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Abstract. The demand for efficient last-mile delivery systems in large cities creates an 
opportunity to develop innovative logistics schemes. In this paper, we study a problem in 
which each vehicle may travel with more than one deliveryman to serve multiple customers 
with a single stop of the vehicle, increasing the delivery efficiency. We extend the vehicle 
routing problem with time windows and multiple deliverymen by explicitly considering the 
deliveryman routes. We introduce the problem, formally define it with a novel formulation, 
propose valid inequalities, and develop a tailored branch-and-Benders-cut (BBC) algorithm 
to solve it. The BBC is capable of solving 89% of the instances to proven optimality in 
reasonable times, many of them of realistic sizes. Additionally, we show the benefits of 
evaluating the deliveryman routes considering a cost minimization perspective, and discuss 
relevant solutions for urban logistics problems that can help decrease congestion and 
emissions. 
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1 Introduction

The increasing demand for cost- and time-efficient delivery in densely populated urban

areas creates additional challenges for last-mile delivery systems, such as poor traffic con-

ditions and difficulty in finding parking locations (Martinez-Sykora et al., 2020; Boysen,

Fedtke, and Schwerdfeger, 2021). However, the proximity of customers allows for inven-

tive developments to overcome these challenges. For instance, the combination of trucks

and drones is already well-known (Li et al., 2021) since the seminal work by Murray and

Chu (2015). Similarly, the combination of robots and trucks has also been applied to

last-mile delivery systems (Alfandari, Ljubić, and De Melo da Silva, 2022). Alternatively,

one could rely on crowd-sourcing operations in last-mile delivery, as proposed by Ouyang,

Leung, and Huang (2023), or on combining vehicles, cargo bikes, and walking porters,

such as in the problem presented by Bayliss et al. (2023).

Another well-adopted possibility in city logistics is the combination of vehicles with

walking carriers (Wehbi, Bektaş, and Iris, 2022; Le Colleter et al., 2023). In particular,

Pureza, Morabito, and Reimann (2012) proposed the vehicle routing problem with time

windows and multiple deliverymen (VRPTWMD), which arose from a practical application

of last-mile delivery from a beverage company. In this problem, a vehicle may travel with

more than one deliveryman. Once the vehicle parks, the deliverymen walk to serve the

customers in parallel. This reduces the time the vehicle stays parked throughout the

route, allowing it to serve more customers in a single route. Therefore, a smaller fleet

of vehicles can serve the same customers compared to the traditional approach of having

a single deliveryman traveling in each vehicle. Since deliverymen fixed costs are smaller

than those of the vehicles, this creates an opportunity for operational cost reduction.

The VRPTWMD is often modeled using a network given by nodes that correspond to

clusters of customers (Pureza, Morabito, and Reimann, 2012; Álvarez and Munari, 2017;

Munari and Morabito, 2018). Clusters are defined in advance, in a previous decision

stage, and the service time at a cluster depends on the number of deliverymen in the

vehicle that visits that cluster. Hence, at each stop of a vehicle at a node, the service

time at this node is the service time of the cluster divided by the number of deliverymen

on the vehicle. Some variants consider the definition of the clusters as an endogenous

decision, thus determining also the clustering of customers that are visited at each stop of

the vehicles, as in Senarclens de Grancy and Reimann (2015). However, in these variants,

the authors still simply divide the service time of a cluster by the number of deliverymen

that serve it. To the best of our knowledge, no study has addressed the VRPTWMD and

related variants explicitly considering the routes traveled by the deliverymen inside the

clusters. Moreover, authors have assumed thus far that the deliverymen capacities are

small compared to the customer demands, such as in the beverage industry from which

the problem emerged, making the deliveryman routes trivial. However, in applications

where the customer demands are small (e.g., e-commerce) or the deliverymen capacities

are large (e.g., deliverymen with small carts or cargo bikes), this assumption is not valid

1

An Exact Method for a Last-mile Delivery Routing Problem with Multiple Deliverymen

CIRRELT-2023-35



and the deliveryman routes can significantly affect the vehicle routes.

In this paper, we extend the VRPTWMD by also designing the deliveryman routes

inside each cluster, instead of simply considering round-trips. Since most drone-truck and

robot-truck combinations consider that drones and robots can only visit one customer at a

time (Moshref-Javadi and Winkenbach, 2021; Ostermeier, Heimfarth, and Hübner, 2023),

our work also generalizes such problems. Furthermore, to efficiently solve the problem,

we propose a Benders decomposition-based exact algorithm (Benders, 1962), which might

be of broader interest given that the majority of works that address the VRPTWMD and

related problems rely on heuristics (Pureza, Morabito, and Reimann, 2012; Senarclens de

Grancy and Reimann, 2014; Moshref-Javadi and Winkenbach, 2021; Wehbi, Bektaş, and

Iris, 2022; Le Colleter et al., 2023).

The contributions of this paper are threefold. First, we introduce a novel problem in

the literature with practical and theoretical relevance, namely the vehicle routing problem

with time windows, multiple deliverymen, and two-level routing (VRPTWMD2R). Second,

we present a formulation for this problem and introduce several families of valid inequalities

that tighten the linear programming (LP) relaxation of this formulation. Third, we propose

a branch-and-Benders-cut method to solve the problem, which is an exact algorithm based

on Benders decomposition, and develop lower bounding techniques.

The remainder of this paper is organized as follows. Section 2 reviews the pertinent

literature. In Section 3, the problem is defined. Section 4 introduces the mathematical

formulation and valid inequalities. Section 5 describes the exact algorithm to solve the

problem. In Section 6, the computational experiments are outlined and the results are

evaluated. Finally, Section 7 presents concluding remarks.

2 Literature review

Pureza, Morabito, and Reimann (2012) introduced the VRPTWMD as a variant of the

classical vehicle routing problem (VRP). In this variant, in addition to time windows and

vehicle capacity constraints, the vehicles may carry more than one deliveryman to reduce

overall service time. The problem arises from companies that make regular deliveries in

densely populated urban areas, in which the proximity of customers creates the possibility

of serving more than one customer with a single stop of the vehicle. In such case, the

presence of multiple deliverymen allows the customers to be served in parallel, reducing

the time of each stop of the vehicles. Since the vehicle fixed costs are usually higher than

those of the deliverymen, increasing the number of deliverymen can reduce the number of

vehicles needed, decreasing the overall costs.

The problem dynamics are based on the customers with similar time windows and

close to each other being previously grouped in clusters. The vehicles travel from the

depot to the clusters and, once they arrive, the deliverymen leave the vehicle to serve

the customers. Once all customers in a cluster are served, the deliverymen return to the

vehicle and travel to the next cluster on the vehicle route.
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Several authors have studied this problem with different approaches. Pureza, Mora-

bito, and Reimann (2012) compared the performance of two metaheuristics: tabu search

(TS) and ant colony optimization (ACO). Senarclens de Grancy and Reimann (2014) sys-

tematically compared the performance of ACO and greedy randomized adaptative search

procedure (GRASP) to solve the problem. Álvarez and Munari (2016) solved the prob-

lem with iterated local search (ILS) and large neighborhood search (LNS). Munari and

Morabito (2018) proposed the first exact algorithm for the problem, which consisted of

a branch-price-and-cut method, thus based on the column generation technique. Álvarez

and Munari (2017) combined this exact method with the metaheuristics ILS and LNS,

resulting in a hybrid method for the problem. Souza Neto and Pureza (2016) proposed a

variant of the VRPTWMD in which vehicles can perform more than one route and solved

it with GRASP, a commercial solver, and a hybrid method.

All of the above-mentioned studies address the problem considering two simplifying

hypotheses: (i) the clusters are predefined, and (ii) the time spent in each cluster is

approximated by a function of the cluster demand and the number of deliverymen, ignor-

ing the routes traveled by the deliverymen. To incorporate clustering issues, Senarclens

de Grancy and Reimann (2015) proposed two heuristics to cluster the customers, and

Senarclens de Grancy (2015) combined these heuristics in an iterative method to optimize

clustering and routing.

We are not aware of any study addressing the design of deliveryman routes within

the VRPTWMD. Approximating the service time of clusters based on their demand and

the number of deliverymen may be reasonable when the deliverymen capacities are small

compared to the customers demands. In such cases, the deliverymen can only visit one

customer in each of their routes, making the optimal deliveryman routes trivial (i.e.,

round trips), with no need to be optimized. However, when the deliverymen capacities

are large compared to the customers demands, they can visit more than one customer in

each route. In such cases, approximating the cluster service time based on the demand

and the number of deliverymen becomes less accurate and does not represent the problem

complexity. This assessment is important because it affects all of the other decisions of

the problem, namely the number of vehicles and deliverymen, and the vehicle routes. The

present study addresses this issue by generalizing the VRPTWMD to consider two-level

routing (VRPTWMD2R), i.e., both the vehicle and the deliveryman routes.

3 Problem definition

We define the VRPTWMD2R considering different graph representations for vehicle

and deliveryman routes (first- and second-level). For vehicle routes, we assume a single

depot and a set of clusters N = {1, 2, . . . , n}, where n > 0 is the number of clusters.

Each cluster consists of a set of customers and a single parking location. We shall refer

to clusters and parking locations interchangeably. Let G = (N0, A) be a directed graph,

where N0 = {0, n+1}∪N is the set of nodes and A = {i, j ∈ N0 | i ̸= j, i ̸= n+1, j ̸= 0}
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is the set of arcs. Indices 0 and n+ 1 represent the depot, and all vehicle routes start at

0 and end at n+ 1. This graph only concerns the nodes and arcs related to the design of

first-level routes.

For each cluster i ∈ N , we define a directed graph Gi = (N i
0, A

i), given by the set of

nodes N i
0 = {0i, ni +1} ∪N i, where N i is the set of ni customer nodes in this cluster and

Ai = {h, k ∈ N i
0 | h ̸= k, h ̸= ni + 1, k ̸= 0i} is the set of arcs related to the second-level

routes inside this cluster. Nodes 0i and ni + 1 represent the parking location, and the

deliveryman routes must depart from 0i and return to ni + 1, traversing only the arcs in

Ai. Both nodes 0i and ni +1 are at the same place as the corresponding parking location

i ∈ N . No customer is part of more than one cluster, i.e., N i ∩N j = ∅,∀ i, j ∈ N, i ̸= j.

To make the notation clear, we shall represent nodes of first-level routes (set N) by i and

j, and those of second-level routes (sets N i, i ∈ N) by h and k.

Every cluster is served by exactly one vehicle, and every customer inside a cluster is

served by exactly one deliveryman. Both clusters and customers have time windows that

indicate when the service may begin, which are supposed to be compatible in order to

ensure feasibility. Customers have positive demands that are aggregated to define cluster

demands, typically consisting of a couple of customers. We assume that deliverymen do not

have capacity constraints since clusters are relatively small, and hence all customers of a

cluster could be served by a single deliveryman when considering only capacity constraints.

Each vehicle may travel with up to ML deliverymen. Once the vehicle arrives at a

cluster, the deliverymen leave it to serve the customers. After serving all of them, the

deliverymen return to the vehicle and it travels to the next cluster in the route. We define

the set of possible numbers of deliverymen in a vehicle as L = {1, 2, . . . ,ML}. We assume

that the vehicle fleet and the deliveryman team are both homogeneous.

The decisions of the problem are (i) the number of vehicles to be used, (ii) the number

of deliverymen in each vehicle, (iii) the vehicle routes, and (iv) the deliveryman routes.

These decisions should be made ensuring that every customer is served, and respecting

time windows and vehicle capacity. The goal of the problem is to minimize the fixed costs

associated with vehicles and deliverymen and the distance-related costs of vehicle and

deliveryman routes.

Figure 1 illustrates the VRPTWMD2R. Figure 1a presents an instance of the prob-

lem, with the customers clustered around their respective parking locations. Figure 1b

represents a feasible solution to the problem. The black arrows that travel among parking

locations represent vehicle paths, while the colored arrows inside the clusters show deliv-

eryman routes. In the picture, the vehicle that serves the clusters on the left-hand side of

the picture travels with one deliveryman and the other one travels with two deliverymen.

A trade-off between vehicle and deliveryman costs is inherent to the VRPTWMD2R.

Figure 2 illustrates it. Figure 2a presents an instance of the problem in which the depot

time window closes at instant 150. The best solution considering only the second-level

routes cost minimization would be serving each cluster with a single deliveryman, as
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(a) Instance.

Parking
locations

Customers

Depot

(b) Solution.

Figure 1: An illustrative example of the VRPTWMD2R.

portrayed in Figure 2b. This solution incurs in costs c1 = 10 and c2 = 7, while the

time spent in each cluster is t1 = 100 and t2 = 80. If these routes were to be taken,

these clusters would need to be served by two vehicles since they would not respect the

depot time windows when served by a single vehicle. However, if the problem is solved by

minimizing all costs, the solution would be the one represented in Figure 2c, in which two

deliverymen travel with a single vehicle. The routes inside the clusters are slightly more

costly when considered individually and include an additional deliveryman, but they help

minimize the overall costs.

[0, 150]

(a) Instance.

c1 = 10, t1 = 100

c2 = 7, t2 = 80

(b) Min deliveryman routes costs.

c∗1 = 11, t∗1 = 60

c∗2 = 9, t∗2 = 50

Parking
locations

Customers

Depot

(c) Min overall costs.

Figure 2: A trade-off between deliveryman routes cost and time.

4 Mathematical formulation

We introduce a novel compact mixed-integer programming (MIP) formulation for the

VRPTWMD2R. Consider the following parameters:

ML Maximum number of deliverymen in each vehicle;

fv Fixed cost associated with each vehicle;

fd Fixed cost associated with each deliveryman;

5

An Exact Method for a Last-mile Delivery Routing Problem with Multiple Deliverymen

CIRRELT-2023-35



cv Unitary distance cost of first-level routes (vehicles);

cd Unitary distance cost of second-level routes (deliverymen);

Q Vehicle load capacity;

qi Demand of cluster i ∈ N ;

dij Distance between first-level nodes i and j, (i, j) ∈ A (asymmetrical);

tij Travel time between first-level nodes i and j, (i, j) ∈ A (asymmetrical);

dihk Distance between second-level nodes h and k of cluster i ∈ N , (h, k) ∈ Ai, (asymmet-

rical);

tihk Travel time between second-level nodes h and k of cluster i ∈ N, (h, k) ∈ Ai (asym-

metrical);

sh Service time of customer h ∈ N i of cluster i ∈ N ;

[ah, bh] Time window of node h ∈ N i
0 of cluster i ∈ N .

We define the decision variables taking into account the first- and second-level routes,

related to vehicles and deliverymen. Additionally, we need auxiliary variables to model

vehicle load and time propagation in the routes. These variables are defined as follows:

xijl Binary variable that indicates whether a vehicle travels from node i to node j with l

deliverymen in a first-level route, (i, j) ∈ A, l ∈ L;

ui Vehicle load after leaving node i ∈ N0;

xihk Binary variable that indicates whether a deliveryman travels from node h to node k

in a second-level route inside cluster i, (h, k) ∈ Ai, i ∈ N ;

wh Time when service at node h ∈ N i
0, i ∈ N, begins. The arrival time of the vehicle at

the parking location of cluster i is represented by w0i and its departure happens at

wni+1.

Using the sets, parameters, and decision variables defined so far, we propose the fol-

lowing compact formulation (CF) for the VRPTWMD2R:

(CF) min
∑
j∈N

∑
l∈L

(fv + lfd)x0jl + cv
∑

(i,j)∈A

∑
l∈L

dijxijl + cd
∑
i∈N

∑
(h,k)∈Ai

dihkx
i
hk (1)

s.t.
∑

i:(i,j)∈A

∑
l∈L

xijl = 1, ∀ j ∈ N (2)

∑
i:(i,j)∈A

xijl =
∑

i:(j,i)∈A

xjil, ∀ j ∈ N, l ∈ L (3)

∑
i∈N

x0il =
∑
i∈N

xi(n+1)l, ∀ l ∈ L (4)
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uj ≥ ui + qj −Q

(
1−

∑
l∈L

xijl

)
, ∀ (i, j) ∈ A (5)∑

h:(h,k)∈Ai

xihk = 1, ∀ k ∈ N i, i ∈ N (6)

∑
h:(h,k)∈Ai

xihk =
∑

h:(k,h)∈Ai

xikh, ∀ k ∈ N i, i ∈ N (7)

∑
h∈N i

xi0h =
∑
h∈N i

xih(ni+1), ∀ i ∈ N (8)

wk ≥ wh + sh + tihk −M i
hk(1− xihk), ∀ (h, k) ∈ Ai, i ∈ N (9)

w0j ≥ wni+1 + tij −Mij

(
1−

∑
l∈L

xijl

)
, ∀ (i, j) ∈ A (10)∑

h∈Nj

xj0jh ≤
∑

i:(i,j)∈A

∑
l∈L

lxijl, ∀ j ∈ N (11)

u0 = 0, w0 = 0 (12)

xijl ∈ {0, 1}, ∀ (i, j) ∈ A, l ∈ L (13)

qi ≤ ui ≤ Q, ∀ i ∈ N0 (14)

xihk ∈ {0, 1}, ∀ (h, k) ∈ Ai, i ∈ N (15)

ah ≤ wh ≤ bh, ∀ h ∈ N i
0, i ∈ N0. (16)

The objective function (1) seeks to minimize the total fixed costs of both vehicles and

deliverymen and the distance costs of both vehicle and deliveryman routes. Constraints

(2) ensure that every cluster is visited by exactly one vehicle. Constraints (3) and (4)

are flow conservation constraints for first-level routes. Constraints (5) control the load

flow in vehicle routes. Constraints (6)–(8) are similar to (2)–(4) but considering second-

level routes. Constraints (9) and (10) control the time propagation for deliveryman and

vehicle routes, respectively. Beyond defining the arrival time at each customer, constraints

(9) implicitly define the time spent in each cluster since they involve the moments that

the deliverymen depart from and arrive at the parking locations. Constraints (10) use

this information to synchronize the first- and second-level routes by defining that the

deliverymen start to serve a cluster j after having served a cluster i and having traveled

to cluster j if they travel in a vehicle that goes from i to j. In these constraints, we define

M i
hk = max{0, bh + sh + tihk − ak} and Mij = max{0, bni+1 + tij − a0j} as the smallest

possible values to ensure that the constraints are valid. Constraints (11) also couple the

first- and second-level routes by defining that the number of deliveryman routes inside a

cluster is, at most, the number of deliverymen that arrive at it (it is possible that not all

deliverymen visiting a cluster leave the vehicle). Constraints (12)–(16) define the domain

of the decision variables.
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4.1 Valid inequalities

Formulation CF can be strengthened by the following valid inequalities (VIs) to im-

prove its linear relaxation. In these constraints, let eil, i ∈ N, l ∈ L, be a lower bound on

the time needed to serve cluster i with l deliverymen and mi, i ∈ N, be a lower bound on

the number of deliverymen needed to serve cluster i feasibly.∑
h∈N i

xi0ih ≥ 1, ∀ i ∈ N (17)

∑
(h,k)∈Ai:h,k∈S

xihk ≤ |S| − 1, ∀ S ⊂ N i, i ∈ N : |S| ∈ {2, 3} (18)

xihk = 0, ∀ (h, k) ∈ Ai, i ∈ N : (ah + sh + tihk > bk) (19)∑
j∈N

∑
l∈L

x0jl ≥

⌈
1

Q

∑
i∈N

qi

⌉
(20)

∑
(i,j)∈A:i,j∈S

∑
l∈L

xijl ≤ |S| − 1, ∀ S ⊂ N : |S| ∈ {2, 3} (21)

xijl = 0, ∀ (i, j) ∈ A : (qi + qj > Q) ∨ (ani+1 + tij > b0j ) (22)

wni+1 ≥ w0i +
∑

j:(i,j)∈A

∑
l∈L

eilxijl, ∀ i ∈ N (23)

xijl = 0, ∀ (i, j) ∈ A, l ∈ L : (mi > l) ∨ (mj > l) (24)∑
h∈N i

xi0ih ≥ mi, ∀ i ∈ N (25)

Constraints (17)–(22) are common in the literature, while constraints (23)–(25) are

novel VIs proposed specifically for this problem. Constraints (17) ensure that at least one

deliveryman leaves each parking location. Constraints (18) eliminate small subtours of two

and three customers in second-level routes. Constraints (19) remove infeasible second-level

arcs due to time window incompatibility. Constraints (20) define a lower bound on the

number of vehicles needed to serve all the clusters based on the total cluster demands and

vehicle capacity. Constraints (21) eliminate subtours for sets of two and three clusters

in first-level routes. Constraints (22) eliminate first-level arcs that are infeasible due to

vehicle capacity or time windows incompatibility. Constraints (23) provide an estimation

on the minimum time spent on the cluster. Constraints (24) forbid the visit of the cluster

by a vehicle with fewer deliverymen than needed to serve it. Constraints (25) ensure that

the number of deliverymen leaving a parking location respects its lower bound. Since

mi ≥ 1, ∀ i ∈ N, constraints (17) are redundant when constraints (25) are considered.

Hence, either constraints (17) or (25) are included, never both.

On top of these constraints, time windows are tightened based on the earliest arrival

time from the depot and the latest departure time to arrive while the depot is still open

(Ascheuer, Fischetti, and Grötschel, 2001).
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5 Benders decomposition

Since the definition of the deliveryman routes depends on the vehicle routes and the

number of deliverymen serving each cluster, the CF can be decomposed in a Benders

fashion (Benders, 1962; Hooker and Ottosson, 2003; Codato and Fischetti, 2006). This

way, the master problem (MP) defines the first-level routes and the number of deliverymen

in each vehicle, and the subproblem (SP) defines the second-level routes.

To exploit this characteristic of the VRPTWMD2R and efficiently solve it, we de-

velop an exact algorithm based on a branch-and-Benders-cut (BBC) scheme (Moreno,

Munari, and Alem, 2019; Moreno, Munari, and Alem, 2020). To this extent, we improve

the Benders decomposition by including valid inequalities and developing lower bounding

techniques. Section 5.1 presents the MP, Section 5.2 defines the SP, Section 5.3 introduces

useful lower bounds, and Section 5.4 discusses the BBC algorithm.

5.1 Master Problem

Let ηi, i ∈ N, be a variable representing the cost of the deliveryman routes inside

cluster i with a lower bound η
i
≥ 0. Let R be the set of all pairs (r, l) of vehicle routes r

and number of deliverymen l that are feasible given first- and second-level constraints; and

R be the set of pairs (r, l) that are feasible considering first-level constraints (information

in the MP), but infeasible considering second-level constraints (information in the SP). It

is clear that R ∩R = ∅.
Let Nr be the set of clusters visited by route r and Ar be the set of arcs of route r.

Given a pair (r, l) ∈ R, let grli, i ∈ N, represent the cost of deliveryman routes inside cluster

i when visited by a vehicle traveling with l deliverymen along route r, and crl =
∑

i∈Nr
grli

be the sum of these costs throughout the vehicle route.

Given these definitions, the CF can be reformulated as the following MP:

(MP) min
∑
j∈N

∑
l∈L

(fv + lfd)x0jl + cv
∑

(i,j)∈A

∑
l∈L

dijxijl +
∑
i∈N

ηi (26)

s.t. (2)–(5), (10), (12)–(14)

∑
i∈Nr

ηi ≥ crl

 ∑
(i,j)∈Ar

xijl − |Ar|+ 1

 , ∀ (r, l) ∈ R (27)

∑
(i,j)∈Ar

xijl ≤ |Ar| − 1, ∀ (r, l) ∈ R (28)

ai ≤ wi ≤ bi, ∀ i ∈ {0h, nh + 1}, h ∈ N (29)

ηi ≥ η
i
, ∀ i ∈ N. (30)

The objective function (26) is equivalent to (1) with a different form of calculating

the deliveryman routes cost. Constraints (27) correspond to the so-called optimality cuts,

which define the cost of second-level routes inside the clusters visited by a vehicle traveling
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along a first-level route r and carrying l deliverymen. Constraints (28) consist in the so-

called feasibility cuts, removing from the set of feasible solutions of the MP the vehicle

routes that are infeasible due to the corresponding deliveryman routes. Constraints (29)

define the time windows of parking locations, and constraints (30) establish a lower bound

on the cost of deliveryman routes inside each cluster. The MP can be further strengthened

by VIs (20)–(24). We shall refer to the MP without the feasibility and optimality cuts as

the relaxed MP (RMP).

Constraints (27) and (28) are based on the traditional route-based optimality and fea-

sibility cuts. However, we propose using the path cuts introduced by Parada et al. (2023),

in which the first-level route arcs that are connected to the depot are removed from the

cut. Propositions 1 and 2 ensure the validity of this approach for the VRPTWMD2R.

Proposition 3 includes an additional summation in l ∈ L in the feasibility cuts. These

modifications yield better cuts that help boost the algorithm’s performance. To this ex-

tent, we denote by Âr ⊂ Ar the set of arcs in route r without those connected to the

depot.

Proposition 1. The constraints

∑
i∈Nr

ηi ≥ crl

 ∑
(i,j)∈Âr

xijl − |Âr|+ 1

 , ∀ (r, l) ∈ R (31)

can replace constraints (27) as valid optimality cuts if |Nr| > 1 and the triangular inequal-

ity holds for vehicle routes.

Proof. Given a pair (r, l) ∈ R with |Nr| > 1, let r = (0, r1, r2, . . . , r|Nr|, n + 1) be the

sequence of nodes visited in first-level route r. Let us define path p = (r1, r2, . . . , r|Nr|) as

the path of |Nr| clusters visited in route r. With these definitions, Âr can be interpreted

as the set of arcs of p. Hence, constraints (31) state that, for every first-level route that

contains path p, the cost of second-level routes inside the clusters of path p is at least

crl, i.e., the cost of traveling the path in a vehicle route that does not visit any cluster

out of the path. This is true because in every first-level route r ⊃ p, r ̸= r, there are

clusters visited before and/or after path p, making the dynamic of the deliverymen inside

the clusters of path p more constrained than in route r, as triangular inequality holds.

Since it is more constrained, the costs of the deliveryman routes in the clusters of path p

is at least crl, proving the validity of constraints (31) as optimality cuts.

Proposition 2. The constraints∑
(i,j)∈Âr

xijl ≤ |Âr| − 1, ∀ (r, l) ∈ R (32)

can replace constraints (28) as valid feasibility cuts if the triangular inequality holds for

vehicle routes.
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Proof. Following the notation used on the proof of Proposition 1, constraints (32) state

that (r, l) ∈ R ⇒ (r, l) ∈ R, ∀ r ⊃ p, i.e., if a first-level route r = (0, p, n + 1) is

infeasible when traveled by a vehicle with l deliverymen, every other route r ⊃ p will also

be infeasible when traveled with the same number l of deliverymen. This is true because,

if the triangular inequality holds, including any cluster before or after path p would make

the second-level routes inside the clusters of p more constrained than in route r. If these

deliveryman routes are infeasible without this additional cluster, they will remain as such

with this addition.

Proposition 3. The constraints∑
(i,j)∈Âr

∑
l∈L:l≤l

xijl ≤ |Âr| − 1, ∀ (r, l) ∈ R (33)

can replace constraints (28) as valid feasibility cuts if the triangular inequality holds for

vehicle routes.

Proof. It is true that (r, l) ∈ R ⇒ (r, l) ∈ R, ∀ l ∈ L, l < l, because reducing the number

of deliverymen on a first-level route makes the second-level routes inside the clusters more

constrained. Thus, if the first-level route is infeasible with l deliverymen, it will also be

with l < l. Therefore, given Proposition 2,∑
(i,j)∈Âr

xijl ≤ |Âr| − 1, ∀ l ≤ l, (r, l) ∈ R

are valid feasibility cuts if the triangular inequality holds. By constraints (2)–(4), at most

one value of l is associated with a vehicle route r, allowing for the summation in l that

yields constraints (33) as valid feasibility cuts.

Note that it is possible to aggregate the optimality cuts (31) by summing them up for

all number of deliverymen l < l, as we did for feasibility cuts (33). However, preliminary

results indicate that, in the case of optimality cuts, this is only beneficial for small in-

stances, and has a negative effect for medium and large instances as the cuts become too

dense. Therefore, we use the disaggregated version as presented above.

Comparing the improved path cuts (31) and (33) with the original route cuts (27) and

(28), it is clear that the improved versions yield stronger LP relaxations. Furthermore,

while each route cut is active in a single integer solution, the improved versions are active

in more than one solution. This justifies the improvements from a theoretical perspective.

Our experiments confirm that this theoretical improvement is translated into a better

performance of the BBC, as shown in Section 6.3.

5.2 Subproblem

To generate optimality and feasibility cuts we resort to an SP that optimizes the cost of

the deliveryman routes for each pair (r, l) ∈ R, or determines that it is infeasible to perform
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first-level route r with l deliverymen if (r, l) ∈ R. Given a pair (r, l), the corresponding

SP is defined by

(SP) min cd
∑
i∈Nr

∑
(h,k)∈Ai

dihkx
i
hk (34)

s.t.
∑

h:(h,k)∈Ai

xihk = 1, ∀ k ∈ N i, i ∈ Nr (35)

∑
h:(h,k)∈Ai

xihk =
∑

h:(k,h)∈Ai

xikh, ∀ k ∈ N i, i ∈ Nr (36)

∑
h∈N i

xi0ih =
∑
h∈N i

xih(ni+1), ∀ i ∈ Nr (37)

wk ≥ wh + sh + tihk −M i
hk(1− xihk), ∀ (h, k) ∈ Ai, i ∈ Nr (38)∑

h∈N i

xi0ih ≤ l, ∀ i ∈ Nr (39)

w0j ≥ wni+1 + tij , ∀ (i, j) ∈ Ar (40)

xihk ∈ {0, 1}, ∀ (h, k) ∈ Ai, i ∈ Nr (41)

ah ≤ wh ≤ bh, ∀ h ∈ N i
0, i ∈ Nr ∪ {n+ 1}. (42)

The objective function (34) seeks to minimize the total cost of second-level routes.

Constraints (35)–(38) are equivalent to (6)–(9) but restricted to the nodes in Nr. Con-

straints (39) limit the number of deliveryman routes inside a cluster to the number of

deliverymen traveling in the vehicle route r. Constraints (40) define the vehicle time flow,

i.e., the deliverymen leave a parking location (w0j ) after serving the previous cluster in

the route (wni+1) and traveling from one cluster to the next one in the vehicle route (tij).

Finally, constraints (41) and (42) define the domain of the decision variables.

It is important to notice that this SP comes from splitting a solution in routes and

is, therefore, separable by vehicle route r, but not by deliveryman routes in each cluster

due to the trade-off between deliveryman routes cost and time discussed in Section 3.

There is a time dependency among different clusters served by the same vehicle given

by constraints (40). Thus, although there might be a short deliveryman route to serve a

given cluster’s customers, if this route takes a long time it might affect the feasibility of

the corresponding vehicle route by not respecting the next cluster’s time window. Hence,

in this case, it would be necessary to take longer deliveryman routes that would be more

costly but feasible considering the vehicle route to be followed.

The SP can be strengthened by VIs (17)–(19), and (25). We also define the following

VIs for the SP relative to a pair (r, l) ∈ R ∪R:

wni+1 ≥ w0i + eil, ∀ i ∈ Nr, (43)

which defines a lower bound on the time spent in each cluster of the vehicle route consid-

ering the number of deliverymen traveling in it.
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Finally, time windows are tightened. Ascheuer, Fischetti, and Grötschel (2001) propose

to tighten the time windows based on all of the possible predecessors and successors of a

node. Since in the SP the vehicle route is predefined, each cluster has a unique predecessor

and a unique successor, making this tightening very efficient.

5.3 Lower bounds

The definition of the MP relies on the lower bound η
i
, i ∈ N, for the cost of the

deliveryman routes inside a cluster i. Moreover, VIs (23) and (43) depend on the lower

bound eil, i ∈ N, l ∈ L, for the time spent in cluster i when served with l deliverymen; and

VIs (24) and (25) are based on a lower bound mi, i ∈ N, for the number of deliverymen

needed to serve a cluster. To tightly define these lower bounds, we solve a sequence of

MIP models based on the SP defined for a vehicle route that goes from the depot to a

cluster i ∈ N and then back to the depot. For calculating η
i
, the SP is solved for every

cluster i ∈ N defining l = ML in constraints (39). For defining eil, the SP is solved by

changing its objective function to wni+1 − w0i , for every node i ∈ N and deliverymen

number l ∈ L. The value of mi is assessed by the feasibility of the MIP model solved for

time minimization. If this model is infeasible for a given l, then mi ≥ l+ 1. Otherwise, if

it is feasible for every l ∈ L, then mi = 1. When solving these MIP models, we define a

lower bound on the time spent in cluster i ∈ N when served by l ∈ L deliverymen as

max

1

l

∑
h∈N i

sh,max
h∈N i

{
ti0ih + sh + tih(ni+1)

} .

Notably, even though distances and travel times are proportional, the cost and time

minimization MIP models yield different solutions due to the customers time windows and

the possibility of serving the clusters with more than one deliveryman. This difference

has already been explained and is illustrated in Figure 3 by showing a cluster with four

customers. Figure 3a presents the cluster data, indicating the cost of each arc and that

each customer has a service time of 10 units (arcs cost, distance, and travel time are

equivalent in the picture). If there are two available deliverymen in this cluster, the cost

minimization MIP model would use only one of them to produce the second-level route

portrayed in Figure 3b, since it is the shortest option with a total cost of 7 and total time

of 47. Nevertheless, if the goal is to minimize the time spent in the cluster, using both

deliverymen traveling the routes shown in Figure 3c would be the best choice, since the

customers would be served in parallel, yielding a solution with total cost 10 and total time

25. Hence, it is necessary to solve different MIP models for each lower bound. This is

partly what creates the trade-off between deliveryman routes cost and time discussed in

Section 3.

Calculating these lower bounds requires n(ML + 1) runs of the MIP models of the

SPs. Although computationally burdensome, this evaluation significantly improves the

performance of the algorithms, as shown in Section 6.
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Figure 3: Different solutions by minimizing deliveryman routes cost or time.

5.4 Branch-and-Benders-cut

Given the exponential number of optimality and feasibility cuts, it is impractical to

enumerate all of them a priori. Instead, the best approach is to solve the RMP and

include optimality and feasibility cuts as needed in a BBC fashion (Moreno, Munari, and

Alem, 2019). To this extent, we solve the MP using a branch-and-cut algorithm that

starts with the RMP and, every time a feasible integer solution to the RMP is found, we

evaluate the corresponding SPs. If the solution of the RMP respects the optimality and

feasibility cuts, we update the incumbent solution (if the new solution is better than the

incumbent), otherwise we include the corresponding optimality and feasibility cuts.

The following steps represent the BBC algorithm:

1. Define cost and time lower bounds on the deliveryman routes in each cluster (Section

5.3);

2. Define the initial RMP and start the branch-and-cut method (Section 5.1);

3. Every time a feasible solution of the RMP is found in the branch-and-cut tree,

separate the solution by vehicle routes, tighten the clusters time windows considering

the vehicle route serving them, and solve the SPs (Section 5.2). For each SP, if it

is feasible, include the corresponding optimality cuts (31), otherwise include the

corresponding feasibility cuts (33). If all of the SPs are feasible, and the solution

cost updated with the deliveryman routes cost is lower than the incumbent cost,

update the incumbent.

The algorithm terminates once all of the nodes of the branch-and-cut tree have been

processed.

6 Computational experiments

We now describe the computational experiments performed to assess the performance

of the proposed model and algorithms and their suitability to solve the VRPTWMD2R.
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The approaches were implemented in C++ and use Gurobi 10.0.2 with an optimality gap

tolerance of 10−7. The experiments were run on computers equipped with 2xAMD Rome

7532 processors running at 2.4GHz and up to 64GB of RAM for the CF, and 32GB for

the BBC, with a time limit of 7,200s. For the MIP models that determine the lower

bounds described in Section 5.3 we set a time limit of 10s; when the solver was unable to

prove optimality within this time limit, we used the lower bound obtained by the solver

to define the lower bounding parameter on time or cost. All instances and detailed results

are available at https://www.dep.ufscar.br/munari/vrptwmd/.

Section 6.1 describes the instances used in our experiments. In Section 6.2, we present

the results obtained with the CF and the different sets of VIs, allowing us to assess the

effectiveness of the existing and new VIs. In Section 6.3, we discuss the results obtained

with the BBC method. Finally, Section 6.4 provides managerial insights for this practical

problem.

6.1 Instances

The generated instances are based on the Solomon (1987) instances for the VRPTW

from classes C1, R1, and RC1. We considered that each node in a Solomon instance

represents the parking location of a cluster in the VRPTWMD2R. Then, we generated

one to seven customer locations around each parking location to create the customers in

the corresponding cluster. Coordinates of the customers were generated following a normal

distribution with mean in the parking location’s coordinates and standard deviation σ = 3,

which showed to be well suited for the problem representation. In the Solomon instances,

only some nodes have time windows; if they do, i.e., the parking location has a time

window, then time windows were generated for the customers assigned to them. These time

windows were randomly generated considering the time window opening of the cluster and

the average width of the clusters time windows, while ensuring feasibility of the instances.

The service time of each customer is assumed to be the same as that of the corresponding

parking locations.

We generated instances of five different sizes, namely 10–40, 15–60, 15–85, 20–80, and

25–125, in which the first number represents the number of clusters (parking locations)

and the second number represents the total number of customers. This way, there are

instances with 50, 75, 100, and 150 nodes, which are realistic for many last-mile logistics

applications. There are 29 instances of each size, for a total of 145, all available online.

Following Pureza, Morabito, and Reimann (2012), we defined the cost parameters as

(fv, cv, fd, cd) = (1000, 10, 100, 1) and allowed up to ML = 3 deliverymen per vehicle.

The distances were calculated assuming Euclidean distances truncated to integers. For

the vehicles, distance and travel time were considered equivalent, and deliverymen were

assumed to travel at one-third of the vehicles’ speed. After calculating distances and

travel times, the Floyd-Warshall algorithm (Cormen et al., 2009) was run to ensure the

triangular inequality was valid.
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6.2 Compact formulation and valid inequalities

We first assess the performance of our CF (1)–(16), of the existing VIs (17)–(22), and

of the newly proposed VIs (23)–(25). Table 1 shows the summarized results of the exper-

iments with the CF and VIs (detailed results are provided as supplementary material).

It presents the results for the CF only (hereinafter referred to as CF1), the CF enhanced

with VIs (17)–(22) from the literature (CF2), and the CF enhanced with VIs (18)–(25),

both novel and literature-based (CF3). As discussed in Section 4, VIs (17) are redundant

when VIs (25) are considered and are, therefore, not included in the latter scenario. In

this table, “LR” stands for “LP relaxation”, “LB” for “lower bound”, “UB” for “upper

bound”, “Gap” for the optimality gap provided by the solver (as a percentage), “Time” for

the running time in seconds, and “Opt” for the number of instances for which the solver

has proved optimality for the corresponding model. The values of LR, LB, UB, Gap, and

Time represent the corresponding average. We present the average gap as the average of

optimality gaps of instances, not the gap calculated with the average LB and UB.

Size LR LB UB Gap (%) Time (s) Opt

CF1

10–40 1,027 5,508 7,138 26.93 6,069 5
15–60 1,354 6,912 10,453 34.42 6,704 2
15–85 1,398 6,900 12,403 46.47 6,954 1
20–80 1,764 9,088 14,614 38.96 6,723 2
25–125 2,071 11,446 20,426 45.63 6,954 1

Total 1,523 7,971 13,007 38.48 6,681 11

CF2

10–40 4,063 5,727 7,170 21.51 6,081 7
15–60 5,752 7,274 10,447 30.14 6,470 3
15–85 6,023 7,379 12,255 40.50 6,954 1
20–80 7,515 9,411 14,462 35.87 6,723 2
25–125 10,066 12,017 20,220 41.62 6,953 1

Total 6,684 8,362 12,911 33.93 6,636 14

CF3

10–40 4,637 7,131 7,131 0.00 316 28
15–60 6,445 10,189 10,228 0.68 2,262 26
15–85 7,757 12,018 12,116 1.26 4,108 13
20–80 8,589 13,499 13,988 4.55 4,184 14
25–125 12,653 18,358 19,195 5.76 5,155 9

Total 8,016 12,239 12,532 2.45 3,205 90

Table 1: Results of the experiments with CF and different sets of VIs.

These results indicate that the VIs significantly strengthen the LP relaxation of the

CF. The inclusion of the VIs from the literature improves the average value of the LR

in 338.92% and the novel VIs provide an additional improvement of 19.94%, leading to a

total increase of 426.42% in the LR values. Moreover, for instances with sizes 15–85 and

25–125, the value of the LR of CF3 is higher than the final LB obtained after running the

solver for two hours with the other two model configurations.

Regarding the performance of the MIP solver, the CF1 yields poor results, with high
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gaps even for the smallest instances. The solver proved optimality on few instances (11 out

of a total of 145). The VIs from the literature (CF2) improve its performance, especially

by lifting the average LB in 4.91%, which yields a modest 4.55% improvement in the

average gap. They also help prove optimality for three other instances, reaching 9.66% of

the instances (14/145). Still, the average gap is 21.51% for the smallest-sized instances.

The combination of the VIs from the literature with the VIs proposed for the problem

(CF3) produces a significant improvement in the results, leading to an additional 46.36%

increase in the average LB and 31.48% reduction in the average gap. Furthermore, the

number of instances with proven optimality increases to 90, which is more than half of

the total instances, and more than six times the number of instances proved to optimality

before. The runtime is significantly improved as a consequence of the new VIs and their

effect in proving optimality. Note that the small instances can now be solved in about five

minutes, and the average runtime is decreased by more than half.

Figure 4 shows the convergence curves of the different CFs when solving instance R110

with size 25–125, which illustrates a common behavior of these models in many instances.

Figures 4a and 4b indicate that both the CF1 and the CF2 start from high UBs that

rapidly decrease and the LB increases a little in the first few seconds. However, after

1000s of runtime, there is little improvement either in the UB or the LB, leading to large

gaps (55.67% for the CF1 and 54.42% for the CF2). The CF3, as portrayed in Figure

4c, starts a few seconds later because it calculates the lower bounds discussed in Section

5.3 before starting the solution procedure. As in the other approaches, the UB rapidly

decreases, but the difference here is the significant increase in the LB right in the first

seconds of runtime. This figure illustrates the effect shown in Table 1. Indeed, although

the improvement in the LR from using the novel VIs is small compared to the VIs from

the literature, it significantly helps the performance of the MIP solver by increasing the

LB throughout the branch-and-cut search tree. Nevertheless, these improvements do not

overcome the tailing-off effect shown by the CF1 and the CF2, preventing the algorithm

from proving optimality within the time limit, and finishing with an optimality gap of

5.80%. It is worth mentioning that, to assess whether longer runtimes would allow the

solver to prove optimality for this instance, we have run the CF3 solving this specific

instance with a time limit of twenty hours and, even though the gap was reduced, it was

not possible to prove optimality.

These analyses have demonstrated the added value of the VIs from the literature and

the significant improvement obtained with the newly proposed VIs for our problem. Using

the CF3, the solver proved optimality for many instances and provided good bounds for

the remaining larger instances. This version of the model is used in the next section to

assess the performance of our BBC algorithm.
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(a) CF1. (b) CF2.

(c) CF3.

Figure 4: Convergence curves for instance R110 with size 25–125.
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6.3 Branch-and-Benders-cut algorithm

Since the previous experiments clearly show the efficiency of the proposed VIs, in

our BBC method the RMP always includes the VIs (20)–(24), and the SP includes VIs

(17)–(19), (25), and (43).

The first experiments with the BBC method evaluate the relevance of the cut improve-

ments discussed in Section 5.1. Table 2 presents the results in a subset of instances (even

numbered instances) considering two different versions of the method: with route cuts

(27) and (28); and with improved path cuts (31) and (33). Notably, the performance with

the improved cuts is slightly worse for smaller instances but it is significantly better for

larger ones. The number of instances to which the versions have proved optimality is the

same and hence was not shown. On average, the improved cuts yield positive impacts

in the LB and UB, leading to a 0.26% gap improvement and 10% time reduction. Given

these results, the remaining experiments with the BBC are all run with the path cuts (31)

and (33).

Size LB UB GAP (%) Time (s)

BBC with route
cuts (27) and (28)

10− 40 6,922 6,922 0.00 20
15− 60 10,039 10,098 1.02 1,097
15− 85 11,874 11,957 1.10 656
20− 80 12,773 13,764 7.97 3,143
25− 125 17,394 19,016 8.93 3,115

Total 11,800 12,351 3.80 1,606

BBC with improved
cuts (31) and (33)

10− 40 6,922 6,922 0.00 22
15− 60 10,031 10,098 1.16 758
15− 85 11,873 11,957 1.12 632
20− 80 12,844 13,764 7.58 3,163
25− 125 17,382 18,717 7.87 2,672

Total 11,810 12,291 3.54 1,449

Table 2: Impact of cut improvements in the BBC method.

Table 3 presents the results of the experiments with the BBC algorithm compared with

the CF3. Figure 5 shows the convergence curves for instance R110 with size 25–125. In

addition to the LB and UB curves, this figure also shows the points in which optimality

cuts were inserted.

Compared to the CF3, the BBC algorithm reduces another 0.06% in the average gap

and gives a slight improvement in the average UB for large instances of sizes 20–80 and

25–125. The greatest improvements, however, are in the number of instances solved to

proven optimality and in the average runtime.

The BBC proved optimality for all instances with sizes 10–40, and for 28 out of 29

instances of sizes 15–60 and 15–85. In total, it proved optimality for 129 instances, which

represents 88.97% of the total number of instances, and an increase of 43.33% compared

to the CF3. Even for the instances with sizes 20–80 and 25–125, to which there was no
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Size LB UB Gap (%) Time (s) Opt

CF3

10–40 7,131 7,131 0.00 316 28
15–60 10,189 10,228 0.68 2,262 26
15–85 12,018 12,116 1.26 4,108 13
20–80 13,499 13,988 4.55 4,184 14
25–125 18,358 19,195 5.76 5,155 9

Total 12,239 12,532 2.45 3,205 90

BBC

10–40 7,131 7,131 0.00 18 29
15–60 10,196 10,228 0.56 435 28
15–85 12,075 12,116 0.54 374 28
20–80 13,425 13,972 4.89 2,003 22
25–125 18,205 19,083 5.96 2,110 22

Total 12,207 12,506 2.39 988 129

Table 3: Results of the experiments with the best versions of the CF and BBC approaches.

improvement in the LB and gap when comparing the BBC with the CF3, the number of

instances solved to proven optimality went from 14 and 9 to 22 and 22 with the BBC. For

these sizes, the average LB and gap did not improve because the BBC performed worse

than the CF3 in a few instances, despite being superior in most of them.

Moreover, the runtime was drastically reduced. Small instances were solved to opti-

mality within seconds by the BBC method, and the average runtime, which was close to 2

hours for the CF1 and close to 1 hour for the CF3, was reduced to slightly more than 15

minutes. In part, this improvement is caused by the overcoming of the tailing-off effect,

as shown in Figure 5. The BBC method proved optimality for that instance in less than

200s, while the other approaches have high gaps after 7200s and, as discussed in Section

6.2, could not prove optimality even after twenty hours of runtime. This leads to signif-

icant improvements in the runtime of the algorithm, with the average value representing

69.17% of reduction compared to the results of the CF3. In the instances of size 10–40,

the runtime reduction is of 94.30%. This result is especially important considering that

exact methods usually suffer from being very time-consuming, while the proposed BBC

has presented reasonable running times for most instances.

Table 4 provides a closer look at the cuts inserted in the BBC algorithm. The number

of feasibility cuts is less than one per instance on average. For the instances with size 15–

60, no feasibility cut was needed in any instance. This indicates a very good performance

of the proposed lower bounds for ensuring feasibility of the solution provided by the RMP.

It also shows that many instances do not need feasibility cuts, as the one portrayed in

Figure 5. The number of inserted optimality cuts grows with the instance sizes, but there

are fewer than two cuts for each node on average. Figure 5 illustrates the fact that when

a new optimality cut is inserted, a new incumbent solution is often found, reducing the

UB value.

Regarding the time spent separating these cuts, it grows rapidly with the instance sizes

and is directly related to the number of cuts added. Additionally, each cut separation takes
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Figure 5: Convergence of the BBC method for instance R110 with size 25–125.

Size # of feasibility # of optimality Total separation (s)

10–40 0.21 38.72 7.71
15–60 0.00 94.93 31.00
15–85 0.69 87.17 95.67
20–80 1.17 154.28 57.45
25–125 1.79 222.03 437.76

Avg 0.77 119.43 125.92

Table 4: Average number of cuts and separation times in the BBC algorithm.

longer for larger instances as they have more customers in each route and larger clusters.

When comparing the results of our BBC approach with those obtained by solving the

CF alone (CF1), the BBC yields a 36.09% reduction in the average gap, the number of

instances solved to optimality is increased by 1,172.73%, the average UB is improved by

3.85%, the average LB increases 53.14%, and the average runtime is reduced in 85.21%,

which highlights the suitability of the proposed method to solve the problem.

Moreover, when looking at the results of the algorithms considering different instance

sizes, it can be seen that it becomes more challenging to solve the problem as the instances

grow. Nonetheless, different solution methods may be more or less sensitive to this increase

in the difficulty in solving the problem depending if the size changes more expressively in

the number of customers or clusters. Instances with sizes 15–85 and 20–80, for example,

have a total of 100 nodes. On the one hand, CF1 and CF2 have better performances for

instances with size 20–80 than for instances with size 15–85, indicating that the size of

clusters affects these approaches more than the number of clusters. On the other hand,

CF3 and BBC have better performances in the instances with size 15–85 than in those

with size 20–80, suggesting that these methods are more affected by the number of clusters

than by the cluster size. This shows that the proposed BBC method and the novel VIs

were effective in decreasing the difficulty related to the second-level routes, as was our goal

with those approaches given that these routes are less relevant (much cheaper and highly
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dependent on the other decisions) than the first-level routes and the number of vehicles or

deliverymen used. Furthermore, the number of cuts added in the BBC for the instances

with size 20–80 is 76.99% higher than for the instances with size 15–85, even though the

separation time is 39.95% lower.

6.4 Managerial insights

We ran experiments to assess the relevance of considering deliveryman routes and to

perform sensitivity analysis on the results. Experiments were run with the BBC method

in a subset of instances of sizes 15–85, 20–80, and 25–125 to which this method proved

optimality in all configurations.

As discussed in Section 2, the previous works on the VRPTWMD ignored the delivery-

man routes by considering that deliverymen have limited capacity and thus cannot visit

more than one customer without returning to the vehicle. We adapted our methods to

consider this alternative of having the deliverymen perform round trips to all customers in

the cluster by simply setting the distance dij = di0+ d0j , where i and j are two customers

and 0 represents the parking location. This new distance matrix effectively models the

case of round trips to each customer. The travel times were defined accordingly. The

results presented in Table 5 contrast this situation with the VRPTWMD2R proposed in

this paper.

Ignoring deliveryman routes With deliveryman routes

# of vehicles 6.78 6.22
# of deliverymen 18.39 16.11
First-level distance 454.22 423.00
Second-level distance 669.00 474.56

Total cost 13,827.89 12,537.89

Table 5: The importance of considering deliveryman routes.

In spite of being a problem much easier to solve (the solution times were roughly

one-third), ignoring the second-level routes creates significantly worse results. Since it

overestimates the deliveryman routes time and distance, it has a greater need for both

vehicles and deliverymen. The overall costs are 10.29% higher, highlighting the importance

of considering the deliveryman routes in the problem.

These results also highlight that savings are expected if deliverymen can perform small

routes instead of visiting one customer at a time. In applications where walking deliv-

erymen cannot carry goods to serve more than one customer at a time, small scooters or

cargo bikes can enable this. More generally, this analysis sheds light on the limitations

and benefits of drone delivery, depending on the drone capacity and range.

Another important assessment is the trade-off between vehicle and deliveryman costs

discussed in Section 3. Table 6 compares the results for three different cost structures,

in which the first- and second-level cost components in (fv, cv, fd, cd) are set as follows:
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(i) deliverymen ten times cheaper than vehicles (1000, 10, 100, 1); (ii) deliverymen and

vehicles with the same costs (100, 1, 100, 1); and (iii) deliverymen ten times more expensive

than vehicles (100, 1, 1000, 10). These results illustrate the trade-off mentioned above.

They make clear that more efficient deliveryman routes and more deliverymen can be used

to reduce both the number and the distance traveled by vehicles if this is interesting from a

cost perspective. However, when this is not the case, the vehicles are more intensively used

to reduce deliverymen costs. From the first scenario to the last, the average number of

deliverymen per vehicle drops from 2.59 to 1.93, which is a 25.48% decrease. Nevertheless,

the average distance traveled by each vehicle and deliveryman does not change much from

one scenario to the other since the fixed costs are much higher than the variable costs,

enforcing that each vehicle and deliveryman is used as much as possible.

Del < Veh Del = Veh Del > Veh

# of vehicles 6.22 6.28 7.56
# of deliverymen 16.11 15.33 14.56
First-level distance 423.00 439.39 522.83
Second-level distance 474.56 467.22 438.17

Table 6: Costs sensitivity analysis.

Furthermore, we look at other possibilities of cost reduction enabled by clever uses of

multiple deliverymen in practice. Table 7 presents a base case with a limit of ML = 3

deliverymen in each vehicle in which they travel at one-third of the vehicles’ speed. This

base case is compared to another with a limit of ML = 5 deliverymen that travel at the

same speed. Once again, these results prove that deliverymen can be used to reduce the

number of vehicles used. Here, the number of vehicles is reduced by 17.85% and the first-

level distance is reduced accordingly by 12.54%. Despite the increase in deliverymen costs,

this leads to an overall cost reduction of 11.32%. Another comparison is made with a case

of fast deliverymen (twice the vehicles’ speed), which could represent a case with drones,

bicycles, or motorcycles as deliverymen, instead of walking carriers. Even though the

number of deliverymen in each vehicle remains ML = 3, this increased speed allows for a

great reduction on the service time in each cluster, leading to better first-level routes. The

average number of vehicles is reduced by 22.35%, the number of deliverymen by 25.88%,

and the vehicles distance by 17.89%, leading to a cost reduction of 20.52%.

A beneficial side effect of the business model incorporated by the VRPTWMD2R is

a reduction on the emission of greenhouse gases (GHGs) and other pollutants. If the

deliverymen are walking carriers, bicycles, or drones, for instance, GHGs emissions are

much smaller in the second-level routes than in the first-level routes. Since the adoption of

more deliverymen leads to reduced vehicle usage, as demonstrated above, this also reduces

the environmental harm of the delivery. As presented in Table 7, the distance traveled

by the vehicles can be reduced by more than 15% with the proper usage of deliverymen,

creating a much greener last-mile delivery system while reducing operational costs.

In conclusion, the presented results demonstrate the importance of properly evaluating
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Base case More deliverymen Fast deliverymen
ML = 3 ML = 5 ML = 3

1/3 of vehicles’ speed 1/3 of vehicles’ speed 2× the vehicles’ speed

# of vehicles 6.22 5.11 4.83
# of deliverymen 16.11 17.78 11.94
First-level distance 423.00 369.94 347.33
Second-level distance 474.56 530.33 464.06

Total cost 12,537.89 11,118.67 9,965.17

Table 7: Further advantages of multiple deliverymen.

the deliveryman routes and integrating them in a cost-effective manner with the vehicle

routes. It has been shown that the adequate usage of deliverymen can reduce overall costs,

the usage and number of vehicles, and the emission of GHGs and other pollutants. This

creates the opportunity of devising less costly and greener operations.

7 Conclusion

In this work, we have introduced a novel problem in the literature called the vehicle

routing problem with time windows, multiple deliverymen, and two-level routing. This

problem is an extension of the vehicle routing problem with time windows and multiple

deliverymen in which we incorporate the routes traveled by the deliverymen. We formally

define and formulate the problem, propose valid inequalities for this formulation, and

develop a branch-and-Benders-cut algorithm to solve it efficiently.

The results of computational experiments show the relevance of including more than

one deliveryman in each vehicle and properly optimizing their routes inside the clusters.

We have shown that this evaluation leads to a significant cost reduction and directly

impacts the number of vehicles and their routes in the solution. The experiments confirmed

the suitability of the proposed methodology. The proposed BBC solves 129 out of 145

instances to proven optimality, with an average processing time of less than 1,000s. The

proposed method is capable of solving instances of realistic sizes. Moreover, we have

performed a sensitivity analysis on the costs that highlighted opportunities to improve

the usage of multiple deliverymen, such as increasing the number of deliverymen in each

vehicle and adopting faster deliverymen (e.g., drones, bicycles, and motorcycles). We have

also discussed beneficial environmental effects of this business model, which are relevant

in urban logistics.

Finally, some possibilities of future work are extending the problem further and propos-

ing other solution methods. Interesting extensions would be considering pickup-and-

delivery schemes, heterogeneous fleet (especially in the first level), or uncertainties (e.g., in

the demand or travel times). Regarding new methods, the development of heuristics and

metaheuristics, or their combination with the proposed BBC to create hybrid methods,

could lead to good solutions for even larger instances.
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Bayliss, C., Bektaş, T., Tjon-Soei-Len, V., and Rohner, R. (2023). “Designing a multi-

modal and variable-echelon delivery system for last-mile logistics”. In: European Jour-

nal of Operational Research 307(2), pp. 645–662.

Benders, J. F. (1962). “Partitioning procedures for solving mixed-variables programming

problems”. In: Numerische Mathematik 4(1), pp. 238–252.

Boysen, N., Fedtke, S., and Schwerdfeger, S. (2021). “Last-mile delivery concepts: a survey

from an operational research perspective”. In: OR Spectrum 43, pp. 1–58.

Codato, G. and Fischetti, M. (2006). “Combinatorial Benders’ Cuts for Mixed-Integer

Linear Programming”. In: Operations Research 54(4), pp. 756–766.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to

Algorithms. 4th ed. The MIT Press: Boston, USA.

Hooker, J. N. and Ottosson, G. (2003). “Logic-based Benders decomposition”. In: Math-

ematical Programming 96(1), pp. 33–60.
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“Optimised solutions to the last-mile delivery problem in London using a combination

of walking and driving”. In: Annals of Operations Research 295, pp. 645–693.

Moreno, A., Munari, P., and Alem, D. (2019). “A branch-and-Benders-cut algorithm for

the crew scheduling and routing problem in road restoration”. In: European Journal

of Operational Research 275(1), pp. 16–34.

25

An Exact Method for a Last-mile Delivery Routing Problem with Multiple Deliverymen

CIRRELT-2023-35



Moreno, A., Munari, P., and Alem, D. (2020). “Decomposition-based algorithms for the

crew scheduling and routing problem in road restoration”. In: Computers & Operations

Research 119, p. 104935.

Moshref-Javadi, M. and Winkenbach, M. (2021). “Applications and research avenues for

drone-based models in logistics: A classification and review”. In: Expert Systems with

Applications 177, p. 114854.

Munari, P. and Morabito, R. (2018). “A branch-price-and-cut algorithm for the vehi-

cle routing problem with time windows and multiple deliverymen”. In: TOP 26(3),

pp. 437–464.

Murray, C. C. and Chu, A. G. (2015). “The flying sidekick traveling salesman problem:

Optimization of drone-assisted parcel delivery”. In: Transportation Research Part C:

Emerging Technologies 54, pp. 86–109.
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