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Abstract. Bike-sharing systems have been implemented in multiple major cities, offering a low-cost 
and environmentally friendly transportation alternative to vehicles. Due to the stochastic nature of 
customer trips, stations are often unbalanced, resulting in unsatisfied demand. As a remedy, 
operators employ trucks to rebalance bikes among unbalanced stations. Given the complexity of the 
dynamic rebalancing planning, this topic has received significant attention from the Operations 
Research community. However, the planning problem requires significant simplifications such that 
optimization models remain computationally tractable. As a result, existing models have used a large 
variety of modeling assumptions and techniques regarding decision variables and constraints. 
Unfortunately, the impact of such assumptions on the solutions’ performance in practice remains 
generally unexplored. Indeed, existing simulation models to evaluate the performance of planning 
strategies also rely on simplifications, such as the aggregation of trips within the same time-period, 
therefore ignoring the original chronological sequence of trip demand. In this paper, we first 
systematically survey the literature on rebalancing problems and their modeling assumptions. We 
then propose a general modeling framework for multi-period dynamic rebalancing problems that can 
be easily adapted to different assumptions, including trip modeling, time discretization, trip 
distribution, and event sequences. We develop an instance generator to synthesize realistic station 
networks and customer trips, as well as a more realistic simulator to evaluate the operational 
performance of rebalancing strategies. Finally, extensive numerical experiments are carried out to 
analyze the effectiveness of various modeling assumptions and techniques. In this way, we identify 
the assumptions that empirically provide the most effective rebalancing strategies in practice. In 
particular, a set of specific trip distribution constraints as well as event sequences ignored in the 
previous literature seem to provide particularly good results.  
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1. Introduction

The pursuit of environmentally friendly transportation modes has increased con-
siderably in the last few years, with Bike-Sharing systems (BSS) having emerged as
a notable choice. As of 2022, there were over 1,900 BSSs in operation comprising
almost 9 million bikes [43], offering cities opportunities to reduce carbon emissions,
traffic relief, and improve the quality of life for their residents [9].

A particular challenge in the management of BSSs are station imbalances. Most
users follow consistent travel patterns, often commuting toward commercial areas
(such as city centers) during morning peak hours and returning to residential zones
after work. Such behavior often results in stations being full or empty, leading to
lost demand, i.e., rental demand that cannot be met due to an empty station or
return demand that cannot be met as a result of a full station. Occasional user trips
introduce stochasticity, further aggravating station imbalances. As a remedy, BSS
operators often redistribute bikes among the stations, typically, via trucks, a process
known as rebalancing. Rebalancing imbalanced stations has been proven to be more
cost-effective than alternative solutions, such as adding more stations or installing
additional docks [53]. The development of effective rebalancing strategies has there-
fore become a crucial research field with the potential to significantly improve user
satisfaction. Two primary rebalancing schemes have been acknowledged in the lit-
erature: overnight station rebalancing and intraday rebalancing [44; 48]. The latter
is often referred to as the Dynamic Bicycle Repositioning Problem (DBRP)[32; 42].
In contrast to overnight rebalancing, the DBRP involves continuous intraday rebal-
ancing operations in parallel to the user trips occuring throughout the day. Given
its higher impact on demand satisfaction, we here focus on this problem.

While a few recent works use Markov Decision Processes [5; 33; 34; 35; 52],
the majority of the literature applies Mixed-integer Programming (MIP) models
[23; 42; 63; 65], given that they are flexible and widely used within industrial decision-
making processes. Among MIP models, multi-period models benefit from an inte-
grated planning over all time-periods and do therefore not suffer from the myopic
behavior of single-period models.

Most models aim at minimizing lost demand or maximizing successful trips [23;
39; 54; 61; 63; 64], with both rental and return demands estimated either by naive
predictions (e.g., the historical mean) [20; 22; 39; 63] or more sophisticated Machine
Learning (ML) techniques [62; 64]. However, minimizing lost demand may result in
sub-optimal rebalancing solutions if the predicted rental and return are not accurate
enough. BSS operators, like BIXI Montreal, often use inventory intervals and target
inventories within their rebalancing planning. The inventory interval of a station
refers to the acceptable range of its inventory, ensuring that the station maintains a

2

Dynamic Rebalancing for Bike-sharing Systems under Inventory Interval and Target Predictions

CIRRELT-2023-37



level of available bikes and free docks. The target inventory of a station represents
the desired number of bikes at that station to ensure optimal service.

While many methods have been proposed to compute inventory intervals and
target inventories (see e.g., [26; 28; 38; 47]), only a few have incorporated them
into optimization models. Notably, most relevant studies [24; 32; 51] either focus
on single-period models or minimize the deviation of target inventory at the end
of the planning process only. Although [56] and [58] attempt to introduce intervals
into multi-period models, they relax the intervals by using station capacities directly
in their experiments. Furthermore, the intervals and targets in these models are
often determined without considering weather conditions, which significantly impact
user behavior. As a result, the benefits of combining optimization algorithms with
intervals or targets in the objective function for multi-period models are still to be
determined.

In a similar vein, while some of the existing models have been carried out in a
rolling fashion (see, e.g., [23; 24; 42; 62; 54]), literature has not yet quantified the
benefits of integrating system status update through reoptimization (i.e., rolling and
folding planning) over classical static planning of multi-period rebalancing models.
In this paper, we aim at filling these gaps and approach the DBRP by incorporating
inventory intervals and target inventories.

Contributions. Our work evaluates the entire pipeline required for an autom-
atized and data-driven rebalancing process in BSSs. The main contributions can
be summarized as follows. (i) We propose two optimization models that integrate
inventory intervals and target inventories into the objective functions, concepts that
are often already used within the decision-making process of BSS operators. In con-
trast to classical models that minimize unmet demand, the proposed models tend to
ensure a buffer in the station inventories and are therefore more capable of dealing
with demand fluctuations. (ii) We propose a realistic instance generator, generating
varying weather conditions for different days along with trip data that is historically
coherent with such conditions. (iii) We conduct an extensive comparison among
three multi-period models with different objective functions for DBRP, including
the classical objective that minimizes unmet demand and the two proposed objec-
tives that minimize the deviations from inventory intervals and target inventories.
Demand predictions are obtained from an advanced machine learning model, capable
of making sufficiently accurate predictions based on weather and temporal features.
Inventory and target inventories are computed such that they maximize the desired
service-level. The performance is estimated by a fine-grained discrete-event simula-
tor. Our models demonstrate a remarkable robustness to cope with trip fluctuations,
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reducing lost demand by up to 34% as compared to the model minimizing lost de-
mand. (iv) We empirically compare the impact of employing different reoptimization
modes (i.e., static and rolling planning) for all models. The results indicate a clear
advantage of reoptimizing over the planning horizon, reducing the lost demand by
at least 30% on average, without necessarily increasing the computing time. (iv)
We compare the impact of using perfect information and less accurate demand pre-
dictions on the performance of the planning models. Interestingly, our proposed
optimization models remain remarkably robust. (v) A case-study on real-world data
is considered, confirming the benefits of the proposed approaches.

Outline. This paper is organized as follows. Section 2 reviews relevant literature
on the objective functions used in rebalancing models, inventory intervals and target
inventories, trip prediction, and reoptimization modes. Section 3 reviews the base-
line model that minimizes unmet demand and introduces two dynamic rebalancing
models minimizing the deviations from inventory intervals and target inventories.
Numerical experiments and analysis on synthetic and real-world data are presented
in Section 4. This is followed by the conclusions in Section 5.

2. Literature Review for Rebalancing Problems in BSSs

This section reviews the literature related to the here considered planning problem
and our contributions, focusing on the objective functions used within DBRP models,
inventory intervals and targets, demand prediction, and reoptimization modes.

2.1. Objective functions in rebalancing models

We first review existing MIP models and their objective functions used in dy-
namic rebalancing. Metrics used in the objective functions can be classified into
three different types (see Appendix of [36]): distance-based metrics, loading-based
metrics, and demand-based metrics. Distance-based metrics are associated with the
travelling distance of vehicles, mainly including travelling costs, travelling time, and
fuel consumption (see e.g., [1; 22; 46; 65]). Loading-based metrics are associated with
the number of handling (i.e., loading and unloading) operations (see e.g., [25; 55]).
Handling cost or time reflects the workload of operations. Finally, demand-based
metrics concern the dissatisfaction of customers. Some studies consider more than
one aspect in their objective functions (see, e.g., [20; 25; 32; 42; 64]).

We here focus on demand-based metrics, which have been more relevant in the
literature, and to which our contributions are directly related. The most common
approach for demand-based metrics is to minimize the lost rental and return demand,
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which is also equivalent to maximizing successful trips (see e.g., [10; 22; 23; 25; 39;
54; 61; 63; 64; 65]). Concurrently, there have been a few attempts to minimize
the deviation between the inventories of the stations and their target inventories
[24; 32] or inventory intervals [58], which still holds considerable potential for further
exploration. Our work focuses on such inventory intervals and target inventories, for
which the related literature is reviewed next.

2.2. Inventory intervals and target inventories

As opposed to minimizing lost demand, the concepts of inventory intervals and
target inventories have been found to be useful within the rebalancing decision-
making process. Inventory intervals define an acceptable range of the bike inventory
at individual stations, whereas target inventories represent specific inventory levels
that operators aim to uphold at each station. Both are typically designed to ensure
a high rate of demand satisfaction.

Even though inventory intervals and target inventories are often used concepts
in the planning processes of BSS operators, only a few works have incorporated
them into optimization models. When using target inventories, objective functions
typically minimize the deviations between the station inventories and the specified
targets. Here, [24] consider a single-period model, executed in a rolling planning, that
minimizes such inventory deviations. Further, [32] propose a multi-period rebalanc-
ing model for which they compare various metaheuristics. Next to multiple criteria
(such as minimizing costs) considered within the objective function, the model also
aims at aligning the final station inventory at the end of the planning horizon with a
specific target inventory. [8] define target values for entire city zones to ensure a more
equitable rebalancing process in which remote areas are not neglected due to their
lower population (and demand) density. Finally, the model introduced by [7] also
uses target values, but instead of minimizing deviations, they use hard constraints
to ensure that station inventories equal those targets at the end of the rebalancing
process. As a result, the minimization of the deviations between station invento-
ries and target values at each of the time-periods, as a mean of improving demand
satisfaction, has not yet been considered and deserves further investigation.

Inventory intervals have also been implemented into rebalancing models as hard
constraints [51; 56], requiring that station inventories remain within a specific range.
Here, [51] focus on the static rebalancing problem with a single time-period, while
[56] propose a multi-period model. However, the authors do not consider these
constraints in their computational experiments. Given that hard constraints may
easily lead to infeasible outcomes, [58] present a multi-period model that, among
several other criteria, minimizes the deviation of station inventories from predefined
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inventory intervals within the objective function. Unfortunately, their experimental
setup also ignores such intervals, leaving the actual effectiveness of inventory intervals
within the optimization model unexplored.

While the works cited above assume that target inventories and inventory inter-
vals are given, a few works also propose how to effectively compute them. Target
inventories have often been computed such that they reduce the probability of a sta-
tion reaching both the full and empty status, typically requiring the prior estimation
of rental and return distribution on historical data [18; 24; 26; 47]. Inventory inter-
vals have been computed in a similar fashion [51; 28], selecting those that minimize
the likelihood of a station becoming either empty or full. Finally, different from
those approaches, [11] and [29] simulate the performance of several sets of initial
inventories and select the one that performs best.

Most works cited above compute target inventories and inventory intervals based
on historical trip demand. However, they disregard external factors such as weather
conditions, the importance of which has been widely acknowledged in the literature
(see, e.g., [13; 17; 19; 28; 31; 38; 43]). To this end, [28] extend the notion of service-
levels proposed by [51], computing both target inventories and inventory intervals
based on the service level and the predicted demand. The latter is estimated based
on machine learning models trained on both temporal and weather data, therefore
holding the potential of providing better performing target inventories and inven-
tory intervals. The authors also introduce two additional hyperparameters, α and β,
allowing operators to align inventory intervals and target inventories with their pri-
orities for either rentals or returns (see Appendix A for more details), hence making
it an attractive approach to operators.

2.3. Demand prediction for BSSs

Demand prediction is an essential step in the rebalancing process, enabling op-
erators to anticipate which stations require higher inventories to better serve trip
demand. Accurately predicting rentals and returns is challenging, as it is influenced
by numerous factors [57]. Literature on demand prediction in BSSs can be divided
into approaches predicting at global demand level (see e.g., [19; 49; 60]), at the level
of station-clusters (see e.g., [3; 14; 57]), and at the level of individual stations (see
e.g., [4; 12; 28; 45; 62]). We here focus on works predicting demand at station level,
which is required for rebalancing operations since they are tailored considering the
rentals and returns for each station.

Different techniques have been used to predict demand in BSSs. The average of
historical trips (i.e., rentals and returns) can be used to estimate future demand [2;
11; 20; 24; 47; 51; 63], which can be seen as a naive predictor. Alternatively, rental and
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Figure 1: The structure of rolling and folding planing

return (often Poisson) distributions have been estimated from historical trip data,
from which trip demand is then sampled and used within the optimization models
(see, e.g., [22; 39; 63; 65]). While such prediction methods centered on historical
mean demand have been quite popular, several studies (see, e.g., [16; 38; 40] haven
suggested that such methods may result in high prediction errors when compared to
ML models, as the latter can take into considerations features beyond historical trip
data, including weather conditions, time of day, day of the week and the occurrence
of special events.

Generally, ML algorithms can capture intricate patterns and correlations and
may, therefore, result in significantly more accurate demand predictions. Ran-
dom forests and gradient boosted trees, in particular, have been found to pro-
vide competitive prediction accuracy in the context of rental and return predictions
[4; 28; 40; 59; 60]. Typically, such models integrate weather and temporal features,
highlighting their importance to accurately predict demand. Here, [28] utilize Sin-
gular Value Decomposition, a dimension reduction technique, to reduce the dimen-
sionality of the trip data, eliminate noise and improve both time required and the
accuracy of hourly station-level rental and return predictions (details can be found
in Appendix A). These reasons make this model an attractive option to estimate the
future trip demand for our rebalancing optimization models.

2.4. Reoptimization modes: static, rolling, and folding

In practice, both single-period and multi-period models can be implemented in
several ways. A simple, yet common approach (see, e.g., [20; 32; 41; 50; 53; 64]) is
to optimize once over the entire planning horizon (i.e., all considered time-periods)
and then implement all rebalancing decisions (i.e., the number of bikes dropped off
and picked up at each station) as planned for all time periods.
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While multi-period models can represent the consequences of decisions made at
early time-periods, when executed within a static planning, they do not benefit from
updated system information (such as station inventories or improved demand pre-
dictions). Therefore, practitioners often tend to reoptimize the rebalancing decisions
throughout the planning horizon. Specifically, rolling planning (also called rolling
window planning) considers the reoptimization over several time-periods at prede-
fined reoptimization stages. Figure 1 (A) depicts the rolling planning, where, at
each reoptimization stage, the green squares indicate time periods considered in the
optimization models, and the green dotted squares indicate decisions of the time-
periods actually executed in practice. This approach has been popular, with works
implementing rolling planning for both multi-period (see, e.g., [23; 39; 42; 62; 54; 63])
and single-period models (see e.g., [21; 24; 25]). This allows for correcting ineffective
planning, e.g., due to forecasting inaccuracies. In addition, considering only a subset
of all time-periods within the planning window has the advantage of resulting in a
more tractable optimization model.

If model decisions at early time-periods may impact decisions several time-periods
ahead, one may want to consider a model with a longer planning horizon. Folding
planning therefore optimizes on the remaining planning horizon, as depicted in Fig-
ure 1 (B). While this is generally a common approach in multi-period models [37],
to the best of our knowledge, this approach has not yet been explored for BSS re-
balancing planning.

3. Dynamic Rebalancing Models

In this section, we formulate the DBRP as MIP models. Section 3.1 first describes
a multi-period model, which minimizes the unmet rental and return demand, the
more popular objective in the literature (as discussed in Section 2.1). We then
propose two models integrating inventory intervals and target inventories into the
objective functions in Section 3.2.

3.1. Multi-period rebalancing model minimizing lost demand

We consider the model with multiple time-periods from [36]. The input param-
eters are listed in Table 1 and decision variables are shown in Table 2. We denote
S as the set of stations, while V denotes the set of available vehicles. Each station
s ∈ S has a capacity of Cs docks and each vehicle v ∈ V can hold at most Ĉv bikes.
We consider a planning horizon with ∣T ∣ time-periods, where each time period t ∈ T
represents a duration of Lt minutes.

We assume that a vehicle can visit only one station per time-period. As a result, a
vehicle can visit at most T stations during the entire planning horizon. The decision
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Table 1: Input parameters of the optimization model

Input Parameters Definition
S The set of stations.
V The set of vehicles.
T The set of discreted time-periods.
Cs The capacity of station s ∈ S.

Ĉv The capacity of vehicle v ∈ V .
Lt The duration (in minutes) of time period t ∈ T .
d1s The initial number of bikes at the station s ∈ S.

d̂1v The initial number of bikes in vehicle v ∈ V .
z1s,v The initial location of each vehicle v ∈ V, s ∈ S.
f+,ts The expected rental demand at station s ∈ S in period t ∈ T .
f−,ts The expected return demand at station s ∈ S in period t ∈ T .

Table 2: Decision variables of the optimization model

Variables Definition
dts The number of bikes available at station s ∈ S at the beginning of period t ∈ T .

d̂tv The number of bikes in vehicle v ∈ V at the beginning of period t ∈ T .
x+,ts The number of successful rentals starting from station s ∈ S in period t ∈ T .
x−,ts The number of successful returns ending at station s ∈ S in period t ∈ T .
r+,ts,v The number of bikes picked up at station s ∈ S by vehicle v ∈ V in period t ∈ T .
r−,ts,v The number of bikes dropped off at station s ∈ S by vehicle v ∈ V in period t ∈ T .
zts,v zts,v = 1, if vehicle v ∈ V visits station s ∈ S in period t ∈ T ; 0 otherwise.

variables r+,ts,v and r−,ts,v represent the number of bikes vehicle v picks up and drops
off, respectively, at station s during period t. Furthermore, binary variable zts,v takes
value 1 if and only if vehicle v visits station s at time-period t. For each time-period,
intermediate variables are used: the number of bikes available at stations and in
vehicles, successful trips, and vehicle routes. The resulting MIP model is expressed
as follows:

The objective function (1) minimizes the total lost demand, i.e., the unmet ex-
pected demand for both rentals and returns, over the entire planning horizon at all
stations. Constraints (2) compute the number of bikes in each vehicle v in period
t + 1 based on the number of bikes in the previous period and the number of picked
up/ dropped off bikes. Constraints (3) compute the number of bikes in period t + 1
at each station s as the sum of the number of bikes of that station in the previous
period, the number of bikes rebalanced by vehicles, and those moved by users (i.e.,
successful rentals and returns). Constraints (4) ensure that each vehicle v can only
be at one station at each time-period. Constraints (5) ensure that a vehicle can
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perform operations at a station only when it is present at that station. Constraints
(6) impose that the number of bikes in each vehicle is bounded by its capacity. Con-
straints (7) are the capacity constraints for the stations. Constraints (8) bound the
number of successful trips by the expected rental and return. Finally, constraints (9)
enforce that the pick-up and drop-off operations respect the vehicle’s capacities.

min ∑

s∈S
∑

t∈T
(f+,ts − x+,ts ) +∑

s∈S
∑

t∈T
(f−,ts − x−,ts ) (1)

s.t. d̂t+1
v = d̂tv +∑

s∈S
(r+,ts,v − r

−,t
s,v) ∀ v ∈ V, t ∈ T (2)

dt+1
s = dts − ∑

v∈V
(r+,ts,v − r

−,t
s,v) − x

+,t
s + x−,ts ∀ s ∈ S, t ∈ T (3)

∑

s∈S
zts,v = 1 ∀ v ∈ V, t ∈ T (4)

r+,ts,v + r
−,t
s,v ≤ Ĉvz

t
s,v ∀ s ∈ S, v ∈ V, t ∈ T (5)

0 ≤ d̂tv ≤ Ĉv ∀ v ∈ V (6)

0 ≤ dts ≤ Cs ∀ s ∈ S (7)

0 ≤ x+,ts ≤ f+,ts ,0 ≤ x−,ts ≤ f−,ts ∀ s ∈ S, t ∈ T (8)

0 ≤ r+,ts,v, r
−,t
s,v ≤ Ĉv ∀ s ∈ S, v ∈ V, t ∈ T (9)

zts,v ∈ {0,1} ∀ s ∈ S, v ∈ V, t ∈ T. (10)

The above model, denoted as Dynamic Rebalancing Optimization for BSS mini-
mizing Lost Demand (DROB-LD), derives rebalancing strategies for the entire plan-
ning horizon, i.e., it decides how many bikes each vehicle should pick up or drop
off at which station. The model can be easily implemented in different reoptimiza-
tion modes (static, rolling, and folding planning) with alterable length of planning
horizons and duration of time-periods, depending on the requirements of the decision-
maker.

3.2. Rebalancing models based on inventory interval and target inventory

Even though the above used objective minimizing the lost demand is quite pop-
ular in the literature, its performance is sensitive to the accuracy of the expected
rentals f+,ts and returns f−,ts . Rather than minimizing the deviation from such a point
estimate, we propose to minimize the deviation from either the inventory interval or
the target inventory. This approach provides a buffer for the station inventories,
allowing them to maintain reasonable inventories even when the trip prediction is
less accurate, and to be better prepared for fluctuations of the stochastic demand.
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To this end, we propose two multi-period models with novel objective functions:
Dynamic Rebalancing Optimization for BSS based on Target Inventories (DROB-
T) and Dynamic Rebalancing Optimization for BSS based on Inventory Intervals
(DROB-I). The parameters and variables used in both models are depicted in Table 3.

Table 3: Parameters and variables that define inventory intervals and target inventories

Input Definition
`ts The target inventory of station s ∈ S at period t ∈ T
`ts The lower bound for the inventory interval of station s ∈ S at period t ∈ T
`
t

s The upper bound for inventory interval of station s ∈ S at period t ∈ T
Variables Definition

e+,ts The number of bikes above the upper bound at station s ∈ S in period t ∈ T
e−,ts The number of bikes below the lower bound at station s ∈ S in period t ∈ T

The objective function of DROB-T (11) aims at minimizing the total deviations
between station inventories and target values, thus yielding the following formula-
tion:

min ∑

s∈S
∑

t∈T
∣`ts − d

t
s∣ (11)

s.t. (2) − (10).

DROB-I is designed to keep the station inventories as much as possible within
the computed intervals. To this end, DROB-I is formulated as the objective function
(12), along with constraints (2)-(10) and (13)-(15) as defined below:

min ∑

s∈S
∑

t∈T
e−,ts + e+,ts (12)

s.t. `ts − e
−,t
s ≤ dts ∀ s ∈ S, t ∈ T (13)

dts ≤ `
t

s + e
+,t
s ∀ s ∈ S, t ∈ T (14)

e−,ts ≥ 0, e+,ts ≥ 0 ∀ s ∈ S, t ∈ T (15)

(2) − (10).

Figure 2 exemplifies the inventory of a station s, as well as the lower bound and
upper bound of the inventory interval, and its target inventory. For DROB-I, the
excess of inventory at each time-period (e+,ts and e−,ts , respectively), with respect to

the inventory interval [`ts, `
t

s], is computed by constraints (13) and (14). For DROB-
T, Figure 2 also illustrates the deviation ∣`ts − dts∣ from the current target value. By
minimizing these deviations, DROB-I and DROB-T aim at providing safety buffers
to the station inventory and are therefore more likely of being capable to deal with
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Figure 2: Example of deviations from inventory intervals and target inventory

stochastic demand fluctuations. We next present two toy examples to provide an
intuition of the potential benefits of the two new objective functions.

Table 4: Comparative analysis of three objective functions for rebalancing operations

Objective
Function

Example 1 Example 2
Dropped off

Bikes
Expected

Lost Demand*

Dropped off
Bikes

Expected
Lost Demand*

DROB-LD (1) 1 0.33 0 0.67
DROB-T (11) 8 0 5 0
DROB-I (12) 2 0 2 0
* The expected lost demand is calculated considering all possible chronological sequences

of rentals and returns derived from historical trip data. For simplicity, we assume that
the probability of a rental occurring before a return equals to that of a return happening
before a rental.

Example 1. Consider an empty station with 10 docks. For a given time-period at a
given day, historical rentals follow a uniform distribution ranging from 0 to 2, while
no returns have been observed. A predictive model is used to predict the expected
demand and target value and inventory interval are computed as to ensure a suffi-
cient service level (see Section 4.1.2 and Appendix A for details). As a result, an
estimation of 1 rental and no return is obtained, directly used in model DROB-LD.
For DROB-T, the computed target value is 8, while for DROB-I, the computed in-
ventory interval is [2, 10]. Table 4 summarizes the number of bikes dropped off at
that station according to each of the three models. Furthermore, the table reports
the expected lost demand if rental demand is uniformly distributed between 0 to 2.
Here, DROB-T and DROB-I drop off at least 2 bikes, accounting for the potential
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demand of 2 rentals. In contrast, DROB-LD drops off only 1 bike, and therefore
lacks 1 bike when the rental demand is 2.

Example 2. Consider that the same empty station, for another time-period and
given day, has a uniform distribution between 0 and 2 for both rentals and returns.
Both the estimated rental and return are therefore 1. The computed target value is
5, whereas the inventory interval is [2, 8]. In this case, DROB-T and DROB-I still
drop off at least 2 bikes and therefore do not induce any unmet rental demand. In
contrast, DROB-LD implicitly assumes that returns cancel rentals, and thus does
not drop off any bikes, which may result in unmet demand when the rental demand
is 1 or higher.

4. Experiments and Results

We now employ computational experiments to explore the benefits of the pro-
posed models. Section 4.1 introduces the synthetic data and reports on the corre-
sponding empirical results. A case study on real-world data is then presented in
Section 4.2.

Computational environment. All optimization models are solved using IBM
ILOG CPLEX v20.1.0.0 on 2.70 GHz Intel Xeon Gold 6258R machines with 8 cores.
Optimization terminates once the MIP gap reaches 0.01% or the time limit of 24
hours is reached.

4.1. Experiments on synthetic data

We here focus on experiments carried out synthetic problem instances. To this
end, Section 4.1.1 first introduces the instance generator that generates weather-
dependent trip data. Section 4.1.2 then details the experimental set-up, including
the machine learning model used to predict rental demand, the computation of in-
ventory intervals and targets, and the simulator. This section also summarizes the
computational results, comparing the performance of the various planning models.
Finally, Section 4.1.3 then explores the performance of the planning models under
the assumptions that predictions are less accurate.

4.1.1. Synthetic dataset

Even though we have access to real-world trip data, we synthetically generate
instances for several reasons. First, the available real-world trip data lacks informa-
tion on unobserved demand. Second, existing data may contain noise related to trip
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and station inventory data. Finally, rebalancing operations conducted by operators
impact station inventory, but data on such operations is not openly available.

Real-world
weather data

Distributions
of hourly

weather change

Weather
generator

Synthetic
weather data

Real-world
trip data

Hourly rental
prediction

Hourly # of
rentals for the

original network

Hourly # of
rentals for the

generated network

Trip pattern
& distributions

Station
network

Station network
generator

Trip data

Trip
Generator

Weather data Hourly rental for
the original network

Trip data for the
generated station network

Figure 3: Process to generate weather data, station network and trip data

The general data generation process of the here employed instance generator
is depicted in Figure 3. We extend the instance generator proposed by [36] (corre-
sponding to the third box in Figure 3: “Trip data for the generated station network”),
which is capable of generating diverse station networks and trip data, based on pre-
defined trip patterns & distributions that align with those observed in real-world
BSSs. Whereas the instance generator of [36] generates trip data under the same
weather conditions (specifically, assuming high demand during summer months), we
here explicitly acknowledge the strong correlation between weather conditions and
trip demand. As such, we extend this instance generator as follows. (i) We intro-
duce varying weather conditions into our generator (corresponding to the first box
“Weather data” in Figure 3) by estimating statistical distributions that represent
the hourly changes of weather conditions estimated on real-world weather data, and
then sample new weather conditions from these distributions. (ii) We then compute
the system-wide level of trip demand that is correlated to such weather conditions
(corresponding to the second box “Hourly rental for the original network” in Fig-
ure 3), i.e., the hourly number of rentals for the entire network. Finally, individual
trip demand is generated for the generated station network. Each of these compo-
nents is next explained in detail.

Generation of weather data. Given that we ultimately aim at generating trip data
that resembles periods of the demand peak season, we are interested in generating
weather conditions for the months of June to August, which tend to have high user
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demand. We therefore procure Real-world weather data1 from Montreal for June,
July, and August from 2017 to 2020, resulting in a total of 368 days (including
both weekdays and weekends). We select two features of utmost importance (see,
e.g., [13; 17; 19; 31]): temperature and humidity. We analyze the temperature and
humidity differences between consecutive hours throughout the day and divide the
day into four distinct time segments such that temperature and humidity tend to
remain relatively stable within each of which (0 am – 5 am, 6 am – 11 am, 12
pm – 5 pm, and 6 pm – 11 pm). The hourly differences are then used to estimate
normal Distributions of hourly weather change for each time segment. The estimated
distributions of temperature change for each time segment can be found in Appendix
B.

Synthetic weather data has been generated for a total of 500 days as follows. For
each hour of the original 368 days, we use the temperate and humidity that originally
occurred at that day and add a change of temperature and humidity, respectively,
sampled from the corresponding distributions. To obtain a total of 500 days, we
repeat the process with the first 132 of the original 368 days. To ensure that the
generated weather conditions are sufficiently realistic and avoid drastic fluctuations,
we introduce constraints to keep the temperature and humidity within 5.5○C–36○C
and 15%–99%, respectively. We denote the final set of the 500 generated days with
synthetic weather data as the Synthetic weather data.

Generation of hourly rental demand. Using the temperature, humidity, hour,
and weekday as features, we estimate the Hourly rental prediction model. This lin-
ear regression model is trained using the Real-world weather data and Real-world trip
data (also see Section 4.2.1) and captures the correlation between time and weather
conditions and the total demand level for the entire station network. The trained
regression model is then used to estimate the total system-wide number of Hourly
# of rentals for the original network that depends on the Synthetic weather data
throughout each day. Given that this total number of rentals has been estimated
on the original network from the Real-world trip data (here, the BIXI network with
over 600 stations), this number is then scaled to the number of stations used in the
here considered Station network (which has 60 stations). These hourly system-wide
rental demands (Hourly # of rentals for the generated network) then serve as input
to generate the detailed trip data.

Generation of station network and individual trip data. We generate two

1https://climate.weather.gc.ca
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ground truth problem instances, denoted GT1 and GT2, each of which contains a
station network, as well as hourly weather data and detailed trip information for 500
days. In both instances, the network contains 60 stations with different numbers of
city center stations. The stations within city centers are equipped with 40 docks,
while those outside city centers have 20 docks each.

Generated trips contain the origin station, the destination station, the departure
time, and the arrival time. We consider four trip patterns of user behaviors with
origins and destinations outside (O) and inside (I) city centers: (i) users who live
outside city centers and work inside city centers typically use similar origin (outside
city centers) and destination stations (inside city centers) during peak hours (OI
trips); (ii) users who live and work outside city centers (OO trips); (iii) random non-
work related trips occurring during the day (RD trips), and (iv) random non-work
related trips occurring during the night (RN trips).

Table 5: Characteristics of the two considered ground truth instances

Instance GT1 GT2

Network
(60 stations)

# of city centers 1 2
# of stations per city center 9 6
City center capacity 26% 35%

Trip
Pattern

OI 32% 32%
OO 32% 32%
RD 23% 23%
RN 13% 13%

The characteristics of instance ground truths GT1 and GT2 are described in
Table 5. Although the proportions of work-related (i.e., city center related) trips
are identical in GT1 and GT2, the latter has more city center stations (12 stations
in 2 city centers, as opposed to 9 stations in 1 city center). As such, work related
trips in GT2 are distributed over a larger number of stations, which are therefore
less stressed.

To sample individual trips for the considered station network, we assume that
each trip type follows a particular temporal distribution, indicating the probabilistic
time at which the rental occurs (as detailed in [36]). For each day, the trip generator
then sequentially samples trips (i.e., origin-destination pairs and exact time stamps)
from the Trip pattern & distributions (as defined by the ground truth) until the
hourly # of rentals for the generated network is met, resulting in the final set of Trip
Data.
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4.1.2. Model performance based on regular trip predictions

Experimental set-up. The 500 generated days for GT1 and GT2 are separated
into training set, validation set and test set as follows. The first 250 days are allo-
cated to calibrate the gradient boosted tree introduced in [28], capable of predicting
hourly station demand and trained on trips (time of rental and arrival/departure
stations), weather conditions (temperature and humidity), and temporal data (day
of the week, hour of the day, and a binary indicator for holidays). The subsequent
100 days are used for the validation and fine-tuning of the gradient boosted tree and
inventory intervals. Details on the training of the gradient boosted tree can be found
in Appendix A.

The remaining 150 days constitute the test set on which the optimization al-
gorithms are executed. We consider a planning horizon from 7 a.m. to 3 p.m.,
discretized into 8 time-periods, each with a duration of one hour. For each of the
150 days, we assume to have access only to its corresponding weather conditions,
but not to the exact trip (i.e., rental and return) demand. This is a reasonable as-
sumption in practice, where one can assume to have access to a reasonably accurate
weather prediction. Based on such weather conditions, the trained gradient boosted
tree then predicts the hourly rental and return demand for each station (f+,ts and
f−,ts ), used within model DROB-LD. The inventory intervals and target values, used
within models DROB-I and DROB-T, are then computed based on the predicted
rental demand (details can also be found in Appendix A). For each of the 150 days,
the rebalancing planning solutions provided by the various models are then evalu-
ated in the simulator (see Section 4.1.2) on the exact trip data. Note, again, that
the optimization models only have access to demand predictions (based on weather
data), whereas the simulator evaluates on the exact trip demand of the days in the
test set.

In all experiments, 4 vehicles are available to rebalance the stations, each with
a capacity for 40 bikes. The initial inventory of stations is obtained by solving an
overnight rebalancing problem (equivalent to the one used in [36]).

Each of the optimization models can be executed in different reoptimization plan-
ning modes. In static planning, the optimization model is solved once for the entire
planning horizon. The rebalancing strategies of the first 6 (out of 8) time-periods are
then executed within the simulator to estimate the lost demand. The rolling plan-
ning has 3 optimization stages, each of which contemplates 4 time-periods. At each
stage, the rebalancing decisions of the first 2 time-periods are executed within the
simulator, as illustrated in Figure 1 (A). The folding planning uses all the remaining
time-periods at each stage, as depicted in Figure 1 (B). The fine-grained discrete-
event simulator from [36] here used employs a chronological first-arrive-first-serve

17

Dynamic Rebalancing for Bike-sharing Systems under Inventory Interval and Target Predictions

CIRRELT-2023-37



rule, for both user rentals and returns, as well as rebalancing vehicles (i.e., pick-ups
and drop-offs). Events are discretized events into 1-minute time-slots, which results
in a particularly detailed and realistic simulation.
Computational Results. Table 6 illustrates the average lost demand and com-
puting time (over the test set) for all the models and reoptimization modes (Static,
Rolling, and Folding). We report the computing times required to solve the opti-
mization models as ‘Opt. Time’ (in minutes). The lost rental demand is computed as
the relative gap between successful rentals and the original rental demand specified

in the instances over the entire planning horizon, i.e.,
∑s,t(f+,ts −x̂+,ts )
∑s,t f

+,t
s

, where x̂+,ts is the

number of successful rentals in the simulator. The lost return demand is computed

as
∑s,t(x̂+,ts −x̂−,ts )
∑s,t x̂

+,t
s

, where x̂−,ts is the number of successful returns in simulator. Since,

in practice, return demand does not exist when the corresponding rental demand
is unsuccessful, the lost returns are only associated with successful rentals x̂+,ts . We
also present the relative difference (∆(%)) of the rental, return, and total lost de-
mand of DROB-I and DROB-T when compared to DROB-LD under the respective
reoptimization mode.

Table 6 allows for the following observations:

1. Comparison of proposed models. From Table 6, models DROB-I and
DROB-T generally outperform DROB-LD for both GT1 and GT2. For ex-
ample, on GT1, DROB-I reduces the lost demand from 7.65% to 5.66% in
rolling planning, while being solved within seconds. While under static plan-
ning, DROB-I and DROB-T tend to outperform DROB-LD, they consistently
outperform DROB-LD by a higher rate under rolling planning (reducing total
lost demand by 23.26%-34.51%)

2. Comparison of different reoptimization modes. The rolling and folding
planning consistently result in lower lost demand than the static planning, likely
due to the fact that they update the station inventories before reoptimizing at
every reoptimization stage (see Figure 1). Updating the inventory narrows
the gap between the estimated inventories in the optimization model and the
observed inventories during the simulation, allowing the optimization models
to make more informed decisions. For example, rolling and folding planning
in DROB-I on GT1 reduce the lost demand from 7.43% to 5.66% and 5.74%,
respectively, over the static planning. Note that updating weather forecast
may have significat impact in the rolling planning, which will be discussed in
Section 4.1.3. In terms of computing times, even though most models have been
solved within 1-2 minutes, the folding planning requires much longer computing
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Table 6: Results of dynamic rebalancing models for GT1 and GT2 under regular prediction

Lost Demand (%)
Instance Model

Reopt.

Mode

Opt.Time

(min.) Rental ∆(%) Return ∆(%) Total ∆(%)

GT1

DROB-LD

S 0.19 13.14 2.74 8.31

R 0.02 11.94 2.76 7.65

F 0.21 11.54 2.87 7.48

DROB-I

S 0.18 10.68 ▾ -18.72 3.79 ▴ 38.32 7.43 ▾ -10.59

R 0.10 8.18 ▾ -31.49 2.90 ▴ 5.07 5.66 ▾ -26.01

F 0.39 8.39 ▾ -27.30 2.84 ▾ -1.05 5.74 ▾ -23.26

DROB-T

S 1.53 9.98 ▾ -24.05 3.97 ▴ 44.89 7.14 ▾ -14.08

R 0.15 8.20 ▾ -31.32 1.52 ▾ -44.93 5.01 ▾ -34.51

F 1.79 8.21 ▾ -28.86 1.61 ▾ -43.90 5.06 ▾ -32.35

GT2

DROB-LD

S 0.41 8.27 1.68 5.13

R 0.06 8.16 1.67 5.06

F 0.44 8.11 1.62 5.01

DROB-I

S 0.04 7.76 ▾ -6.17 2.51 ▴ 49.40 5.24 ▴ 2.14

R 25.24 6.31 ▾ -22.67 1.35 ▾ -19.16 3.92 ▾ -22.53

F 229.15 5.87 ▾ -27.62 1.12 ▾ -30.86 3.57 ▾ -28.74

DROB-T

S 0.13 8.79 ▴ 6.29 0.63 ▾ -62.50 4.91 ▾ -4.29

R 0.28 6.96 ▾ -14.71 0.58 ▾ -65.27 3.89 ▾ -23.12

F 0.32 6.97 ▾ -14.06 0.57 ▾ -64.81 3.90 ▾ -22.16

times for GT2.

3. Comparison between GT1 and GT2. While the general conclusions and
tendencies are the same for GT1 and GT2, for GT1, models present more unmet
demand than for GT2. Indeed, GT2 has more stations located in city centers,
a region with high work-related demand, resulting in more evenly distributed
trip patterns for these stations. Moreover, the larger number of city center
stations translates into greater availability of docks in the network, as stations
located in this area contain twice the number of docks than stations located in
other regions of the city.

Results based on perfect trip prediction. We further carry out experiments
with perfect trip information for each day of the test set, i.e., the model optimizes on
the exact rental and return demand on which its rebalancing policy is later evaluated
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Figure 4: Results of total lost demand for GT1 using regular prediction and ground truth

within the simulator. These experiments establish an empirical performance bound
and provide insights into the efficiency of the optimization models and reoptimiza-
tion modes. Figure 4 presents the total lost demand obtained using the predicted
trip demand (i.e., the same as used for Table 6) and the perfect information for GT1.
Unsurprisingly, if perfect information was available, DROB-LD would consistently
outperform DROB-I and DROB-T, given that an inventory safety buffer would be
unnecessary. However, in reality, demand is stochastic. In this case, DROB-I and
DROB-T can provide more robust station inventories, allowing them to deal with
the stochastic trip demand. Interestingly, DROB-I and DROB-T still benefit from
inventory updates (rolling and folding planning) under perfect information, as op-
posed to DROB-LD. Indeed, the former two models rely on the current inventory
levels to update their objective functions, while the objective of DROB-LD remains
unchanged, even when station inventories change. As a result, reoptimization for
DROB-LD is not beneficial. Finally, the results also enable us to derive insights
into the empirical bounds on the potential gains achieved through the utilization
of a more accurate predictive model. While the gains are substantial (∼5% of lost
demand) for DROB-LD, they are much smaller (∼1-2%) for DROB-I and DROB-T.
While using a more accurate predictions may obviously lead to reduced unmet de-
mand, we will next investigate how those models perform when predictions are less
accurate.
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4.1.3. Model performance based on noisy prediction

The optimization models used in our previous experiments have taken as input
demand predictions and interval predictions that have assumed a perfect weather
forecast. In practice, weather forecasts for the next 2 to 8 hours can be prone to
inaccuracies. In a similar vein, having access to a predictive model with sufficiently
high accuracy may not always be possible. We will now investigate the performance
of the various models under the assumption that demand and interval predictions are
less accurate. To this end, we deliberately introduce noise into the performed trip
predictions. Since accurately predicting demand becomes increasingly challenging as
we project further into the future, we introduce more noise to later time-periods.

Noisy predictions. We consider two types of effects caused by noises over
demand predictions: (i) overestimation, e.g., due to a forecast of overly favorable
weather conditions and, therefore, expecting a higher number of trips than will actu-
ally occur; (ii) underestimation, e.g., due to a forecast of adverse weather conditions,
therefore predicting a lower number of trips than will actually occur.

Stage 1

Stage 2

Stage 3

7h 8h 9h 10h 11h 12h 13h 14h

9h 10h 11h 12h 13h 14h

11h 12h 13h 14h

Planning Horizon

(A) Rolling Planning

Stage 1

Stage 2

Stage 3

7h 8h 9h 10h 11h 12h 13h 14h

9h 10h 11h 12h 13h 14h

11h 12h 13h 14h

Planning Horizon

(B) Folding Planning

Legend

RMSE = +20%

RMSE = +30%

RMSE = +40%

RMSE = +50%

Figure 5: Noise added to the demand prediction over the planning horizon of the rolling and folding
planning

To obtain less accurate predictions for the demand at station s at time t, we
sample noise from a normal distribution. Its mean µ is determined by the original
predicted number of rentals (or returns), while its standard deviation is strategi-
cally adjusted to achieve a predetermined increase in the Root Mean Squared Error
(RMSE) for these noisy predictions in comparison to µ. This approach is applied
throughout the planning horizon for each stage in the rolling and folding planning
as illustrated in Figure 5. Values sampled above the mean are used to create overes-
timating predictions, whereas values below the mean are sampled to create underes-
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timating predictions. Thus, an underestimating forecast consistently predicts lower
demand and an overestimating forecast consistently predicts higher demand. Note
that static planning operates under the same conditions as the first stage of folding
planning.

Results. Tables 7 and 8 show the results for the three optimization models un-
der underestimating and overestimating predictions, respectively. As previously in
Table 6, ∆(%) indicates the relative difference of lost demand between DROB-I /
DROB-T and baseline model DROB-LD.

Table 7: Results of dynamic rebalancing models for GT1 and GT2 under underestimating predic-
tions

Lost Demand (%)
Instance Model

Reopt.

Mode

Opt.Time

(min.) Rental ∆(%) Return ∆(%) Total ∆(%)

GT1

DROB-LD

S 0.02 13.97 4.56 9.62

R 0.02 11.90 3.54 7.99

F 0.04 11.57 3.56 7.81

DROB-I

S 11.45 10.31 ▾ -26.20 4.37 ▾ -4.17 7.51 ▾ -21.93

R 0.13 8.23 ▾ -30.84 2.82 ▾ -20.34 5.65 ▾ -29.29

F 21.13 7.73 ▾ -33.19 1.68 ▾ -52.81 4.84 ▾ -38.03

DROB-T

S 0.20 11.89 ▾ -14.89 2.55 ▾ -44.08 7.52 ▾ -21.83

R 0.30 9.98 ▾ -16.13 1.11 ▾ -68.64 5.78 ▾ -27.66

F 2.84 10.03 ▾ -13.31 1.04 ▾ -70.79 5.78 ▾ -25.99

GT2

DROB-LD

S 0.01 11.66 2.69 7.46

R 0.01 10.85 1.36 6.39

F 0.02 10.44 1.38 6.17

DROB-I

S 0.23 8.6 ▾ -26.24 2.48 ▾ -7.81 5.68 ▾ -23.86

R 0.19 7.02 ▾ -35.30 1.40 ▴2.94 4.32 ▾ -32.39

F 1.94 6.99 ▾ -33.05 1.39 ▴0.72 4.30 ▾ -30.31

DROB-T

S 21.30 9.42 ▾ -19.21 1.27 ▾ -52.79 5.55 ▾ -25.60

R 0.79 7.42 ▾ -31.61 0.56 ▾ -58.82 4.13 ▾ -35.37

F 21.88 7.48 ▾ -28.35 1.16 ▾ -15.94 4.45 ▾ -27.88

Based on Tables 7 and 8, we summarize our observations as follows:

1. Comparison of models. Although DROB-LD shows performance improve-
ment in the case of overestimating predictions, DROB-I and DROB-T consis-
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Table 8: Results of dynamic rebalancing models for GT1 and GT2 under overestimating predictions

Instance Model
Reopt.

Mode

Opt.Time

(min.)

Lost Demand (%)

Rental ∆(%) Return ∆(%) Total ∆(%)

GT1

DROB-LD

S 1.50 12.09 2.14 7.44

R 0.04 10.79 2.12 6.71

F 1.52 10.50 2.18 6.58

DROB-I

S 0.08 11.05 ▾ -8.60 3.77 ▴76.17 7.62 ▴2.42

R 0.06 8.75 ▾ -18.91 1.62 ▾ -23.58 5.35 ▾ -20.27

F 1.41 8.59 ▾ -18.19 0.86 ▾ -60.55 4.91 ▾ -25.38

DROB-T

S 0.06 11.05 ▾ -8.60 3.94 ▴84.11 7.71 ▴3.63

R 0.10 8.77 ▾ -18.72 1.24 ▾ -41.51 5.19 ▾ -22.65

F 0.26 8.75 ▾ -16.67 1.21 ▾ -44.50 5.16 ▾ -21.58

GT2

DROB-LD

S 1.31 7.58 0.77 4.32

R 0.06 6.97 0.93 4.07

F 1.46 6.87 0.85 3.97

DROB-I

S 0.03 8.04 ▴6.07 1.64 ▴112.99 4.98 ▴15.28

R 0.03 7.00 ▴0.43 0.60 ▾ -35.48 3.93 ▾ -3.44

F 0.07 7.01 ▴2.04 0.60 ▾ -29.41 3.93 ▾ -1.01

DROB-T

S 0.08 8.63 ▴13.85 1.56 ▴102.6 5.27 ▴21.99

R 0.05 7.04 ▴1.00 0.45 ▾ -51.61 3.88 ▾ -4.67

F 0.16 7.06 ▴2.77 0.46 ▾ -45.88 3.89 ▾ -2.02

tently demonstrate lower lost demand in most cases. Especially within rolling
and folding planning, DROB-I and DROB-T outperform DROB-LD consider-
ably. Their advantage is particularly pronounced when optimizing on underes-
timating predictions.

2. Comparison of different reoptimization modes. Generally, the improve-
ment of lost demand when transitioning from static planning to folding and
rolling planning is more significant under perturbed trip predictions than un-
der noise-free predictions (see Table 6). This confirms the importance of such
reoptimization planning modes when less accurate predictions are used.

3. Comparison between predictions. Underestimating trip predictions results
in higher lost demand compared to noise-free predictions, since fewer rebalanc-
ing operations are triggered. In contrast, overestimating predictions may lead
to less lost demand, especially notable for DROB-LD. This is explained by the
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fact that overestimating predictions triggers more rebalancing operations in
DROB-LD. We report the number of rebalancing operations (number of bikes
picked up and dropped off) over the planning horizon in Figure 6. Indeed,
overestimating predictions results in more rebalancing operations to meet the
high demand. Overall, it appears that DROB-I and DROB-T are less sensitive
to prediction noise than DROB-LD, given that they are designed to introduce
a buffer into the optimized stations’ inventories.
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Figure 6: Number of rebalancing operations carried out in GT1 and GT2 for the DROB-LD
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Figure 7: Improvement of the total lost demand from static to rolling planning
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Figure 8: Improvement of the total lost demand from static to folding planning

Remarks. Overall, the results indicate that DROB-LD is much more susceptible
to the accuracy of demand predictions than DROB-I and DROB-T as the directly
considers such predictions in its objective function. By introducing a buffer to the
stations inventories, the performance of DROB-I and DROB-T remains more sta-
ble among the different prediction approaches. To visualize the improvement of
rolling/folding planning over static planning, we illustrate the difference in total
lost demand between static and rolling planning in Figure 7, and between static and
folding planning in Figure 8 for both GT1 and GT2. It is worth noting that the differ-
ence in total lost demand in these figures consistently shows positive values, meaning
that in all experiments, rolling and folding planning consistently outperform static
planning. These improvements are even more significant in the experiments with
underestimating and overestimating predictions. This can be attributed to the fact
that, in addition to updating the station inventory, a more accurate trip prediction
is updated before re-optimization in each stage (see Figure 5).

4.2. Experiments on real-world data

In this section, we describe the real-world dataset used to validate the effectiveness
of model DROB-I, which, on synthetic data, has demonstrated consistently low lost
rentals while maintaining reasonable computing times. We first describe the real-
world dataset in Section 4.2.1. We then describe the results in Section 4.2.2. The
experimental set-up and planning horizon here considered are the same as in the
experiments on synthetic data.
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4.2.1. Real-world dataset

The real-world data consists of weather, temporal, station, and trip data. Weather
and temporal data are directly provided by the official website of the Government of
Canada, including temperature and humidity. The temporal data contains the date,
hour (0h -23h), year (2019), and weekday (Monday to Friday). The trip and station
data are provided by BIXI2. The trip data contain the origin station, start time,
destination station, and arrival time of each trip, while the station data contain the
location and station capacity (i.e., the number of docks).

We only focus on trips during weekdays from May to September 2019. Selecting
trips before 2020 ensures that analyzed trip patterns are not affected by the COVID-
19 pandemic. Weekdays are chosen due to their typically consistent work-related
trip patterns. The first 21 days of each month, excluding the weekends, constitute
the training dataset. The remaining days of May are used for validation and the
remaining days from June to September are assigned to the test dataset. The initial
inventory for stations at 7 a.m. is also collected from BIXI dataset and serves as
input for the optimization models.

Old Port

Mont
Royal

Figure 9: Cluster of BIXI stations located in Montreal (Canada)

For BIXI’s station network, we exclude stations that have been relocated more
than 1 km from their original locations by the operator during specific events, con-
structions, or holidays. As a result, 606 stations out of originally 620 remain in
our experiments. This network is too large to be directly solved by general-purpose
solvers. As a remedy, literature often divides the network into smaller clusters. Re-

2https://bixi.com/en/open-data-2/
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balancing is then performed within a specific cluster or between different clusters
(see, e.g., [6; 15; 20; 27; 30; 38]).

We follow the approach of [36] to cluster the stations according to their trip
behaviour using k-means. We then select a cluster around the downtown and plateau
areas in which the total number of rentals is approximately the same as the total
number of returns. This cluster has 53 stations, including several city center stations
and therefore contains work-related trips. Given that the distances between stations
inside the cluster are limited, vehicles have sufficient time available to relocate and
rebalance bikes within each time-period. The stations in the selected cluster are
visualized in Figure 9.

4.2.2. Results on Real-world data

Given that, on synthetic data, DROB-I within rolling planning outperformed
DROB-T on lost rental under all the predictions and consistently had swift comput-
ing times, we here focus on comparing the performance of DROB-I and DROB-LD.
Experiments are carried out in a rolling planning, which aligns with practice and
accommodates the need for swift runtime, while also allowing for real-time system
updates.
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Figure 10: Lost demand of DROB-I and DROB-LD on a cluster from BIXI

The results are visualized in Figure 10. Detailed results for each day can be found
in Appendix C. DROB-I performs better on both lost rental and total lost demand,
while the lost return is higher than for DROB-LD. Note that lower lost rental de-
mand (and therefore more succesful trips) also results in more return demand, which
explains that DROB-I suffers from a slightly higher lost return. Such observations
align with previous results on synthetic data. The results on real-world data confirm
the benefits of model DROB-I, providing robustness to the station inventories and
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reducing the total lost demand. In terms of computing time, both models can be
solved to optimality within 1 minute.

In contrast to the results on synthetic data, the improvement provided by DROB-
I is not impressive. Such smaller improvement may be explained by the fact that
the here-considered real-world data only contains successful trips. We also carried
out static planning for the DROB-LD and DROB-I. However, under static planning,
DROB-LD runs out of memory for many cases, given that the model contains more
time-periods. The total lost demand of DROB-I under static planning has been
1.98%, shortly higher than the one under rolling planning (1.58%), highlighting once
again the benefits of the rolling planning for DROB-I.

5. Conclusions

In this work, we have proposed two objective functions for multi-period rebalanc-
ing models for Bike-sharing systems, DROB-I and DROB-T, incorporating inventory
intervals and target inventories. The resulting models provide an alternative to classi-
cal models minimizing unmet demand and are particularly suitable for BSS operators
that use (often manually computed) inventory intervals and targets to guide their
rebalancing process.

Our work evaluates the entire pipeline required for an automatized and data-
driven rebalancing process. Instead of relying on manual input, we estimate rental
and return demand for each hour and station in a data-driven fashion, using a ma-
chine learning model that has been shown to provide reasonably accurate results
based on historical data related to time, weather and user trips. Inventory intervals
and targets are then derived such that they maximize the desired service-level.

Our empirical analysis explore the capability of the proposed planning solutions
to meet customer demands under three key characteristics of the planning process:
the used optimization model, the employed reoptimization mode, and the impact of
highly accurate (or inaccurate) demand predictions. The obtained planning solutions
are then evaluated within a fine-grained minute-by-minute discrete-event simulator.
A series of experiments on synthetic data allows for three key conclusions: First,
our proposed models exhibit remarkable robustness compared to DROB-LD, the
classical model minimizing unmet demand. DROB-T leads to a reduction in lost
demand of up to 34%, while DROB-I decreases lost demand by up to 28%. Second,
such robustness is also observed when demand predictions are less accurate, as these
models introduce a conservative buffer into the station inventories, capable of better
dealing with stochastic demand fluctuations. Third, there is a pronounced benefit
in reoptimizing the rebalancing decisions throughout the planning as opposed to
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executing the optimization model only once and implementing a static planning
solution for the entire planning horizon. Allowing for updated system information,
the improvement via a rolling or folding planning has been found to be consistently
in the order of 15-20% as opposed to static planning for DROB-LD. For DROB-I
and DROB-T, the improvement tends to be higher than 30%, clearly indicating the
benefits of such additional reoptimization effort. Finally, the benefits of our proposed
models observed on synthetic data are also verified on a case study with real-world
data from a BIXI Montreal.

Our approach may be highly attractive to system operators, not only due to their
superior performance, but also due to their fit within the existing decision-making
processes, as inventory intervals and targets are often used concepts in practice. In
addition, we hope that the here proposed weather generator inspires future research
to evaluate planning approaches in a more complex and realistic manner. Given the
benefits of the here proposed models, we believe that the development of tailored
solution methods (such as mathematical decomposition methods) may be promising
research directions, highly useful for both academia and practitioners to approach
rebalancing in large-scale station networks.

Acknowledgements

The authors are thankful to BIXI Montreal for providing real-world trip data
and for their support throughout several discussions. We also thank the Digital
Research Alliance of Canada for providing the computational resources to carry out
the numerical experiments. The Natural Sciences and Engineering Research Council
(NSERC) of Canada has supported the third and fourth author under grants 2023-
04466 and 2017-05224, respectively. The fourth author was also supported by the
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Appendix A. Trip Prediction and Inventory Interval

The methodology for predicting trips and calculating inventory intervals and tar-
get inventories is adapted from the model presented by [28]. The rentals and returns
(f+,ts and f−,ts ) are predicted on an hourly basis for each station. The model utilizes
a Gradient Boosting Tree, which incorporates weather conditions (temperature and
humidity) and temporal information (the day of the week, hour of the day, and hol-
idays) as learning features. In this model, a Singular Value Decomposition (SVD)
technique is applied to reduce the dimension of the trip data. This process results
in faster predictions, enhancing tractability when dealing with an elevated number
of stations. The SVD also elevates the accuracy of the model, indicated by a lower
Root Mean Square Error (RMSE), as it effectively eliminates noise and outliers from
the trip data. Figure A.1 illustrates the model’s pipeline.

Trip
Data
(m × n)

Trip
Data
(m × r)

Weather
Data

Temporal
Data

GBT

Trip
Prediction
(m × r)

Trip
Prediction
(m × n)

SVD

(Compression)

SVD

(Reconstruction)

Figure A.1: Pipeline of the predictive model

Based on the predicted rental and return demand, the expected proportion of
satisfied trips, known as service level, is computed for a given initial inventory. As-
suming a station s with initial inventory i and capacity Cs, the rental and the return
service levels for a time period [t, t +∆] are computed as:

SL+,ts (i) =
∫

t+∆
t f+,ts (1 − p

t
s(i,0))dt

∫

t+∆
t f+,ts dt

(A.1)

SL−,ts (i) =
∫

t+∆
t f−,ts (1 − p

t
s(i,Cs))dt

∫

t+∆
t f−,ts dt

, (A.2)

where f+,ts and f−,ts represent the rental and return rates, respectively, for station
s at time t. Further, pts(i,0), and pts(i,Cs) represent the probability that station s
becomes empty and full, respectively, given an initial inventory i at time t.
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The overall service level is computed as (A.3)

SLt
s(i) =min{SL

+,t
s (i), SL

−,t
s (i)} (A.3)

The minimum and maximum service levels, for a station s in time period [t, t+∆],
can then be computed depending on the initial inventory at time t as follows:

SLmin,t
s =mini∈{0,...,Cs}(SL

t
s(i)) (A.4)

SLmax,t
s =maxi∈{0,...,Cs}(SL

t
s(i)). (A.5)

A threshold Ω is created to establish an acceptable service level for the time
horizon [t, t +∆]:

Ωt
s = SL

min,t
s + β(SLmax,t

s − SLmin,t
s ), (A.6)

in which the hyperparameter β controls the proximity of the threshold Ωt
s to either

the minimum service level or the maximum service level. In practice, this hyperpa-
rameter influences the gap between the upper and the lower bound of the inventory
interval.

The inventory interval for station s for time period [t, t +∆] is then defined as

Is = {i ∈ {0, ...,Cs}∣L ≤ i ≤ U}, (A.7)

where L = min{i ∈ {0, ...,Cs}∣SLt
s(i) ≥ Ωt

s}, and U = max{i ∈ {0, ...,Cs}∣SLt
s(i) ≥ Ωt

s}.
Finally, the target inventory for station s at time-period [t, t+∆] is set to the initial
inventory that results in the maximum service level (i.e., SLmax,t

s ).

Appendix B. Weather Generator

The weather generator in Figure 3 utilizes normal distributions derived from the
temperature and humidity differences between consecutive hours throughout the day,
capturing the change in weather conditions over time.

Histograms of the temperature differences observed between two consecutive
hours of 4 periods during the day (0 am – 5 am, 6 am – 11 am, 12 pm – 5 pm,
and 6 pm – 11 pm) are depicted in Figure B.1. The overlaid red curves illustrate
the normal distributions in which the parameters are computed using the Maximum
Likelihood Estimator.

Figure B.1(A) and Figure B.1(C) display narrower distributions, suggesting less
variability in temperature change, whereas Figure B.1(B) and Figure B.1(D) ex-
hibit wider spreads, indicating greater fluctuation. The distributions for humidity
differences are obtained using the same approach.
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Figure B.1: Distributions of temperature changes between consecutive hours for four time-periods

Appendix C. Experimental Results on BIXI Cluster

The daily lost demand of models DROB-LD and DROB-I on the considered BIXI
cluster are detailed in Table C.1.
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Table C.1: Lost demand for DROB-LD and DROB-I on BIXI cluster

Day Model
Opt.Time
(min)

MIP
Gap (%)

Lost demand (%)
Rental Return Total

Day
1

DROB-LD 0.00 0.00 0.85 7.52 4.40
DROB-I 0.01 0.00 0.00 2.26 1.20

Day
2

DROB-LD 0.66 0.00 0.50 0.55 0.52
DROB-I 0.41 0.00 0.50 0.55 0.52

Day
3

DROB-LD 5.41 0.00 0.73 0.98 0.85
DROB-I 0.01 0.70 0.73 1.96 1.33

Day
4

DROB-LD 0.06 0.00 2.96 1.51 2.27
DROB-I 0.01 0.00 2.09 1.51 1.81

Day
5

DROB-LD 0.02 0.00 1.74 2.33 2.01
DROB-I 0.01 0.00 1.90 4.83 3.27

Day
6

DROB-LD 0.01 0.00 0.16 0.18 0.17
DROB-I 0.01 0.00 0.00 1.41 0.66

Day
7

DROB-LD 0.04 0.00 0.35 2.92 1.56
DROB-I 0.01 0.00 0.17 3.31 1.65

Day
8

DROB-LD 0.01 0.00 2.66 0.65 1.76
DROB-I 0.01 0.00 2.66 2.39 2.54

Day
9

DROB-LD 0.09 0.00 1.75 0.80 1.30
DROB-I 0.01 0.00 1.92 1.59 1.77

Day
10

DROB-LD 0.02 0.00 2.90 2.49 2.71
DROB-I 0.01 0.00 2.90 2.49 2.71

Day
11

DROB-LD 0.01 0.00 1.71 0.73 1.23
DROB-I 0.01 0.00 1.54 1.63 1.58

Day
12

DROB-LD 0.02 0.00 0.65 1.65 1.12
DROB-I 0.01 0.00 1.13 0.74 0.95

Day
13

DROB-LD 0.13 0.00 3.58 1.42 2.52
DROB-I 0.03 0.00 2.21 0.18 1.22

Day
14

DROB-LD 0.01 0.00 2.62 1.32 1.99
DROB-I 0.01 0.00 2.62 1.81 2.23

Day
15

DROB-LD 0.01 0.00 0.85 2.21 1.50
DROB-I 0.01 0.00 0.68 0.37 0.53

Day
16

DROB-LD 0.02 0.00 0.53 3.03 1.81
DROB-I 0.02 0.00 0.00 3.03 1.55

Day
17

DROB-LD 0.11 0.00 2.56 1.12 1.84
DROB-I 0.01 0.00 2.28 0.00 1.13

Day
18

DROB-LD 0.36 0.00 2.80 0.76 1.79
DROB-I 0.03 0.00 2.24 3.82 3.02

Day
19

DROB-LD 0.01 0.00 2.34 0.20 1.29
DROB-I 0.01 0.00 0.78 1.62 1.19

Day
20

DROB-LD 0.01 0.00 0.40 1.08 0.72
DROB-I 0.01 0.00 1.00 0.43 0.72
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