40 14297.73 99.91 7200.00 2304.89 4.52 2117.68 2205.11 0.00 1377.97
50 14297.73 99.91 7200.08 2013.08 4.80 2117.67 1920.94 0.00 1672.30
60 17479.42 99.95 7200.00 1838.48 5.10 2117.68 1749.29 0.00 2212.73
70 17479.42 99.95 7200.00 1710.26 5.86 2117.67 1615.55 0.00 1722.17
80 17479.42 99.93 7200.08 1518.22 3.72 2117.66 1463.73 0.00 2146.30
90 17479.42 99.95 7200.00 1442.22 5.68 2117.66 1364.73 0.00 3434.98

100 17479.42 99.95 7200.00 1353.70 3.82 2117.65 1303.84 0.00 1265.44

rl1323 1323

10 17207.72 0.00 7026.47 6313.82 1.35 2117.92 6229.60 0.00 80.06
20 13688.24 100.00 7200.31 4032.83 4.87 2117.75 3845.66 0.00 348.67
30 15039.71 99.92 7200.22 3204.16 4.04 2117.73 3079.87 0.00 1853.93
40 16174.19 100.00 7200.21 2774.72 6.25 2117.72 2611.48 0.00 2526.51
50 17106.54 99.93 7200.14 2430.27 8.43 2117.69 2241.23 0.00 1103.83
60 12963.25 100.00 7200.21 2149.14 5.43 2117.69 2038.42 0.00 1285.23
70 20521.99 99.95 7200.16 1997.22 5.71 2117.69 1889.26 0.00 661.36
80 20521.99 99.95 7200.16 1842.10 5.53 2117.68 1745.58 0.00 2983.99
90 20521.99 99.95 7200.17 1745.58 6.55 2117.67 1638.26 0.00 2606.73

100 20521.99 99.95 7203.75 1620.92 5.02 2117.66 1543.50 0.00 3406.95

Average 4881.12 60.99 4687.35 997.18 7.46 1147.78 947.73 0.11 1099.00

1 Original running times divided by 0.85, approximation obtained from [39].

B Results for the αNpMP

This appendix shows the detailed results for the αNpMP. Tables 12 and 13 show the
results of the commercial solver, the BIMM and the VNS heuristic for the OR-library
instances with p = 10 and α = 5 and p = 20 and α = 10, respectively. The results of the
BIMM shown here were obtained from Panteli et al. [38]. These tables follow the same
structure as the ones presented in A.
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Table 12: αNpMP results with p = 10 and α = 5.

CPLEX BIMM VNS
Instance n best gapopt(%) t(s) best gap(%) t(s)1 best gap(%) tbest(s)
pmed1 100 40592 0.00 0.41 41462 2.14 0.09 40592 0.00 0.01
pmed2 100 39421 0.00 0.40 40134 1.81 0.04 39421 0.00 0.02
pmed3 100 43345 0.00 0.56 44000 1.51 0.10 43345 0.00 0.05
pmed4 100 46854 0.00 0.58 51351 9.60 0.14 46854 0.00 0.16
pmed5 100 34167 0.00 0.42 35054 2.60 0.11 34167 0.00 0.02
pmed6 200 50759 0.00 3.59 52734 3.89 0.25 50759 0.00 0.42
pmed7 200 44978 0.00 2.86 46621 3.65 0.40 44978 0.00 0.27
pmed8 200 49837 0.00 2.88 51064 2.46 0.44 49837 0.00 0.05
pmed9 200 47636 0.00 3.14 48638 2.10 0.05 47636 0.00 0.13
pmed10 200 36864 0.00 3.38 37968 2.99 0.61 36864 0.00 0.48
pmed11 300 46297 0.00 19.16 47657 2.94 0.08 46297 0.00 2.06
pmed12 300 53082 0.00 18.10 54997 3.61 0.66 53082 0.00 3.66
pmed13 300 48257 0.00 18.78 49012 1.56 0.56 48257 0.00 0.97
pmed14 300 55342 0.00 20.43 56304 1.74 0.59 55342 0.00 2.72
pmed15 300 47426 0.00 17.12 47581 0.33 0.04 47426 0.00 0.30
pmed16 400 49941 0.00 47.65 51171 2.46 0.38 49941 0.00 0.35
pmed17 400 53403 0.00 49.11 55475 3.88 0.35 53403 0.00 0.44
pmed18 400 59089 0.00 50.53 59734 1.09 0.45 59089 0.00 4.52
pmed19 400 56234 0.00 49.40 57270 1.84 0.13 56234 0.00 4.57
pmed20 400 58389 0.00 49.58 59239 1.46 2.95 58389 0.00 3.79
pmed21 500 56961 0.00 93.45 57735 1.36 0.09 56961 0.00 0.04
pmed22 500 62650 0.00 135.57 64217 2.50 1.02 62650 0.00 0.01
pmed23 500 60660 0.00 107.13 62488 3.01 0.21 60660 0.00 0.01
pmed24 500 60210 0.00 105.11 61725 2.52 0.68 60210 0.00 0.16
pmed25 500 54793 0.00 90.52 56284 2.72 0.46 54793 0.00 0.03
pmed26 600 59347 0.00 154.40 59955 1.02 17.75 59347 0.00 0.35
pmed27 600 57705 0.00 143.48 58046 0.59 1.72 57705 0.00 0.03
pmed28 600 58252 0.00 195.00 59076 1.41 1.05 58252 0.00 0.04
pmed29 600 60745 0.00 160.02 61661 1.51 0.65 60745 0.00 0.13
pmed30 600 65738 0.00 177.32 66300 0.85 0.60 65738 0.00 0.06
pmed31 700 61463 0.00 244.27 62571 1.80 7.03 61463 0.00 0.49
pmed32 700 67073 0.00 290.61 68186 1.66 1.33 67073 0.00 0.73
pmed33 700 66024 0.00 239.31 67924 2.88 2.21 66024 0.00 0.05
pmed34 700 63475 0.00 218.37 64656 1.86 0.89 63475 0.00 0.11
pmed35 800 62408 0.00 432.30 62937 0.85 5.14 62408 0.00 0.19
pmed36 800 70805 0.00 409.19 72878 2.93 1.30 70805 0.00 0.62
pmed37 800 74125 0.00 381.64 74661 0.72 2.04 74125 0.00 0.19
pmed38 900 66456 0.00 704.86 68235 2.68 6.41 66456 0.00 1.81
pmed39 900 66129 0.00 456.37 66604 0.72 2.13 66129 0.00 0.69
pmed40 900 75386 0.00 460.13 78237 3.78 0.25 75386 0.00 0.22

Average 55807.95 0.00 138.93 57046.05 2.28 1.53 55807.95 0.00 0.77

1 Original running times divided by 1.2, approximation obtained from [39].
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Table 13: αNpMP results with p = 20 and α = 10.

CPLEX BIMM VNS
Instance n best gapopt(%) t (s) best gap(%) t(s)1 best gap(%) tbest(s)
pmed1 100 84027 0.00 0.39 88745 5.61 0.23 84027 0.00 0.15
pmed2 100 80660 0.00 0.54 83021 2.93 0.38 80660 0.00 0.01
pmed3 100 88180 0.00 0.36 91166 3.39 0.23 88180 0.00 0.10
pmed4 100 95441 0.00 0.67 104680 9.68 0.42 95441 0.00 0.11
pmed5 100 70836 0.00 0.29 72192 1.91 0.30 70836 0.00 0.94
pmed6 200 102341 0.00 3.24 105089 2.69 1.93 102341 0.00 0.22
pmed7 200 91465 0.00 2.68 95486 4.40 0.99 91465 0.00 0.22
pmed8 200 101003 0.00 2.61 103998 2.97 0.60 101003 0.00 1.00
pmed9 200 96365 0.00 3.10 99371 3.12 0.20 96365 0.00 0.96
pmed10 200 74770 0.00 4.18 77136 3.16 0.40 74770 0.00 1.32
pmed11 300 93903 0.00 13.30 94851 1.01 1.40 93903 0.00 0.69
pmed12 300 106863 0.00 19.81 111812 4.63 2.13 106863 0.00 0.99
pmed13 300 97837 0.00 14.21 99802 2.01 0.29 97837 0.00 4.86
pmed14 300 111488 0.00 19.85 113774 2.05 1.48 111488 0.00 3.47
pmed15 300 96190 0.00 19.53 98231 2.12 0.93 96190 0.00 3.57
pmed16 400 101027 0.00 47.73 103530 2.48 3.29 101027 0.00 1.51
pmed17 400 107608 0.00 70.44 111679 3.78 0.92 107608 0.00 2.70
pmed18 400 119282 0.00 51.68 121202 1.61 0.79 119282 0.00 0.88
pmed19 400 113107 0.00 50.92 115688 2.28 2.53 113107 0.00 1.33
pmed20 400 118523 0.00 44.04 121468 2.48 0.36 118523 0.00 6.98
pmed21 500 114895 0.00 87.38 116754 1.62 0.89 114895 0.00 0.00
pmed22 500 125994 0.00 149.91 132925 5.50 0.71 125994 0.00 0.11
pmed23 500 122437 0.00 100.05 127093 3.80 0.34 122437 0.00 0.15
pmed24 500 121462 0.00 127.16 124517 2.52 0.15 121462 0.00 0.03
pmed25 500 111435 0.00 83.16 114231 2.51 5.67 111435 0.00 0.07
pmed26 600 119392 0.00 172.47 121537 1.80 6.65 119392 0.00 0.07
pmed27 600 116498 0.00 135.63 117508 0.87 4.51 116498 0.00 0.08
pmed28 600 117933 0.00 136.07 120718 2.36 2.20 117933 0.00 0.33
pmed29 600 122339 0.00 150.88 125649 2.71 0.99 122339 0.00 0.17
pmed30 600 133069 0.00 139.75 133935 0.65 3.13 133069 0.00 0.26
pmed31 700 123848 0.00 240.92 129303 4.40 21.73 123855 0.01 0.18
pmed32 700 134470 0.00 569.17 137108 1.96 1.81 134470 0.00 1.12
pmed33 700 132822 0.00 228.99 136182 2.53 13.63 132822 0.00 0.40
pmed34 700 127779 0.00 240.73 130290 1.97 0.74 127779 0.00 0.19
pmed35 800 125727 0.00 427.53 127188 1.16 10.57 125727 0.00 0.41
pmed36 800 142084 0.00 693.30 149330 5.10 2.24 142084 0.00 0.39
pmed37 800 149976 0.00 265.97 152607 1.75 1.95 149976 0.00 0.53
pmed38 900 133369 0.00 1091.66 135485 1.59 13.59 133369 0.00 0.76
pmed39 900 133246 0.00 831.62 136345 2.33 0.78 133246 0.00 1.30
pmed40 900 151713 0.00 654.96 153743 1.34 20.68 151713 0.00 2.57

Average 112785.10 0.00 172.42 115884.23 2.82 3.32 112785.28 0.00 1.03

1 Original running times divided by 1.2, approximation obtained from [39].
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